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Rozdziat 1

Analiza matematyczna — FAQ

Analiza matematyczna nie jest zapewne najpopularniejszym przedmiotem
na informatyce. W konicu, jezeli kto§s miatby wielka ochote na analize ma-
tematyczna, to przypuszczalnie studiowalby matematyke, a nie informatyke.
Tymczasem $wiezo upieczeni studenci informatycy, nie mogacy doczekaé sie
chwili, w ktorej napisza pierwsze linijki profesjonalnego kodu, musza pochyli¢
sie nad pytaniami typu: czy dana suma nieskoniczona jest zbiezna czy nie.
Okazuje sie, ze wérod przedmiotow obowiazkowych na pierwszym roku jest
wlasnie analiza matematyczna!

Chciatbym odpowiedzieé¢ na kilka czesto pojawiajacych sie pytan, i prze-
kona¢ paristwa, ze ten wyklad nie znalazl sie w programie przez pomylke. Ze
wrecz przeciwnie, jest to jeden z najwazniejszych wyktadow pierwszych lat,
i ze warto sie do niego przylozyc¢.

Czesto pojawia sie nastepujaca watpliwo$é: po co informatykowi mate-
matyka. Przeciez nawet jezeli kiedy$ pojawi sie potrzeba zastosowania ja-
kiego§ wyniku matematycznego, to doczytamy sobie potrzebne rzeczy, albo
skonsultujemy sie ze specjalista. Taki argument to wynik nieporozumienia.
Podstawowy kurs analizy matematycznej to nie jest zadna specjalistyczna
wiedza. Nie nalezy oczekiwaé¢, ze pojecia i twierdzenia, ktoérymi bedziemy
sie zajmowali na tym wykladzie rozwigza nam jakies konkretne problemy.
Cata ta analiza matematyczna to jest po prostu jezyk ktorym sie postugu-
jemy, kiedy chcemy sformutowaé czy zrozumie¢ jakis§ problem. Jest to jezyk
uniwersalny w naukach technicznych, rowniez w informatyce. W dzisiejszych
czasach, jezeli chce si¢ by¢ prawdziwym, tworczym profesjonalista, praktycz-
nie w kazdej dziedzinie, trzeba zna¢ angielski. Fachowa literatura jest po
angielsku, Internet jest (upraszczajac troche) po angielsku, a zaden staz za-
graniczny nie okaze sie sukcesem bez znajomosci angielskiego. Podobnie jest
z analiza. Trzeba oswoié sie z pojeciami takimi jak zbieznos¢, ciagtosé, przy-
blizenie, calka, szereg potegowy i temu podobne. Tego typu pojecia prze-



wijaja sie wszedzie i beda panstwu towarzyszy¢ w przyszlej karierze. Wielu
z was pojedzie na staze do osrodkow za granica, na przyklad do siedziby
firmy Microsoft w Redmond nad brzegiem jeziora Washington. Pamietajmy,
ze kazdy absolwent studiow inzynieryjnych, na przyktad w Stanach Zjedno-
czonych (obejmuje to takze informatykow), ma za soba co najmniej 3 seme-
stry analizy matematycznej. Tacy ludzie beda tworzyli wasze srodowisko, to
z nimi bedziecie robi¢ wspdlne projekty. Nie znajac podstawowego jezyka
nauk technicznych, czyli analizy, byli byscie, jesli mozna tak powiedziec,
profesjonalnymi analfabetami. Podkreslmy wiec: podstawowy kurs analizy
matematycznej to nie jest zadna specjalistyczna wiedza, ktora moze sie przy-
da¢, ale nie musi. To podstawowe pojecia i zwiazki pomiedzy nimi, ktore
stale bedg sie przewijac¢, w trakcie studiow, i potem, w zawodowym zyciu co-
dziennym. W trakcie dalszych studiéw beda parnstwu oferowane rézne inne
wyktady matematyczne lub z pogranicza matematyki i informatyki. Wiele
z nich bedziecie mogli wybra¢ badz opusci¢. Ale analiza, podobnie jak na
przyktad logika, pelni inng role — jest podstawowa i obowiazkowa.

Czesto pojawia sie nastepujacy problem. Studenci méwia: ,No dobrze,
skoro sie pan upiera, to bedziemy sie uczy¢ analizy. Ale dlaczego tak szcze-
gélowo pan wszystko uzasadnia i dowodzi. Niektore z pana dowodoéw sa na
caly strone! My wierzymy panu, ze te twierdzenia sa prawdziwe. Zamiast
dowodoéw niech pan wylozy wiecej materiatu.” Oto6z jest to w dalszym ciagu
to samo nieporozumienie. Na tym wykladzie chodzi nam o to, zeby zapo-
znac sie z pojeciami, zaleznoSciami pomiedzy nimi, sposobem w jaki na siebie
wzajemnie wplywajg. SposOb argumentacji jest tak samo wazny, jak same
fakty. Na tym wyktadzie pytanie ,,co?” jest réwnie wazne jak ,dlaczego?”.
Zauwazmy tez, ze wiekszos¢ dowodow jest bardzo krotka i jasna. Jezeli do-
wod nie jest natychmiastowy, to zawsze staram sie podkresli¢ jego pomyst.
Najpierw intuicyjnie staramy sie dojs¢ dlaczego dane twierdzenie miatoby
by¢ prawdziwe, a kiedy juz mamy ogodlne pojecie, staramy sie doprecyzowaé
rozumowanie, i cato$¢ ,ubra¢ w stowka”. Jezeli wiemy od poczatku o co w
dowodzie chodzi, to catos¢ nie jest ani trudna, ani zawila.

Wielu studentow zglasza nastepujaca uwage: ,/Ten wyktad to zaledwie po-
wtorka tego, co mieliSmy w szkole §redniej. Wiekszoé¢ zadan na kolokwiach
i egzaminie jest tak latwa, ze az wstyd. Chcemy i mozemy wiecej, duzo
wiecej!” To prawda, duza cze$¢ materialu zawiera sie w programie szkoty
sredniej. Ale prosze pamieta¢, to nie jest wyktad nastawiony na wyczyn na-
ukowy. Chcemy uporzadkowaé i utrwali¢ ta podstawowa wiedze, jaka jest
analiza. Nie ma wiele nowego materiatu, ale to co jest jest wytozone szczego-
towo, bez omijania spraw klopotliwych. Na ¢wiczeniach jest tez do zrobienia
duzo zadan. Jak moéwig Amerykanie: ,Co jest podstawa rzetelnej wiedzy?
Repetition, repetition, repetition!” Bez obawy, jezeli szukacie panstwo gte-

4



bokiej, rzetelnej wiedzy, to znalezlicie sie we wlasciwym miejscu. Oprocz
analizy czeka was wiele innych wykladow, i nie bedziecie si¢ nudzi¢. Jezeli
interesuje was analiza, albo inne przedmioty matematyczne, to w sasiednim
budynku znajdziecie wyktady z kazdej dziedziny matematyki, i na kazdym
poziomie. Wielu studentéw informatyki uczeszcza na wyklady w Instytucie
Matematycznym, i wielu studentéw matematyki przychodzi na zajecia do In-
stytutu Informatyki. To nie przypadek, ze budynki sasiaduja ze soba, i mozna
przechodzi¢ pomiedzy nimi ,sucha stopa”. Nawet biblioteka jest wspolna. Za-
wsze tez jesteScie mile widziani na konsultacjach, gdzie mozecie porozmawiac
z wykladowca, ktory z niejednego juz pieca chleb matematyczny jadt.

Pojawia sie tez nastepujace pytanie: ,Notatki z wykladu maja 15 roz-
dzialow, mniej wiecej tyle, ile tygodni bedzie trwal wyktad. Mamy wiec plan
pracy, i dodatkowo gotowe notatki. Czy mozemy w takim razie nie chodzi¢
na wyktad? Po co mamy zrywac sie z t6zka na 12, zeby oglada¢, jak przepi-
suje pan notatki na tablice? Po co chodzi¢ na ¢wiczenia i ogladac, jak ktos
rozwigzuje proste zadania?” Otéz nie, zdecydowanie powinniscie parnstwo
chodzi¢ na wyktad i na ¢wiczenia. Stuchanie wyktadu to zupetnie co innego
niz czytanie notatek. Nawet nie chodzi o to, ze sa pytania, ze pojawiaja
sie nowe pomysty. 7 doswiadczenia wiadomo, ze kazdy wyklad jest inny.
Czasem ten sam temat przerabia si¢ w 15 minut, czasem w godzine. Z cala
pewnoscia wyktad nie polega tylko na przepisywaniu notatek na tablice. Po-
dobnie z ¢wiczeniami. Nie da sie opanowa¢ tego materiatu nie robigc zadan
samodzielnie. Wydaje mi sie, ze mozna tu zastosowa¢ analogie do nauki je-
zyka obcego. Trzeba ¢wiczy¢, trzeba probowad, i oczywiscie trzeba samemu
chodzi¢ do tablicy i rozwigzywaé zadanie publicznie. Trzeba tez starac sie
by¢ ,na biezaco”. W takim wyktadzie jak analiza tatwo jest zgubié sie w
jakims momencie i straci¢ watek. Kolejno wprowadzane pojecia beda juz
do korica stale uzywane. Obecno$¢ formalnie nie jest sprawdzana, ale prosze
pamietac, ze nie chodzac na wyktad czy ¢wiczenia mozecie wpedzi¢ sie w kto-
poty. Nie jest tatwo opanowaé ten material tylko czytajac gotowe notatki.
Oprocz egzaminu koncowego w trakcie semestru beda 3 kolokwia, mniej wie-
cej co miesige. Kolokwia powinny da¢ panstwu ,w czasie rzeczywistym” jasny
obraz tego, jak wam idzie.

Jezeli macie panstwo inne pytania — pytajcie. Mo6j adres to

mpal@math.uni.wroc.pl



Rozdzial 2

Liczby rzeczywiste 1 zespolone

Liczby rzeczywiste

Nie bedziemy szczegdltowo zajmowacé sie konstrukcja zbioru liczb rzeczywi-
stych. Konstrukcja zbioru liczb rzeczywistych, okreslenie dziatan na liczbach
i pokazanie wszystkich potrzebnych wtasnosci to temat bardzo ciekawy, i
na pewno warto sie nim zainteresowa¢. Ale na tym wykladzie przypomnimy
tylko najwazniejsze fakty, i zakladamy, ze generalnie liczby rzeczywiste wszy-
scy znaja. Zbior liczb rzeczywistych oznaczamy R, a liczbe rzeczywista ro-
zumiemy jako rozwiniecie dziesietne (ciagi cyfr dziesietnych), na przyklad
123,357290. ... Rozwiniecie dziesietne zawiera przecinek, jest skoriczone po
lewej stronie i skoniczone lub nieskoniczone po prawej stronie. Rozwiniecia
moga mie¢ znak — | wtedy nazywamy je liczbami ujemnymi. Wszyscy
wiemy, jak dodawac¢, odejmowac, mnozy¢ i dzieli¢ takie liczby, oraz znamy
wlasnosci tych dziatan, na przyktad tacznosé i rozdzielno$¢. Przypomnijmy
wazne fakty:

1. Jezeli pewien uktad cyfr po przecinku powtarza sie¢ okresowo, to ten
uktad cyfr zapisujemy w nawiasie: 0,03212512512--- = 0,032(125).

2. Jezeli od pewnego miejsca po przecinku w rozwinieciu sg same zera, to

nie piszemy ich, i takie rozwiniecie nazywamy skoriczonym 3, 234000000 - - -

3,234(0) = 3, 234.

3. W zasadzie ro6zne rozwiniecia dziesietne oznaczaja rozne liczby. Sa jed-
nak wyjatki, i zdarza sie, ze 2 rozne rozwiniecia dziesietne oznaczaja
ta sama liczbe rzeczywista. Wyjatek taki ma miejsce w sytuacji, gdy
w rozwinieciu od pewnego miejsca sa same 9. Takie rozwiniecie re-
prezentuje ta sama liczbe, co rozwiniecie, gdzie dziewigtki zastapimy
zerami, a pierwsza (od prawej) cyfre mniejsza od 9 powiekszamy o 1.
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Na przyktad 0,09999--- = 0,0(9) = 0,1. Mozna to tatwo udowodnié,
korzystajac z wlasnosci dziatan (na przyktad tego, ze mnozenie przez 10

oznacza przesuniecie przecinka dziesietnego w prawo o jedna pozycje).
Niech z = 0,0(9). Mamy wtedy

10-2=0,(9)=0,9+0,009) =09+2=9-2=0,9=x2=0,1.

Liczby rzeczywiste, ktorych rozwiniecia dziesietne maja po przecinku
same zera nazywamy liczbami caltkowitymi, i oznaczamy Z. Dodatnie liczby
catkowite 1,2,... (bez zera) nazywamy liczbami naturalnymi i oznaczamy

N.

Liczby wymierne

Liczby ktorych rozwiniecia sa skonczone lub okresowe nazywamy liczbami
wymiernymi. Zbior liczb wymiernych oznaczamy Q. Liczby wymierne mozna
zapisa¢ jako utamki ™, gdzie m,n € Z, oraz n # 0. Jezeli n € N oraz m i
n nie maja wspolnego dzielnika, to przedstawienie liczby wymiernej x jako
utamka “* jest jednoznaczne, a taki utamek nazywamy nieskracalnym. Kazda
liczbe wymierng mozna przedstawi¢ jako utamek nieskracalny.

Przyklady: (a) + = 0,1428571428 - -- = 0, (142857). Rozwinigcie dziesigtne
otrzymujemy po prostu stosujac ,dlugie dzielenie”. Dzielac kolejno w pew-
nym momencie widzimy, ze reszta powtarza sie, i zauwazamy w zwigzku z
tym okres.

(b) 0,123 = {25, Jest to utamek nieskracalny, gdyz licznik i mianownik nie
maja wspolnych dzielnikow, a mianownik jest dodatni.

(c) 0, (arag -~ ay) = “5=g* (k — dziewigtek w mianowniku). Latwo to udo-

wodni¢, wypisujac i rozwiazujac odpowiednie rownanie na x = 0, (ay - - - a).

(d) Przeksztalcimy nastepujace rozwiniecie dziesietne na utamek

123 0, (45)
123(45) = 0, 12 45) =
0,123(45) = 0,123 +0,000(45) = - + = =
123 1 45 99123445 12222

1000 * 100099~ 99000 99000

Liczby niewymierne

Liczby rzeczywiste ktore nie sa wymierne, czyli ktorych rozwiniecia dziesietne
sa nieskonczone i nieokresowe nazywamy liczbami niewymiernymi.
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Przyklady: (a) Napiszmy liczbe, w ktorej rozwinieciu dziesietnym coraz
dhuzsze ciagi zer przedzielane sa jedynkami:

x = 0,101001000100001 - --10---010---

Serie zer sa coraz dluzsze, a wiec rozwiniecie nie jest okresowe. Nie jest
tez skonczone, bo zawiera nieskoniczenie wiele jedynek. x jest wiec liczba
rzeczywista niewymierna.

(b) Innym przyktadem liczby niewymiernej jest v/15. Pokazemy, ze v/15 nie
jest liczba wymierna. Rozumowanie to jest typowe, i mozna je zaadaptowac
do wielu przykladow. Zalozmy, ze /15 jest liczba wymierna, i przedstawmy
ja w postaci utamka nieskracalnego

\R’/ﬁ:m = 15223 = n-15=md
n n
3 dzieli lewa strone ostatniej réwnosci, wiec musi dzieli¢ prawa strone. 3
jest liczba pierwsza, wiec jezeli dzieli iloczyn liczb, to musi dzieli¢ ktorys z
czynnikow (to jest wlasnosé liczb pierwszych). W takim razie 3 musi dzieli¢
m, a w takim razie prawa strona, jako szescian, dzieli si¢ przez 27. W takim
razie po lewej stronie réwnoéci n® musi sie dzieli¢ przez 3 (bo 15 dzieli sig
tylko przez 3), a wiec znowuz, skoro 3 jest liczba pierwsza, n musi dzieli¢ sie
przez 3. Utamek “* nie jest wigc nieskracalny, co jest sprzeczne z zalozeniem.

Zalozenie, ze v/15 jest liczba wymierng musi wiec by¢ falszywe.

Uwagi: (i) Liczba pierwsza to liczna naturalna, wieksza od 1, ktora nie ma
innych dzielnikéw oprocz 1 i siebie samej. Liczby pierwsze maja nastepujaca
wlasnosé: jezeli p jest liczba pierwsza i p|m - n (p dzieli m - n), to p|m lub
pln.

(ii) Powyzsze rozumowanie stanowi zastosowanie rozktadu liczby na czyn-
niki pierwsze. Kazda liczbe naturalna mozna roztozy¢ na iloczyn czynnikow,
ktore sg liczbami pierwszymi. Taki rozktad nazywamy rozktadem na czynniki
pierwsze. Rozklad taki jest jednoznaczny. W réwnosci

n® .15 =m?
czynniki pierwsze n® i m?® wystepuja w kompletach po 3, a czynniki pierwsze
15, czyli 3 1 5 nie maja takich kompletéw. Istnienie i jednoznaczno$é¢ roz-
ktadu liczb naturalnych na czynniki pierwsze to wtasno$é zbioru N, ktorej
nie bedziemy dowodzi¢, ale o ktorej zawsze warto pamietac. Jako ¢wiczenie
w ktorym rozktad na czynniki pierwsze moze si¢ przyda¢ przytoczmy jeszcze
nastepujace pytanie: ile zer koncowych ma liczba (1000)! (1000 silnia)?
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(iii) Pierwiastek wystepujacy w poprzednim przyktadzie, podobnie jak loga-
rytm i potegi wystepujace w nastepnym stanowiag przyktady funkcji elemen-
tarnych. Zaktadamy, ze znamy funkcje elementarne, i nie bedziemy zajmowaé
sie ich definicjami. W nastepnym rozdziale krotko przypomnimy najwazniej-
sze fakty z nimi zwigzane.

(c) log, 3. Bedziemy rozumowac tak jak w poprzednim przyktadzie, czyli nie
wprost. Zalozmy, ze log, 3 jest liczba wymierna, i niech logy, 3 = ™ bedzie
ulamkiem nieskracalnym

I3

m
logod=— = 2»=3 = 2"=3"

n
Otrzymali$my sprzecznosé, gdyz lewa strona ostatniej rownosci zawiera je-
dynie dwojki jako swoje czynniki pierwsze, a prawa strona jedynie trojki.
Zalozenie, ze log, 3 € Q musi wiec by¢ fatszywe.

(d) Suma, rozmica, iloczyn i iloraz dwoch liczb wymiernych sa wymierne
(oczywiscie nie mozna dzieli¢ przez zero). Suma, réznica, iloczyn i iloraz
liczby wymiernej i niewymiernej sa niewymierne (chyba ze, w przypadku
mnozenia i dzielenia, liczba wymierna jest rowna 0). Wynik dzialai na dwoch
liczbach niewymiernych moze by¢ roézny, wymierny lub niewymierny, w za-
leznoéci od konkretnych wartosci.

Interpretacja geometryczna

O liczbach rzeczywistych mozemy mysleé¢ jako o punktach prostej. Na prostej
zaznaczamy miejsce zera i jedynki, a strzalka oznaczamy kierunek wzrostu.
Kierunek wzrostu zwigzany jest ze wzajemnym polozeniem zera i jedynki.
Tradycyjnie kierunek wzrostu jest zawsze w prawo. Kazdej liczbie rzeczy-
wistej mozna przyporzadkowaé, w sposOb wzajemnie jednoznaczny, punkt
takiej proste;.

Rysunek 2.1: Prosta rzeczywista



Uporzadkowanie zbioru R

Jezeli © — y jest liczba dodatnia, to piszemy x > y (,x jest wieksze od y”),
jezeli nieujemna, to piszemy x > y. Podobnie, jezeli x — y jest liczba ujemna
to piszemy x < vy, jezeli niedodatnia, to x < y. Widzimy wiec, zedlaz,y € R
mamy albo x = y, albo x < y albo x > y. W zwiazku z tym moéwimy, ze zbior
R jest uporzadkowany. Na prostej rzeczywistej © > vy jezeli x jest bardziej
na prawo od y — symbolizuje to strzaltka w prawo — w prawo liczby rosna.

Przypomnijmy dwie wlasnosci zbioru liczb rzeczywistych: aksjomat Ar-
chimedesa i aksjomat ciggtosci.

Symbole

V czytamy ,dla kazdego”, 3 czytamy ,istnieje”, < czytamy ,wtedy i tylko
wtedy”, (-+-) = (---) czytamy ,z (--- ) wynika (- - - )7, € czytamy ,nalezy do”,
C czytamy ,jest podzbiorem”. Symbol A czytamy ,i”, a symbol V czytamy
Hub”.

Aksjomat Archimedesa

Liczby rzeczywiste maja nastepujacag wtasnoscé, ktora jest intuicyjnie zupelnie
jasna: dla dowolnych x,y > 0 istnieje liczba naturalna n taka, ze

nr > 1.
Uzywajac przytoczonych powyzej symboli aksjomat mozemy zapisa¢ jako
Va,y>0dneNnx>y.

7 aksjomatu Archimedesa wynika, na przyklad, ze istnieja liczby naturalne
dowolnie duze (wieksze od dowolnej ustalonej liczby rzeczywistej). Ponie-
waz mnozenie przez —1 odwraca nieréwnosci, wiec z aksjomatu wynika tez,
ze istnieja liczby catkowite dowolnie mate (mniejsze od dowolnej ustalonej
liczby rzeczywistej). Zauwazmy, ze z aksjomatu wynika tez, ze istnieja liczby
dodatnie dowolnie mate (dodatnie, ale mniejsze od dowolnej innej dodatniej).
Bedziemy uzywali wszystkich tych faktow, nie powolujac sie juz bezposrednio
na aksjomat Archimedesa.

Kresy

Mowimy, ze zbior A C R jest:
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e ograniczony od gory, jezeli

deVee Az <c,

e ograniczony od dotu, jezeli

JdVazeAz>d,

e ograniczony, jezeli jest ograniczony od gory i od dotu jednoczesnie.

State ¢ i d w powyzszych warunkach nazywamy odpowiednio ogranicze-
niem zbioru A od gory i ograniczeniem zbioru A od dotu. Zbiér liczb natu-
ralnych jest ograniczony od dotu (ograniczeniem od dotu jest, na przyktad
liczba 1), ale nie jest ograniczony od gory (z aksjomatu Archimedesa wy-
nika, ze nie da sie znalez¢ ¢, bedacego ograniczeniem N od gory). Jezeli
zbior A C R jest ograniczony od gory, to najmniejsze ograniczenie A od gory
nazywamy kresem gérnym A i oznaczamy

sup A (supremum A).

Jezeli A C R jest ograniczony od dotu, to najwieksze ograniczenie A od dotu
nazywamy kresem dolnym A, i zapisujemy

inf A (infimum A).
Czyli, s = sup A jezeli
e VexeAx<s,
eVu<sdzeAz>u.

Pierwszy warunek mowi, ze A jest ograniczony od gory i s jest ograniczeniem
od gory, a drugi warunek mowi, ze zadna liczba mniejsza od s nie jest ograni-
czeniem A od gory. Oba warunki razem mowia wiec, ze s jest najmniejszym
ograniczeniem od goéry zbioru A. Podobnie mozemy podsumowac definicje
kresu dolnego: k = inf A jezeli

eVrxeAx >k,

eVi>kdrxeAx<l.

Pojecie kresu gornego sup A i dolnego inf A wprowadziliSmy w przypadku,
gdy zbior A jest ograniczony, odpowiednio od géry lub od dohu. Dodatkowo
ustalmy, ze jezeli zbior A nie jest ograniczony od gory, to bedziemy pisali

sup A = 400,
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oraz gdy zbior A nie jest ograniczony od dolu bedziemy pisali
inf A = —oc.

Na przyktad
infN=1 oraz supN = +o0.

Aksjomat ciggtosci

Aksjomat ten mowi, ze kazdy zbior A C R ograniczony od goéry ma kres
gorny. Roéwnowaznie mozna sformutowaé ta witasnosé dla kreséw dolnych:
kazdy zbior ograniczony od dotu ma kres dolny. Stwierdzenia te wyrazaja
pewna wlasno$c¢ cigglosci zbioru liczb rzeczywistych — liczby rzeczywiste wy-
peiniaja caly prosta rzeczywista, bez przerw.

Uwaga: Zbiér moze zawiera¢ swoj kres lub nie Na przyktad
sup{z: x <1} =sup{z: 2 <1} =1,

przy czym pierwszy zbioér nie zawiera 1, a drugi zawiera.

Przyklad: Rozwazmy nastepujacy zbior

2 2
A:{u: m,neN,m<n}.

2mn

Zauwazmy, ze A nie jest ograniczony od gory. Istotnie, zbior A zawiera
wszystkie liczby postaci m;;gl, m € N, m > 1. Kazda taka liczba jest wieksza
od %, a wiec A zawiera liczby wieksze od dowolnej liczby naturalnej. Nie
moze wiec byé¢ ograniczony od gory. Zauwazmy, ze jest ograniczony od dotu,

i ograniczeniem od dotu jest 1. W tym celu wykorzystamy znana nieréwnos¢:

2 2
2ab < a’ 4+ = m2¢21 dla m,n > 0.
mn

Przekonamy sie teraz, ze 1 jest najwiekszym ograniczeniem A od dotu. Niech
c > 1. Wtedy ﬁ jest liczba dodatnia, i z aksjomatu Archimedesa wynika,
ze istnieje liczba naturalna m wieksza od c—% Niech dodatkowo m > 2, co
zawsze mozemy zalozy¢, ewentualnie powiekszajac m. Wtedy

1 1
2 -H)>m>— = 1+ —F<c
m(m —1) > m c—1 +2m(m—1) ¢
Mamy wiec
m?>+(m—172% m?P4+m?-2m+1 2m(m-—1)+1 1
2m(m — 1) 2m(m — 1) 2m(m — 1) 2m(m — 1)
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Zakladajac, ze ¢ > 1 znalezliSmy w zbiorze A element % mniejszy

od c¢. Tak wiec zadne ¢ > 1 nie jest ograniczeniem A od dolu, a wiec 1
jest najwiekszym ograniczeniem A od dotu, czyli inf A = 1. Przy okazji
zauwazmy, ze 1 ¢ A: gdyby 1 € A, to istnialyby m,n € N, n # m, takie, ze
m?+n? = 2mn. Wiemy jednak, ze taka rowno$¢ jest rownowazna (m—n)? =
0, czyli m = n.

Przedzialy
Przedzialy oznaczamy nastepujaco:
(a,b) ={x: a<x<b}, (przedzial otwarty),
[a,b) ={z: a <x <b}, (przedzial domkniety),

(a,b] ={z: a<x <b}, (przedzial lewostronnie otwarty),

[a,0) ={z: a <x <b}, (przedzial prawostronnie otwarty).

W przypadku przedzialow (a, ) i (a, b] dopuszczamy a = —o0, a w przypadku
przedzialow (a,b) i [a,b) dopuszczamy b = co. Takie przedzialy oznaczaja
wtedy odpowiednie potproste. Domyslnie rozumiemy, ze a < b, a w przy-
padku przedzialu domknietego |a, b] dopuszczamy a = b.

Wartosé bezwzgledna
Warto$¢ bezwzgledng liczby rzeczywistej definiujemy nastepujaco

2] T jezeli x > 0,
T =
—x  jezeli z < 0.

Warto$¢ bezwzgledna ma nastepujace wlasnosci:

1. | —z| = |z] oraz —|z| <z < ||,

2. |z +y| < x|+ |y| (nierownosé trojkata),

3. |z = lyll < |z —yl,

4. |xr — y| reprezentuje odlegtos¢ = od y na prostej rzeczywistej,
5. [a -yl = |z - |y| oraz x| = Va2,

6. |x| > 0oraz |z] =0 <z =0,

7. x<yoraz —x <y = |z|<uv.
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Dla przyktadu przeprowadzimy dowod nieréwnodci trojkata 2. Rozpatrzymy
osobno dwa przypadki
(a) z i y maja ten sam znak £. Wtedy ich suma ma ten sam znak, a wiec

lz+y|==x(x+y) =+t + £y = |z[ + |y|.

W tym przypadku widzimy, ze nieréwnosé¢ trojkata jest réwnoscia.
(b) iy maja przeciwne znaki. Mozemy zalozy¢, ze + < 0 < y, w przeciwnym
przypadku zamieniajac miejscami z i y. Jezeli x +y > 0 to

Tyl =z+y<—z+y=|z|+yl,
a jezeli z +y < 0 to
Tty =—(r+y)=—r—y<—a+y=]|z[+]yl
W tym przypadku, jezeli zadna z liczb z,y nie jest zerem, to nieréwnos¢

trojkata jest ostra.

Czesé¢ calkowita i utamkowa

Cze$¢ caltkowita x to najwieksza liczba catkowita nie wieksza od z. Czesc¢
catkowita = oznaczamy przez [x]. Czes¢ utamkowa x to {x} =z — [z]. Czesé
catkowita ma wiec nastepujace wlasnosci

o [z] €Z,
o g]<z<z+lcegyliz—1<]z] <z,

o [z]=xs el

Przyklady: [1,5] =1, [-1,5] = -2, {—1,5} =0,5.

Gestosé liczb wymiernych i niewymiernych w R

W kazdym przedziale (a,b) lezy liczba wymierna i niewymierna. Niech (a, b)
bedzie dowolnym przedziatlem (pamietamy,ze a < b, wiec przedzial ten nie
jest zbiorem pustym). Udowodnimy, ze w (a, b) musi leze¢ liczba wymierna.
Liczbe niewymierna pozostawimy jako ¢wiczenie. ﬁ > 0, wiec z aksjomatu
Archimedesa istnieje n € N taka, ze n > ;= czyli + < (b — a). Rozwazmy

zbior liczb postaci
k
{— ke Z} )
n

14



f(z) = [x] f(@) = {x}

Rysunek 2.2: Czes¢ catkowita i cze$¢ ulamkowa

Pokazemy, ze ktoras z liczb z powyzszego zbioru musi wpas$¢ do przedziatu
(a,b). Niech ky bedzie najwieksza sposrod liczb catkowitych k takich | ze

k < na.

