MATHEMATICAL ANALYSIS

PROBLEMS LIST 14

15.01.09

(1) Verify the convergence of the given sequences, and uniform convergence on given sets:

(a)
$$f_n(x) = \sqrt{x^4 + \frac{x^2}{n}}, (-\infty, \infty),$$
 (b) $f_n(x) = \sqrt[n]{1 + x^{2n}}, (-\infty, \infty),$

(c)
$$f_n(x) = x^n - x^{2n}$$
, $[0, 1]$, (d) $f_n(x) = \sin\left(\frac{x}{n}\right)$, $[0, \pi]$,

(e)
$$f_n(x) = \sin^n(x), (-\infty, \infty);$$
 (f) $f_n(x) = \frac{1}{1+x+n}, [0, \infty),$

(g)
$$f_n(x) = \frac{1}{1 + (x+n)^2}$$
, $(-\infty, \infty)$, (h) $f_n(x) = \frac{1}{nx}$, $(0, 1]$, (i) $f_n(x) \frac{nx}{1 + nx^2}$, $[-1, 1]$, (j) $f_n(x) = \frac{nx}{1 + n^2x^2}$, $[-1, 1]$,

(i)
$$f_n(x) \frac{nx}{1 + nx^2}$$
, $[-1, 1]$, (j) $f_n(x) = \frac{nx}{1 + n^2x^2}$, $[-1, 1]$,

(k)
$$f_n(x) = n \sin\left(\frac{x}{n}\right)$$
, $[-1, 1]$, (l) $f_n(x) = nx^{-nx^2}$, $[-1, 1]$.

(2) Establish the set on which the series is convergent, and check whether the convergence is uniform:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} e^{-nx^2}$$
, (b) $\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{1+nx}}$, (c) $\sum_{n=1}^{\infty} \frac{\cos(nx)}{10^n}$,

(d)
$$\sum_{n=1}^{\infty} n e^{-nx}$$
, (e) $\sum_{n=1}^{\infty} \frac{1}{n! \, x^n}$, (f) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + x^2}}$, (g) $\sum_{n=1}^{\infty} \frac{3^n \, x^n}{n^2}$, (h) $\sum_{n=1}^{\infty} 2^n \, x^n$, (i) $\sum_{n=1}^{\infty} \frac{5^n \, x^n}{n}$,

(g)
$$\sum_{n=1}^{\infty} \frac{3^n x^n}{n^2}$$
, (h) $\sum_{n=1}^{\infty} 2^n x^n$, (i) $\sum_{n=1}^{\infty} \frac{5^n x^n}{n}$,

(j)
$$\sum_{n=1}^{\infty} n\left(\sqrt{x(1-x)}\right)^n$$
, (k) $\sum_{n=1}^{\infty} \frac{1}{n^x}$, (l) $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$,

(m)
$$\sum_{n=1}^{\infty} \frac{x}{x^2 + n^2}$$
, (n) $\sum_{n=1}^{\infty} \sin(nx)$.

(3) Prove that the following series are uniformly convergent on the

entire real line
$$(-\infty, \infty)$$
:
(a) $\sum_{n=0}^{\infty} \frac{\sin(nx)}{n!}$, (b) $\sum_{n=1}^{\infty} \frac{\cos(nx)}{10^n}$, (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n^2}$.

- (4) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{1+nx}}$ is uniformly convergent on the set $[0,\infty)$.
- (5) Prove that the series $\sum_{n=1}^{\infty} \frac{\log(1+nx)}{n \, x^n}$ converges pointwise, but not uniformly on the set $[1, \infty)$, and that it is convergent uniformly on the set $[2, \infty)$.
- (6) Find the derivative f'(x) and the integral $\int f(x) dx$ of the following functions:

(a)
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^n$$
, (b) $f(x) = \sum_{n=0}^{\infty} \frac{1}{n^2 + 1} x^n$,

(c)
$$f(x) = \sum_{n=1}^{\infty} (n+1) x^n$$
, (d) $f(x) = \sum_{n=1}^{\infty} x^n$.

(7) "Compact" the following power series, that is find the formula for their sum, and then determine the domain of such function:

(a)
$$\sum_{n=0}^{\infty} x^{2n}$$
, (b) $\sum_{n=1}^{\infty} n x^{2n}$, (c) $\sum_{n=1}^{\infty} n^2 x^{2n}$, (d) $\sum_{n=1}^{\infty} (-1)^n n x^n$,

(e)
$$\sum_{n=1}^{\infty} n(n+1) x^n$$
, (f) $\sum_{n=1}^{\infty} n(n+1) (n+2) x^n$.