MATHEMATICAL ANALYSIS

PROBLEMS LIST 14

18.

01.10

(1) Verify the convergence of the given function sequences, and uniform convergence

on given sets:
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(2) Establish the set on which the function series is convergent, and check whether

the convergence is uniform:
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(3) Prove that the following series are uniformly convergent on the entire real line

(—00,00):
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4) Prove that the series
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is uniformly convergent on the set [0, 00).
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(5) Prove that the series Z converges pointwise, but not uniformly on

n=1
the set [1,00), and that it is convergent uniformly on the set [2,00).

(6) Find the derivative f'(z) and the indefinite integral | f(z)dx of the following

functions:
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(7) “Compact” the following power series, that is find the formula for their sum, and

then determine the domain of so obtained function:
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