Zbior liczb k € Z spelniajacych powyzszy warunek jest oczywiscie ograni-

czony od gory, i w takim razie taka najwieksza liczba ky € Z istnieje. Za-

uwazmy, ze " > g oraz skoro £ < a,ad < (b—a), to 2 < a+(b—a) =b.
€ (a,b) i jest oczywiscie liczba wymierna.

k:0+1

n

Tak wiec

Zasada indukcji

Zbiér liczb naturalnych ma nastepujaca wlasnosé: Kazdy jego niepusty pod-
zbior posiada element najmniejszy. Z tej wlasnosci wynika nastepujaca za-
sada indukcji. Niech T'(n), n > ngy bedzie pewnym ciagiem twierdzen. Cze-
sto w zastosowaniach sa to rownosci badz nieréwnosci, w ktorych wystepuje
liczba naturalna n. Niech:

1. T'(ng) bedzie prawdziwe (punkt startowy indukcji),

2. V' n > ng zachodzi wynikanie (7'(n) — prawdziwe) = (T'(n+ 1) — praw-
dziwe) (krok indukcyjny).

Wtedy wszystkie twierdzenia T'(n), n > ng sa prawdziwe. Zasada indukcji
jest intuicyjnie oczywista, i mozna ja tatwo udowodni¢: Jezeli nie wszystkie
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twierdzenia T'(n), n > ng sa prawdziwe, to niech A C N bedzie zbiorem tych
n > ng, dla ktorych T'(n) nie jest prawdziwe. A ma element najmniejszy
ktory oznaczymy przez n. Zauwazmy, ze z warunku 1. wynika, ze n >
no. Mamy wiec T'(n) falszywe (bo n € A), ale T'(7n — 1) prawdziwe, gdyz
n—1¢ A. Ale to przeczy warunkowi 2., gdyz z prawdziwosci T'(n— 1) wynika
prawdziwosé T'(n).

Przyklad: Pokazemy, ze V n € N prawdziwe jest twierdzenie T'(n), ktore
w tym przypadku jest nieréwnoscia 10n < 2" 4 25. Przeprowadzimy krok
indukcyjny, czyli dowod 2. Zaté6zmy wiec

10n < 2" + 25,
i sprobujmy, przy wykorzystaniu powyzszego udowodnié
10(n + 1) < 2"t 4 25. (2.1)

Mamy wiec
10(n+ 1) = 10n + 10 < 2™ + 25 + 10. (2.2)

Zeby dokonczy¢ dowod, i dojéé do prawej strony (2.1) potrzebujemy nierow-
nos¢ 10 < 2", ktora, niestety, jest prawdziwa tylko dla n > 4. Zat6zmy wiec,
ze n > 4, i dokonczmy (2.2):

2" 425410 < 2" + 2" 4 25 = 2"l 4 95,

czyli mamy zrobiony krok indukcyjny, dla dowolnego n > 4. Oznacza to, ze
zasade indukcji bedziemy mogli zastosowa¢ tylko do udowodnienia nieré6wno-
Sci dla n > 4. Co z nieréwno$ciami dla n = 1,2,37 Tych kilka przypadkow
sprawdzimy recznie, niezaleznie od indukcji. Dodatkowo zostal jeszcze przy-
padek ng = 4, ktory jest punktem startowym dla indukcji n > 4. Musimy
wiec sprawdzi¢ bezposrednio:

n=1: 10 < 2+ 25 prawdziwe,

n=2: 20 < 22 + 25 prawdziwe,

n=3:30 < 23 4 25 prawdziwe, oraz w koncu

n=4: 40 < 2* + 25 = 41 tez prawdziwe.

SkorzystaliSmy z zasady indukcji, zeby przeprowadzi¢ dowod dla n > 4,
a pozostale przypadki sprawdziliSmy bezposrednio. To jest typowy przy-
ktad: probujac wykona¢ krok indukcyjny znajdujemy ograniczenie na n przy
ktorym krok indukcyjny jest mozliwy. Do tego ograniczenia dopasowujemy
punkt startowy indukcji, a pozostate przypadki sprawdzamy ,recznie”.
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Liczby zespolone

Zbior liczb zespolonych C to zbiér symboli a + b1, gdzie a,b € R. Symbole
dodajemy, odejmujemy i mnozymy zgodnie ze wzorami
(a+bi)x(c+di)=(atc)+ (bEd)i,
(a+0i)-(c+di) = (ac — bd) + (ad + cb) i.

Mozemy tez dzieli¢ przez liczby niezerowe:

a+bz: _ (a+bd)—|—(—ad+cd)i7 2Ll
c+di 2+ d?

Liczby rzeczywiste traktujemy jako podzbior liczb zespolonych R C C po-
przez identyfikacje x ~ x + 0i. Zauwazmy, ze ta identyfikacja zachowuje
dziatania: na przykltad (a +04) + (b+0¢) = (a + b) + 0i. Zauwazmy tez
ze (1) = (0+11)2 = =1+ 07 = —1. Przy powyzszej identyfikacji i* = —1,
a liczby zespolone traktujemy jako rozszerzenie zbioru liczb rzeczywistych.
Zbior C ma zalete: kazdy wielomian o wspotczynnikach zespolonych rozktada
sie na iloczyn czynnikéw liniowych. Dzieki temu liczby zespolone stanowia
wazne narzedzie i dla matematykow i dla inzynierow (takze dla informatykow
:-)). Przypomnijmy nastepujace pojecia:

e R(a+bi)= czesé rzeczywista (a + bi) = a,

o 3(a+bi)= czes¢ urojona (a+bi) = b,

e a+ bi = sprzezenie (a +bi) = a — bi.

Mamy nastepujace wlasnosci

1. 2)=2 z4w=zZ+w, Z-w=2z W,

2. §R(Z) = Z+Z, %(2) = Zi.E,

3. 2=z z2€R,
+

4. 2z =R(2)?

Modut
Modut liczby zespolonej definiujemy jako

|z| = VR(2)? + S(2)2.
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Przyktady: | — 14+ 2i| = /=12 +22= /5, |i| = [0+ 1i| = 1.
Modut liczby zespolonej jest odpowiednikiem wartosci bezwzglednej liczby
rzeczywistej. Mamy nastepujace wlasnosci modutu

o [2|>0i|z|=0<2=0,

[} [ J
T
S Il
I |
~ X
o I
£
2
2
I
)
&
=
sV
=)
m
&

|z + w| < |z| + |w| (nier6wnosé¢ trojkata),

|2 —w| > |z] = Jwl.

Interpretacja geometryczna

Liczby zespolone, czyli wyrazenia postaci a + b7 mozna utozsamiaé¢ z punk-
tami plaszczyzny R? = {(z,y) : z,y € R}. Przy tej interpretacji dodawanie

Rysunek 2.3: Ptlaszczyzna liczb zespolonych

jest zgodne z dodawaniem wektoréw, a mnozenie przez liczbe rzeczywista z
mnozeniem przez skalar. Sprzezenie jest odbiciem wzgledem osi poziomej, a
modul oznacza euklidesowa odlegtos¢ od poczatku uktadu wspotrzednych.
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Rysunek 2.4: Sprzezenie liczby zespolonej

Postaé¢ trygonometryczna

Liczbe zespolona a + b7 mozna zapisa¢ w tak zwanej postaci trygonome-
trycznej. W tej postaci liczby tatwo mnozy sie, podnosi do potegi, wyciaga
pierwiastki. Niech z =a+bi #0

a b
z:a+bi:\/a2+b2( + z)
Va2 +b a2+ b?

Mozna znalezé taka liczbe ¢ € [0, 27), ze
a ) b
—, sinp = ——.
a2 + b2 PR R

Mozemy to podstawi¢ do wzoru na z, i otrzymamy postaé¢ trygonometryczng
liczby zespolonej

cos p =

z = |z|(cos ¢ + i sin ).

Uzywajac interpretacji geometrycznej zapis liczby zespolonej a+b7 w postaci
trygonometrycznej r(cos ¢ +1 sin @) odpowiada przedstawieniu punktu (a, b)
na plaszczyznie we wspotrzednych biegunowych (r, ¢).

Liczbe ¢ nazywamy argumentem z. Poniewaz funkcje sin i cos sa okre-
sowe o okresie 27, wiec istnieje nieskoniczenie wiele argumentow kazdej liczby
z, rOznigceych sie doktadnie o catkowita wielokrotno$é 27. Ten sposrod argu-
mentow, ktory lezy w przedziale [0, 27) (jest dokladnie jeden taki) nazywamy
argumentem gtownym z.
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z =r(cosy + i sinp)

X

w = s(cos® + i sin)

Rysunek 2.5: Postaé¢ trygonometryczna liczby zespolonej

Przyktad: z=1—i= \/5(% + \_/—% i). Szukamy ¢ € [0,27), takiej, ze

)

cos p = , singp = —

-
Sl-

Latwo zauwazyc¢, ze ¢ = %7?.
Uwagi: (i) Dwie liczby zespolone sa rowne, jezeli ich czesci rzeczywiste i
urojone sg rowne. W przypadku zapisu liczb w postaci trygonometryczne;j
mamy

r1(cos ¢y + i sin ) = 1r9(cos o + i sin o)

wtedy gdy r1 = ry oraz 1 — s jest catkowita wielokrotnoscia 2,

(ii) 71(cos @1 +1i sinq) - r2(cos o +1i sin pq) = r17ra(cos(1 + p2) +1i sin(pg +
¢2)) (moduty mnozymy, argumenty dodajemy),

(iii) z = r(cos @ + i sinp) = 2" = r"(cos(ny) + i sin(ny)),

(iv) pierwiastkiem liczby zespolonej z stopnia n € N nazywamy liczbe zespo-
long w taka, ze w™ = 2. Postugujac sie postaciag trygonometryczng pokazemy,
ze kazda liczba zespolona z # 0 ma dokladnie n réznych pierwiastkow stop-
nia n. Niech z = r(cos ¢ + i sing) (przy czym niech ¢ bedzie argumentem
glownym z) oraz n € N. Wprowadzmy nastepujace liczby

© + 2km
n

wy = Vr(costy + i sinyy), gdzie ¥y = k=0,1,...,n—1.
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Zauwazmy, ze kazda z liczb wy, jest pierwiastkiem stopnia n z z, oraz wszyst-
kie sa rozne:), — Yy = %27@ przy czym —1 < % < 1. Jedyna liczba
catkowita spelniajaca obie nieréwnosci jest zero, a wiec jezeli wy, = w; to
k = 1. Mamy wiec n roéznych pierwiastkow. Wiecej nie moze by¢, gdyz
kazdy pierwiastek stopnia n z liczby z jest pierwiastkiem wielomianu stopnia
n P(w) = w"™ — z. Wiemy, ze wielomiany stopnia n maja najwyzej n roéznych
pierwiastkow.

Przyktad: Obliczmy nastepujace pierwiastki: /1 — i = v/2(cos-+i sin ),

z7'I' iy T
gdzie qy, = 12T — (THERT) p 1,2, 3,
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Rozdzial 3

Funkcje

Przypomnimy najwazniejsze potrzebne nam pojecia dotyczace funkcji. Niech
A C R bedzie podzbiorem liczb rzeczywistych. Funkcja f okreslona na A o
warto$ciach rzeczywistych nazywamy przyporzadkowanie kazdemu punktowi
A jakiej$ liczby rzeczywistej. Funkcja jest o warto$ciach zespolonych, jezeli
kazdemu punktowi A przyporzadkowana jest liczba zespolona. Piszemy

f:M—R lub f:M— C.
Zbior A nazywa sie dziedzina funkcji f i czesto oznaczany jest przez Dy.
Zbior
{y: 3z €Dy f(z) =y}

nazywa sie obrazem f, lub zbiorem wartosci f.

Okreslenie funkcji (czyli przyporzadkowanie wartosci elementom dzie-
dziny) najczesciej ma posta¢ wzoru. Czesto dziedzina rozdzielona jest na
podzbiory, i funkcja zadana jest réznymi wzorami na poszczegdlnych cze-
Sciach dziedziny. Tak zdefiniowana funkcje nazywamy funkcja ,sklejong” z
kawatkow. Czesto nie okresla si¢ wprost dziedziny Dy. Wtedy domySlnie
funkcja jest okreslona na najwiekszym zbiorze, na ktéorym wzor definiujacy
funkcje ma sens. Taki maksymalny zbiér nazywamy dziedzing naturalna f.

Monotoniczno$é¢ funkcji

f jest rosnaca (lub &cisle rosnaca), jezeli

<y = f(z)<f(y).

Moéwimy, ze jest stabo rosnaca (lub niemalejaca), jezeli
r<y = [flx)<[fy)
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Podobnie f jest malejaca (Scisle malejaca) jezeli

<y = f(x)>f(y)

oraz stabo malejaca (nierosnaca) jezeli

r<y = f(x)=>f(y).

Innymi stowy funkcje rosnaca mozna zastosowaé¢ do obu stron nieréwnosci, i
nier6wno$¢ sie zachowa, a w przypadku funkcji malejacej nier6wno$¢ zamieni
sie na przeciwna. Mowimy, ze f jest monotoniczna, jezeli jest albo rosnaca,
albo malejaca, i to samo z przymiotnikami ,Scisle” lub ,stabo”. Funkcje moga
by¢ monotoniczne kawatkami. Na przyklad, f(z) = 2® jest $cisle rosnaca, a
wiec nieréwnosci mozemy podnosié stronami do 3 potegi. Natomiast f(z) =
2? jest kawalkami monotoniczna — malejaca dla z < 0 i rosnaca dla x > 0.
Nier6wnosci mozemy wiec podnosi¢ stronami do kwadratu, pod warunkiem,
ze dotycza liczb nieujemnych.

Wykres

Jezeli f jest funkcjg o wartoSciach rzeczywistych, to wykresem f nazywamy
nastepujacy podzbidr ptaszczyzny

{(z,y): v € Dy, y= f(x)} C R~

Zawsze przy badaniu funkcji warto sprobowaé¢ naszkicowaé¢ wykres. Z wy-
kresu mozna odczytaé¢ informacje o funkcji, ktore nie tak tatwo odczytac ze
wzoru. Wykres nie zastepuje oczywiscie definicji funkcji.

Dzialania na funkcjach

W kazdym punkcie wartosci funkceji sa liczbami, wiec mozna je dodawag,
odejmowac¢, mnozy¢ i dzieli¢. W takim razie te same operacje mozemy prze-
prowadza¢ na funkcjach. Jezeli mamy dwie funkcje, f oraz g, z dziedzinami
D¢ i Dy, to mozemy utworzy¢ funkcje

fxg, gdzie (f+g)(x)=f(z)+g(z),
f-g, gdzie (f-g)(x)= f(x)-g(x),

i zie i T) = M

g’ gd (g) (@) g(z)

Dziedzina tak utworzonych funkcji jest czeS¢ wspélna dziedzin Dy i D, przy
czym w przypadku dzielenia z dziedziny ilorazu usuwamy punkty, w ktorych
mianownik jest zerem (nie mozna dzieli¢ przez 0).
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Zltozenie funkcji i funkcja odwrotna

Jezeli mamy dwie funkcje f i g oraz zbiér wartosci funkcji f zawiera sie w
dziedzinie funkcji g, to mozna rozwaza¢ tak zwane ztozenie funkcji f z g:

(go f)(x) =g(f(x)), €Dy

Zalozmy, ze mamy funkcje f z dziedzing Dy. Jezeli pewna funkcja g z dzie-
dzina D, réwna zbiorowi wartosci funkcji f spetnia

(gof)(x)=a Vxe Dy oraz (fog)ly)=y Vye D,

to funkcje g nazywamy funkcja odwrotna do funkcji f. Funkcje odwrotna
do f oznaczamy f~'. Funkcja f ma funkcje odwrotna jezeli jest roznowar-
tosciowa to znaczy f(z) = f(y) = z = y. Funkcje §ciSle monotoniczne sa
réznowartosciowe.

Przyklad: Funkcja f(z) = 2% nie jest ré7nowartoéciowa i nie ma funkcji
odwrotnej. Jezeli natomiast zawezymy dziedzine f do x > 0 to f jest §cisle
rosnaca, i ma funkcje odwrotna g(y) = /vy okreslong dla y > 0. Podobnie,
jezeli zawezymy dziedzine f do x < 0, to f jest funkcja Scisle malejaca i ma
funkcje odwrotna g(y) = —,/y okreslong dla y > 0.

Funkcje elementarne

Najczesciej spotykane funkcje to tak zwane funkcje elementarne. Przypo-
mnijmy krotko najwazniejsze funkcje elementarne.

(a) Wielomiany to funkcje postaci f(z) = ag+ a1z + - - - + a,2". Wspolezyn-
niki moga by¢ rzeczywiste lub zespolone. D; = R. Wielomian stopnia n ma
nie wiecej niz n pierwiastkow. Wielomian o wspotczynnikach rzeczywistych
stopnia nieparzystego ma co najmniej 1 pierwiastek rzeczywisty, natomiast
stopnia parzystego moze wogole nie mieé¢ pierwiastkéw rzeczywistych. Dla
duzych |z| wielomian zachowuje sie podobnie do swojego wyrazu wiodacego

anpxr".

(b) Funkcje wymierne to funkcje postaci f(z) = ggg, gdzie P i Q sa wielo-
mianami. Dy = {z : Q(z) # 0}.

(c) Funkcja potegowa f(r) = 2*. Dy zalezy od a Jezeli a = ™ jest wymierna

to 2% = x™. 2 = 1 dla kazdego z, oraz dla m < 0 mamy 2™ = ﬁ Jezeli

« jest niewymierna, to
¢ =sup{z?: ¢ € Q,q < a}.
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Rysunek 3.1: Przyktadowe wielomiany stopnia 3 i 4.

Rysunek 3.2: Przyktad funkcji wymiernej.
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Rysunek 3.3: Dwie funkcje potegowe, z wyktadnikami 0,251 1, 5.

Poza szczegdlnymi przypadkami o (na przykltad @ € N) mamy Dy = Rt =
{r € R: x> 0}. Jezeli wykladnik jest wiekszy od 0 to funkcja potegowa
jest rosnaca, jesli wyktadnik jest mniejszy od 0, to funkcja potegowa jest ma-
lejaca. Oczywiscie, jezeli wyktadnik jest rowny 0, to funkcja potegowa jest
stata, rowna 1. Szczeg6lnym przypadkiem funkcji potegowej jest pierwiastek
ot/ = /x dlan € N.

(d) Funkcja wykladnicza f(z) = a®, a > 0. Dy = R. Jezeli podstawa jest
wieksza od 1 to funkcja jest rosnaca, a jezeli podstawa jest mniejsza od 1 to
funkcja jest malejaca. Jezeli podstawa jest rowna 1, to funkcja wykladnicza
jest oczywiscie stala, rowna 1.

(e) Logarytm f(z) =log,x, a > 0,a # 1. Dy = R*. Logarytm jest funkcja
odwrotng do wyktadniczej, czyli y = log, v & a¥ = x. Jezeli podstawa jest
wieksza od 1, to logarytm jest rosnacy, a jezeli podstawa jest mniejsza od 1,
to logarytm jest malejacy.

Mamy nastepujace whasnosci poteg i logarytmow (w kazdym przypadku mu-
simy pamietaé¢ o ewentualnych ograniczeniach na zakres zmiennych): (x®)? =
20, (2 y)* = 2y, 2%27 = 2°%7, log,(x - y) = log, = + log, y, log,(2*) =

_ log,
alog, x, logy v = Tog b

(f) Funkcje trygonometryczne. Na okregu jednostkowym odmierzamy od
punktu (1,0) odlegtos¢ ¢ przeciwnie do ruchu wskazowek zegara jezeli ¢ > 0
i zgodnie z ruchem wskazowek zegara jezeli ¢ < 0. Daje nam to pewien
punkt na okregu jednostkowym (z,y). Wspolrzedne tego punktu nazywamy
funkcjami cos i sin odpowiednio:

T =Cosy, Y =sinp.
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Rysunek 3.4: Funkcje wyktadnicze o podstawach mniejszej i wiekszej od 1

-05 0 05 115 2 25 3 35 4 45

Rysunek 3.5: Logarytmy, o podstawach mniejszej i wiekszej od 1.

27



Rysunek 3.6: Funkcje sin(z) i cos(z).

Funkcje cos i sin sa okresowe o okresie 27, to znaczy obie spelniaja f(z +
27) = f(x) (bo dlugos¢ calego okregu jednostkowego to 27). Mamy tez
sin?z + cos?x = 1 (bo promieri okregu jest réwny 1), oraz réwnosci

cos(p + 1) = cospcosth — sin psin,
sin(p + 1) = cos psin ¥ + sin p cos .

Funkcja tan z to iloraz sinusa przez cosinus:

sinx

tanz = :c;é%Jrkw,k:o,ﬂ,iz,....

cosx’
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Rozdzial 4
Ciagi

Definicja 4.1. Ciqg rzeczywisty to funkcja a : N — R, a cigg zespolony to
funkcja a : N — C.

W przypadku ciaggow warto$¢ a w n nazywamy n-tym wyrazem ciagu,
a zamiast a(n) czesto piszemy a,. Ciag o wyrazach a,, oznaczamy {a,}5>,
lub krocej {a,}. Bedziemy glownie rozwazaé ciagi rzeczywiste, jezeli gdzies
pojawia sie ciagi zespolone, to zwrdcimy na to uwage.

n—1

Przyklady: (a) Ciag (postep) geometryczny: a,aq,aq?, ..., a, = aq" ',
(b) ciag staly a, = c,

¢) ciag harmoniczny a, = +,

(
(d) ap = \/57 ant+1 = V2+an>
(e) ciag Fibonacciego a; = as = 1, api2 = @y + G-

Zeby zdefiniowaé ciag musimy jednoznacznie opisa¢ w jaki sposob maja
by¢ obliczane wyrazy a,. Mozna to zrobi¢ wzorem ogélnym, jak w przy-
ktadach (a)—(c), lub rekurencyjnie, jak w przyktadach (d) i (e). Definicja
rekurencyjna (czasem nazywana tez indukcyjna) opisuje w jaki sposob na-
stepny wyraz ciggu obliczy¢ znajac poprzednie. Trzeba tez zdefiniowaé wy-
starczajaco wiele wyrazow poczatkowych. Na przyktad w definicji ciggu Fi-
bonacciego kolejne wyrazy obliczamy z dwoch poprzednich, a wiec jako punkt
wyjéciowy musimy poda¢ dwa pierwsze wyrazy.

Mowimy, ze ciag jest:

e $cisle rosnacy jezeli a, < a,41, $ciSle malejacy jezeli a,, > a, 1,
e stabo rosnacy jezeli a,, < a,.1, stabo malejacy jezeli a, > a1,

e Scisle monotoniczny jezeli jest albo $cisle rosnacy albo $cisle malejacy,
oraz stabo monotoniczny jezeli jest stabo rosnacy lub stabo malejacy.
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Czasem méwimy po prostu, ze ciag jest rosnacy lub malejacy, jezeli nie jest
wazne, czy chodzi nam $cista, czy stabg monotonicznosc.

Ciag harmoniczny z przykladu (c) jest scisle malejacy, natomiast ciagi z
przykladow (d) i (e) $cigle rosngce. Przyklad (c¢) wynika wprost ze wzoru:
Ay > Qp41 to nic innego niz n+ 1 > n. Przyklady (d) i (e) mozna sprawdzi¢
indukcyjnie. W przypadku (d) najpierw dowodzimy, ze wszystkie wyrazy
a, s3 mniejsze niz 2, a nastepnie korzystajac z tego dowodzimy, ze ciag jest
rosnacy. Oba dowody mozna przeprowadzi¢ przy pomocy metody indukeji.
Podobnie w przykladzie (e), najpierw indukcyjnie pokazujemy, ze wszystkie
wyrazy sa $cisle dodatnie a,, > 0, a nastepnie wprost ze wzoru rekurencyjnego
pokazujemy, ze ciag jest rosnacy apio = an + apy1 > aptq. 10 jest typowa
sytuacja — jezeli ciag zdefiniowany jest rekurencyjnie, to jego wlasnosci daja
sie z reguty udowodnié¢ indukcyjnie.

Dzialania na ciggach
Ciagi dodajemy, odejmujemy, mnozymy i dzielimy tak jak funkcje: (a+b), =
an + bna (a : b)n = Gp - bna (%)n = Z_:a by, 7£ 0.

Ciagi ograniczone

Mowimy, ze ciag {a,} jest ograniczony, jezeli

AM VneN |a,| <M,
mowimy, ze jest ograniczony od gory, jezeli

dM VneN a, <M,
oraz mowimy, ze jest ograniczony od dotu, jezeli

dM VneN a,> M.

Przyklady: (a) ciag harmoniczny a, = %jest ograniczony, od dotu przez 0,
i od gory przez a; = 1. Ogolniej, ciag malejacy zawsze jest ograniczony od
gory przez swoj pierwszy wyraz, podobnie ciag rosnacy jest ograniczony od
dotu przez swoj pierwszy wyraz,

(b) Ciag Fibonacciego nie jest ograniczony od gory. Mowilismy juz, ze wy-
razy tego ciagu sa dodatnie. Podobnie, indukcyjnie mozna udowodnié¢, ze
wyrazy tego ciggu spetniaja a, > n dla n > 6. Z tego widaé juz, ze ciag nie

30



moze byé¢ ograniczony od gory.

(c) Ciag a, = v/n + 1 —+/n jest ograniczony. Wida¢ od razu, ze wyrazy tego
ciaggu sa dodatnie (pierwiastek jest funkcja rosnaca), czyli ciag jest ograni-
czony od dotu przez 0. Pokazemy, ze jest tez ograniczony od gory.

_ e (AT Ty Y1+
an=vVn+1 \/_—(\/T Vn) T
1

n+1—n

Y T W+ =3

(d) Postep geometryczny a, = ag"! jest ograniczony, jezeli |¢| < 1 i nie-
ograniczony, jezeli g > 1 i a # 0. Pierwsze stwierdzenie jest oczywiste:
lan| = |ag"™!| = |a]lg|"' < |a|. Drugie stwierdzenie wymaga pewnego do-
wodu. Mozemy wykorzysta¢ na przyktad nastepujaca waznag nier6wnosé,
ktorg mozna udowodni¢ na przyktad indukcyjnie: dla € > 0

(1+¢)" > 14 ne. (4.1)

Jezeli |q| > 1 to |¢] = (1 + €) dla pewnego € > 0. Mamy wiec

|an| = lal - g™ = %' (14" > % (14 ne).

Jezeli |a,| < M, to

M(1—}-716)§]\4 = ng— M|q| )
lq] € |a|

7 powyzszego widaé juz, ze ciag a, nie moze by¢ ograniczony.

Zbieznos$é ciggu

Przechodzimy teraz do najwazniejszego dla nas pojecia dotyczacego ciaggow

Definicja 4.2. Mcowimy, ze cigg {a,} jest zbiezny do liczby g jezeli
Ve>0 dngeN Vn>ny |a,—g|<e

Zapisujemy to
lima,=g b a, —> g.

n—od
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przedzial |z — g| < e

\

L +
\ 4 7

e 9 g+te

9

Rysunek 4.1: Granica ciaggu

Definicja odnosi sie do ciagoéw i rzeczywistych i zespolonych, w tym dru-
gim przypadku granica tez moze by¢ liczba zespolona, a | - | oznacza modut
liczby zespolone;j.

Przyklady: (a) a, = l. Mozna latwo udowodnié¢, ze lim,,_. a,, = 0.

(b) a, =vn+1—-+y/n —= 0. Udowodnijmy to.

la, — 0l =vVn+1—+/n=

1 1
< .
Vnt+l4+yn = 2vn

. . L, .1
Wystarczy wiec rozwigzac nier6wnoscé 5 T <€

1 1
<es2yn>-n>—.

2\/_ € 4 €

Dla zadanego € > 0 istnieje wiec ng = [ﬁ] + 1 spelniajace warunek definicji.

(c) a, = 2”2;_21 Moo, 5. Podobnie jak w poprzednim przykladzie rozwia-

zemy odpowiednig nierownosé. Tym razem utatwimy sobie rachunki stosujac
oszacowania, zamiast rozwigzania doktadnego

n’+2 1] 5 25
2n2—1 2| 2(2n2—1)~ 2n

Ostatnie oszacowanie, czyli 2(2n? — 1) > 2n jest prawdziwe dla wszystkich
n € N, i mozna je udowodni¢ rozwigzujac nier6wnos¢ kwadratowa. Na koniec
wystarczy wiec rozwiazaé¢ prosta nier6wnosé % < € co daje n > 2% Niech
wiec, dla zadanego € > 0 bedzie ng = [2] + 1.

(d) Ciag staly a,, = ¢ ma granice lim,,_., a,, = c.
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Zbieznos¢ ciaggow do podanych granic w powyzszych przyktadach poka-
zaliSmy korzystajac wprost z definicji. W praktyce najcze$ciej pokazujemy
zbiezno$¢ korzystajac z réznych wiltasnosci granic. Na przykitad, mamy na-
stepujace podstawowe twierdzenie

Twierdzenie 4.3. Jezeli lim,, ., a, = a, lim,,_.o b, = b to ciggi {(a £b),}
i {(a-b),} sq zbiezne, oraz
lim (a £ b), = lim a, £ lim b, = a + b,
lim (a-b), = lim a, - lim b, =a-b.
Jezeli dodatkowo b, # 0 dla wszystkich n € N i b # 0 to cigg ilorazow {($)n}
jest zbiezny, oraz
lim

n—oo

<a> limy,a,  a
no lim, oob, b

b

W dowodzie twierdzenia wykorzystamy nastepujace obserwacje

Fakt 4.4. (i) Cigg zbiezny jest ograniczony. Zeby sie o tym przekonaé niech
cigg {an} bedzie zbiezny do a i weimy dowolne € > 0, na przyktad e = 1.
Wtedy istnieje ng € N takie, zZe dla wszystkich n > ng zachodzi |a,| — |a|] <
la, —a| <1, czyli |a,| < |a| + 1. Niech

M = max{|ai|, |as], ..., |an,_1|, |a| + 1}.

Wtedy cigg {a,} jest ograniczony przez M: ¥ n € N |a,| < M.
(11) Cigg {bn} liczb réznych od zera, zbieiny do granicy b réznej od zera jest
Lyoddzielony od zera™

36>0 YneN [|b]>4

Zeby sie o tym przekonaé, niech € = bl Wtedy, z definicji zbieznosci istnieje

3.
no € N takie, e [b| — [ba| < [b— b, < &, cayli [b,] > |0] = Y =Y. Niech

. b
0= m1n{|b1],|b2],...,|bn0_1\,|2—|} > 0.

Wtedy ¥ n € N mamy |b,| > 4.

Dowadd twierdzenia. Przeprowadzimy dowdd dla iloczynu, pozostale przy-
padki pozostawiajac jako ¢wiczenie. Dla iloczynu nieréwnoscia, ktora be-
dziemy chcieli rozwigza¢ ze wzgledu na n bedzie

|y - b, —a-b| <e.
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Zrobmy tak

la.b, —a-b| =|ab,—a-b,+a-b,—a-b
<lan - b, —a-b,|+la-b, —a-b
= lan —al - |bn| + laf - [bp = b].

Wyrazenie po lewej stronie bedziemy wiec mogli oszacowaé korzystajac z
tego, ze mozemy oszacowaé wyrazenie po prawej stronie. Wiemy, ze ciag
{b.} jest ograniczony (skoro jest zbiezny), wiec niech |b,| < M. Niech M =

max{M, |a],1}. Niech € > 0. Ustalmy € = ;5= > 0 (mozemy wykonac

dzielenie, bo wiemy, ze M > 0). Wtedy istnieje n,; € N takie, ze |a, —a| < €
dla n > ny oraz istnieje ny € N takie, ze |b, — b| < € dla n > ny. Niech
ny = max{ni,ne}. Wtedy |a, — a| < € oraz |b, — b| < € dla n > ng. Mamy
wiec, dla n > nyg

|an - bu| < lan —al - [bn| + lal - b, — b
<la, —a| M+ |b, —b| M
<EM+eM

€ €
273

:6,

co konczy dowdod O]

Przyklad: Niech
ont+2 1+ 3
R TR R

Mamy%—>O:>n—12:%-%—>0:>%:2-#—>0awiqclicznikd@2ydol,

a mianownik do 2, a wiec

2
an: —_

2— 5 2’
Granice te obliczyliSmy wcze$niej z definicji, ale teraz mogliSmy to zrobi¢
znacznie sprawniej.

Granice niewlasciwe

Definicja 4.5. Cigg rzeczywisty {a,} ma granice niewtasciwg +oo (mdwimy,
ze jest rozbiezny do +00) jezeli

VM dnoeN Vn>ny a, > M.
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Cigg rzeczywisty {a,} ma granice niewtasciwg —oo (jest rozbiezny do —oo)
jezeli
VM dngeN Vn>ng a, <M.

Cigg zespolony {a,} ma granice niewlasciwg oo (jest rozbiezny do 0o) jezeli
VM dngeN Vn>ng la, > M,

(w przypadku ciggéw zespolonych nie rozrézniamy nieskoriczonosci).

Przyktad: Ciag a, = ’;2;13 jest rozbiezny do +oo: dla n > 3 mamy
n*—3 > ﬁ _n
n+1 = 2n 4’

natomiast § > M < n > [4M] 4 1. Niech wiec ny = max{3, [4M] + 1},
wtedy dla n > ng mamy |a,| > M.

Twierdzenie o dzialaniach na granicach rozszerza si¢ na niektoére przy-
padki granic niewtasciwych. Na przyktad, niech a, — a, b, — b (ciagi
rzeczywiste). Wtedy

a=-+o0, b>0=a,-b, — +o0,
a=4+oc0, b<0=a,-b, » —o0.

Warunek Cauchy’ego

Twierdzenie 4.6. Cigg {a,} jest zbiezny wtedy i tylko wtedy, gdy spetnia
tak zwany warunek Cauchy’ego:

Ve>0 dngeN Vmn>ng |a,—a,l <e.

Dowdd. Dowdd przeprowadzimy dla ciagoéw rzeczywistych. Rozszerzenie go
na ciagi zespolone jest juz prostym ¢wiczeniem. Dowdd ma dwie czeSci:
ze zbiezno$ci warunek Cauchy’ego (czes¢ ,="), oraz z warunku Cauchy’ego
zbieznos¢ (czesé ,,<=").

= Zakladamy, ze {a,} jest zbiezny do a. Niech ¢ > 0 bedzie dowolne.
Wtedy, z definicji zbieznosci 3 ng € N Vn > ng zachodzi |a, — a| < €/2.
Wezmy m,n > ng, wtedy |a, —a| < €/21i |a, — a| < €/2, a wiec

€ €
| — an| = lam —a+a—a,| <l|am —al+|a, —a] < =+ = =

2 2

Warunek Cauchy’ego jest wiec spelniony.
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< Zalozmy, ze ciag {a,} spelnia warunek Cauchy’ego. Zauwazmy, ze w
takim razie ciag {a,} musi by¢ ograniczony: niech € = 1, a wiec

dng e N Vmn>ny |ay,—a,] <Ll

Czyli, biorac n = ngy otrzymujemy dla kazdego m > ng |ay, — a,,| < 1 =
|| < |an,| + 1. Niech

M = max{ay, |azs|, ..., |an,-1]|; |an,| + 1}

Wtedy, dla kazdego n € N mamy |a,| < M.
Utworzmy dwa pomocnicze ciagi

ar = inf{a, : n>k} <« ciag niemalejacy,

B =sup{a, : n>k} <« ciag nierosnacy,

oraz niech

A =sup{ay: k€ N},

B =inf{3: keN}. (4.2)

Wszystkie kresy istnieja, gdyz ciag jest ograniczony. W pierwszym kroku
pokazemy, ze A < B. Ta nier6wno$¢ jest prawdziwa dla wszystkich ciagow.
Zalozmy nie wprost, ze A > B, i pokazemy, ze takie zalozenie prowadzi do
sprzecznosci, czyli musi by¢ falszywe. Jezeli A > B to niech 0 < € < A_TB. 7Z
definicji kresow znajdziemy k; € N takie, ze

ag, > A—e

Skoro ciag {ax } jest niemalejacy, to powyzsza nier6wnos¢ zachodzi dla wszyst-
kich £ > k;. Podobnie, musi istnie¢ ks € N takie, ze

B, <B+e, = Vk>k [Oi<B+e.

Niech teraz kg = max{ki, k2}. Mamy

A—e<ap, <P, <B+e =
czyli sprzeczno$é. Musi wiec zachodzi¢
A<B.
Tak, jak juz wspomnieliSmy, powyzsza nierownos¢ wynika jedynie z definicji

liczb A1 B i jest prawdziwa dla wszystkich ciggoéw, a nie tylko tych spelnia-
jacych warunek Cauchy’ego. Teraz pokazemy, ze dla ciagéw spelniajacych
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warunek Cauchy’ego zachodzi réwnosé: A = B. Bedziemy znowu rozumo-
wali nie wprost. Niech A < B, i niech 0 < € < A#B. Istnieje ng € N takie,
ze dla wszystkich m,n > ng zachodzi |a,, — a,| < €, w szczegdlnosci

Vn>ng |, —an] < €= ap, —€<a, <ay, +¢€.
Stad wynika, ze

apy =inf{a, : n>npt >a,, —€ = A>a, —¢€
Bne =sup{a, : n>ng} <a,,+e¢ = B<a, +e
Mamy wiec

B-A
92 )

B-A<a,,+e—ap,+e=2 = €>

czyli sprzecznos¢. Musimy wiec mieé¢ réwnosé A = B. Niech wiec g = A = B.
7, definicji kresow mamy

Ve>0 dngeN Vn>ng |g—a,|<e oraz |g— 6, <e

Biorac pod uwage, ze ciag {a,} jest stabo rosnacy a {3,} stabo malejacy
powyzsze nierdwnosci oznaczaja odpowiednio

g—e<a,<g oraz g<pf,<g+e

W takim razie, dla wszystkich n > ng skoro o, < a, < 3, to g —€ < a,, <
an < B, < g+e, czyli|a, —g| <e. O

Uwaga: Stale A i B zdefiniowane w powyzszym dowodzie maja sens dla
dowolnego ciggu ograniczonego {a,}. Stale te noszg nazwy granicy dolnej i
gornej ciagu {a,}. Wkrotce omowimy doktadniej te pojecia.

Przyklady: (a) Ciag a, = (—1)" nie spelnia warunku Cauchy’ego. Niech
e = 1. Wtedy |a, — ani1| = 2 > € dla wszystkich n.

(b) Ciag a,, = "T_l spetnia warunek Cauchy’ego. Sprawdzmy to: niech m > n,
wtedy

m—1 n—-1 (m—-1)n—(n—1)m m-—n m 1

|y, — an| = - = = < = —.
m n m-n m-n m-n n

Wida¢ wiec, ze wystarczy wzia¢ ng = [] + 1, wtedy jezeli m,n > ng to

1

prng % < € 1 warunek Cauchy’ego jest spelniony.
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Twierdzenie 4.7. (i) Kazdy cigg monotoniczny ograniczony ma granice
(wtasciwg).
(i1) Kazdy cigg monotoniczny nieograniczony ma granice niewtasciwg.

Uwaga: Wystarczy monotoniczno$¢ staba, i tylko od pewnego miejsca.

Dowdd. (i) Zalozmy, ze {a,} jest stabo rosnacy i ograniczony, to znaczy
ap < apyp oraz a,| <M dla n=1,2,....
Istnieje wiec kres gorny
g=sup{a,: n=1,2,...}.
7 definicji kresu mamy
VneN a,<g oraz Ve>0dnyeN a, >g—c¢
Skoro {a,} jest stabo rosnacy, to V¥ n > ng mamy a, > a,, > g — €, czyli
g—e<a, <g=la,—g|l <e.
(i) Zalozmy, ze ciag {a,} jest stabo rosnacy i nie jest ograniczony, czyli nie
jest ograniczony od gory (od dotu jest ograniczony przez aq). Niech dana
bedzie liczba M. Skoro ciag {a,} nie jest ograniczony od gory, to istnieje
no € N takie, ze a,, > M. Skoro ciag jest stabo rosnacy, to

Yn>ng ap,>an, > M.

Spelniony jest wiec warunek z definicji granicy niewtasciwej +o00. Przypadek
ciggow stabo malejacych mozna udowodni¢ podobnie. O]

Uwaga: Zauwazmy, ze przy okazji udowodnilismy, ze jezeli ciag {a,} jest
rosnacy i ograniczony, to

lim a, = sup{a, : n > 1},
a jezeli jest malejacy i ograniczony, to

lim a, = inf{a, : n > 1}.

n—oo
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Dwumian Newtona

Przypomnijmy nastepujacy wzoér, tak zwany wzoér dwumianowy Newtona.
Dla n € N silnia n to iloczyn wszystkich liczb naturalnych k£ < n: n! =

1-2-3-...-(n—1)n. Przyjmujemy tez oznaczenie 0! = 1. Dla0 <k <n
wprowadzamy tak zwany wspotczynnik dwumianowy Newtona
n n!
=——, kneZ, 0<k<n.
<k) Han—kr " "

Nastepujacy wzor nazywa sie wzorem dwumianowym Newtona. Mozna go
udowodni¢ na przyktad przy pomocy indukcji. Jest to jeden ze wzordéw, z
ktorego bedziemy stale korzysta¢, wiec warto go dobrze zapamieta¢. Niech
a,be R, n e N, wtedy

n_ (™ o0n Y 101 Y 2in-2 Y om0
(a+b)—(0)ab+(1>ab +<2)ab + +<n>ab
- n)kn—k
= a” b,
att

Ostatnia réwno$¢ to po prostu rozwiniecie symbolu sumowania >. Symbolu
tego bedziemy stale uzywacé. Oznacza on po prostu sume wyrazenia dla
wszystkich wartosci parametru k£ z opisanego na symbolu zakresu, w tym
wypadku £ =0,1,...,n.

Liczba e

Rozwazmy nastepujacy ciag: a, = (1 + %)" Pokazemy, ze ten ciag jest
rosngcy i ograniczony, a wiec zbiezny. Zauwazmy, ze ani to, ze {a,} jest
rosnacy ani to, ze jest ograniczony nie jest oczywiste: co prawda potega
rosnie, ale podstawa maleje do 1. Na przyktad

3\’ 4\’
ay = 2, g = (5) = 2,25, as = (g) = 2,370 ceey
5 4 6 5
a, = (Z) = 2,441 ceey as = (g) = 2,488 e

Pokazemy teraz, ze ciag {a,} jest rosnacy. Zauwazmy nastepujaca rownosé
dak=01,.. n

(1) () = wo (3)
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n—k+1)-n—k+2)-...-(n—=1)(n)

1 n-1 n-2 n—(k—1)
kK on n n

D)

Wyrazy ciggu {a,} rozwiniemy teraz korzystajac ze wzoru dwumianowego
Newtona, a nastepnie zastosujemy powyzsza roOwnosc.

@606 06
WG O

Zauwazmy, ze w takiej postaci w jakiej zapisaliSmy go powyzej, wyraz a,, wraz
ze wzrostem n zawiera coraz wiecej dodatnich sktadnikéw, a takze kazdy ze
sktadnikow robi sie coraz wiekszy (z wyjatkiem 2 pierwszych skladnikow,
14 1, ktore nie zmieniaja sie). Jezeli wyrazy ciagu zapiszemy wiec w tej po-
staci, to wida¢, ze ciag {a,} jest rosnacy. Dodatkowo zauwazmy, ze mozemy
oszacowac a, od gory
1 1 1 1 1 1

an§1+1+5+§+"'+m<1+1+§+§+"'+2n_1.
Pierwsza nieréwnos¢ otrzymujemy z postaci (4.3), poprzez pominiecie czyn-
nikéw mniejszych niz 1, natomiast druga nieréwno$¢ otrzymujemy poprzez
zastapienie czynnikow wiekszych niz 2 w mianownikach przez 2. Mianowniki
sa wiec mniejsze, czyli utamki wieksze. Pozostaje nam skorzysta¢ ze wzoru
na sume postepu geometrycznego: dla ¢ # 1, oraz [ € N mamy

(4.4)

1—ql

1—|—q—f-q2—i—---+ql_1: —

(4.5)
Rownosé powyzsza mozna udowodnié na przyktad indukcyjnie. Jest to jedna

z tych rownosci, ktore trzeba zawsze pamietac¢, i bedzie pojawiala sie wielo-
krotnie. Suma z prawej strony naszego oszacowania (4.4) to wlasnie suma
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postepu geometrycznego, z ¢ = %, oraz z jedng dodatkowa 1 z przodu. Mamy
wiec
2

1
=3

- ()

a, <1+ <1+ = 3.

NI

Pokazalismy wiec, ze ciag {a,} jest rosnacy i ograniczony, a wiec zbiezny.
Granice tego ciggu nazywamy e

1 n
e = lim (1+—) .
n—oo n

Wiemy tez z oszacowan, ze 2 < e < 3. e to wazna liczba, ktora bedzie
pojawiala sie na naszym wyktadzie stale, glownie jako podstawa logarytmow
i funkcji wyktadnicze;j.

Twierdzenie 4.8 (o 3 ciagach). Zaldzmy, ze mamy 3 ciqgi spetniajgce nie-
rownosci
an < b, < cy, n=123,..., (4.6)

oraz ze skrajne ciqgi {an} oraz {c,} sq zbiezne do wspdlnej granicy

a = lim a, = lim c,.

Wtedy cigg {b,} tez jest zbiezny, do tej samej granicy

a = lim b,.

n—oo
Uwaga: Wystarczy, ze ciagi spetniaja nieréwnosci (4.6) od pewnego ng € N.
Dowdd twierdzenia. Niech € > 0 i niech ny € N bedzie takie, ze dla n > ny
la, —al <e = a,>a—¢,
oraz niech ny € N bedzie takie, ze dla n > ny zachodzi
e, —al <e = ¢, <a+e

Istnienie takich n; i ny wynika ze zbieznosci ciagow {a,} i {c,} do wspoélnej
granicy a. Wtedy, dla n > ny = max{n;, ny} mamy

a—€e<a,<b,<cp,<a+e = |b,—a|<e (4.7)

Zauwazmy jeszcze, ze jezeli nieréwnosci (4.6) zachodza tylko od pewnego
miejsca, na przyktad dla n > k, to wystarczy zmodyfikowa¢ definicje ng:
niech ny = max{ni, ny, k}, i nieréwnosé¢ (4.7) zachodzi. W ten sposob uza-
sadniliSmy uwage ponizej twierdzenia. [

41



Przyklady: (a) Niech a, = /n(v/n+1— y/n). Skorzystamy z twierdze-
nia o 3 ciggach, a w tym celu wykonamy kilka przeksztatcen i oszacowan.
WidzieliSmy juz wcezesniej, jak przeksztatci¢ roznice dwoch pierwiastkow

1 1 1
VA FT— Vi) = Vi _ _ |
Vatltyn o ety 1414

1< 1+1<1—i—1 = 1 < <1
1/ — — —_—<a, < -
- n n 1+%+1_ 2

Dwa skrajne ciagi maja wspoélna granice %, wiec a, — %

Nastepnie

(b) Niech a > 11 a, = {/a. Wyrazy ciagu sa pierwiastkami coraz wyzszego
rzedu z liczby wiekszej od 1. Zauwazmy od razu, ze taki ciagg musi mieé
granice, gdyz jest malejacy, i ograniczony od dolu przez 1. Ta obserwacja
nie bedzie nam potrzebna, gdyz skorzystamy z twierdzenia o 3 ciagach. Po
pierwsze, skoro a > 1 to takze a,, > 1 dla wszystkich n. Niech €, = a,—1 > 0.
Skorzystamy z nierownosci (4.1), i otrzymujemy

a—1
—

a=(1+¢€)">1+ne = 0<e¢, <

Skrajne ciagi zbiegaja do 0, a wiec takze €, — 0 czyli
lim a, = lim /a = 1.

n—oo n—oo

(¢) Niech a,, = {/n. Podobnie jak w poprzednim przyktadzie zapiszmy a,, =
1+ €,, a wiec €, > 0. Skorzystamy teraz z innej nier6wnosci prawdziwej dla

e>0in>2
—1
(1—|—€)n> <Z>€2:%62'

Nieréwnos¢ powyzsza mozna udowodni¢ korzystajac ze wzoru dwumianowego
Newtona. Korzystajac z niej, otrzymujemy dla n > 2
nn—1) , 5 2n 2

5 € = < — = 0<¢e <y4/—.

= (1+e¢,)" >
n = (Ite) " nn-1) n—1

Prawy skrajny ciag zbiega do 0. Mozna to pokazaé¢ z definicji, a mozna sko-
rzysta¢ z ogélnego twierdzenia o zbieznosci pierwiastkow, ktore udowodnimy
ponizej. Korzystajac z 3 ciaggdw ponownie pokazaliémy, ze €, — 0, a wiec

lim a, = lim /n = 1.

n—oo n—oo
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Twierdzenie 4.9. Niech a, — a, a, > 0 oraz m € N. Wtedy

lim a, = Va.
Dowdd. Rozpatrzymy 2 przypadki: a =01ia > 0. Jezeli a = 0 to niech € > 0
bedzie dowolne, i niech é = €. 7 definicji granicy

dngeN Vn>ny, 0<a,<€é = 0< %a, <e.

W przypadku a = 0 twierdzenie jest wiec udowodnione. Rozpatrzmy teraz

pozostaly przypadek, czyli niech a > 0. Wykorzystamy nastepujaca rownosé,
dla a, 3> 0, meN

(a=0) (@™ ' +a™ 2B+ 4+afm P+ ") =a" ="

Nier6wnos¢ ta mozna udowodni¢ bezposrednio (na przyklad indukcyjnie),

albo mozna ja wywnioskowaé¢ ze wzoru na sume postepu geometrycznego
(4.5). Mamy wiec

| ¥/ — ¥al =

ol 0,
(( M)mfl + ( W)W*Q %_{_ 4 ( %)mfl) <

(va)"™"

Wystarczy teraz, podobnie jak w poprzednim przypadku wziaé¢ ¢ = ( {/a)™ e

i mamy
la, —a| <é = | /a, — Va| <e

O
Zauwazmy, ze powyzsze twierdzenie pozwala nam ,wej$¢ z granica pod”

dowolna potege wymierna, jezeli tylko a, i a sa takie, ze potege mozna za-
stosowac

Przyktad: Niech a; v/2 i niech Gni1 =2+ a, dla n > 1. RozwazaliSmy
juz ten przyktad, i pokazaliSmy, ze {a,} jest rosngcy i ograniczony, czyli
zbiezny. Wykorzystamy to teraz do znalezienia jego granicy

g = lim a, = lim a,.; = lim v2+a, = \/2+ lim a,

n—oo

V2+g.

Widzimy wiec, ze granica ¢ musi spetnia¢ réwnanie kwadratowe g?—g—2 = 0.
Rownanie to ma dwa pierwiastki ¢ = —1 1 g = 2. Granica nie moze by¢
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liczba ujemna, bo ciag sklada sie z liczb dodatnich, wiec pozostaje jedyna
mozliwosé: g = 2.

Uwaga: Skorzystaliémy z nastepujacego faktu: jezeli a,, — a oraz a, > 0
to a > 0. Fakt ten mozna sformutowaé¢ ogélniej: jezeli a, — a i b, — b oraz
a, < b, (przynajmniej od pewnego miejsca), to a < b. Pozostawiamy to jako
¢wiczenie.

Podciagi

Definicja 4.10. Podciggiem ciggu {a,} nazywamy cigg postaci {an, }72,
gdzie {ny} jest $cisle rosngcym ciggiem liczb naturalnych.

Uwaga: W definicji istotne jest to, zeby ciag indeksow {n;} byt $cisle ro-
snacy. Innymi stowy, ai,as,aq,a17,... moze by¢ podciagiem ciagu {a,},
natomiast a,aq, as,as,... nie jest podciggiem. Zauwazmy tez, ze zgodnie
z definicja sam ciag {a,} jest swoim wlasnym podciagiem, wystarczy wziac
ni = k. Definicja podciagu sprowadza sie do wybrania z naszego ciagu je-
dynie niektérych wyrazéow, z tym, ze wybiera¢ musimy na kazdym kroku
sposrod wyrazow dalszych, niz juz wybrane.

Przyktad: Ciag 1, }L, %, 11—6, ey #, ... jest podciagiem ciagu 1, %, %, }1, oo Tu-

taj a, = = oraz ny, = k%, a wiec a,, = 75.

Twierdzenie 4.11. Kazdy podcigg ciggu zbieinego tez jest zbiezny, do tej
samej granicy.

Dowdd. Niech bedzie bedzie dany podciag ciagu {a,}, z ciagiem indeksow
{ni}. Niech ¢ > 0, i niech ny € N bedzie takie, ze dla n > ng zachodzi
la,, — g| < €. Niech

ko = min{k € N : nj, > ng}.

Wtedy, jezeli k > ko to ng > ny, > no, 1 |an, — g| < e. O

1\ "
an:<1+i> .
n

Niech n; = lk. Jest to ciag $cile rosnacy, oraz

1 n 1 In %
ap=\1+—| = 14+ — ,
In In
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czyli, jesli b, = (1 + )" (ciag okreslajacy liczbe e), to a, = {/b,,. Wiemy,
ze b, — e, a wiec

k—o0 ! k—oo
by, — e = bn, — Ve,
czyli mamy
. 1
lim a, = e7.
n—oo

Twierdzenie 4.12 (Bolzano-Weierstrassa). Z kazdego ciggu ograniczonego
mozna wybraé podciqg zbiezny

Dowdd. Niech ciag {a,} bedzie ograniczony. Przypomnijmy konstrukcje z
Twierdzenia 4.6, dotyczacego warunku Cauchy’ego.

ar =inf{a,: n >k}, A=sup{ay: k>1}= klim .

Wiemy, ze kresy istniejg, bo ciag {a,} jest z zalozenia ograniczony. Wiemy
tez, ze A jest kresem gornym zbiory wartosci ciagu {ay }, a takze granica tego
ciggu, gdyz ciag ten jest rosnacy, by¢ moze stabo. Pokazemy teraz, ze istnieje
podciag {a,,} zbiezny do A. Konstrukcja tego podciagu jest nastepujaca.
Niech a,,, bedzie elementem ciagu {a, } odleglym od oy o mniej niz 1. Wiemy,
ze taki element musi istnieé¢, z definicji kresu. Mamy wiec

o1 < Ay, <041—|—§.
Dalej konstrukcja podciaggu bedzie indukcyjna. Nastepnego elementu pod-
ciggu musimy szuka¢ wérod a,’6w o numerach wiekszych niz n,, wiec niech
an, elementem ciagu {a,}, n > ny, odleglym od a, 41 0 mniej niz 5. Mamy
wiec ng > ny oraz

Oy 41 S Gy < Upy41 + =

22
Opiszemy teraz ogoélny krok indukcyjnej definicji. Zal6zmy, ze skonstruowa-
lismy kawalek podciagu ay,, an,, ..., a,,, taki, ze ny <ng <--- <mn,,, oraz
1
anH—lSanHl <am+l+ﬁv l:1727"'7m_1'

Niech teraz nastepny indeks n,, 1 bedzie taki, ze po pierwsze n,,11 > Ny, + 1
(indeksy musza $cisle rosnaé), oraz

1
om+1 :

Q1 S Ay < Q1 +
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Zauwazmy, ze taki wybor jest zawsze mozliwy, ze wzgledu na definicje ciggu
{ax} jako ciagu kresow. W ten sposob, indukcyjnie, zdefiniowali$my podciag
{an, }, o wlasnosci

1
Qpy 1 +1 < Apy, < Oy 41 T Q—k, k= 2, 3, RN
Po skrajnych stronach nieréwnosci mamy ciagi zbiezne do A ({41} jest
podciagiem ciagu {a,} a 5 — 0), wiec z 3 clagow otrzymujemy

lim oy, = A.

lim a,, = ]
—00

k—o00

]

Uwaga: Twierdzenie jest intuicyjnie jasne. Jezeli ciag jest ograniczony, to
jego wyrazy (ktorych jest nieskoriczenie wiele) musza gdzies sie zageszczac.
Powyzszy dowdd stanowi sprecyzowanie tego stwierdzenia.

Definicja 4.13. Liczbe o nazywamy punktem skupienia ciggu {a,} jezeli
istnieje podciag {ay,} zbieiny do a.

Twierdzenie 4.14. « jest punktem skupienia ciggu {a,} wtedy i tylko wtedy,

gdy
Ve>0 VnoeN In>ng |a,—g|<e. (4.8)

Innymi stowy, kazde otoczenie punktu o zawiera wyrazy ciggu {a,} o do-
wolnie dalekich indeksach (w szczegdlnosci kazde otoczenie punktu o zawiera
nieskoniczenie wiele wyrazow ciggu {a,}).

Dowdd. Jezeli a jest punktem skupienia ciagu {a,} to z definicji istnieje
podciag {an,} zbiezny do a. Niech wiec € > 0, a ko bedzie takie, ze dla
k > ko mamy a,, —a| < e. Jezeli dane jest ng € N, to niech k > kj spelnia
ng > ng. Takie k musi istnie¢, bo ciag indeksow {ns} jest rozbiezny do +oc.
Indeks ny jest wymaganym indeksem w (4.8). Z drugiej strony, niech bedzie
spetniony warunek (4.8). Indukcyjnie skonstruujemy podciag {a,, } zbiezny
do a. Niech n; bedzie numerem takiego elementu ciagu, ktéry spetnia

Istnienie takiego elementu wynika z (4.8). Dalej, zalozmy, ze mamy juz
skonstruowany ciag rosnacy indeksow n; < ng < --- < ny spetniajacy

1
|am—oz|<§, [=1,2,... k.
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Niech nyy1 bedzie indeksem elementu ciagu {a,} ktory speinia

1

|ank+1 - a| < Wﬂ

oraz nyy1 > ng. Istnienie takiego elementu wynika z (4.8). W ten sposob
otrzymaliémy podciag {a,, } spelniajacy

1
O§|ank—a\<?, k:172,

Korzystajac z 3 ciagdéw widzimy, ze podciag jest zbiezny do «, czyli « istotnie
jest punktem skupienia ciagu {a,}. O

Jezeli ciag {a,} jest ograniczony, to zbiér jego punktow skupienia (ktory,
zgodnie 7 twierdzeniem Bolzano-Weierstrassa jest niepusty) tez jest ograni-
czony (¢wiczenie). Posiada wiec kresy.

Definicja 4.15. Kresy dolny 1 gorny zbioru punktow skupienia nazywamy
granicqg dolng i gorng ciggu {a,}, i oznaczamy

liminf a, granica dolna limsup granica gorna.

n—oo n—oo

Uwagi: (i) Granica dolna jest mniejsza lub rowna od granicy gornej.

(ii) Zbior punktow skupienia ciagu ograniczonego osiaga swoje kresy. Gra-
nica dolna jest wiec najmniejszym punktem skupienia ciggu, a granica gorna
najwiekszym punktem skupienia ciagg ograniczonego.

(iii) Ciag ograniczony jest zbiezny wtedy i tylko wtedy gdy jego granice gorna
i dolna sg rowne. Innymi stowy, ciag ograniczony jest zbiezny wtedy i tylko
wtedy, gdy ma doktadnie jeden punkt skupienia.
(iv) Stale A i B ktore pojawily sie w (4.2) w dowodzie Twierdzenia 4.6 sa
odpowiednio granicami dolng i gorna ciagu {a,}.

Przyktad: Niech m € N bedzie ustalona, i niech a, = (1 + =)". Pokazemy,

ze .
m
lim a, = lim (1 + —) =™,
n—oo n—oo n
Najpierw niech 0 < x < 1, i niech b, = (1 + ﬁ)” Zauwazmy, ze maimy

nastepujace oszacowanie

1 \" 1 " \"
() < () < ()
n-+1 n+x n
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Prawy skrajny ciag dazy do e, lewy skrajny, jak tatwo sie przekonaé tez:

1 \" T\ /n+1\ n
1 = (1 1=e. 4.9
( +n+1> < +n+1) (n—l—?) ¢ ¢ ( )

Korzystajac z 3 ciagéw mamy wiec, ze b, — e. Ustalmy teraz ! =0,...,m—1,
i niech ny = mk + [. Zauwazmy, ze odpowiadajacy temu podciag ciagu {a,}
zbiega do e™:

1 : 1 :

k—oo
= 14+ —+ 11+ m
( k+%> ( k:+%> ¢

zgodnie z (4.9). Wszystkie powyzsze podciagi maja wiec ta sama granice ™.
Kazdy element ciagu {a,} nalezy do ktoregos podciagu, i podciagow tych
jest skonczenie wiele. Wynika z tego, ze {a,} jest zbiezny, i jego granica jest
e™. Przekonajmy sie o tym. Niech {nl} bedzie ciaggiem n! = mk + [ dla
[=0,1,...,m — 1. Wiemy, ze kazdy podciag {ani} zbiega do €™, wiec dla
dowolnego € > 0 istnieja k} € N taki, ze dla k > k} zachodzi

@ — €™ <e.
Niech teraz ng = max{mky, mk} +1,...,mki* ' +m — 1}. Jezeli n > no,

to n musi naleze¢ doktorego$ ciagu nk i dodatkowo k > ki. a, spelia wigc
la,, — e™| < e. Niech m,k € N. Jako prosty wniosek z powyzszych obliczen

mamy
( ) ( 1 " ﬂ)kn) = () * 222 (eM)F = e

Dla p =7, m,k € N mamy wiec

=
=3

lim (1—|— B)n =P,
n

n—oo

Powyzsza réwno$¢ mozna uogoélni¢ najpierw na dowolne p € R, p > 0, a
nastepnie na dowolne p € R. Zostawiamy to jako ¢wiczenie
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Rozdzial 5

Szeregi

Szeregi to sumy nieskoniczone. Do ich definicji potrzebne jest pojecie zbiez-
no$ci. Sumy nieskoriczone nie s3 niczym dziwnym, wystepuja w praktyce, na
przyklad kiedy chcemy obliczy¢ pola figur. Niech bedzie dany ciag {a,}, i
utworzmy cigg kolejnych sum

S1 = aq, 32:a1+a2, 53:a1+a2+a3, sn:a1+a2+--~—|—an,...

Definicja 5.1. Jezeli cigg {s,} ma granice s to mowimy, Ze szereg (suma
nieskoriczona) Y -, an jest zbiezny, i zZe jego suma wynosi s. Piszemy s =
220:1 an. Cigg {sn} nazywamy ciggiem sum czesciowych szerequ y_ a,, a jeqgo
elementy s, sumami czeSciowymi szeregu. Jezeli ciqg {s,} nie jest zbiezny,
to mowimy, zZe szereq jest rozbiezny, a wyrazenie Y a, jest tylko symbolem i

nie ma interpretacyi liczbowe;.

Przyklady: (a) Niech a, = (3)". Wtedy

2 /2\? 2\" 2 1-—(3)" 2™\ neo
R (e e (2) =28 —o1- (2 Ui N}
it (5) o (B) -5 2 (- (6))

Szereg Y o° (3)" jest wiec zbiezny, i Y2 (3)" = 2 (jest to przyklad tak

zwanego szeregu geometrycznego). SkorzystaliSmy ze wzoru na sume postepu
geometrycznego (4.5)

(b) Niech a,, = m Zauwazmy, ze a, = + — Mamy wiec

1
n+1l°

1 1 n 1 1 . n 1 1 n 1 1
Spn=1|-—= - — = - — - —
1 2 2 3 n—1 n n n-+1
1 n—oo
=1- — 1.
n+1
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Szereg > 7, m jest wiec zbiezny, i jego suma wynosi 1.

(¢) Szereg > 7 (—1)™ jest rozbiezny, bo s, = —1 lub 0, w zaleznosci od tego,
czy n jest parzyste czy nieparzyste.

Dzialania na szeregach

Twierdzenie dzialaniach na granicach przenosi si¢ na szeregi:
o0
E a, +by) E a, * E by,
n=1
g coay)=c- E ,,

n=1

przy zalozeniu ze szeregi po prawej stronie sg zbiezne. Twierdzenie o granicy
iloczynu czy ilorazu nie ma tu bezposredniego zastosowania.

Twierdzenie 5.2. Jezeli szereq Y a, jest zbiezny, to lim, .. a, = 0.

Dowad. Jezeli szereg jest zbiezny, to znaczy, ze zbiezny jest jego ciag sum
czesciowych s, =a; +---+a,. Dlan>2a, =5, — s,_1, a wiec

lim a, = lim (s, — $,-1) = lim s, — lim s,_; = 0.

n—o0o n—oo n—oo n—oo

]

Uwaga: Powyzsze twierdzenie daje tak zwany warunek konieczny zbiezno$ci

szeregu. lima, = 0 nie gwarantuje zbieznosci szeregu »_ >~ | a,,. Twierdzenie
przydaje sie wiec gléwnie zeby pokazaé rozbieznosé.
Przyktad: Niech a, = Szereg > 07 15 L jest rozbiezny. Jest to tak zwany

szereg harmoniczny. Pokazemy, ze cigg sum czesciowych nie jest ograniczony.
Wystarczy pokaza¢ podciag ciagu {s,} rozbiezny do +o0.

gyttt
Son = - —_ — — - — - -
2 2 '3"4"' 56" 7"38 on

:1+1+(1+1)+(1+1+1+1)+...
2 3 4 5 6 7 8
1 1 1
ce 2n_1+1+2n_1+2+...+2_n>'
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W kazdym kolejnym nawiasie mamy 2¢ — 2¢=1 = 2k=1 gktadnikow, a kazdy

sktadnik jest > 2% Suma kazdego nawiasu jest wiec wieksza od 2871 4 =1

ok — 3
>1+1+ 1+1 + 1+1+1+1 +o 4 1+1+ +1
Sn — — — — — — p— DY — — .« o E—
= 2 44 8 8 '8 '8 on ' on on
1 1 1 1 n
=l f—db—=14n - —=1+4—.
+2+2+ +% +n g +3
n;gzy

Mamy wiec son > 145, a wiec cigg sum czesciowych {s, } nie jest ograniczony,
a wiec nie jest zbiezny.

Twierdzenie 5.3. Szereg > | a,, jest zbiezny wtedy i tylko wtedy, gdy ciag
sum cze$ciowych {s,} spetnia warunek Cauchy’ego:

Ve>0 dngeN Vmn>ng |[Sm—sa| <e
Warunek ten mozna przeformutowac:
Ve>0 dngeN Vm>n>ng |ap+ aper+ -+ am| <e

Dowdd. Twierdzenie wynika natychmiast z Twierdzenia 4.6 dla ciagow. [

Przyklad: Jezeli |r| <1 to szereg geometryczny » - 7" jest zbiezny. Niech
m > n > ng.

|+ Gng1 4+ F Q| < an] F ana] + -+ an] = [+ [P A+
= |r[" + T ™ = A e e )
L— et e [

— |r|™. < .
e R R e

Ciag l\i_l";' jest zbiezny do 0, wiec wystarczy dobraé¢ ng do zadanego e.

Kryteria zbieznoSci

Badanie zbieznosci szeregdw w wiekszosci przypadkéw mozna sprowadzi¢ do
zastosowania jednego z nastepujacych kilku kryteriow.

Twierdzenie 5.4 (kryterium poréwnawcze).

(i) Jezeli|a,| < by, i szereg Y | by jest zbiezny, to szereg y - an tez jest
zbiezny.
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(ii) Jezeli 0 < a, < by, i szereg > - | a, jest rozbiezny, to szereg > - by,
tez jest rozbiezny.

Dowdd. (i) Skoro Y b, jest zbiezny, to ciag jego sum czesciowych spelnia
warunek Cauchy’ego. Z drugiej strony mamy
‘an +apy +-o-+ an+k| < ’an’ + ’a'n-i-l’ +oeee ’an-&-kz‘
Sbn+bn+1+"'+bn+k: |bn+bn+l++bn+k|
Ciag sum czesciowych szeregu » a,, tez spelia wiec warunek Cauchy’ego.

(ii) Szereg Y a, ma wyrazy nieujemne, i jest rozbiezny, wiec jego ciag sum
czesciowych jest rosnacy (moze stabo), a skoro nie jest zbiezny, to nie jest
ograniczony. Ciag sum cze$ciowych szeregu Y b, ma wyrazy nie mniejsze,
wiec tez nie jest ograniczony, a wiec nie moze by¢ zbiezny. O]

Uwaga: Wystarcz, ze oszacowania sa spetnione tylko od pewnego miejsca.
Przyklady: (a) Szereg Y " | —5- jest zbiezny, bo

Lo
n2+2n = n2+n nn+1)

(b) Szereg >~ , ﬂ%l jest rozbiezny, bo
1 1 1
> =,
n+l " n+n 2n

a szereg . 5 jest rozbiezny. Zauwazmy, ze w tym przykladzie oszacowanie

1 1 . . .
7 < 5 nic nie daje.

Twierdzenie 5.5 (kryterium o zageszczaniu). Niech cigg {a,} bedzie dodatni
i stabo malejgcy, a; > ay > -+ > 0. Wowczas szereg > - | a, jest zbieiny
wtedy i tylko wtedy, gdy szereg Y -, 2" agn jest zbiezny.

Powyzsze kryterium nie rozstrzyga w sposob bezposredni, czy dany sze-
reg jest zbiezny, czy nie, ale pozwala sprowadzi¢ badanie zbieznosci jednego
szeregu do badania zbieznosci innego szeregu.

Dowdd. Oznaczmy przez {s,} ciag sum czeSciowych szeregu > a,, a przez
{s],} ciag sum czesciowych szeregu > 2"agn. Poniewaz wyrazy obu szeregow
sa nieujemne, to oba ciggi sum cze$ciowych sa niemalejace. Pokazemy, uzy-
wajac odpowiednich szacowan, ze ciagi te sa rownoczesnie ograniczone lub
nieograniczone. Mamy

Sp=a1+as+az+ -+ ay,

92



3;1:2~a2+4-a4+8-a8+...2”-azn
=2(ag+2-as+4-ag+---+2"""agm).

Zauwazmy wiec, ze

1
53;:a2+2-a4+4-a8+-~-—|—2n_1-agn

<ai+at+aztagt---+apm_1+am

= Son

Do sumy po lewej stronie dodalismy a; > 0, a kazdy sktadnik sumy 271 - aq
zastapiliSmy nie mniejszym wyrazeniem aogr-1,7 + -+ 4+ agr, kK = 1,...,n.
Jezeli ciag {s,} jest ograniczony to ograniczony jest tez ciag {s }.

7 drugiej strony zauwazmy, ze

Son+1_1 = Q1 + Qg+ a3 + a4+ -+ Qon+1_1
<a+2-ay+4-a4+--+2" agm

/
=a; + S,

Nierownosé¢ uzyskalismy zastepujac sumy daogr +age 1 +- - - +age1_q (2% sktad-
nikow sumy) przez nie mniejsze wyrazenie 2% - ag, k = 1,...,n. Jezeli
ciag {s/,} jest ograniczony, to z powyzszej nierébwnosci wynika, ze podciag
{sgn+1_1} ciagu {s,} tez jest ograniczony. Ciag {s,} jest niemalejacy, i za-
wiera podciag ograniczony, a wiec caly musi by¢ ograniczony (éwiczenie). [

Przyklad: Rozpatrzymy teraz szeregi postaci Y -, n—lp Jezeli p < 0 to ciag
{# nie jest zbiezny do 0, a wiec szereg nie moze by¢ zbiezny. Jezeli p > 0
to ciag {nip jest dodatni i malejacy, a wiec spelnia zalozenia kryterium o
zageszezaniu. Zamiast szeregu » % rozwazmy wiec szereg o wyrazach

. 1 n 1 I 1 \"
2 (Qn)p_2 2n~p_2n~(p—1)_(2p—1) '

Szereg > (5=1)" jest szeregiem geometrycznym. Jezeli p — 1 > 0 to iloraz
21)%1 < 11 szereg jest zbiezny, natomiast jezeli p — 1 < 1, to iloraz
> 1, i szereg nie jest zbiezny. Mamy wiec

=1 zbiezny jezeli p > 1,
Yo = « o (5.1)
np rozbiezny jezeli p < 1.

szeregu
_1
2r—1

n=1

Zauwazmy, ze przypadek p = 1 zrobiliSmy juz wczesniej. Szeregi tej postaci
sa bardzo przydatne. Jezeli wyrazy jakiego$ badanego szeregu mozna w
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jakikolwiek sposob oszacowaé przez funkcje potegowa n, to powstaly szereg
mozemy porownaé z szeregami (5.1), ktorych zbieznosé jest rozstrzygnieta w
zalezno$ci od p.

Twierdzenie 5.6 (kryterium d’Alemberta). Niech {a,} bedzie ciggiem o
wyrazach réznych od 0. Wtedy

An+1
an

(i) jezeli limsup,,_, . || < 1 to szereg Y a, jest zbiezny,

(i) jezeli iminf, o [*252] > 1 to szereg ) ay jest rozbiezny (obejmuge to

tez przypadek granicy niewtasciwej lim,, o || = +00).

Qn

Dowdd. (i) Zauwazmy, ze skoro granica gorna ciagu || jest mniejsza od
1, to istnieja 0 < ¢ < 1 oraz ng € N takie, ze dla n > ng

an+1 <c,
ap
w szczegdlnosci dla k£ > 0
g ] = || Sl 2 g | (5.2)
ano—l—k—l an0+k—2 ano
|, |
< fan| - & = S0 - ot

Iloczyn pojawiajacy sie w (5.2) nazywa sie czasem iloczynem teleskopowym,
gdyz wysuwamy badz chowamy potrzebna ilo$¢ czynnikow. Ciag {a,} spelia
wiec (dla n > ng) nieréwnoscé

|an0‘ p

|6Ln|§CTO c, O<C<17

czyli jest zbiezny z kryterium poréwnawczego.

(ii) Zauwazmy, 7e skoro granica dolna ciagu [*] jest wigksza od 1 (a takze

jezeli ciag ten ma granice niewlasciwa +00), to istnieja ¢ > 11 ng € N takie,
ze dla n > ng

n+1
Qp,

>c

Podobnie jak w poprzednim przypadku, dla £ > 0 mamy

Qno+k Ang4+k—1 Ang41

’ |an0| > |an0| ’ Ck > |an0|7

‘an0+k| -

ano+k—1 an0+k—2 no

czyli ciag {a,} nie jest zbiezny do 0. Szereg > a, musi wiec byé¢ rozbiezny.
L
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Kryterium d’Alemberta pozostawia wiele przypadkéw nierozstrzygnie-
tych. Na przyklad dla szeregow postaci nip mamy

Ap+1
Qp

lim

n—oo

p p
= lim — = (lim ) =1.
n—o00 (’I’L + 1)p ntooo 1, + 1

Ten rodzaj szeregdéw nie jest objety ani przez (i) ani przez (ii) przypadek
kryterium d’Alemberta. Istotnie, jak wiemy szeregi tego rodzaju moga by¢
zbiezne lub rozbiezne, w zaleznosci od parametru p.

Twierdzenie 5.7 (kryterium Cauchy’ego). Niech dany bedzie cigg {an} i
niech

g = limsup {/|an|, granica wltasciwa lub niewta$ciwa.

n—oo

Wtedy
(i) jezeli g < 1 to szereg ) a, jest zbiezny,

(ii) jezeli g > 1 to szereg > ay, jest rozbiezny (obejmuje to takze przypadek
granicy gornej niewta$ciwej g = 400).

Dowdd. (i) Podobnie jak w przypadku kryterium d’Alemberta, istnieja 0 <
c < 11ing € N takie, ze dla n > ng

Vian <e¢ = Jau| <,

czyli z kryterium poroéwnawczego szereg »  a, jest zbiezny.

(i) Jezeli g > 1, to istieje podciag {an, } taki, ze |a,, | > 1. Ciag {a,} nie
moze wiec by¢ zbiezny do 0, a wiec szereg Y a, nie jest zbiezny, [

Uwagi: (i) Podobnie jak w przypadku kryterium d’Alemberta kryterium
Cauchy’ego pozostawia nierozstrzygniety przypadek g = 1. W takim przy-
padku dla r6znych szeregdw moze by¢ roznie.

(ii) Oba kryteria maja zastosowanie dla szeregow o wyrazach zespolonych.
Wartos¢ bezwzgledna jest wtedy modutem liczby zespolone;j.

Przyklad: Szereg > -, 4. Mamy a, = 1, a wiec

nl

B n! 1 noos
S (n+1D)! n+1 '

Apy1

Qn
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Korzystajac z kryterium d’Alemberta otrzymujemy, ze szereg > # jest zbiezny.

Udowodnimy teraz, ze
o0

Z% —e. (5.3)

n=0

Przypomnijmy, ze liczba e jest granica

1 n
e = lim (1 + —> .
n—oo n

Dowodzac istnienia tej granicy pokazaliSmy w (4.4), ze

) ity Lo
+E <1+ +i+§+"'+a—8m

gdzie {s,} jest ciagiem sum czesciowych szeregu > 1. Przechodzac do
granicy po n po obu stronach nieré6wnosci otrzymujemy

=1
e<> - (5.4)
n=0

Z drugiej strony, ustalmy k& € N i niech n > k. Wtedy z rozwiniecia (4.3)
(ucinajac rozwiniecie po k-tym wyrazie) mamy

1\" 1 1 1 1 2
14+ — >1414+=(1——)+=[(1—— 1——)4+...
n 21 n 3! n n
—1
.<1_’“ )
n

Przechodzac do granicy wzgledem n po obu stronach nier6wnosci (k pozo-
stawiajac ustalone) otrzymujemy

S1414 oo L
e = —+ +§+§+”.+H_Sk7

dla kazdego k € N. Teraz przechodzac do granicy po k (lewa strona jest
stala) otrzymujemy
=1
€ Z ZO Ha

co razem z (5.4) daje (5.3).



Szeregi zbiezne absolutnie

Definicja 5.8. Jezeli szereg Y |ay| jest zbiezny, to mowimy, Ze szereg > ay,
jest zbiezny absolutnie. Jezeli szereq Y a, jest zbiezny, ale nie jest zbieiny
absolutnie (to znaczy szereq Y |a,| nie jest zbiezny), to mdéwimy, Ze szereg
> ay, jest zbiezny warunkowo.

Uwagi: (i) Jezeli szereg jest zbiezny absolutnie to jest tez zbiezny w zwyklym
sensie. Wynika to z warunku Cauchy’ego:

|ni1 + anio + -+ | < |api1| + anse| + -+ |aml-

Jezeli > |a,| jest zbiezny, to spetnia warunek Cauchy’ego, a wiec Y a, tez
spelnia warunek Cauchy’ego, czyli tez jest zbiezny. Zbieznos¢ absolutna jest
to wiec szczegblny rodzaj zbieznosci.

(ii) Jezeli wyrazy szeregu > a, nie zmieniaja znaku, to zbieznosé absolutna
wynika ze zbieznoSci zwyktej, i oba rodzaje zbiezno$ci sa rownowazne. Zbiez-
no$¢ absolutna jest wiec istotna dla szeregow ktorych wyrazy zmieniaja znak.

(iii) Zauwazmy, ze wszystkie kryteria zbieznosci poznane omawiane dotych-
czas dotycza zbieznosci absolutnej. Zadne z tych kryteriow nie umozliwia
stwierdzenia zbiezno$ci warunkowe;j.

(iv) Zabieznosé absolutna jest wazna — tylko dla szeregow zbieznych abso-
lutnie zbiezno$¢ i suma nie zaleza od kolejnoSci sumowania i rozstawienia
nawiasow.

Szeregi naprzemienne

Mowimy, ze szereg » . a, jest naprzemienny jezeli jego wyrazy na przemian
zmieniaja znak, to znaczy a, = (—1)" - b, i b, > 0 lub b, < 0 dla wszystkich
n.

Twierdzenie 5.9 (kryterium Leibniza). Jezeli ciqg {a,} jest malejgcy (stabo)
i lim,, .o a, = 0, to szereq naprzemienny

o0

Z(_l)n+1an

n=1

jest zbiezny.
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Dowadd. Niech s, = ay — ay + a3 — aq + - - - + £a, bedzie ciaggiem sum cze-
Sciowych. Zauwazmy, ze podciagg o numerach parzystych sq, jest rosnacy:

S2(n+1) = Son + Qont1 — Q2n+t2 > Son,

a podciag o numerach nieparzystych ss,,1 malejacy:

52(n+1)+1 = S2n+1 — A2p42 T A2p43 = Sop41 — (G2n+2 - a2n+3) < Son1-
Zauwazmy, ze podciag sq, (ktory jest rosnacy) jest ograniczony od gory:

Sop = A1 — G2 + A3 — A4 + + = A2p

=ay — (ag —az) — (ag — as) — - -+ — (agn—1 — a2,) < ay,
a podciag son i1 (ktory jest malejacy) jest ograniczony od doltu

Sopt1 = G1 — A2+ Q3 — Qg + -+ — Q2 + Aoyt
= (Cll — 0/2) + (CL3 — a4) + -+ (CLQn,1 — (lzn) + A2n+1 Z 0.

Oba podciagi sa wiec zbiezne. Niech s = lim,,_ S2,. Wtedy

g, Saner = I (8o tnn) = U 6an + [0 mir =8 40=2.
Oba podciagi maja wiec wspolna granice. Ciag {s,} rozklada sie wiec na 2
podciagi, wyrazy o numerach parzystych i wyrazy o numerach nieparzystych.
Kazdy element ciagu {s,} nalezy do jednego z dwoch podciagow, i oba pod-
ciggi maja wspolng granice s. Wynika z tego, ze caly ciag {s,} jest zbiezny
do s. Zapiszmy to rozumowanie. Niech € > 0. Z tego, ze lim, .o Sop = s
wynika, ze

dkeN VE>k |82k—8’<€,

a z tego, ze lim,, .. So,411 = S mamy
HkQEN VkaQ ‘82k+1—8‘<6.

Niech ng = max{2ky, 2ks + 1}. Wtedy, jezeli n > ng to n = 2k, k > ky lub
n =2k +1, k > ko, w zaleznosci od parzystosci n. W obu przypadkach

|sp — 5| <e.
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Uwaga: Zauwazmy, ze z dowodu wynika tez oszacowanie wartosci sumy. Dla
dowolnych k,l € N

o0
Sq1 < Z(—l)nHan < Sokt1-
n=1

Suma jest wieksza od kazdej parzystej sumy czesciowej, a mniejsza od kazde]
nieparzystej. Odnosi sie to do szeregéw naprzemiennych ktérych wyrazy
parzyste sa < 0 a nieparzyste > 0.

Przyktad: Szereg > 7| # jest zbiezny, ale nie absolutnie. W niedalekiej
przysztosci przekonamy sie, ze

e -1 n+1
ST
n

n=1

Szeregi potegowe

Definicja 5.10. Szeregiem potegowym nazywamy szereg postaci Y -, a,x",
gdzie ciqg wspdtezynnikow {a,} oraz liczba x mogq byé rzeczywiste lub zespo-
lone.

Uwagi: (i) Szereg potegowy, dla ustalonego ciaggu {a,} moze byé¢ zbiezny
lub nie, w zalezno$ci od liczby z. Zawsze jest zbiezny dla x = 0.
(ii) W tych punktach z, w ktorych szereg potegowy jest zbiezny definiuje on
funkcje:

o0

f(z) = Z an, z".

n=1
Funkcje, bedace sumami zbieznych szeregéw potegowych sa bardzo wazne.
Zobaczymy, ze praktycznie kazda funkcja ma ta posta¢, w szczegdlnosci
wszystkie funkcje elementarne mozna zapisa¢ w ten sposdb (mowi sie cza-
sem, ze mozna je ,rozwinaé¢ w szereg potegowy”).
(iii) Oczywiscie, kazdy szereg liczbhowy mozna zapisa¢ w postaci szeregu po-
tegowego, z odpowiednio dobranymi wspotczynnikami. Okreslenie ,szereg
potegowy” odnosi sie wiec do sposobu zapisu szeregu liczbowego.

(iv) W dalszym ciagu skoncentrujemy sie na szeregach o wyrazach rzeczywi-
stych.

Twierdzenie 5.11. Szereg potegowy y .-, a,x” jest albo zbiezny absolutnie
dla kazdego x € R, albo istnieje liczba R > 0 taka, ze

(i) dla x € (—R, R) szereg jest zbiezny absolutnie,
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(ii) dla x ¢ [—R, R] szereg jest rozbiezny.

Zbior tych x dla ktdrych szereg potegowy Y - a,x™ jest zbieiny ma wiec
postaé przedziatu, zawierajgcego jeden lub oba korice albo bez koricow (moze
to byc cata prosta R). Zbior ten nazywamy ,przedziatem zbieznosci szeregu”.
Liczbe R nazywamy ,promieniem zbieznosci” (w przypadku gdy przedziatem
zbieznosci jest (—oo0,00), to mowimy, Ze promien zbieznosci jest nieskori-
czony).

Uwaga: Na koncach przedzialu zbieznosci moze by¢ roznie. Na przyktad,
szereg »_ ™ ma przedzial zbieznosci (—1,1), szereg > +2™ ma przedzial
zbieznosci [—1, 1), natomiast szereg Y 2™ przedzial zbiezno$ci [—1, 1].

Dowdd twierdzenia. Jezeli dla o € R szereg ) a,xf jest zbiezny, to ciag
{a,zf} jest zbiezny do 0, a wiec w szczegolnosci jest ograniczony:

AdM VneN |azg| < M.

||

Jezeli || < |xo| to niech ¢ = - < 1. Mamy wtedy

[zo]
2| \"
~lensl (1) <0
|0

Szereg geometryczny o wyrazach ¢" jest zbiezny, gdyz 0 < g < 1. Z kryterium
poréwnawczego szereg » . a,x" jest wiec zbiezny absolutnie. Niech

A= {|m| : Zan x" jest zbiezny, z € R} .

n=0

n
ap Ty —
0

|anxn| =

Jezeli A nie jest ograniczony, to szereg jest zbiezny absolutnie dla kazdego
x € R. Dla kazdego x € R znajdziemy bowiem z, takie, ze |zo| > |z| oraz
szereg Y a,x{ jest zbiezny. Jezeli A jest ograniczony, to niech

R = sup A.

Tak zdefiniowane R spelnia warunki twierdzenia. Jezeli bowiem |z| < R, to
znajdziemy z, takie, ze |xo| > |x|, 1 szereg Y a,x{ jest zbiezny. W takim
razie szereg » | a,x" jest zbiezny absolutnie. Z drugiej strony, jezeli |z| > R to
szereg > a,x™ nie moze by¢ zbiezny: w przeciwnym przypadku mieliby$my
|z| € A, czyli |x| < R. O
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Przyklady: (a) Szereg > .-, “- ma promiefi zbieznosci R = 1, co mozna
sprawdzié¢ z kryterium d’Alemberta. W punkcie = 1 jest rozbiezny (jest to
wtedy szereg harmoniczny), a w punkcie = —1 jest zbiezny, co wynika z

kryterium Leibniza.

n -, . . s . . . . .,
(b) Szereg >~ ", 7 ma promien zbieznoci nieskoniczony, co mozna sprawdzié
z kryterium d’Alemberta:

xn+1

(n+1)! 1 n—o0

z™ ::|$|' 0,
ot n4#1

niezaleznie od z.

(¢) Szereg >~ n™x™ ma promien zbieznosci R = 0:

(n+ 1)"Htgntl
n"x"

dla kazdego = # 0.
Stosujac znane kryteria zbieznosci szeregdéw otrzymujemy rézne wzory na
promien zbieznosci.

n—oo

1 n
:|x|-(n+1)<1+ﬁ> — 400,

Twierdzenie 5.12. Rozwazmy szereg potegowy » . a,x™ i niech

g = limsup {/|ay|.

n—oo

Jezeli g = 0 to promien zbieznosci szeregu jest nieskonczony, jezeli g = +00
to R=0, a jezeli 0 < g < o0 to

R=-.
9

Dowdd. Zastosujmy kryterium Cauchy’ego do szeregu > a,z".

limsup /|a, z"| = limsup |z|{/|a,| = |z| - limsup {/|a,| = |z| - g
Jezeli g = 0 to szereg jest zbiezny (absolutnie) dla kazdego x € R, czyli
promien zbiezno$ci jest nieskonczony. Jezeli g = 400 to szereg jest rozbiezny
dla kazdego = # 0, czyli R = 0. W koricu, jezeli 0 < g < 00 to szereg jest
zbiezny (absolutnie) dla |z| < é i rozbiezny dla |z| > é, czyli R = é. O
Uwaga: Stosujac kryterium d’Alemberta w podobny sposoéb otrzymaliby$my
nastepujace twierdzenie: jezeli

g = lim

n—0o0

an+1
Gnp,
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istnieje (wlasciwa lub niewlasciwa), to R = é (przy czym rozumiemy, ze
R =0dla g = 400 i R nieskoriczony dla g = 0).

Przyklad: Rozwazmy szereg » >, %Lsc” Stosujac powyzsza uwage liczymy:
n 1)+t nl n™ n! I\" -
| _ (A D™ nt (D) ol AN e
an (n+1)! nn n! n" n

A wiec R = % Przy okazji, porownujac to z Twierdzeniem 5.12 mozemy
wywnioskowaé, ze

li an" li n
imsup {/ — = limsup —= =e.
n—oo n' n—oo \n/ ’)’L'
Pokazemy teraz, ze ciag {{ ’;—7} jest rosnacy, a skoro tak, to jego granica
gorna jest tez granica (¢wiczenie), i mamy nastepujacy wniosek, ktory warto
zapamietac

lim L e

n—eo /n| '
Sprawdzmy, ze ciag ten istotnie jest rosnacy. Wprowadzmy oznaczenie ¢, =
(14 4)". Wiemy, ze 2 =1c¢; < ¢ <3 <--- < e, a wiec

2

2 n2 n
1" 1 1 "
(n—|—2) :<n+ ) :(1—|—E) :cZ>cl-02-...~cn_1:n— (5.5)

nn n n!’

Ostatnig réwnos¢é mozemy udowodnié¢ indukcyjnie: dla n = 2 mamy ¢; =

zZ 2, czyli rownosc¢ jest prawdziwa. Nastepnie wykonajmy krok induk-

2
n 1 n
:—-Cn:_ 1+_
n! n!( n)

cyjny:
_nn (n+1>”_<n+1>n (n+1)n+l

nl (4 1)!

n! n

Mamy wiec udowodniong nieréwnos$¢ (5.5). Wynika z niej natychmiast na-
stepujace nier6wnosci:

(n+1)" 1 (n+1)"" _ pr+D)
pn(n+1) n! (nl)" (nl)n+1

Teraz wystarczy wyciagnaé stronami pierwiastki stopnia n(n + 1), i otrzy-
mujemy
n+1 (n + 1)TL+1 n nn
S A— > —,
(n+1)! V n!
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Rozdzial 6

Granica funkcji

Niech f bedzie funkcja zmiennej rzeczywistej o wartosciach rzeczywistych,
to znaczy f : Dy — R, Dy C R, dziedzina f. Niech D_f bedzie ,uzupelnie-
niem” Dy, czyli zbiorem tych wszystkich punktow z, dla ktorych istnieje ciag
{zn} C Dy, x, # z, zbiezny do z. Na przyktad, dziedzina naturalna funkcji
flx) = % jest zbior Dy = {x : x # 0}. Wtedy D; = R. Pojecie granicy
funkcji w punkcie bedziemy chcieli wprowadzié¢ dla punktow z D_f, czyli ta-
kich, ktore naleza do dziedziny f (ale nie sa izolowane), albo nie naleza, ale
sa na ,samym brzegu” dziedziny.

Definicja 6.1. Mdowimy, ze funkcja [ ma w punkcie xo € D_f granice g, jezeli
Ve>0 30>0 VzeDDy 0<|z—mo| <d=|f(x)—g| <e

W takiej sytuacji piszemy

lim f(z)=g.

r—x0
Mdwimy, Ze funkcja f ma w punkcie To € Dy granice niewtasciwg oo (—oo)
jezeli

VMeR 36>0 VzeDy 0<l|z—x0| <= flx) >M (f(x)<M).

Piszemy wtedy
lim f(x) = +o0.
xr—x0
Definicje granicy funkcji w punkcie mozna natychmiast przettumaczy¢ na
jezyk zbieznosci ciggow liczbowych:

Twierdzenie 6.2. Niech ro € Dy. Wtedy lim,_.,, f(x) = g wtedy i tylko
wtedy, gdy dla kazdego ciggu {x,} C Dy, x, # o, lim, o ©,, = xo zachodzi

lim f(z,) = g.

n—oo
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Podobnie, lim,_.,, f(z) = too wtedy i tylko wtedy, gdy dla kaZdego ciggu
{xn} C Dy, xy # o, limy, o0 T, = T zachodzi

lim f(z,) = foc.

n—o0

Dowdd. Niech f ma w punkcie z( granice g

g = lim f(z).
T—x0
Niech {z,} bedzie dowolnym ciagiem z Dy, zbieznym do x¢, ,, # x. Poka-
zemy, ze ciag {f(x,)} zbiega do g. Niech € > 0. Z definicji granicy wynika,
ze istnieje 0 > 0 takie, ze jezeli x € Dy, x # x) to

v — x| <d=|f(x) —g| <e (6.1)

Skoro x,, — xo to (0 pelni role € z definicji granicy ciagu) istnieje ng € N
takie, ze V n > ng mamy |z,, — xo| < 0, czyli, korzystajac z (6.1)

|f(xn) _g| < E.

W ten sposob pokazalismy, ze lim,, ., f(x,) = g.

Teraz dowod w drugg strone. Niech f(x,) — ¢ dla kazdego ciagu z,, —
xo, spelniajacego z,, # zo i {x,} C Dy. Pokazemy, ze f ma w z, granice
g. Dowdd przeprowadzimy nie wprost. Zalézmy, ze f nie ma granicy g w
xo, czyli ze nie zachodzi warunek z definicji granicy funkcji w punkcie, czyli,
innymi stowy zal6zmy, ze

de>0 V>0 JzeDy 0<|x—az9l < A |f(z)—g| > €o.

Korzystajac z powyzszego zdefiniujemy ciag {z,} ktory da nam sprzecznosé.
Ciag {z,} definiujemy nastepujaco. Dla n € N nlech 0 = L, a x, niech
bedzie tym elementem Dy, ktory spelnia 0 < |z — x| < - A |f( ) —g| > eo.
Zauwazmy, ze tak powstaly ciag {x,} speia {x,} C Df, Ty F Xo, Tp — X,
ale f(z,) - g. OtrzymaliSmy wiec sprzecznosé.

Przypadek granic niewtasciwych pozostawiamy jako ¢wiczenie dla czytel-
nika. O

Korzystajac z powyzszego twierdzenia, i twierdzen o zbieznosci i granicach
ciggoéw mamy nastepujacy wniosek.

Whniosek 6.3. (i) Jezeli a = lim, ., f(z) i b= lim,_,, g(z) to

lim (f £ g)(x) =a=+b, lim (f - g)(z) =a - b,

T—T0 T—T0
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a jezeli dodatkowo b # 0 to

(] _a
Jim (g)w =%

(ii) Jezeli w pewnym otoczeniu xoy mamy

g(x) < f(x) < h(z),

oraz
lim g(z) = lim h(z) = a,
T—T0 T—T0
to takze
lim f(z) = a.
Tr—T0

(1i1) Z granicq funkcji w punkcie mozemy ,wchodzié pod pierwiastki”, czyli
lim /f(z) = ¢/ lim f(x),
T—x0 T—x0

o ile odpowiednie pierwiastki sq okreslone (f > 0 dla k parzystego).

Przyktady: (a) Obliczymy granice

. 3r—>5
lim .
r—2 1'3 —1

Mianownik 2® —1 jest rozny od zera w otoczeniu punktu xy = 2, wiec 2, wraz
z pewnym otoczeniem nalezy do dziedziny funkcji. Niech x, — 2, z, # 2,
oraz x5 # 1. Wtedy
3x,—5 3-2-5 1
— = -,
x —1 23 —1 7

3x—5 __

czyli lim, o 253 = % (b) lim, ,gsinz. Skorzystamy z nastepujacego
x

oszacowania: dla 0 <

0 <sinz <. (6.2)

Wynika to z Rysunku 6.1. 7 to pole sektora kola wycigtego katem x, nato-
miast =5* to pole zawartego w sektorze trojkata (trojkat ten ma podstawe
1 1 wysokos¢ sinz. Poniewaz sin(—x) = —sin(z) (sin jest nieparzysty), wiec
dla —3 <z < 0z powyzszego otrzymujemy

r <sinzx < 0.
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(cosz,sinx)

'/ h=sinx

r=1

Rysunek 6.1: Oszacowanie sin x.

W takim razie, dla |z| < § mamy
0 <|sinz| < |z,

czyli lim,_,osinx = 0.

(c) W przypadku cos z mozemy skorzysta¢ z tego, co pokazalismy dla sin .
W otoczeniu zera cosz jest dodatni, a wiec

lir%cos:z: = lir% V1—sin?z = \/1 — (limsinx)2 =1.

z—0

(d) Korzystajac z tozsamosci trygonometrycznych mozemy znalez¢ granice
w innych punktach

lim sinz = lim sin(z + )
r—xQ x—0

= lim (sin z cos xy + cos x sin xy)

x—0
= ¢c0s T lim sin  + sin zg lim cos x
x—0 x—0
= sin xg,

oraz

lim cosx = lim cos(z + xg)

r—xQ x—0

= lim(cos z cos zy — sin z sin zg)

xr—
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= coS xg lim cos x — sin z lim sin x

x—0 z—0

= COS Zg.

Rysunek 6.2: Funkcja sin% w otoczeniu 0.

. . . . -1 . .. L, . . o
(e) Zauwazmy, ze granica lim, .osin - nie istnieje. Wezmy dwa ciagi, v, =

m oraz Yy, = m Zauwazmy, ze
sin xin = sin (g + 2n7r) = sin (g) =1,
1 . 3T . 3T
smy—n = sin (7 + 2n7r) = sin (7) =—1,

a wiec lim,,_ f(z,) = 1, oraz lim, ., f(y,) = —1. Sytuacje wyjasnia Ry-
sunek 6.2.

(f) Niech a > 1. Pokazemy, ze lim, ,oa® = 1. Niech € > 0i > 0. Mamy
wiec a* > 1. Niech ng € N bedzie takie, ze /a — 1 < € dla n > ny.
Korzystamy 7z tego, ze wiemy, ze {/a — 1. Niech §y = nio Wtedy, jezeli

1
0<zr<dy = 1l<a®"<am = 0<a”"—1< Ya—1<e

Niech teraz r < 0. Wiemy, ze




i niech n; € N bedzie takie, ze dla n > n; zachodzi 0 < 1— {/1/a < e. Niech
0y = nil, wtedy jezeli —6; < z <0 to

_L 1 1
M <a<1 = *\”/j<a””<1 = O<1—a“”<1—”§/j<e.
a a

Ostatecznie niech 6 = min{dp, d; }, wtedy 0 < |z| < § pociaga |1 — a”| < e.
(g) Niech a > 1, wtedy lim,_.,, a® = a™. Mamy

lim ¢® = lim a®***° = lim a® - ¢* = ¢® - lim a® = a®°.
r—x0 r—0 r—0 z—0

(cosz,sinx)
__ sinz
\ hy = cos

hy =sinz

e

0 CcoST 1

r=1

Rysunek 6.3: Dalsze oszacowanie funkcji sin(z).

(h) Ponownie odwolajmy sie do definicji funkcji sin(x), i por6wnajmy pole
sektora kota jednostkowego, wycietego katem Srodkowym =z, oraz pole du-

zego trojkata (Rysunek 6.3). Pole sektora to 3, natomiast duzy trojkat ma

wysoko$é %((i)) i podstawe 1, czyli pole réwne % Dla 0 < z < 5 mamy
wiec
x sin(x)
2 = 2cos(z)’
a wiec, taczac to z (6.2) otrzymujemy podwdjne oszacowanie
cos(z) < smix) <1 (6.3)

Rozwazajac parzystosé funkcji, otrzymujemy (6.3) takze dla |z| < 7. Skrajne
funkcje maja granice 1 w zerze, wiec takze
sin(x
lim L

x—0 x

~1. (6.4)
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Jest to jedna z waznych granic, ktora bedzie sie jeszcze pojawia¢ na tym
wyktadzie.

Granice jednostronne

Jezeli w definicji granicy ograniczymy sie tylko do = > zo (lub < x¢)i
warunek jest spelniony, to méwimy, ze funkcja ma w punkcie x( granice pra-
wostronng (lewostronna). Na przyklad dla granic wlasciwych (skoriczonych)
warunek na istnienie granicy prawostronnej jest nastepujacy

Ve>0 36>0 VaoeDy O<z—20<0=|f(z)—g|l<e
Dla granicy lewostronnej warunek wyglada nastepujaco
Ve>0 36>0 VaoeDy O<zg—x<d=|f(zr)—g|l<e

Granice prawostronna i lewostronng oznaczamy odpowiednio

lim f(z), oraz lim f(x).

T—T T—Ty

Dla granic niewtasciwych warunki te trzeba zmodyfikowaé¢ w zwyktly sposob.
Wnhiosek 6.4. (i) g = lim,_ =+ f(x) jezeli dla dowolnego ciggu {xy} C Dy,
Ty > xo (lub x, < x0) i T, — 9 mamy f(x,) — g. Sytuacja jest catkowicie
analogiczna do Twierdzenia 6.2.

(1i) Funkcja f ma w punkcie xo granice g (wtasciwg lub niewtasciwg) wtedy i
tylko wtedy, gdy ma w xy obie granice jednostronne, i sq sobie rowne. Wynika
to wprost z definicyi.

(111) Twierdzenia dotyczqce dziatar na granicachodnoszq sie takze do granic
jednostronnych, na przyktad

lim+(f +9g)(x) = lim f(x)+ lim+g(x).

IHJL’O l’ﬂl‘o LEHIO

Przyktady: (a) f(z) = [z]. Jezeli zy € Z to, jak tatwo sprawdzi¢

lim+ f(z) = o, oraz lim f(x)=x9— 1.

T—T) T—T(

W punktach zy € Z f ma wiec rézne granice jednostronne, czyli zwyktej
(obustronnej) granicy nie ma. W pozostalych punktach f ma granice obu-
stronng.

(b) f(x) = 2+. Dziedzina Dy = {z : = # 0}, a wiec 0 € D;. Mamy
lim f(z) = +o0 oraz lim f(z)=0.

z—0t z—0~

Pierwsza granica wynika stad, ze funkcja 2Y jest rosngca i nieograniczona.
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Rysunek 6.4: Granice jednostronne funkcji [x].

Rysunek 6.5: Granice w zerze funkcji 2.

Granice w nieskonczonosci

Jezeli dziedzina funkcji to umozliwia, to mozemy rozwazaé¢ granice funkcji
w 400 i —oo. Granice te moga by¢ wlasciwe (skoriczone), lub niewlasciwe
(nieskoriczone).

Definicja 6.5. Mowimy, ze funkcja f ma w +o0o0 (—oo) granice g, jezeli
Ve>03d3MVeeDy x>M=|f(x)—g|<e (x<M=|f(x)—g| <e).

Piszemy wtedy
g= lim f(x).

r—=+00
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Podobnie definiujemy granice niewta$ciwe. Na przyktad, lim, ., f(z) =
400 jezeli

VM 3K YzeDy x>K= f(z)>M.

Whniosek 6.6. Powyzszq definicje rowniez mozna wyrazi¢ przy pomocy cig-
gow. Na przyktad, lim,_, ., f(x) = +oo wtedy i tylko wtedy gdy dla kazdego
ciggu {x,} z dziedziny funkcji f, rozbieznego do +oo cigg {f(x,)} tez jest
rozbiezny do +o0.

Przyklady: (a) Znajdziemy granice w +oo funkcji f(z) = <. Oczywiscie
funkcja ta ma granice 0 w —oo. Natomiast gdy x — 400 zaréwno licznik jak
i mianownik daza do +o00. Najpierw rozwazmy ciag

Poniewaz /n — 1, wiec

— e
n
W takim razie
e e n
dng e N Vn>ng 7>2:>—>2
v n

Ciag 2" jest rozbiezny do +00, mamy wiec granice niewtasciwa

n
. e
lim — = +00.
n—oo N

Mamy tez nastepujace oszacowania. Oznaczmy na chwile € = z — [z], wiec

0<e<1, wiec

et e[x]+e 6[35] e[x]—i-l

[z] + 1

— > —
r  |x]4+e [z]+1
Niech z,, — 400 i niech M > 0. Wtedy

1
e

en
dng e N Vn>ng —>e - M,
n

oraz
dnpeN Vn>n T, >ng = [x,] > no.

Czyli dla n > n; mamy

etn 1 elenltl

e M= M.
T, e[z, +1 ¢

>

|
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Udowodnilismy wiec, ze

lim — = +o0. (6.5)

r——+o0 I
Mozna to rozumieé¢ nastepujaco. Gdy z rosnie do oo to funkcja wyktadnicza
e” roénie szybciej niz x. Zauwazmy, ze powyzsze rozumowanie mozna tatwo
zmodyfikowaé, i pokazaé, ze funkcja wykladnicza ro$nie szybciej niz dowolny
wielomian.

(b) Rozwazmy granice

1 T
lim (1+—) : (6.6)
Tr——+00 €T

Granice odpowiedniego ciagu (gdy = = n) znamy, to jest z definicji liczba
e. Teraz w chcieliby$my zaadaptowa¢ rozumowanie z przykladu (a), i osza-
cowaé wartosci funkcji w punktach x przez warto$ci w pewnych punktach
naturalnych n. Potrzebne nam beda rézne oszacowania, ale rozumowanie
jest proste. Niech € > 0, cigg x, — 00, i oznaczmy k, = [x,]. Zauwazmy, ze
k, — oo i spelniaja one

k, <z, <k,+1
1 - 1 < 1
k,+1 "z, k,

(wystarczy, ze z,, > 1), wiec dalej

| |
14 Lo b
el ot s T

1+ ! kn< 1+1 mn< 1+1 o
1 \"" 1 1\"" 1\* 1
1+ — <1+ < |14+ — 14—
Wiemy, ze ciagi

1\" 1 1 \"" n+1
1+ — -l 1T+ — oraz 14+ .
n n n+1 n—+2
sa zbiezne do e, a wiec istnieje ; € N takie, ze dla n > n,
1\" 1 1 \"" n41
1+ — 14+ = | <ete oraz 1+ . > e—¢€.
n n n+1 n—+ 2

Niech ng € N bedzie takie, ze dla n > ng mamy z,, > ny czyli k, = [x,] > ny.
Wtedy

1+
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<<1+ ! >k”+l ! <
€ —€ S ———
ko +1 1+

czyli

Podobnie mozemy udowodnié¢, ze granica tej funkcji w —oo tez wynosi e.
Dowod bedzie podobny, z wykorzystaniem znanej nam granicy ciggu

. 1\" 1
Mn(l——> = —.
n—oo n e
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Rozdzial 7

Funkcje ciggle

Definicja 7.1. Mowimy, ze funkcja f jest cigglta w punkcie x swojej dzie-
dziny, jezel

f(a) = lim £().

Mowimy, zZe funkcja jest cigglta na zbiorze A C Dy jezeli jest ciggta w kazdym
punkcie x € A. Jezeli funkcja jest ciggta w kazdym punkcie swojej dziedziny,
to mowimy po prostu, ze jest ciggla.

Mowiac kolokwialnie funkcja ciagta to taka, ,pod ktéra mozna wej$¢” z
granicg. Intuicyjne znaczenie jest takie, ze wykres f jest linig ciagly.
Uwaga: Przypominajac definicje granicy funkcji w punkcie otrzymujemy
nastepujacy warunek na ciaglosé funkcji w punkcie x

Ve>0 36>0 YyeDy ly—z| <d=|fly) — f(z)| <e

Stosujac jezyk ciagéow, czyli Twierdzenie 6.2 otrzymujemy nastepujace sfor-
mutowanie ciggtosci funkcji w punkcie z

V{z,} C Dy x,—2x = f(z,) — f(x).

Podobnie jak w przypadku granicy funkcji w punkcie mamy wiec dwa po-
wyzsze rownowazne sformutowania cigglo$ci funkcji w punkcie. Pierwsze
sformutowanie tradycyjnie nazywa sie ,definicja Cauchy’ego", a drugie sfor-
mutowanie ,definicja Heinegociagtodci.

Whiosek 7.2. Wszystkie funkcje elementarne, czyli wielomiany, funkcje wy-
mierne, trygonometryczne, funkcje potegowa i wyktadnicza sq ciggte.

Twierdzenie 7.3. Suma, rdznica, iloczyn, iloraz oraz ztozenie funkcji cig-
gtych sq cigglte w kazdym punkcie, w ktorym operacja jest wykonalna.
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Dowadd. Pokazemy tylko przypadek ztozenia. Pozostate dziatania na funk-
cjach cigglych sa natychmiastows konsekwencja twierdzenia o dziataniach
na granicach funkcji. Niech zlozenie g o f bedzie wykonalne, czyli niech
wartosci funkcji f wpadaja do dziedziny funkcji g, oraz niech f i g beda cia-
gte. Niech x, — z, z,,x € Dy. Wtedy f(x,) — f(z) (ciaglos¢ f w x) oraz
9(f(zn)) — g(f(x)) (ciaglos¢ g w f(x)). Mamy wiec (go f)(zn) — (g0 f)(2),
czyli ztozenie jest ciagte. ]

Przyktad: Rozwazmy funkcje f(z) = 2* dla © > 0 oraz f(0) = 1. Poka-
zemy, ze f jest cigglta w 0, czyli

lim 2% = 1.

z—0t
Oznacza to, ze f w 0 zachowuje sie jak funkcja wyktadnicza. Wykorzystamy
nastepujaca znana nam granice (6.5)

el‘

lim — = oo.

r—00 U
Jak latwo zauwazy¢, stosujac zamiane zmiennych y = e otrzymujemy z
powyzszego nastepujaca granice

lim —2— =
1m —— =0

y—o0 log(y)

7 powyzszej granicy, przechodzac do odwrotnosci, otrzymujemy nastepujaca

lo
lim 128W) _
Yy—00 Yy
, . .. . 1 .. .
W koticu ponownie zamieniajac zmienne z = |, i zauwazajac, ze wtedy

y — 400 & x — 0 otrzymujemy granice

lim zlogx = 0.
z—0t

Ostatnia granica wynika z poprzedniej, gdyz z,, — 00 & % — 0", Wroémy
do funkcji f, i zastosujmy czesto stosowany ,chlyt":

f(l') B — elog(xz) _ exlog(x)‘

Wykorzystujac ciggtosé funkcji wyktadniczej otrzymujemy

lim 2% = lim e:):log:r — ehmx~0+ zlogz _ 60 -1

z—0t z—0+
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W podobny sposob bedziemy mogli pokazaé cigglosé funkcji f w pozosta-
lych punktach dziedziny, kiedy udowodnimy ciaglosé¢ funkcji log(z). To z
kolei bedzie konsekwencja twierdzenia o cigglosci funkcji odwrotnej, ktore
udowodnimy wkrotce.

Uwaga: Funkcja moze by¢ nieciagla z réznych powodoéw. Na przyktad, moze
istnie¢ granica funkcji w punkcie

g = lim f(y),

Yy—x

ale g # f(x). Z taka sytuacja mamy na przyktad do czynienia w przypadku

f(z) =[—|z|]. Jezeli 0 < |z| < 1to —1 < —|z| < 0 a wiec f(x) = —1, czyli
lim f(y) = —1.
y—0

Z drugiej strony f(0) = 0. Tego typu nieciagglo$¢ nazywamy nieciagloscia
usuwalna. Wystarczy zmieni¢ wartos¢ funkeji w punkcie x na warto$¢ granicy
w tym punkcie, i tak zmieniona w jednym punkcie funkcja jest juz w tym
punkcie ciagta.

Inny rodzaj nieciagltosci to tak zwana nieciaglos¢ skokowa. Jezeli istnieja
granice jednostronne funkcji w punkcie, ale sa rézne, to mowimy, ze funkcja

ma niecigglosé skokowa. Przykltadem moze by¢ funkcja f(z) = [z], ktora ma
niecigglosdci skokowe w punktach bedacych liczbami catkowitymi.

lim f(x)=k—1, 1i1r]£1+ f(z) =k, ke Z.

r—k~

-

z z
Rysunek 7.1: Nieciaglo$¢ usuwalna i nieciaglosé¢ skokowa.

Funkcja

B sint 1z #0
f(x)—{ 0 cx =0,

ma niecigglo$¢ jeszcze innego rodzaju. Nie istnieja nawet granice jedno-
stronne funkcji f w zerze.
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Wilasno$ci funkcji cigglych

Funkcje ciggle maja wiele waznych wlasnosci, z ktérych najwazniejsze teraz
udowodnimy. Funkcja ciggta na odcinku skoriczonym [a, b] jest ograniczona
i osiaga swoje wartosci najwieksza i najmniejsza, oraz przyjmuje wszystkie
wartosci posrednie pomiedzy najmniejsza i najwieksza.

Twierdzenie 7.4. Funkcja f ciggla na przedziale [a,b] (skoriczonym i za-
wierajgcym korice) jest ograniczona.

Dowdd. Udowodnimy, ze f jest ograniczona od gory. Dowdd tego, ze jest
tez ograniczona od dotu pozostawiamy czytelnikowi. Mozna przerobi¢ do-
wod ograniczonosci od gory, albo zauwazy¢, ze funkcja — f jest ograniczona
od gory doktadnie wtedy, gdy funkcja f jest ograniczona od dotu. Dowod
ograniczonosci od gory przeprowadzimy metoda nie wprost. Zalézmy wiec,
ze f nie jest ograniczona od gory. Istnieje zatem ciag punktow {z,} C [a, b],
dla ktorych
f(zn) > n, n=12....

Ciag ten konstruujemy wykorzystujac, kolejno, ze f nie jest ograniczona od
gory przez 1, przez 2, i przez kolejne n € N. Cigg {x,} jest ograniczony
(bo zawiera sie w skoficzonym odcinku [a, b]), a zatem mozna wybrac z niego
podciag {x,, } zbiezny do jakiejs liczby z € [a,b] (Twierdzenie 4.12):

Tn, — Too-

k

Z definicji ciagtosci mamy f(z,,) — f(z), co jest sprzecznoscia, bo ciag
{f(xy,)} nie jest ograniczony, i nie moze wiec w ogole by¢ zbiezny. O

Uwaga: Istotne jest, ze przedzial [a,b] jest skonczony, i ze zawiera konce.
Bez tych zatozen funkcja moze nie by¢ ograniczona. Na przyktad, funkcja
f(x) = x jest ciaglana [0,00), a f(z) = 1 jest ciagla na (0, 1), a zadna z nich
nie jest ograniczona. Uwaga ta odnosi sie tez do nastepnego twierdzenia.

Twierdzenie 7.5. Funkcja [ ciggla na przedziale [a,b] (skoriczonym i za-
wierajgcym korice) przyjmuje swoje wartosci najwiekszq i najmniejszq.

Dowdd. Pokazemy tylko, ze f przyjmuje wartos¢ najwieksza. Niech

M =sup{y : y = f(z), x € [a,b]}.

Wiemy, ze zbiér wartosci funkcji f jest ograniczony, wiec powyzszy kres
gorny istnieje (jest skoriczony). Z definicji kresu wynika, ze istnieje ciag
{z,} C [a,b] taki, ze f(x,) — M. Ciag {x,} jest ograniczony, wiec mozna z
niego wybra¢ podciag {x,, } zbiezny do jakiej$ liczby xo € [a,b] (ponownie
Twierdzenie 4.12). Mamy wiec f(z,,) — f(T), czyli f(2s) = M. O
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Twierdzenie 7.6 (Wtlasnos¢ Darboux). Funkcja f ciggta na przedziale [a, b]
przyjmugje wszystkie wartosci pomiedzy swojg wartosciq najmniejszq m i naj-
wiekszq M. Innymi stowy, zbiorem wartosci funkeji cigglej na przedziale [a, b]
jest przedziat [m, M].

Dowdd. Wiemy, ze funkcja f przyjmuje swoje wartosci ekstremalne, czyli
istnieja liczby c¢,d € [a,b] takie, ze f(c) = m i f(d) = M. Rozpatrzmy
przypadek gdy ¢ < d. W przypadku, gdy ¢ = d f jest stala, a w przypadku
nieré6wno$ci przeciwnej mozemy rozwazaé¢ — f zamiast f, albo zmodyfikowaé
ten dowod. Niech wiec ¢ < d. Zalozmy, ze yg € (m, M), czyli yo jest wartoscia
posrednia, pomiedzy wartoscia najmniejsza i najwiekszg. Rozwazmy zbior

{t €le,d]: f(x) <yodlaz e lct]}.

Wiemy, ze zbior ten jest niepusty, gdyz zawiera przynajmniej ¢ (f(c) = m <
Yo), oraz jest ograniczony, gdyz rozwazamy tylko ¢ € [c,d]. Kres gorny tego
zbioru wiec istnieje (jest skonczony), i oznaczmy go przez xg:

xo =sup{t € [¢,d] : f(z) < yo dla x € [c,t]}.
Pokazemy, ze musi zachodzié¢

f(xo) = wo, (7.1)

czyli istotnie yo jest wartoscia funkeji f. Udowodnimy (7.1) poprzez wy-
kluczenie pozostatych mozliwosci. Zalozmy najpierw, ze f(xg) < yo. Wtedy,
skoro f jest ciagla, to istnieje 0 > 0 takie, ze f(z) < yo dlax € (zo—J, zo+9).
Widzimy wiec, ze f(x) < yo na przedziale [c, o + §), co przeczy definicji xo.
Mamy wiec sprzeczno$é, a wiec nie moze byé¢ f(zo) < yo. Zalozmy wiec, ze
f(xo) > yo. Tym razem, z ciagtosci f w zp mamy, ze f(x) > yo na pew-
nym przedziale (zo — §,z9 + 9), dla pewnego 0 > 0. Natomiast z definicji z
wynika, ze f(x) < yo dla < ¢, a wiec znowu mamy sprzeczno$é¢. Jedyna
mozliwo$cia pozostaje (7.1). O

Uwaga: Powyzsze twierdzenie moze by¢ wykorzystane do przyblizonego
znajdowania pierwiastkow rownan. Jezeli wiemy, ze funkcja f jest ciagla,
i f(a)- f(b) <0, to f ma pierwiastek w przedziale (a, b):

flz)=0 dla pewnego = € (a,b).

Algorytm przyblizonego znajdowania tego pierwiastka, tak zwana metoda
»przez polowienie”, jest rekurencyjny. Niech ¢ = aTH’. Albo f(c) = 0, i
wtedy pierwiastek jest znaleziony, albo f(c¢) # 0 a wiec musi byé¢ f(a) -
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f(e) < 0 lub f(c) - f(b) < 0. Innymi stowy, pierwiastek musi byé¢ albo
w lewej polowce przedziatu [a,b], albo w prawej. Trafiamy wiec do punktu
wyjscia (to znaczy wiemy, ze pierwiastek jest w przedziale), ale z przedziatlem
o polowe krotszym. Na przyklad, zeby obliczy¢ numerycznie v/2 mozemy,
szuka¢ pierwiastka rownania

f(x)=2>-2=0.

Mamy f(1)- f(2) = —2 < 0, a funkcja f jest ciagla, wiec istnieje pierwiastek
w przedziale (1,2) (niewielka niespodzianka). Latwo zauwazy¢, ze metoda
polowienia osiggamy 3 dodatkowe cyfry dziesietne przyblizenia na kazde 10
iteracji. Kazda iteracja sprowadza si¢ (w tym przyktadzie) do 1 mnozenia,
czyli algorytm jest bardzo efektywny — 3 cyfry dziesietne doktadnosci na 10
mnozen.

Twierdzenie 7.7. Jezeli funkcja f jest ciggla na przedziale |a,b] i rézno-
wartosciowa, to funkcja g, odwrotna do f, jest ciggta na zbiorze wartosci
f, czyli na przedziale [m, M], gdzie state m i M oznaczajg, podobnie jak w
poprzednim twierdzeniu warto$é najmniejszq i najwickszq funkeji f na |a, b].

Dowdd. Obrazem (zbiorem wartosci) f, zgodnie z Twierdzeniem 7.6,jest prze-
dzial [m, M], i jest wiec on dziedzing funkcji odwrotnej g. Jezelim <y < M
to g jest okreslona w punkcie y. Niech y, — yiy, € [m, M]dlan=1,2,....
Skoro ¥y, i y naleza do zbioru wartoéci f, to istnieja x,x, € [a,b] takie, ze
f(xn) =yni f(x) =y. Ciag {z,} jest ograniczony. Niech jego granica dolna
bedzie oznaczona przez ', a granica gorna przez x”. Niech podciagi {z, } i
{zny} odpowiednio zbiegaja do 2’ i 2”. Z ciaglodci f wynika, ze

fla') = Jim f(en) = Jim yoy =y,
i podobnie
AT o B
f(@") = kh—{go f(.il?ng) = kh_)r(r)loyng = .

Mamy wiec f(2') = f(2”) = y = f(x). Skoro f jest roznowartosciowa, to
x =12’ = 2”. Granica gorna i dolna ciagu {z,} sa wiec rowne z, a wiec ciag
jest zbiezny do x. Mamy wiec

9(yn) = 20— x = g(y),
czyli g jest ciaglta w . ]

Whiosek 7.8. Funkcja log,(x) jest ciggta na (0,00), jako funkcja odwrotna
do funkcji cigglej a® (a >0, a #1).

Uwaga: Funkcja ciagla, roznowartosciowa na odcinku [a, b] musi by¢ Scisle
monotoniczna. Dowo6d tego prostego faktu pozostawiamy jako ¢wiczenie.
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Rysunek 7.2: Funkcja sin(z) i arcsin(x).

Funkcje cyklometryczne

Funkcje sin(z) i cos(x) nie sa roznowartosciowe a wiec nie sa odwracalne.
Mozna jednak rozwazac¢ te funkcje na mniejszej dziedzinie, na ktorej sa roz-
nowartosciowe. Funkcja sin(z) z dziedzing ograniczong do [—7, 7] jest funk-
cja $cisle rosnaca od —1 do 1, a wiec jest roznowarto$ciowa i odwracalna.

1 1

Rysunek 7.3: Funkcja cos(z) i arccos(z).

Funkcja odwrotna, okreslona na [—1,1] nazywa si¢ arcsin(z), i zgodnie
7 powyzszym twierdzeniem, jest ciggla. Podobnie cos(x), z dziedzina ogra-
niczong do przedzialu [0, 7| jest funkcja $cisle malejaca od 1 do —1, a wiec
odwracalng Funkcja odwrotna, okreslona na przedziale [—1,1] nazywa sie
arccos(z), i rowniez jest ciagla.

Funkcja tan(z) jest okresowa, o okresie , i sktada sie z ,galezi”. Z dzie-
dzing ograniczong do (=7, ) jest funkcja Scisle rosnaca, odwracalng. Funk-
cja odwrotna, okreslona na calej prostej R nazywa sie arctan(z) i réwniez
jest ciagta.
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Rysunek 7.4: Gataz funkcji tan(z) i funkcja arctan(z).
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Rozdzial 8
Pochodna

Pochodna funkcji to chwilowa predkosé jej zmian.

Definicja 8.1. Pochodng funkcji f w punkcie v nazywamy granice

i FE R — f(@)

h—0 h

) (8.1)

o ile ta granica istnieje. Jezeli istnieje, to mowimy, ze f jest rézniczkowalna
w punkcie x (albo zZe ,ma pochodng” w punkcie x). Pochodng funkcji f w
punkcie x oznaczamy

df
d

1 Gf prim”)  lub (.df po dx”).

Uwagi: (i) Pochodna funkeji f tez jest funkcja, ktorej dziedzina jest zbior
punktow, w ktorych f jest rozniczkowalna. Obliczanie pochodnej nazywa sie
,rozniczkowaniem” funkcji.

(ii) Ioraz
fla+h)— f(z)

h
wystepujacy w granicy (8.1) nazywamy ,jilorazem réznicowym”. Iloraz rozni-
cowy, czyli przyrost funkcji podzielony przez przyrost argumentu wyznacza
srednia predkos¢ wzrostu funkeji f na przedziale [z, z + h] (jezeli h > 0, w
przeciwnym wypadku na przedziale [x 4 h, x]). Stad interpretacja pochodnej
jako chwilowej predkosci zmian funkcji.

(iii) Pochodna ma tez interpretacje geometryczna. Iloraz réznicowy (8.1)
to tangens kata nachylenia ¢ siecznej wykresu, poprowadzonej przez punkty
(x, f(x)) 1 (z + h, f(x + h)). Gdy h — 0 sieczna staje sie styczna, wiec w
interpretacji geometrycznej pochodna to tangens kata nachylenia stycznej do
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wykresu w punkcie (z, f(z)). Istnienie pochodnej oznacza po prostu istnienie
stycznej do wykresu, rozumianej jako granica siecznych.

(iv) Granice (8.1) mozna oczywiscie zapisa¢ jako

o £0) = 1 @)
y—or Y — T

uzywajac zmiennej y = x + h.

Z z+h

Rysunek 8.1: lloraz réznicowy i sieczna wykresu.

(v) Pochodna moze nie istnie¢. Na przyktad, dla funkcji f(x) = |z| mamy

. f(O+h)—f(O) . |h] . _
o h = m on = o =1
lim f0+h) — 1(0) = lim M = lim _—h =-1

h—0— h—0— h h—0- h

Ilorazy roznicowe maja rozne granice jednostronne w zerze, a wiec f nie jest
rozniczkowalna w 0. Interpretacja geometryczna nier6zniczkowalnosci w 0
jest szczegolnie sugestywna: wykres f ma w punkcie (0,0) ,dziubek”, i nie
ma stycznej.

(vi) Pochodna funkcji f definiujemy w punktach ,wewnetrznych” dziedziny,
to znaczy w takich punktach x, ktore naleza do dziedziny f wraz z pewnym
otoczeniem (x — 0, x + 9).

Twierdzenie 8.2. Jezeli [ jest rozniczkowalna w punkcie x to jest takze
ciggta w x.
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Rysunek 8.2: Wykres f(x) = |z| i nier6zniczkowalny ,dziobek”.

Dowaod. Zauwazmy, ze
lim f(y) — f(z) = lim(f(y) — f(2))

y—u y—2x

— lim fly) = fx) - lim(y — z)
y—r Y —T y—

— f'(z) - 0

= 0.

]

Twierdzenie 8.3. Jezeli f i g sq rozniczkowalne w punkcie x, to takze f+g,
f—=ug, [-gi (jezeli dodatkowo g(x) # 0) 5 sq rézniczkowalne w punkcie x
oraz mamy wzory

o (f+9)(x)=f(x)£d(2),

o (f-9)(x)=f(x)g(z)+ f(z)d (x) (tak zwana reguta Leibniza),

. (g)l(x) _ <w>9<z§j§z)g @) - (jezeli g(x) #0).

Dowadd. Pokazemy iloczyn i iloraz, natomiast sume i réznice pozostawiamy
czytelnikowi. Zacznijmy od iloczynu. W liczniku odejmujemy i dodajemy
wyrazenie f(z)g(x + h)

fl@+h)g(z+h) — f(z)g(x)

o h -
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flx+h)g(x+h) - flx)g(e+h) + fx)g(z +h) - flx)g(z)

= lim

h—0 h
_ o (f@+h) = flx)glx+h) | (g(z+h)—g(x)f(z)
- ’11%( h - h )
:}L%f(x+h})b_f(x) ‘ g(x+h)+£%f(x) ' g(x+h})b—g(1:)
= f(x)g(z) + f(2)g (2).

Przypomnijmy, ze g musi by¢ ciagta w z, a wiec g(z +h) — g(z) gdy h — 0.
Rozwazmy teraz pochodng ilorazu. Jezeli g(z) # 0 to g musi by¢ rézna od
zera w pewnym otoczeniu x (bo jest ciagta w z), a wiec iloraz i istnieje nie
tylko w z ale tez w pewnym jego otoczeniu.
z+h T
20 ks DD A e o) o)yt 1)
h—0 h h—0 hg(x+ h)g(x)
f@th)g(z)—f(@)g(x)—(f(z)g(z+h)—f(x)g(x))

= lim h
_ limy,_ % g( ) f( ) - limy,_g g(m-‘rh’z—g(x)
9*(x)

/ R R
fla) = fim == =0.
Pochodna funkcji stalej jest réwna 0.
(b) f(z) = 2. Mamy
Foy=m = ==t

(¢) f(x) = 2", dla n € N. Pochodna jest rowna f'(z) = nz""'. Mozemy
to udowodni¢ postugujac sie (b) (to przypadek n = 1), regula Leibniza i
indukcja. Mozemy tez zastosowa¢ wzor dwumianowy Newtona.

(d) Wielmian stopnia n: f(z) = a,a™ + -+ + ayx + ag. Pochodna f'(z) =
na ! + .-+ ay, czyli jest wielomianem stopnia n — 1.
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(e) f(z) = sinxz. Mamy
sin(x 4+ h) — sin(x)

’ BT
fi(w) = lim
. 2sin(3h) cos(z + 3 h)
= lim
h—0 h
in(h 1
= lim sml(2 ) - lim cos(z + = h)
h—0 ih h—0 2
= COS Z.

Skorzystaliémy z tozsamosci trygonometrycznej
sin(a + b) — sin(a — b) = 2 sinb cosa,
dlaa:x—i-%hib:%h.

(f) f(x) = cosz. Podobnie jak w (e) z tym, ze dla funkcji cos skorzystamy z
tozsamosci

cos(a + b) — cos(a — b) = —2 sina sinb.
Liczymy wiec
by cos(x + h) — cos(x)
fia) = Jim h
. —2sin(ih) sin(z + 1 h)
= lim
h—0 h
. lh
= — lim 81111(2 ). lim sin(z + = h)
= —sinz.

(g) f(z) =logz. Korzystajac z wlasnosci logarytmu mamy:

f(z) = }Llﬂ% log(z + h})L — log(x)

~ lim © log £
= lim - log

h—0 xr

: x+h "
lim log .
h—0 xT

Jak wiemy logarytm jest funkcja ciagla, wiec z granicg mozemy ,wejs¢” pod
logarytm. Rozwazmy wyrazenie pod logarytmem.

(2= 2 (1))
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Wiemy, ze z granica mozna ,wej$¢” pod dowolna potege (w tym przypadku

T

pod (-++)}). Zauwaimy, 7e gdy h — 0% to £ — +o0, a gdy h — 0~ to

7 — —oo (przypomnijmy, ze x > 0). Zamieniajac § na ¢ otrzymujemy

. 1 , 1\’
lim | 1+ — = lim (1 —l—
1\* 1

lim (1—1—;) = lim (1+—> =
h—0— N t——o0 t

Obie powyzsze granice rozwazaliSmy wczesniej (6.6). Poniewaz granice jed-

nostronne sa rowne, wiec
T
1\ "
lim | 1+ — =e.
h—0 5

Sktadajac kawatki rozumowania otrzymujemy

>8

€,

byl

1
f'(z) =loge T = loge =
x

Twierdzenie 8.4 (Roézniczkowanie funkcji odwrotnej). Niech funkcja f okre-
slona na przedziale |a,b] bedzie ciggla i réznowartoSciowa, oraz rézniczko-
walna w punkcie x € (a,b), przy czym f'(z) # 0. Niech g bedzie funkcjg
odwrotng do f. Wtedy g jest rézniczkowalna w punkcie y = f(x), i zachodzi

WZOT:
1

g’(y) = m

Dowdd. Oznaczmy k = f(x + h) — f(z) (k jest zwiazane z h). Poniewaz
f(x) =y, wiecy+k = f(x+h), a zatem g(y+k) = x+h gdyz g jest funkcja
odwrotna do f. Dla k — 0 mamy wiec h — 0, bo g jest ciagla. Zauwazmy
jeszcze, ze g(y + k) — g(y) = f(x) + h — f(z) = h, i mamy:

gy +k)—g(y)

g'(y) = lim ’
= lim f
k=0 f(z + h) — f(20)
1
TR ()
h—0 h
1
~ fx)
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Whniosek 8.5. Dia funkcji f(x) = logz funkcjg odwrotng jest g(y) = ev.
Ustalmy y = logx czyli x = €Y, i otrzymujemy
1 1

I = =g ===

Mamy wiec (e*) = e*.

Ekstrema funkcji

Moéwimy, ze w punkcie z funkcja f ma maksimum (czasem podkreslamy:
lokalne maksimum), jezeli

fy) < fla),
dla y € Dy z pewnego otoczenia x. Podobnie, méwimy, ze ma w  minimum
(lokalne minimum), jezeli

fy) = f(z),
dla y € Dy z pewnego otoczenia x. Ogoélnie, méwimy ze f ma w punkcie x
ekstremum, jezeli ma w tym punkcie maksimum lub minimum.

Tmax Tmin

Rysunek 8.3: Lokalne maksimum i minimum.

Twierdzenie 8.6. Jezeli f'(x) > 0 to w pewnym otoczeniu punktu x mamy

fly) > f(z) diay >z oraz f(y) < f(z) dlay <. (8.2)

Podobnie, jezeli f'(x) <0 to w pewnym otoczeniu punktu

fly) < f(x) dlay>x oraz f(y) > f(x) dlay <. (8.3)

Dowdd. Wystarczy rozwazy¢ znak ilorazu réznicowego. Jezeli f'(z) > 0, to
w pewnym otoczeniu punktu z musi zachodzi¢:

fly) — f(z)

y—x
Licznik i mianownik maja ten sam znak, i otrzymujemy (8.2). Podobnie w
przypadku f’(x) < 0, licznik i mianownik ilorazu r6znicowego musza mie¢
przeciwne znaki, a wiec otrzymujemy (8.3). O

> 0.
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Otrzymujemy natychmiast nastepujacy bardzo uzyteczny wniosek:

Whiosek 8.7. Jezeli f jest rozniczkowalna w punkcie x 1 ma w tym punkcie
ekstremum, to f'(x) = 0. O

Uwagi: (i) Punkt w ktorym pochodna funkcji przyjmuje wartosé zero na-
zywa sie punktem krytycznym funkcji.

(ii) Jezeli f ma w punkcie x ekstremum, to f'(x) = 0, ale nie na odwrot. Na
przyktad, funkcja f(z) = 2% spetnia f/(0) = 0, ale nie ma w 0 ekstremum.
Innymi stowy, w punkcie krytycznym funkcja moze mie¢ ekstremum, ale nie
musi.

(iii) Powyzszy wniosek moze stuzyé¢ do szukania wartosci najwiekszej czy
najmniejszej funkcji. Warto$¢ najwieksza i najmniejsza jest przyjeta albo
w punkcie, gdzie funkcja nie jest rozniczkowalna (na przyktad na koncach
przedzialu na ktorym badamy funkeje), albo w punkcie krytycznym.

(iv) Twierdzenie 8.6 i Wniosek 8.7 sa oczywiste geometrycznie. Na przy-
ktad, jezeli funkcja ma w punkcie ekstremum, to styczna do wykresu w tym
punkcie (jezeli istnieje) musi by¢ pozioma.

Twierdzenie 8.8 (Rolle’a). Niech f(x) bedzie ciggla na przedziale [a,b], i
rozniczkowalna w (a,b). Zatézmy, ze f(a) = f(b). Wtedy istnieje ¢ € (a,b)
takie, ze f'(c) = 0.

Dowdd. f(x) przyjmuje swoje wartosci najmniejsza i najwieksza. Jezeli obie
sa przyjete na koncach przedziatu [a,b], to znaczy, ze funkcja jest stala,
i f/(z) = 0 na calym przedziale (a,b). W przeciwnym wypadku jedno z
ekstremow musi by¢ przyjete w punkcie wewnetrznym przedziatu ¢ € (a, b),
a w takim razie w tym punkcie musi by¢ f’(c) = 0. O

Nastepujace twierdzenie jest wazne i z punktu widzenia teorii, i z punktu
widzenia zastosowar.

Twierdzenie 8.9 (O wartosci §redniej). Jezeli f jest ciggta na |a,b], i rdz-
niczkowalna na (a,b), to istnieje punkt c € (a,b) taki, ze

f(b) - f(a)

(0}

Dowdd. Zauwazmy, ze funkcja



spelnia zalozenia twierdzenia Rolle’a: g(a) = g(b) = 0. Po prostu od funkcji
f odjelismy funkcje liniowg o tych samych warto$ciach punktach a i b. Z
Twierdzenia 8.8 istnieje wiec punkt ¢ € (a,b) taki, ze ¢'(c) = 0. Ale

co konczy dowdd. O]

Z twierdzenia o wartosci Sredniej natychmiast otrzymujemy nastepujacy
wniosek.

Wnhiosek 8.10. Jezeli na jakims przedziale (a,b) mamy:
o f'>0 to funkcja f jest rosngca na (a,b),
o /<0 to funkcja f jest malejgca na (a,b),
o =0 to funkcja f jest stata na (a,b),
Dowdd. Niech x,y € (a,b) i © < y. Z twierdzenia o warto$ci $redniej

fly) = f(x)

- = f'(c), c € (x,y) C (a,b).

Jezeli f’ > 0 na calym przedziale (a,b) to takze iloraz po lewej stronie row-
nosci, a wiec i licznik musza by¢ > 0. Podobnie w pozostatych dwoch przy-
padkach. Zauwazmy, ze jezeli f’ jest stale Scisle dodatnia, lub $cisle ujemna,
to funkcja jest Scisle rosnaca, lub §cisle malejaca na (a, b). O

Uwagi: (i) Zauwazmy, ze we wniosku zakladamy, ze odpowiednia nier6w-
nos¢ zachodzi na odcinku. To jest wazne zalozenie, bo na przyktad funkcja %
ma pochodng stale Scisle ujemna na calej swojej dziedzinie, a nie jest male-
jaca. Jest malejaca na kazdym z odcinkow (—o0,0) i (0,00), ale nie na calej
swojej dziedzinie.

(ii) Wprost z definicji pochodnej wynika nastepujaca obserwacja: jezeli pew-
nym otoczeniu x funkcja f jest rosnaca, to ilorazy roéznicowe w tym punkcie
sa dodatnie, a wiec f'(z) > 0. Podobnie jezeli f jest w jakim§ otoczeniu
punktu x malejaca, to ilorazy réznicowe w tym punkcie sa ujemne, a wiec
f'(z) < 0. Widzimy wiec, ze monotoniczno$¢ funkcji jest $cisle zwigzana ze
znakiem pochodnej. przypomnijmy tez zwiazane z tym Twierdzenie 8.6.

Nastepujace twierdzenie jest podstawowym narzedziem do praktycznego
liczenia pochodnych.
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Twierdzenie 8.11 (Regula lanicuchowa). Niech funkcje f i g bedg réznicz-
kowalne. Zatozimy, zZe ztozenie g o f bedzie okreslone, to znaczy wartosci f
wpadajq do dziedziny g. Wtedy ztozZenie go f tez jest funkcjq rozniczkowalng
i zachodzi nastepujgcy wzor na jej pochodng:

(go f)(x) =g (f(x) f'(z). (8.4)

Dowdd. Ustalmy punkt x i zal6zmy, ze funkcja f jest rozniczkowalna w x, a g
rozniczkowalna w f(x). Rozpatrzmy najpierw przypadek f'(z) # 0. Zgodnie
z Twierdzeniem 8.6 dla h # 0 wystarczajaco malego mamy f(z + h) # f(x).
Zapiszmy nastepujacy iloraz réznicowy

g(f(z+ 1)) —g(f(2)) _ g(flz+h) —g(f(z)) fla+h)—flz)

n Ja+h) = f(x) h

Oczywiscie, gdy h — 0 to f(z + h) — f(z) (f jest ciagla w x), czyli
g(f(x+h) —g(f(@))

lim =
h—0 h
I L R ALRAC

Teraz rozpatrzmy przypadek f'(x) = 0. Ustalmy e > 0. Iloraz roéznicowy

9(y) — g(f(x))
y— f(z)

ma granice (rowna ¢'(f(z))) gdy v — f(z), a wiec jest w pewnym otoczeniu
f(z) ograniczony:

.y # flo)

g(f(z))

T

Ja>0dMVy O0<|ly— fo)|<a = ‘g@y): ‘<M.

7 drugiej strony f jest ciagla w x, a wiec
361 >0Vh |h| <6 = |flx+h)— f(z) <a.
W koncu, skoro f'(z) =0, to

flx+h) - =)
h

<

€
J0s >0Vh 0<]|h| <y :‘ U

Niech 6 = min{d1,d2} 1 0 < |h| < d. Jezeli f(z + h) = f(x) to

g(f(z +h)) —g(f(x))

” =0.
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W przeciwnym przypadku
‘gu(x h) - g(f(:r))’ )

h
_|9(f@+h) —g(f(@)| |fl@+h) - [f(z) € _
" F(e+h) = [(2) H z e
Poniewaz € byto dowolne, to pokazalismy, ze
B)) —
(9o (e)  fig W Z 90D _
czyli, skoro takze f'(z) = 0, pokazaliémy (8.4). [

Whniosek 8.12. Niech f(x) = z°, gdzie a jest dowolng potegq rzeczywistq.
Mamy wtedy

g a—1

Tt = ealog:c = (:Ua)/ — 6a10gaz(alog$)l = 2%. =ax

X

Wzor ten udowodnilismy wczesniej w przypadku gdy a € N.

Nastepujace twierdzenie to tak zwana reguta de I’'Hopitala. Jest to bardzo
proste twierdzenie, jednak zaskakujaco przydatne. Bedziemy je stosowaé wie-
lokrotnie. Pozwala ono w wielu przypadkach obliczy¢ granice (jezeli istnieja)

postaci

lim &

vz g(y)
gdzie obie funkcje f i g maja granice rowne 0. Wyrazenie takie nazywamy
wyrazeniem nieoznaczonym typu % — latwo sie domysle¢ dlaczego.

Wyrazajac sie $cislej, zalézmy, ze funkcje f i g sa ciagte w pewnym oto-

czeniu punktu z, oraz f(x) = g(z) = 0. Zal6zmy, ze obie funkcje sa roz-
niczkowalne w pewnym otoczeniu x, poza, by¢ moze, samym punktem z.
Zaktadamy takze, ze w pewnym otoczeniu punktu x okreslone sg ilorazy

f(y) f'(y)

) T gy

(to znaczy w jakim§ otoczeniu x, z wyjatkiem samego punktu z, zachodzi
g(y) # 01 ¢(y) # 0). W tak opisanej sytuacji prawdziwe jest nastepujace
twierdzenie.

Y

Twierdzenie 8.13 (Regula de 'Hopitala). Zatdzmy, ze istnieje granica (wlta-
Sciwa lub niewtasciwa)

i 4 @)

im

v—z ¢'(y)
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Wtedy istnieje takze granica
i @)
y=z g(y)

9

i obie te granice sq sobie rowne

lim —= = lim . (8.5)

fly) . f'y)
v=z g(y) vz g'(y)

Reguta de I’'Hopitala jest rowniez prawdziwa dla granic jednostronnych.
Dow6d przeprowadzimy wtasnie dla granic prawostronnych. Zauwazmy, ze
przypadek granic lewostronnych i obustronnych juz z tej wersji wynika.

Dowdd. Udowodnimy wersje twierdzenia dla granic prawostronnych. Punkt
x jest wiec ustalony, i wszystkie zalozenia opisane powyzej sa spetnione dla
y > x, a wszystkie granice sa prawostronne dla y — x*. Niech h > 0 bedzie
ustalone, i rozwazmy przedzial [x, x + h]. Pokazemy, ze istnieje ¢ € (x,z+ h)
takie, ze

fle+h)  fle+h) = flx) [

glz+h)  glz+h)—glx) g
Zauwazmy, ze w przypadku gdy ¢(y) = y powyzsza rownos¢ to jest po prostu
twierdzenie o wartosci §redniej. Ogo6lny przypadek nie wynika z twierdzenia
o wartosci Sredniej, ale mozna go udowodnié¢ doktadnie tak, jak dowodzilismy
tego twierdzenia. Wprowadzimy odpowiednig funkcje pomocnicza, i skorzy-
stamy z twierdzenia Rolle’a. Wprowadzmy nastepujaca funkcje na przedziale
[z, z + hl:

(8.6)

flz+h)
g(x +h)

Mamy ®(x) = ®(z+ h) = 0 czyli z twierdzenia Rolle’a istnieje ¢ € (x,z + h)
takie, ze ®'(c) = 0. To oznacza

D(y) = fy) —9(y)

/ —/C(x——'—:
£ =@ gy =0

czyli dokladnie (8.6) Zauwazmy tez, ze gdy h — 07 to ¢ — x ™. Jezeli istnieje

granica
lim M (8.7)
y—z+ g'(y)’ .

to granica
f'(¢)

h—ot g'(c)’
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tez musi istnie¢ i jest rowna granicy (8.7). Mamy wiec

lim w = lim M lim f'(e) = lim ')

yoat g(y)  h—0t g(x+h) st gl(c) et g'(y)

Y
o ile granica po prawej stronie istnieje. O

Uwagi: (i) Zwrocémy uwage, ze rownosc (8.5) zachodzi o ile granica po prawej
stronie istnieje. Moze sie zdarzy¢, ze granica po lewej stronie istnieje, chociaz
ta po prawej stronie (8.5) nie istnieje. Na przyktad rozwazmy funkcje

1
f@)=a*sin(=),  gla) =
x
(niech f(0) = 0). Obie funkcje sa ciagle i rozniczkowalne na calej prostej,
utamek 3 jest wyrazeniem nieoznaczonym typu % w zerze, istnieje granica

1
lim —f(y) = lim x sin <—) =0,
y=0 g(y)  v=0 x

chociaz granica wyrazenia

/ 2z sin (1) — z2cos (1) - L _
5/8;: (x) 1 (1’) = :2xsm<1)—cos<1>

nie istnieje.

(ii) Regute de I'Hopitala mozna iterowa¢. Na przyklad rozwazmy granice

. sin(z) — =z
lim ———
x—0 (1}3
Roézniczkujac licznik i mianownik znowu otrzymujemy wyrazenie nieozna-
0 COS(Z‘)—]. Lo . . . . . . . .
czone typu g w zerze, —; 5—. Rozniczkujac licznik i mianownik ponownie
sin(x)

otrzymujemy —c-"=, wcigz wyrazenie nieoznaczone typu % w zerze. Mogli-
by$my rozniczkowaé ponownie, ale akurat ta granice znamy, (6.4), wynosi
ona —%. Wracamy wiec, stosujac regute de I’Hopitala dwukrotnie.

— sin(x) cos(zr) -1 1 sin(z) — z 1

) 1 ) )
olﬂlgtl) 6z 6 = 31513(1) 32 6 = ili% 3 T 6

(iii) Regute de I’'Hopitala mozna tez stosowaé¢ do granic w nieskoriczonoSci.
Rozwazmy na przyktad granice

lim @
r—teo g(7)’
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gdzie f(z) — 01 g(x) — 0 gdy © — +00. Wprowadzmy oznaczenia

o(t) = f(%) oraz  Y(t) = g<%>,

wtedy o(t) — 019(t) — 0 gdy t — 07, oraz

013 (). e e0-o(2)-(2).

P S 1O
V) g@)(=w)  gG)
Wynika z tego, ze granice
f'(x) ()
Aglm O R

sa identyczne, istnienie jednej jest rownowazne istnieniu drugiej i jezeli ist-
nieja to sa sobie rowne. Oczywiscie identyczne sg réwniez granice

L) olt)

L lim =2
i gln) U0 O(0)

czyli mamy

= lim S(@) = lim (L) = lim olt) _ im f(z)
A= 901—>+oo g'(z) tLO-F P (t) = A tLo+ (t) ml_>+oo g(z)

(iv) Mozna tez udowodni¢ (z grubsza w podobny sposob) wersje reguly de
’'Hopitala dla wyrazen nieoznaczonych postaci 22: jezeli lim,_, f(y) = o0
oraz lim,_,, g(y) = £oo to zachodzi reguta de ’Hopitala, to znaczy mamy
rownosé (8.5) (o ile granica po prawej stronie istnieje, wtasciwa lub niewta-
Sciwa). Podobnie jak w przypadku Twierdzenia 8.13 udowodnimy wersje dla
granic prawostronnych, z ktérej wynikaja pozostale wersje, rowniez dla gra-
nic w 00, analogicznie jak w tamtym przypadku. Zrobmy wiec nastepujace
zalozenia: niech f, f', g, ¢’ oraz ilorazy % i £ beda okreslone w jakim$
otoczeniu prawostronnym punktu x i niech

%l&v:

lim g(y) = £o0 (8.8)
y—axt
(nie musimy nawet zakladaé¢ lim, .+ f(y) = £o0). Zalozmy, ze istnieje

granica (wlasciwa)

lim
y—at g'(y)

= Q.
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Ustalmy € > 0 i niech § > 0 bedzie taka, ze dlaz <y <x+4¢

R

Wybierzmy i ustalmy yo € (x,z + ¢), i rozwazmy dowolne y € (z,yo). Po-
dobnie jak w dowodzie regulty de I’'Hopitala 8.13 mozemy pokazac, ze istnieje
¢ € (y,y0), oczywiscie zalezne od y, takie, ze

f) = flyo) _ f'(c)
9(y) —9(w)  g(c)’

czyli, biorac pod uwage (8.9)

f) = ()

g —gl) | TC

Dzielimy licznik i mianownik utamka przez g(y), mozemy to zapisa¢ w postaci

fy) _ f(yo)
1 — 9o)
9(y)

Dzielenie przez g(y) jest dopuszczalne, gdyz ze wzgledu na (8.8) jezeli tylko
J jest wystarczajaco mala, to g(y) # 0 w (x,z + 0). Z tego samego wzgledu
mianownik dazy do 1 gdy y — z™, a wiec w szczegolnosci, gdy y jest wy-
starczajaco blisko x, to mianownik jest dodatni. Niech wiec y < x + 1 < yo,
wtedy powyzsze nierd6wnosci mozemy zapisac

a1 9w ) _fw) (9w | fw)
(@=e) (1 g(y))Jr 9(y) = 9(y) <(atd (1 g(y))Jr 9(y)

Wezmy dowolny ciag {y,}, taki, ze y, — x 1y, > x. Od pewnego miejsca
Yn < T + 1, wiec mozemy zastosowaé powyzsze nierowno$ci. Otrzymujemy

wiec
a — e < liminf f(Yn) < lim sup A
n=o0 g(Yn) T n—oo 9(Yn)

€ byto dowolne, wiec widzimy, ze musi istnie¢ granica, i

lim J(Yn) _
n—c0 g(Yn)

< a-+e.

Ciag {y»} byl dowolny, wiec




W ten sposob udowodnilismy regute de 'Hopitala w przypadku granicy «
wlasciwe] (skonczonej). Mozna ja tez udowodnié¢ dla granicy a niewlasciwej.

Przyktlady: (a) lim,_ bg(%“v). Jest to wyrazenie postaci %, wiec mamy
log(1 =
lim M — lim 2= — 1.
z—0 €T z—0 1

(b) lim, .o+ zlogx. Jest to wyrazenie postaci 0 - oo, ale przenoszac x do
mianownika otrzymujemy wyrazenie postaci 2. Mamy wigc

log x

1
= lim % =— lim z =0.
o z—0t

lim rlogr = lim —
z—07F xz—0+t p z—0+t

1
x

(c) lim, g+ (cosx)z.
w zwykly sposob

Jest to wyrazenie postaci 1°°. Przeksztalcamy je wiec

log cosx

1
Z logcosz __ e =

(cos x)% =e

W wyktadniku jest wyrazenie typu %, wiec obliczmy granice w wyktadniku

1 .
log cos _ (—sinz) 1
lim ——— = lim == =0 = lim (cosx)s =’ = 1.
z—0t T z—07t 1 z—0t
log x o)

(d) limg— 400 %= Jest to wyrazenie postaci 52 w 00, wigc mamy

log 1 2
li = lim —*%— = lim — =0.
omto0 T amtoo L z 2 oo /T

Logarytm ro$nie do oo wolniej niz pierwiastek.

Pochodne funkcji cyklometrycznych

(a) f(x) = arcsin(x). f jest okreslona na przedziale [—1,1] i jest funkcja od-

wrotng do funkcji sin(z) zawezonej do przedziatu [—7, 7]. Niech x € (—1,1)
i x = sin(y) dla pewnego y € (—=5,%). Z Twierdzenia 8.4 wiemy, ze f jest
rozniczkowalna w x i

1 1 1

F'@) = 5577 = e =

~sin’(y)  cos(y)  cosarcsin(z)’
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Wyrazenie to mozna uprosci¢. Dla y € (=7, %) cos(y) > 0, a wiec cos(y) =

/1 —sin?(y). Mamy wiec
1 1

fiw) = cos arcsin(x) N

(b) f(z) = arccos(z). Jest to funkcja okreslona na przedziale [—1, 1], od-
wrotna do funkgcji cos(z) zawezonej do przedziatu [0, w]. Niech x € (—1,1), i
x = cos(y) dla pewnego y € (0, ).

fo)e L1 -1

~cos'(y) —sin(y) sinarccos(z)’

Podobnie jak poprzednio, sin(x) jest dodatni na (0, 7), wiec sin(y) = /1 — cos?(y),
czyli

roN —1 -1
fw) = sinarccos(z) /1 — 22

(¢) f(z) = arctan(z). Funkcja f jest okreslona na calej prostej R, i jest

funkcjg odwrotng do funkcji tan(z) zawezonej do przedziatu (-7, 7). Niech

r = tan(y) dla pewnego y € (=5, 5). Mamy
1 1
e =———
7 drugiej strony
cos?(y) = 5 cos2(y.) 5 = Slin = ! 20N 1 2
cos?(y) +sin*(y) 1+ (COS((?;)) )2 l+tan’(y) 1+
Ostatecznie wiec .
F@)= s

Pochodne wyzszych rzedéw

Jezeli pochodna f’ sama jest rozniczkowalna, to jej pochodna, jest tak zwana
druga pochodng funkcji f

() (@) = f'(x) = fO(a).

Podobnie mozemy obliczyé¢ pochodne dowolnego rzedu f™ (jezeli funkcja f
jest rozniczkowalna odpowiednia ilogé razy). Piszemy f© = f.
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Przyklady: (a)

sin™(z) = (_1)T .COS(‘T) n — nieparzyste,
(=1)zsin(x) n - parzyste.

0 x<0.

f(w)z{ v

Funkcja f jest rézniczkowalna w kazdym punkcie z # 0i f/(z) = 322 dla
x> 0oraz f'(z) =0dlaz <0. Jest tez rozniczkowalna w zerze, i f'(0) = 0:

-0 3 -0 0
im 2970 i P o L0 O
z—0+ T z—0t T z—0~ T z—0~ T
f jest wiec rozniczkowalna w kazdym punkcie, i
322 >0
! ) = — Y
@) { 0 z<0.
3 31 3
2 21 2
1 1t 1
-1 1 -1 1 -1 1

Rysunek 8.4: Funkcje f, f'1 f” z przyktadu (b).
Obliczamy teraz pochodng f’. Dla z > 0 f’(z) = 6z, adlaxz < 0
f"(x) =0. W zerze f’ tez jest rozniczkowalna, i f”(0) = 0:
f'(x)—0 322 ffle)—0 . 0

lim = lim — =0, lim
z—0t X z—0t I z—0~ X z—0— X

f jest wiec rozniczkowalna 2-krotnie w kazdym punkcie, i

(@) = { 6x x>0,

0 z<0.
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Zauwazmy, ze f” nie jest rozniczkowalna w zerze:

" _ O 6 " _ 0 O
hm £ =0 iy 7 g i @0 Oy
z—07F T z—0t T z—0~ T z—0~ T
f jest wiec 2-krotnie r6zniczkowalna w kazdym punkcie, ale nie jest 3-krotnie

rozniczkowalna w zerze.

Uwaga: Wszystkie funkcje elementarne sa rozniczkowalne nieskonczenie
wiele razy w kazdym punkcie swojej dziedziny.

Badanie przebiegu funkcji

Omoéwimy teraz procedure badania przebiegu funkcji. Badanie przebiegu
funkcji to typowe zadanie w zastosowaniach.

Uwaga: Procedura badania zmienno$ci funkcji odnosi sie do funkcji odpo-
wiednio regularnych. Istnieja funkcje, ktorych wykresu nie da sie naszkico-

wacé, na przyktad
1 z€Q,
flz) =
0 z¢Q.

Funkcje, ktore badamy najczesciej sa przynajmniej przedzialami ciagte.
Przystepujac do zbadania przebiegu funkcji postepujemy nastepujaco.
Kolejnosé poszczegolnych operacji w zasadzie nie ma znaczenia.

(1) Ustalamy dziedzine funkcji, jezeli nie jest podana jawnie. Ustalamy
punkty ciagglosci, nieciggtosci, rozniczkowalnosci i nier6zniczkowalnosci. Z re-
guty funkcja badana jest przedzialami ciagla i przedziatami rézniczkowalna,
wiec ustalamy te przedzialy.

(2) Sprawdzamy parzysto$¢ i okresowos¢ funkcji. Jezeli f jest parzysta to
znaczy f(—z) = f(z) lub nieparzysta, to znaczy f(—z) = —f(z), to wy-
starczy zbadac jej przebieg dla x > 0 a nastepnie wyniki odpowiednio prze-
nies¢ na x < 0. Jezeli funkcja jest okresowa, to znaczy istnieje 7' takie, ze
flx+T)= f(x), to wystarczy zbada¢ funkcje na dowolnym przedziale dtu-
gosci jednego okresu.

(3) Ustalamy pierwiastki funkcji, czyli punkty = w ktorych
f(z) =0,

oraz ustalamy przedzialy na ktorych funkcja zachowuje znak.

(4)Ustalamy przedzialy monotonicznosci i wyznaczamy ekstrema lokalne.
Badamy znak pochodnej. Mozna z tego wyciagna¢ wnioski na temat eks-
tremow. Czasem pomocne jest nastepujace twierdzenie
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Twierdzenie 8.14. Jezeli w pewnym punkcie x f'(x) =01 f"(x) # 0 to f
ma w x ekstremum. Jezeli f"(x) < 0 to jest to maksimum, a jezeli f”(x) >0
to jest to minimum.

Dowdd. Jezeli f"(z) > 0 to stosujac Twierdzenie 8.6 do f’, pamietajac, ze
f'(x) = 0 otrzymujemy, ze f’ jest ujemna na lewo od z (czyli f maleje)
i dodatnia na prawo od z (czyli f rosnie). W takim razie w x funkcja f
ma minimum. Podobnie w przypadku f”(z) < 0: wtedy w z funkcja f ma
maksimum. O

Nalezy pamietac, ze ekstrema moga znajdowac sie w punktach, w ktorych
funkcja nie jest rézniczkowalna.

(5) Jezeli funkcja f ma druga pochodna i na jakims przedziale f”(z) > 0, to
moéwimy, ze jest na tym przedziale wypukta. Jezeli na jakim§ przedziale
f"(x) < 0 to méwimy, ze jest na tym przedziale wklesta. Jezeli w ja-
kim§ punkcie funkcja zmienia sie z wypuklej na wklesta, albo na odwrot,
to taki punkt nazywamy punktem przegiecia. Taki punkt jest punktem eks-
tremalnym pochodnej. Znajdujemy punkty przegiecia funkcji, i okreslamy
przedzialy wypuklosci/wklestosci. Wypuklosé i wklestosé maja interpretacje
geometryczng. Na odcinku na ktorym funkcja jest wypukta styczne do wy-
kresu leza pod wykresem, a sieczne nad wykresem. Jesli funkcja jest wklesta
to odwrotnie, styczne leza nad wykresem a sieczne pod.

(6) Znajdujemy ewentualne asymptoty. Asymptoty moga by¢ roznego ro-
dzaju.
(a) Jezeli w jakim$ punkcie @ mamy lim, .+ f(x) = £o0, to prosta pionowa
o réwnaniu = a nazywamy asymptota pionowa funkcji.
(b) Jezeli istnieje granica lim, .1 f(x) = A, to prosta pozioma o réwnaniu
y = A nazywamy asymptota pozioma funkcji w +oo (lub w —o0).
(c) Jezeli isnieje stata m taka, ze istnieje granica lim, .. (f(z) — mx) = ¢,
to prosta o réwnaniu y = mx + ¢ nazywamy asymptota ukosng funkcji w
+00 (lub w —00). Asymptota pozioma to szczegélny przypadek asymptoty
ukos$nej, dla ktorej m = 0. Jezeli funkcja f ma w +o0 albo —oo asymptote
ukosna , to stala m jest rowna kazdej z granic

lim M, lim (f(z+1)— f(z)), lim f'(x),

r—+oo r—+o00 r—+o00

(ostatnia granica moze nie istnie¢, nawet jezeli asymptota ukosna istnieje).
Nalezy jednak pamietac¢, ze istnienie ktorejkolwiek z tych granic nie gwaran-
tuje jeszcze istnienia asymptoty ukosnej. Zeby istniala asymptota ukosna
musi jeszcze istnie¢ granica

lim (f(x) —mz) =c.

r—+o0
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Przyklady: (a) f(z) = -5 ma asymptote pionowa = = 1 oraz asymptoty
poziome y = 1 w obu nieskoriczonosciach (Rys. 8.5).

asymptota pozioma

N\

.................................................

asymptota pionowa
r=1

T

Rysunek 8.5: Asymptoty funkcji f(z) = —%5.

(b) f(z) = 222243 Funkcja ma asymptote pionows z = 0. Bedziemy

222
szukali asymptot ukosnych.

flx) 2*—=222+3 1 1 3 o400 1
= = - — — — T =,
x 223 2 oz 23
1 3 =222 +3 x  ad—22%2+3—23
fa) o= T2 2 2
2 2 2 2z
Sl A RS R
212 +2x2

f ma wiec asymptote ukosng y = %x — 1 w obu nieskonczonosciach (Rys.
8.6).
¢) Zbadajmy przebieg zmiennosci funkcji

B 2/ 12

f<w>_$+1'

Naturalna dziedzina funkcji jest Dy = R\ {—1}, funkcja jest ciagta w kaz-
dym punkcie dziedziny i jest rozniczkowalna w kazdym punkcie x # 0. Prze-
dzialty ciagtosci to (—oo, —1) i (—1,+00), a przedzialy rézniczkowalnosci to
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20
16
12 1 asymptota pionowa
=0
//
8..
41 z = ¥/6 - minimum
\ asymptota ukosna
Y= z—2
—44 2

Rysunek 8.6: Asymptoty funkcji z przyktadu (b).

(—o0,—1), (—1,0) oraz (0,+00). Funkcja nie jest ani okresowa ani parzy-
sta ani nieparzysta. Jedynym pierwiastkiem jest pierwiastek licznika, czyli
x = 0. f jest dodatnia dla x > —1, = # 0 i ujemna dla * < —1. Obliczmy

pochodna

C2%r7i(1+2) - 248

f'(w) = (x 4+ 1)2

_2as 21+,
C (z+1)2 3 =z

225 2
= _(Z-1).
3(z+1)2 \ =z

Pierwszy czynnik jest zawsze dodatni, wiec znak pochodnej zalezy tylko od
znaku (2 — 1). Po latwych rachunkach otrzymujemy, ze pochodna jest do-
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datnia na przedziale (0,2) i ujemna na przedziatach (—oo,—1), (—1,0) oraz
(2,+00). Funkcja f rosnie na przedziale (0,2), a maleje na pozostatych prze-
dziatach. Widzimy wiec, ze ma minimum w zerze (jest to punkt nier6znicz-
kowalnosci), i maksimum w 2. Widzimy , ze funkcja ma asymptote pionowa
x = —1, oraz pozioma w oo y = 0. Rozstrzygniemy teraz wypuktos¢. W
tym celu policzymy druga pochodna.

z = 2 - maksimum

asymptota pionowa

r=—-1 \

& asymptota pozioma -
y=0 : 1

x = 0 - minimum

Rysunek 8.7: Wykres funkcji z przyktadu (c).

—%x’g(azjtl)—éx’% %x’%(x+1)2—2x§2(x+1)
(z+1)? (z+ 1)1
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Wyrazenie %x’% jest zawsze dodatnie, a mianownik jest < 0 dla x < —1 i

> 0dlaz > —1. Z kolei licznik jest > 0 dlaz ¢ (2~ 75,2+ 55) i < 0 dla
T e (2— %, 2+ \%) Zauwazmy jeszcze, 7e —1 < 2 — \% < 0, a wiec funkcja
f(z) jest:

e wklesta na (—oo, —1), (2 — \%,0) oraz (0,2 + %),

e wypukla na (—1,2 — \%) oraz (2 + \%, +00),

e ma punkty przegiecia w 2 £ %

Wiemy juz wszystko co chcieliémy, i mozemy naszkicowa¢ wykres funkcji
(Rys. 8.7).

Dowodzenie nieré6wnosci

Metody badanie funkcji mozna zastosowaé¢ do dowodzenia nieréwnosci.

Przyktady: (a) Udowdnimy nierownos$¢ (1 +x)? > 1+ px dla x > —1. Nie-
rowno$¢ taka udowodniliémy wezesniej dla wyktadnika p naturalnego. Obec-
nie udowodnimy ja dla dowolnego p > 1. Rozwazmy funkcje

fl@)=1+z)—-1—-pz, z>-1.
Mamy
fll@)=pQ+a2)" —p.
Dlaz>01+xz>1orazp—12>0wiec (1+z)P~! > 1 czyli f(x) > 0. Dla
r<01+z<1lczyli (1+2)P7!<1,awiec f/(z) <0. Funkcja f maleje dla
x < 01irosnie dla z > 0, a wiec ma w zerze swoja warto$¢ najmniejsza
f(z) = f(0) =0.
Funkcja jest wiec zawsze > 0, czyli

(1+2)P>1+px.

(b) Dla > 0 mamy x — %3 < sin(z) < x. Prawa czeS¢ nieréwnosci jest
jasna, i byta pokazana. Pokazemy lewa czesé¢. Niech
3
f(z) =sin(x) —x + %
Mamy f'(z) = cos(x) — 1+ “2—2, f(0) =0, f"(z) = —sin(x) +z. f"(x) >0
dla z > 0, czyli f’ rosnie dla x > 0, a skoro f'(0) =0, to f'(z) > 0dlax > 0.
Sama funkcja wiec rosnie dla x > 0, a wiec

f(z)> f(0)=0, dlax>0.
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Wzér Taylora

Twierdzenie o warto$ci Sredniej mozna zapisa¢ w postaci
f) = fla)+ (b—a)f'(c), dla pewnego ¢ € (a,b).
Niech h = b — a, wtedy wzor przyjmuje postac
fla+h)=f(a)+hf(a+0h), dla pewnego 6 € (0,1).

Twierdzenie o wartosci §redniej zapisane w tej postaci stanowi szczegolny
przypadek nastepujacego twierdzenia.

Twierdzenie 8.15 (Wzor Taylora). Niech funkcja f bedzie rézniczkowalna
n-razy w przedziale (a — 6,a + 6), dla pewnego 6 > 0. Wtedy, dla dowolnego
h, |h| < 0 istnieje 0 € (0,1) takie, ze

hnl

(n—1)
b £ ) + R,

fm+m:ﬂ@+ﬁf@+@%%@+

§j ﬂk R,

gdzie

n

R, = h—' F(a +0h).
n.

Dowaod. Mamy dane h. Oznaczmy b = a+ h, i utwoérzmy nastepujace funkcje
pomocnicze

-2, (b— )
o0 =10 = ) = CT ) = o= B i
" 562,
B(a) = pla) - “” (b— o).

(b—a)"

¢ spelnia zalozenia twierdzenia Rolle’a na przedziale o koricach a,b ([a,d]
lub [b, a] w zaleznosci od znaku h).

B(o) = pla) ~ A (b= a)" =0, () = ¢l) ~0 =

Istnieje wiec punkt ¢ wewnatrz przedzialu o koncach a, b, taki, ze

d'(¢) = 0.



Punkt ¢ mozemy zapisac jako a + 60 (b — a) = a + 0 h dla pewnego 6 € (0,1).
Mamy wiec

(a+0h) =g (at+0h) - (bw_(a;w n(h—0h)" 1 (=1)=0.  (8.10)

Musimy policzy¢ pochodng ¢'(x):

S\
—~
&
Il
|
™
~—~
&
|
VR
3
L
=
7 |
&
ol
—
=
—~
&
~__—

_
Il
A

3
|

:—fu»—gg(“;f)f®ww)

3 O gy _ 5 D ey
2. =

= —f'(2) + f'(x) (b(;f—)(l),) f (e

= _(b&i—)(ln)!l) £ ().

Wstawiajac to do (8.10) otrzymujemy

_(h—Oh) 7 &H_h)l(;l) f™(a+6h)+ el0) —n(h—0h)"" =0,

czyli

ola) = (b ;la)n f™(a+0h) = % f™(a+6h).

Pozostaje zauwazy¢, ze p(a) jest dokladnie reszta R,:

i
)

)= 10(0) + ol

0

i

h h2 hn—l hn
fla) + gy @)+ 5y f1@) 4ot gy SV 4 S a0,

[
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Rysunek 8.8: Wielomiany Taylora stopnia n funkcji sin(z).

Uwagi: (i) R, to tak zwana reszta. Wzor Taylora to wzor na przyblizenie
funkcji f wielomianem, w otoczeniu punktu a, przy czym R, jest bledem
tego przyblizenia.

(ii) Doktadnos¢ przyblizenia zalezy od wielkosci R,, w otoczeniu punktu a
(R, zalezy od h). Im wiecej pochodnych funkcja f ma w otoczeniu a (czyli
im f jest ,gladsza” w otoczeniu a) tym dokladno$¢ przyblizenia jest lepsza.

(iii) Reszte R, we wzorze Taylora mozna zapisa¢ w wielu roznych postaciach
Posta¢ podana w powyzszym twierdzeniu to tak zwana reszta w postaci La-
grange’a. Rozne postaci tej samej reszty przydaja sie, gdyz w konkretnych
przypadkach rézne postaci moga dac sie latwiej szacowac.

(iv) Zauwazmy, ze jezeli sup{|f™ (2)|;z € (a — &,a + §),n € N} istnieje, to
dla dowolnego h, |h| < § mamy R, — 0 gdy n — oo, czyli

flath)=>" % *®)(a). (8.11)

k=0

Jest to tak zwany szereg Taylora funkcji f w punkcie a. Pamietajmy, ze
szereg Taylora funkcji f nie musi by¢ zbiezny, a nawet jezeli jest zbiezny, to
moze sie zdarzy¢, ze

x pk
flath) #3279,
k=0
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Za kazdym razem musimy sprawdzié¢ zbieznos¢ reszt R, do zera. Dopiero
ta zbiezno$¢ gwarantuje zbieznosé szeregu Taylora i wzor (8.11). Jezeli a =
0 to otrzymujemy szczeg6lny przypadek szeregu Taylora, tak zwany szereg
Maclaurina

Przyklady: (a) f(x) = sin(z), a = 0. Wiemy, ze

F™(0) = { (_1)%1 n — nieparzyste
0 n — parzyste.

Wiemy takze, ze |f(™(x)| < 1 dla wszystkich z,n. Mamy wiec R, — 0 i
otrzymujemy rozwiniecie funkcji sin(z) w szereg Maclaurina

. o 1 " 0 x2n+1
()= 3 0= gy
7}:0 n=0
- 3 2 2
I TIR-TR T

(b) f(z) =e*, a=0. fO(x) = e czyli f™(0) = 1. Zauwazmy, ze jezeli
|h| < M to |fM™ (k)| < eM. Reszty daza wiec do zera, a wiec
n 372 x3

e :Z—!:1+x+§+§+....

(c) f(z) =log(l+ z), a =0. Obliczmy pochodne

/ _ 1 " _ 1
" _ 1 4 — (_ . _1

Mamy wiec
P = (-1 = 00 = (1 (- 1)

Musimy oszacowaé reszte

\R]™ (n—1)! 1 |nl \"
< . = —
[Fnl < nl (1—|h)» n ’
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czyli dla |h| < 3 mamy

Al
<1=|R, 0.
T SR
Mamy wiec, dla |z| < 1
0 n 2 3 4
loglta)=S (-1 =p -2 2 T 4
og(l+ ) nz:l() — =1 2~|—3 4+

Uwaga: Uzywajac doktadniejszych oszacowan mozna pokazaé, ze powyzszy
wzor jest prawdziwy dla x € (—1,1].

Przyblizone obliczanie wartosci funkcji

Wykorzystamy wzoér Taylora do obliczen przyblizonych
medskip
(a) Obliczymy przyblizong wartosé liczby e

1 3
~ iblad < 2.
n!

Przy okazji: e nie jest liczba wymierna. Zal6zmy, ze e jest liczba wymierna,
ie=" dlam,n € N. Wtedy

m 11 1
e=—=1+1++ 4+ =+
n n:

2l " 3l (n+ 1)!

m 1 1 el
(n 2! n!) Tt
69

n+1
kowita. To jest niemozliwe, bo 1 < €’ < 3, czyli musieliby$my mie¢

Zauwazmy, ze lewa strona jest liczba catkowita, czyli tez musi by¢ cal-

1 - e? - 3
n+1 n4+1 n+1

Jedyna mozliwosc¢ to przypadek n = 1, czyli e musiatoby by¢ liczba naturalna,
a latwo sprawdzi¢, ze nie jest.

(b) Obliczymy przyblizona wartosé v/9. Niech f(z) = 3. Zauwazmy, 7ze
f(9) = f(8+1),a f(8) = 2. Policzmy kilka pochodnych
12

fa)=gat @) =15t

Wl



125 _s 1258 _u
m _ 22 -3 (4) — (1227
Latwo sie domyslec¢, ze
125 3n—4 3n—1
M () = (1)1 222
W takim razie
2:5...(3n—4 3n-1 2-5...(3n—4
F(8) = (—1)+ 3(71" ) gt _ (_qyen 3n(8:‘ Jo,

Wstawiajac to do wzoru Taylora, z n = 3 otrzymujemy

Vo= s+ 1) = 8+ £+ 1Y 1k,
1 2
=2t oy

Mozemy oszacowaé btad przyblizenia

2.5 1 10 1 10

|Rs| < s < 55 = Tan ars

313-3-3 (8+6)5 16285  162-256
10 _ 10

© 41472 T 40000 4000

= 0,00025.

111



Rozdzial 9
Calki

Funkcja pierwotna

Definicja 9.1. Funkcje F nazywamy funkcjg pierwotng funkcji f, jezeli F
jest rézniczkowalna i F'(x) = f(x) dla kazdego x € Dy.

Uwagi: (i) Funkcja f moze nie mie¢ funkcji pierwotnej. Jezeli ma funkcje
pierwotna, to ma ich nieskoniczenie wiele:

F'(z) = f(z) = (F(z)+c) = Fl(z) = f(2).
Jezeli F' jest funkcja pierwotng funkcji f, to F'4-c takze jest funkcja pierwotna

f, dla dowolnej stalej c.

(ii) Jezeli F i G sa funkcjami pierwotnymi tej samej funkcji f, to (F' —
G)(x) = F'(z) — G'(x) = 0, dla kazdego x € Dy. Na kazdym przedziale
zawartym w dziedzinie funkcji f funkcje pierwotne F' i G réznia sie wiec o
jakas stata. Stala ta moze by¢ r6zna na réznych przedziatach.

Calka nieoznaczona

Definicja 9.2. Jezeli funkcja f ma funkcje pierwotng, to mowimy, Ze jest
catkowalna. Dowolng funkcje pierwotng funkcji catkowalnej f nazywamy jej
catkq nieoznaczong, i oznaczamy

/f(a:) dx.

Okreslenie ,catka nieoznaczona” odnosi sie wiec do calej rodziny funkcji,
ktore na poszczegdlnych przedzialach Dy roznig sie o stala. Czesto podkre-
Slamy to, dodajac do otrzymanego wzoru na funkcje pierwotna stala c. W
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oznaczeniu calki [ ...dz stanowi kompletny symbol, ktéry zawsze powinien
wystepowaé razem. dz podkresla zmienng, wzgledem ktorej catka jest funk-
cja pierwotng. W przypadku, jezeli funkcja ,podcatkowa” zawiera utamek,
to czton dx czesto dopisujemy do licznika, na przyktad

1
/—dx: d_x
T x

Przyklady:
0dx = c,

adr = axr + ¢, dla dowolnej stalej a,

1
Cdy = —— x0Tt —1, >0,
x%dx a+1x +c a# x

cosxdr =sinx + ¢,

=
— S

(e) sinzdr = —cosz + ¢,
dx
(f) . =tanz + ¢,

(stala ¢ moze by¢ rozna na roznych przedziatach),

d
(9) /_x =log|z|+ ¢, (podobna uwaga odnosnie stalej),
T

(h) /e””dx—e’”—i—c.

Dowo6d kazdego z powyzszych wzoréw sprowadza sie do obliczenia pochodne;j
prawej strony, i poréwnania z funkcja podcatkows. Zwrdéémy uwage na stale
¢ dopisane po prawej stronie. Nie sa one bardzo wazne (wiadomo, ze dodanie
stalej nie zmienia pochodnej), ale dobrze jest o nich pamietaé. Podkreslmy, ze
jezeli dziedzina funkcji podcatkowej sktada sie z wiecej niz jednego przedziatu,
to zapis 4+c we wzorze na caltke nieoznaczong rozumiemy jako stata, ktora
moze by¢ rézna na réznych przedziatach.

Ze wzoréw na pochodne wynikaja nastepujace wzory na catki nieozna-
czone:

@ Uz do= [ f@)de [ g
(b) / af(z)de =a / f(x)dz, a- dowolna stala
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© [ @) de = f@g(o) - [ fa)g @) dr

(tak zwany wzor na catkowanie przez czesci)
@ [wen@r@ds= [owdy vy caym y= o)
(tak zwany wzor na calkowanie przez podstawienie).
Przyklady: (a) Calka z wielomianu jest wielomianem, stopnia o jeden wiek-
$7ego:
/(anac” 12" ayr +ag) do =

an, Ay a
= gl g S fagr +c
n+1 n 2

(b) Skorzystamy ze wzoru na calkowanie przez czesci:

/loga:dx = /(x)’logxdx

=xlogr — /x(loga:)’da:

1
:arlogm—/a:~—da:

x
:xloga:—/l-da:

=uxlogx —x +c.

Sprawdzamy: (z logz —x +¢) =logz+ 2 -+ —1 =logx.

(c) skorzystamy ze wzoru na catkowanie przez podstawienie:

/ * dr = 1
14+ 22

_E/y@ fl@)=y

= — 10 +c

1
2510g|1+x2|—|—c

! (1) =1+42
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=logv1+ax2+ec.

Dla x > 0 wzo6r ten juz znamy, a dla x < 0

8] =

Zauwazmy, ze (log|z|) =
mamy |x| = —z, wiec

S~—
N—
Il
—~
|
8
N—
<
|
S

(log |z[)" = (log(—

W tym przyktadzie 1 + 22 > 0, wiec Wartosc bezwzglqdna nic nie zmienia.
Sprawdimy naszy catke: (logv1+ x?)" = \/sz, 1 \/1+ 527 = 17, a wige
zgadza sie.

(d) Jeszcze raz wzor na calkowanie przez podstawienie

/tanxdx:/smxda:
cos
_ /—smmdx
cos
= / f(x) =cosx
:—/—dy Y = Cosx
)

= —logly| + ¢
= —log|cosz| + c.

(e) Nastepujaca catke otrzymujemy natychmiast, jezeli pamietamy wzory na
rozniczkowanie funkcji cyklometrycznych:

1 .
/— dx = arcsin(x) + ¢, lz| < 1.
V1—a?
Jezeli nie pamietamy odpowiednich wzor6w to mozemy zastosowaé¢ wzor na
catkowanie przez podstawienie:

1 1 / B
/ﬁd“’:/ﬁf@)dt v = (1)
- = m cos(t)dt,  f(t) =sin(t), 1€ (-5 3)

- / renRRaL

- [1a
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Rysunek 9.1: Wykres funkcji f(x) = —log| cos z|.

=t+c
SkorzystaliSmy z tego, ze dlat € (—3, Z) mamy cos(t) > 0 a wiec /1 — sin*(t) =
cos(t). Skoro x = sin(t), to t = arcsin(z), i otrzymujemy ten sam wzor.

(f) Calke z funkcji sin®*(z) policzyny na dwa sposoby. Mozemy skorzysta¢ z
tozsamosci trygonometrycznej

1-— 2
cos(2z) = 1 — 2sin?(z) = sin®(z) = w
Mamy wtedy
1
/sin2(x) dr = 5 /(1 — cos(2x)) dx
1 2
_ §($— sm(2 :L’)) L
_x sin(2z) L
2 4 ‘

Mozemy tez skorzysta¢ ze wzoru na catkowanie przez czesci. Catkujac przez
czesci nie otrzymamy calki tatwiejszej do policzenia, ale otrzymamy réwna-
nie, ktore nastepnie rozwigzemy.

/ sin?(x) da = / sin(z) - sin(z) dz
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= /sin(:r;) - (= cos(z)) dx
= —sin(xz) cos(x) + [ (sin(x))’ cos(x) dx
= —sin(x) cos(z) + [ cos(x) - cos(x) dx

= —sin(z) cos(x) + [ cos®*(z) dzx

—— — —

= —sin(z) cos(x) + [ (1 —sin®(z)) dx

= —sin(z) cos(x) +  — / sin’(z) d.

To, co otrzymali$émy jest rownaniem na nasza szukana catke. Przenoszac
caltke z prawej strony na lewa i dzielac przez 2 otrzymujemy

. ~ —sin(x) cos(z) +
/sm (x)dx = 5 :

Calkowalnos$é¢ funkcji

Calkowanie funkcji wymiernych

Funkcje wymierne to funkcje postaci f = g, gdzie P i () sa wielomianami.
Utamki proste to szczeg6lny rodzaj funkcji wymiernych, postaci

A Bx +C
(x —a)"’ (22 + px + @)™’

n=12,..., (9.1)

gdzie A, B,C,a,p,q to dowolne stale, a wyrazenie kwadratowe 22 + px + ¢
nie ma pierwiastka, czyli p> — 4¢ < 0. Okazuje sie, ze kazda funkcje wy-
mierng mozna przedstawi¢ jako sume utamkoéw prostych plus, ewentualnie,
wielomian. 7 drugiej strony istnieja wzory na calki nieoznaczone utamkow
prostych. W ten sposob otrzymujemy procedure na obliczanie calek nieozna-
czonych funkcji wymiernych.

Twierdzenie 9.3. Kazdg funkcje wymierng mozna przedstawic¢ jako sume
wielomianu © utamkow prostych.

Procedura rozkladu: Zamiast dowodu naszkicujemy procedure rozktadu
funkcji. Szkic ten mozna uscisli¢ i zrobié¢ z niego dowdd, ale my pozostaniemy
przy szkicu. Majac konkretng funkcje f = g najpierw dzielimy wielomian
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P przez Q) ,z reszty”, to znaczy znajdujemy wielomiany W (iloraz) oraz R
(reszta) takie, ze
P(x
P(z) =W(z) - Q(z) + R(x), = Plz) =Wi(x)+ —=
Q(z)
przy czym stopieni reszty R jest mniejszy od stopnia (). Robimy to uzywajac
zwyklej procedury ,dlugiego dzielenia”, czy ,pisemnego dzielenia”, doktadnie
tak samo, jak dzielac liczby naturalne.

Przyklady: (a) 2=22=1 — (z — 2) 4+ &2

z2—1 z2—1

Po wydzieleniu czesci wielomianowej pozostaje nam ulamek £, w ktorym
licznik ma stopieni nizszy od mianownika. W nastepnym kroku przeprowa-
dzamy faktoryzacje mianownika, czyli rozktad mianownika na czynniki nie-
rozkladalne. Czynnikami nierozktadalnymi sa wielomiany liniowe (x—a) oraz
kwadratowe (2% + px + q), nie posiadajace rzeczywistych pierwiastkow, czyli
takie, dla ktorych p? — 4¢ < 0. Przypomnijmy, ze w przypadku wielomia-
noéow o wspotczynnikach zespolonych czynnikami nierozktadalnymi sa jedynie
wielomiany liniowe. Kazdy wielomian stopnia wyzszego niz 1 mozna dalej
rozkladac¢ na czynniki. W przypadku wielomianéw o wspotczynnikach rzeczy-
wistych moga istnie¢ czynniki nierozktadalne (czyli, zgodnie z twierdzeniem
Bezout, nie posiadajace pierwiastkow) stopnia wyzszego niz 1, ale okazuje
sie, ze takie czynniki nierozkladalne nie moga mie¢ stopnia wyzszego niz 2.
Przeprowadzamy wiec rozklad mianownika () na czynniki nierozkladalne, i
w efekcie przedstawiamy @) jako iloczyn wyrazen postaci

(x —a)* oraz (2% +px+q)" (9.2)

Rozktad mianownika na czynniki nierozktadalne to, w praktyce, gtéwny pro-
blem w catkowaniu funkcji wymiernych. W zadaniach ktore bedziemy robi¢
albo faktoryzacja bedzie bardziej lub mniej oczywista, albo bedzie jawnie po-
dana. W przyktadach rozpatrywanych jako ilustracja procedury faktoryzacja
jest prosta: 22 —1 = (z —1)(x + 1) oraz 3 — 22> + 32 — 6 = (v — 2)(2® + 3).
Jezeli wielomian ma wspolczynniki catkowite, i wspotezynnik przy wyrazie o
najwyzszej potedze réwny 1, to w pierwszej kolejnosci szukamy pierwiastkow
spos$rod dzielnikow wyrazu wolnego. Majac pierwiastek wydzielamy odpo-
wiedni czynnik liniowy, i otrzymujemy wielomian nizszego stopnia, ktory
,obrabiamy” do skutku. Jezeli wielomian nie ma pierwiastkow musimy sobie
radzi¢ inaczej. Na przyktad rozwazmy wielomian Q(z) = z* + 1. Wiemy,
ze rozklada sie na iloczyn dwoch wielomianéow kwadratowych, przy czym
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mozemy tak dobrac¢ stale, aby ich wyrazy wiodace miaty wspotezynniki 1.
Piszemy wiec najogdlniejsza postaé takiego rozktadu, a nastepnie mnozymy
czynniki:

' +1 = (2’ +ax+b) (2’ +cr+d) = 2'+(a+c)2*+(b+d+ac)z’+(ad+bc)z+bd.

Poréwnujac wspotczynniki po obu stronach otrzymujemy uktad rownan, ktory
bedzie mozna rozwiaza¢. W naszym przypadku tatwo znajdujemy rozwigza-
nie:

' 1= (2= V2 1) (2 + V22 + 1),

Majac rozktad mianownika na czynniki nierozkladalne postaci (9.2) mo-
zemy napisaé prototyp rozkltadu funkcji na utamki proste. W pierwszym
kroku wypisujemy wszystkie utamki proste postaci (9.1) ktore znajda sie w
rozkladzie, a w nastepnym kroku ustalimy state w licznikach. Dla kazdego
czynnika postaci (z — a)” w rozkladzie mianownika wypisujemy n utamkow
prostych

Ay Ay A
o) e

natomiast dla kazdego czynnika (z? + pz + q)" w rozkladzie mianownika,
wypisujemy n utamkow

Blflf + Cl BQ[E + 02 X Bn{lf + Cn
(2 4+pr+q) (22 +pr+q)? (22 +pr +q)

Zauwazmy, ze wypisujac powyzszy rozklad wypisaliSmy tacznie doktadnie
tyle nieoznaczonych (na razie) stalych A;, B;, C; jaki jest stopieri mianownika.
Wypiszmy nasz rozktad dla rozwazanych przyktadow:
(a):

x—3 x—3 A B

x2—1:(x—l)(x—i—l):x—l—i_x—l—l7

(b):
—3x%+6x—35 —3x2+6x—35_ A Bx+C

23 —2224+32 -6 (2 —2)(22+3) —2 2 +3

Na ostatnim etapie rozktadu wyznaczamy state w licznikach utamkow
prostych. W tym celu sume wszystkich wymaganych utamkoéw prostych spro-
wadzamy do wspolnego mianownika, ktorym jest wielomian Q). W liczniku
otrzymamy wielomian stopnia nizszego niz mianownik @ (gdyz wszystkie
utamki proste maja liczniki stopnia nizszego niz mianowniki). Wielomian
ten musi by¢ identyczny z wielomianem R, ktory jest licznikiem rozktadanej
funkcji wymiernej. Oba wielomiany musza wiec mieé¢ te same wspotczynniki.
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Daje to dokladnie n réwnan, gdyz wielomiany stopnia n — 1 maja n wspol-
czynnikéw. Mamy wiec n rownan liniowych, i n niewiadomych, i okazuje
sie, ze uktad ten zawsze mozna rozwigza¢. Nie bedziemy tego dowodzié, ale
zobaczmy jak to dziata na przyktadach.
(a):

r—3 A N B (A+B)z+(A-DB)

221 -1 2+1  (z—-D@+1) ~’
czyli A+ B=1oraz A— B = —3. Otrzymujemy A= —11i B =2, a wiec w
koricu

-3 -1 N 2
2—-1 x—-1 z+1

(b):

—32*4+6x—-35 A +Bx—i—C’
3 —202+3x—-6 x—2 1243
A(2*+3)+ (Br + C)(x — 2)
n (x —2)(22 +3)
(A+ B)2? 4+ (—2B+ )z + (3A —2C)
(x — 2)(22 + 3) ’

czyli A+ B = =3, —2B 4+ C = 6 oraz 3A — 2C = —35. Rozwiazujac ten
uktad otrzymujemy A = —5, B=21C =10, i w koncu

—32%+6x—35 -5 22 + 10

x3—2x2+3m—6_1‘—2+ 243

Wyznaczajac stale w rozkladzie na utamki proste zakonczylismy procedure
rozktadu. Jedyny punkt ktéry wymaga usciSlenia, zeby otrzymac¢ dowdd
Twierdzenia 9.3 to fakt, ze stale zawsze da sie wyznaczy¢, innymi stowy, ze
powstaty uktad n réwnan liniowych z n niewiadomymi jest taki, ze zawsze
ma rozwiazanie. Zostawimy ten punkt jako zadanie dla zainteresowanego
czytelnika.

Catlkowanie ulamkéw prostych

Pierwszy rodzaj utamkoéw prostych daje sie tatwo catkowa¢. Mamy nastepu-

jace wzory:
dx
=log|z —a| +¢,
r—a

/ du = ! L +c, n>1
(x—a) n—-1 (z—a)! ’ ’
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Utamek prosty drugiego rodzaju roztozymy na dwa inne:

Bz +C B 9 D 1
- T == — TP > ., D=C—-=-Bp.
(@2 +pr+qn 2 (24+pr+qn  (22+pr+q)n 2
(9.3)

Pierwszy z ulamkoéw po prawej stronie calkujemy przez podstawienie t =
2 + pr +q,

T = — = —1
2 n tn ‘n > 1.
wrpr ) D@ st O

/ 2wAp g [ log(z* +pr+¢)+c  n=1,
(

Zauwazmy jeszcze, ze poniewaz wyrazenie x2 + pr + ¢ nie ma pierwiastkow
rzeczywistych, to jest zawsze dodatnie, wiec warto$¢ bezwzgledna pod lo-
garytmem nie jest potrzebna. Pozostal jeszcze jeden rodzaj utamkow do
scatkowania, to znaczy drugi utamek po prawej stronie (9.3). Wykonamy
proste przeksztalcenie i podstawienie:

/ dx _/ dx _\/_E dt
2+ pr+qr <<x+§)2+(q_p§)>” T oar ) (241

gdzie
x+ 2 2
= a—q—p—>0.

Va oo T4

Gdy n = 1 mamy

/ dt tant +
— arctan C
241 ’

natomiast dla n > 1 wyprowadzimy wzor rekurencyjny. Niech k£ > 0, wtedy,
catkujac przez czesci mamy

dt
/—k =4+ 1) tat

(t2+1)
= [ /D
~ w2 (@ e - ) @

t
= ————+2k -2k
(t2+1)k+ /(t2+1 /t2+1k+1
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Mamy wiec

dt t dt
2k [ e Y [ @

czyli, dlan > 1

/ . t n 2n—3 / dt
2+ 2(n—-1 @+t 20 -2 ) (2+ 1)1
Mozemy teraz obliczy¢ calki w obu rozwazanych przez nas przyktadach.

Przyklady: (a):

3 — 2% —1 2 1
—————dr = -2 — d
/ x?2—1 g /((a: >+:v+1 x—l) v

2

:%—2m—|—210g|m+1|—10g|x—1|+c.

xt — 223 — 35 5 2z + 10
dz = T — + dx
3 —222 4+ 32 —6 z—2 243

x? 2x 10 dx
= — — 51 -2 d — ) —
g ~olosle |+/x 2133 (H)?+1
72 0 \/Lgda:
= — —5l — 2| +1 3) + —_—
g~ slogle 2 4ot +3) + 2 [ 8
x? 10 x
=" —5loglx — 2| +log(x*+3 —|——arctan(—)—|—c.
-~ 5log |z =2 + log(a? + 3) +  arctan (=
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Rozdziat 10

Calka oznaczona

Calka oznaczona, intuicyjnie, mierzy ,wielko$¢ funkcji”, w podobny sposéb
jak pole mierzy wielko$¢ obszaru na ptaszczyznie. Niech bedzie dana funkcja
f, nieujemna na odcinku [a, b] i rozwazmy obszar pod wykresem f. Bedziemy
chcieli jako$ policzy¢ pole tego obszaru. Bedziemy korzystali z wlasnosci pola
ktore sa intuicyjnie jasne, na przyklad, ze wickszy obszar ma wieksze pole.
Niech f(z) = z i rozwazamy obszar nad odcinkiem [0,a]. Obszar ten jest
trojkatem o wysokosci i podstawie réwnych a. Pole wynosi wiec P = %aQ.
Rozwazmy teraz obszar pod wykresem f(z) = 2%, nad tym samym odcinkiem
[0,a]. Zbudujemy wielokat wpisany w ten obszar, oraz wielokat opisany na

tym obszarze.

Rysunek 10.1: Obszar pod wykresem funkcji.

Pole obszaru musi by¢ liczba pomiedzy polami wielokata mniejszego i
wiekszego. Niech n € N i podzielmy odcinek [0,a] na n odcinkéw rownej
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dhugosci:

a a a a
0,a) =10, —|U|—2—|U---U -2)—,(n—1)—|U —1)—,al.
0.0 = 0.4 U222 U0 [ =2 L = ) 2 Ui - )]
Nad kazdym z odcinkoéw podziatu [k £, (k+ 1) £] zbudujemy dwa prostokaty,
mniejszy o wysoko$ci f(E2) oraz wiekszy prostokat o wysokosci f (@)
Funkcja f jest rosnaca, wiec istotnie drugi prostokat jest wiekszy niz pierwszy.
Niech L, bedzie tacznym polem wszystkich mniejszych prostokatow, a U,

tacznym polem wszystkich wiekszych.
ka “(ka\?’a 2 /ka\la
Ln - — — — = —_— -,
> () -2 () -2 ()
- (/{ 4 1) a 2 B zn: @ 2 E
n N n) n
k=0 k=1

Kazdy z mniejszych prostokatow zawiera sie w obszarze pod wykresem, a wiec
takze wielokat bedacy ich suma, ktorego pole jest réwne L,. Z kolei suma
wszystkich wiekszych prostokatoéw tworzy wielokat o polu U,, zawierajacy
obszar pod wykresem. Jezeli wiec oznaczymy przez P pole obszaru pod
wykresem, to musimy miec¢

(]

Sle

S x>
= O

Sl T

>~ o

s |t
=
IS

~__
| 2

L, < P < Uy,

Rysunek 10.2: Mniejszy wielokat i wiekszy wielokat.
dla kazdego n € N. Zauwazmy, ze L, i U, maja wspolng granice, gdy
n — 0o. Skorzystamy ze wzoru

1(2m + 1
121924 g2 g2 = O é( m+1)
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ktory mozna udowodni¢ indukcyjnie. Mamy wiec

Ln:"1<k‘a) a
n n
k=1

-1
. Z
n
k=

_a (n 1)-n-(2n—1)
nd 6
6n3 3

Podobnie,
2 a n— o0 3 ]-
U,=L,+a - — — a’-.
n 3
Widzimy wiec, ze pole obszaru pod wykresem musi by¢ réwne P = ‘3—3

Sumy dolne i sumy goérne

Niech f bedzie funkcja ograniczona na przedziale [a, b], i oznaczmy przez m
i M infimum i supremum wartosci f, czyli m < f(x) < M dla x € [a,b].
Niech P bedzie dowolnym podziatem przedziatu [a,b] na pododcinki, czyli
P={a=xy<x < <xp_1 <x,=0b} (podzial odcinka na pododcinki
utozsamiamy ze zbiorem punktow tego podziatu),

[a,b] = [a,x1] U [z, 20) U+ U [Tp_2, Tp_1] U [zy_1,D].

Na kazdym malym odcinku [z;, z;41], dla i = 0,1,...,n — 1, wprowadZmy
oznaczenia

= inf{f(2); v € (25, 111]},
M; = sup{ f(z); = € [z;, xi11]}.

Mamy wiec m <m; < M; < M.
Majac dany podzial P napiszmy nastepujace sumy

n—1 n—1
L(P,f):Zmi(xm—xi), U(Rf):ZMz'(xm—%)‘
=0 i=0

L(P, f) nazywamy sumg dolna, a U(P, f) suma gorna podzialu P. Za-
uwazmy, ze sumy te zalezg od funkcji f, przedziatu [a,b], oraz podzialu P
tego przedziatu. Zauwazmy tez ze, niezaleznie od podzialu P, mamy

m-[a,b) < L(P,f) <UP, f) < M - [a,b)]. (10.1)
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m; 4

T Li+1

Rysunek 10.3: m; oraz M.

Dla ustalonej funkcji f i przedziatu [a,b] zbiory wszystkich mozliwych sum
gornych i sum dolnych sa wiec ograniczone. Poréwnujac to z poprzednim
przyktadem w ktorym obliczaliSmy pole pod wykresem widzimy, ze jezeli
f jest nieujemna, to pole pod wykresem jest liczbg wieksza lub réwna od
kazdej sumy dolnej i mniejszg lub rowng od kazdej sumy gornej. Catke dolng
z funkcji f na przedziale [a, b] definiujemy jako

b
/ f(z)dx = sup{L(P, f); P - podzial [a,b]},

a catke gorng jako

/ f(x)de = inf{U(P, f); P - podzial [a,b]}.

Calki gorna i dolna nie zaleza wiec od podziatu, a jedynie od funkcji f i
przedziatu [a, b].

Definicja 10.1. Jezeli catka dolna i catka gorna funkcji f sq rowne, to mo-
wimy, ze funkcja jest catkowalna na [a,b] w sensie Riemanna, a wspdlng war-
tos¢ catki gornej i dolnej nazywamy catkq Riemanna [ na przedziale |a,b] i

oznaczamy
b

Uwagi: (i) Zauwazmy, (10.1), ze dla dowolnego podzialu P mamy

[y

n—

n—1
L(P, f) = mi(xi1 —2) Zm Y (wir1 — ;) = m(b—a),
=0

i

Il
o
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|
—

n—1 n

UP, f) = ZM (Ziv1 —23) < M (241 — 1) = M(b—a).

=0 7

Il
o

Caltka, jezeli istnieje, spelnia wiec
b
m(b—a) < / flz)dx < M(b—a). (10.2)

(i) Przypomnijmy, ze definicja, ktora podaliémy wymaga, aby funkcja f byla

ograniczona, oraz aby a < b. Pdzniej wprowadzimy odpowiednie oznaczenia,
aby granice catkowania a i b mogly byé¢ dowolnymi liczbami, oraz opiszemy
w jaki sposob mozna, czasami, catkowac¢ funkcje nieograniczone. Takie catki
z funkcji nieograniczonych bedziemy nazywaé¢ catkami niewlasciwymi.

(iii) Funkcja moze nie by¢ catkowalna. Niech f bedzie dana wzorem

B 1 2xeqQ,
f(x)—{ 0 :x¢Q.

Wtedy, dla kazdego podzialu P i dla kazdego ¢ mamy m; = 01 M; = 1, a
wiec zawsze L(P, f) =0, U(P, f) = (b—a), czyli

/Lbf(x)dx—(), i ff(x)dx—b—a.

(iv) Calka Riemanna jest $cisle zwiazana z pojeciem pola. Jezeli f jest nie-

ujemna, to calka jest rowna polu pod wykresem, a jezeli f jest niedodatnia,
to calka jest rowna polu nad wykresem, pod osig OX, ze znakiem minus.

(v) Calke Riemanna bedziemy tez nazywac¢ calka oznaczona. W literaturze
mozemy spotka¢ tez inne konstrukcje catki oznaczonej, ale my zajmujemy sie
tylko powyzsza konstrukcja. Naszym celem obecnie bedzie udowodnienie, ze
funkcje ciagle sa catkowalne w sensie Riemanna. W tym celu udowodnimy
kilka prostych twierdzen.

Twierdzenie 10.2. Catka dolna jest mniejsza lub réwna catce gorney:

£ (=) dmlef f(z)dz

Dowod. Mamy pokazaé, ze kazda suma dolna jest mniejsza lub réwna od
kazdej sumy gornej. Latwo zauwazy¢, ze suma dolna jest mniejsza lub réwna
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od sumy gornej opartej na tym samym podziale (10.1). Niech wiec L(P, f)
bedzie sumg dolng zwigzang z podzialem Py, a U(Ps, f) bedzie suma gorna
zwigzang z podziatem P,. Niech P* bedzie wspo6lnym rozdrobnieniem po-
dziatow P i Py, czyli

P*=P UD.

Oznaczmy punkty poszczegolnych podzialow nastepujaco: Py = {1, ..., 2.},
Py = {y1,...,yr} oraz P* = {z1,...,2n}. Z definicjiP* wynika, ze kazdy
punkt z; i kazdy punkt y; sa takze elementami P*. Zauwazmy, ze w zwiazku z
tym kazdy przedzial [z;, z;11] podziatu Py i kazdy przedzial [y;, y;11] podziatu
P5 s3 sumg pewnych przedzialow podziatu P*. Wynika stad, ze

L(Py, f) < L(P*, f) S U(P", f) S U(P, f). (10.3)

Dwie skrajne nieréwnosci wynikaja z tego, ze P* jest rozdrobnieniem P; i Ps,
natomiast nieré6wnos$¢ srodkowa to obserwacja ktora zrobiliSmy wczesniej, ze
suma dolna jest mniejsza lub réwna sumie goérnej, zbudowanej na tym samym
podziale (10.1). O

Mamy nastepujacy wniosek:
Whiosek 10.3. Jezeli dla kazdego € > 0 istnieje podziat P taki, ze
U(P, f)— L(P, f) <k, (10.4)
to funkcja f jest catkowalna, oraz dla takiego podziatu P zachodzq oszacowa-
nia

U(P, ) — e < / f@)de < L(P.f) +c. (10.5)

Dowadd. 7 definicji calek dolnej i gornej mamy, dla dowolnego podziatu P

b b
/f(x)dx—/f(x)deU(P,f)—L(P,f).

Jezeli wiec spelniony jest warunek (10.4),

/f d:z:—/f )dz < e.

Skoro jest to spetnione dla kazdego € > 0, i skoro réznica catki gérnej i dolnej
jest nieujemna, to musi by¢ réwna zeru. Funkcja f jest wiec catkowalna. Z
drugiej strony

b
/ f(x)de > L(P,f) > U(P,f) — e,

i podobnie dla drugiej nier6wnosci (10.5). O
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Mamy nastepujace zasadnicze twierdzenie:

Twierdzenie 10.4. Jezeli funkcja f jest ciggla na |a,b], to jest catkowalna
w sensie Riemanna na |a, b].

Dowdd. Pokazemy najpierw, ze f spelnia nastepujacy warunek:
Ve>0 J0>0 Va,u lz—y|l<d=|flx)— fly)] <e (10.6)

Zauwazmy, ze powyzszy warunek jest silniejszy niz ciggltosé funkcji w kazdym
punkcie. W przypadku cigglosci w kazdym punkcie stalg 6 dobieramy do
zadanego € i dla ustalonego x. Natomiast w powyzszym warunku (10.6)
stata ¢ zalezy tylko od zadanego €, i jest dobrana wspdlnie dla wszystkich
punktow x dziedziny. Funkcje spelniajaca warunek (10.6) nazywamy wiec
czasem ,jednostajnie ciggly”. Teraz pokazemy wiec, ze funkcja ciggla na
przedziale [a,b] (zawierajacym konce) spetnia (10.6), a wiec jest jednostajnie
ciagta.

Rysunek 10.4: Funkcja ciggta, ale nie jednostajnie ciagla.

Zeby podkregli¢ roznice pomiedzy ciagloicia a jednostajna ciagloscia roz-
wazmy funkeje f(z) = I na przedziale (0, 1]. Wiemy, ze funkcja ta jest ciagla
na przedziale (0, 1], ale nie jest jednostajnie ciagta, czyli nie spetnia warunku
(10.6). Latwo to zauwazy¢. Wezmy dowolne ¢ > 0, dowolne n € N, n > 4 i
niech = 2 oraz y = x + §. Wtedy |z — y| = 0/2 < 4, ale

n 1 n 1 2 >n
) %+g_5 n+2 20’
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gdyz dla n > 4 mamy niw < % Widzimy wiec, ze niezaleznie od  roznica
|f(z) — f(y)| moze by¢ dowolnie duza, pomimo, ze |x — y| < §. Widzimy
wiec, ze funkcja ciggla w kazdym punkcie swojej dziedziny moze nie by¢
jednostajnie cigglta. Wr6¢émy do naszej sytuacji, czyli niech funkcja f bedzie
ciagla na przedziale [a, b]. Dowod przeprowadzimy nie wprost, czyli zalézmy,
ze f nie jest jednostajnie ciagla, to znaczy warunek (10.6) nie jest spetniony,
czyli

de>0 V>0 Fzyelad], [x—yl <dA|f(z)— fly)] > €.

Bedziemy stosowali powyzszy warunek dla § = %, n=1,2,.... Dla kazdego
n otrzymujemy wiec pare liczb @, y, € [a,b] spelniajacych |z, — y,| < 2,
oraz | f(x,) — f(yn)| > €0.Wiemy, ze skoro ciag {z,} C [a,b] to mozna wybra¢
podciag {x,, } zbiezny do pewnego o, € [a,b]. Zauwazmy, ze wtedy podciag
{Yn, } tez musi by¢ zbiezny do z.:
1
xnk—n—k<ynk<xnk+n—k

W takim razie, z ciagtosci f mamy f(z,,) — f(2x) oraz f(yn,) — f(Zeo).
W takim razie f(z,,) — f(yn,) — 0, a wiec mamy sprzecznos¢ z warunkiem
|f(zn,) — f(Yn,)| = €0 > 0. Tym samym udowodnili$émy, ze f spetia (10.6).

Catkowalno$¢ bedziemy chcieli pokaza¢ korzystajac z Wniosku 10.3. Niech
wiec € > 0 bedzie dowolne, i niech 6 > 0 bedzie liczba dana przez (10.6), ale
dla € = 3. Niech n € N bedzie dane wzorem n = [I’TT“] + 1. Podzielmy
przedzial [a, b] na n rownych odcinkéw punktami podziatu

n

P:{xiza—i—(b—a)i; izO,l,...,n}.

Zauwazmy, ze dhugos$¢ kazdego odcinka podziatu jest mniejsza niz 9, (b;—“) <
9, gdyz n > (b%;a). Jezeli wiec x,y € [z, xi11], to |[x —y| <0, gdyzixiy

nalezg do tego samego przedzialika podziatu. Skoro tak, to | f(z)— f(y)| < €.
Funkcja f jest ciagta na przedziale [x;, z;11], a wiec jej kresy M; oraz m; sa
przyjete w jakichs$ punktach x i y, a wiec kresy tez musza spetnia¢ M; —m; <

€ = Gay- Wynika z tego, ze
n—1 n—1
=0 =0
b—a n—1
= Mz - 7
- @:o( m;)



Poniewaz € byto dowolne, to z Wniosku 10.3 otrzymujemy, ze f jest calko-
walna. B

Uwaga: Powyzszy dowdéd mozna troche wzmocnié, i pokazaé, ze jezeli f ma
skoriczenie wiele punktow nieciaglosci w [a, b] to tez jest calkowalna.

Sumy Riemanna

Zalozmy, ze mamy funkcje f na przedziale [a,b], podzial tego przedziatu
P={a=1zp<x <29 < - <z, = b}, oraz niech w kazdym przedziale
podziatu wybrany bedzie punkt ¢;:

ti€[$i,$i+1], Z:(),l,,n—l

Utwoérzmy sume
R= Zf (Tip1 — ). (10.8)

Sume taka nazywamy suma Rlemanna. Zalezy ona od konkretnego podziatu,
i od wyboru punktéw ¢;. Zauwazmy, ze zawsze zachodzi

L(P,f) < R<U(P,f),

jezeli suma Riemanna tez zbudowana jest na podziale P, a funkcja f jest
ograniczona. Wynika to z faktu, ze t; € [z;, 2,41], 1 =0,1,...,n — 1, oraz

m; =inf{f(z): x € [x;, z;1]} < f(t;) <sup{f(x): z € [x;,zi1]} = M;.
Dla podzialu P = {a = 2y < 27 < -+ < x, = b} okreslamy jego Srednice
d(P):

d(P) = max{(x;s1 —x;); 1=0,...,n—1}.

Mamy nastepujace twierdzenie:

Twierdzenie 10.5. Niech funkcja f bedzie cigglta na [a,b], i niech dany
bedzie ciqg podziatow { P,} odcinka [a,b] taki, ze Srednice tych podziatéw dgzg
do zera: d(P,) — 0, gdy n — oo. Niech R, bedzie ciggiem sum Riemanna
zwiqzanych z podziatamsi P,. Innymi siowy, dla kazdego podziatu P, mamy
niezaleznie wybrane punkty t; € [x;, x;11], @ utworzong sume (10.8). Witedy

limRn—/f
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Uwaga: To twierdzenie daje swobode w interpretacji catki jako granicy
sum. Bardzo czesto jako t; wybieramy lewy albo prawy koniec przedziatu
[z;, x;11], albo jego $rodek, nie martwiac sie, gdzie funkcja przyjmuje swoja
warto$¢ najmniejsza i najwieksza. Ale pamietajmy: f musi by¢ ciggta.

Dowad twierdzenia. Podobnie jak w dowodzie twierdzenia 10.4 zauwazmy,
ze funkcja f ciagta na [a,b] spelnia warunek (10.6) (czyli jest jednostajnie
ciagla). Wezmy dowolne ¢ > 0 i niech § > 0 bedzie dane przez (10.6) dla
¢ =G (podobnie jak w dowodzie twierdzenia 10.4). Niech ny € N bedzie
wystarczajaco duze, tak aby

Vn>ng d(P,) <.
Wtedy dla n > ng, wykonujac taki sam rachunek jak w (10.7) mamy

U(Po, ) = L(Py, f) < €

/abf(x) do— e < L(Py, f) < /abf(a?) dz

[ rwar <o < [ e

'L(Pn,f> - / () do

Skoro € bylo dowolne, a powyzsze nieréwno$ci zachodza dla wszystkich n >
ng, to

Z (10.5) mamy

oraz

czyli

< €.

<€, ‘U(Pn,f)—/abf(m)dx

lim U(Pn,f)—thPn,f / [z

n—:oo

7 drugiej strony, jak wiemy

L(P,, f) < Ry <U(Pa, f),
a wiec takze

b
lim R, :/ f(z)de.

n—oo
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Przyktlad: Nastepujaca granice sprowadzimy do caltki oznaczone;j:

1 1 1 1 1
lim + + + -+ —) .
7Hw<¢n+3 Vn+6  Vn+9 Vin/) /n
Sprobujemy przeksztatci¢ wyrazenie, zeby sprowadzié je do postaci sumy Rie-
manna jakiej$ funkcji, dla jakiego$ przedziatu, jakiego$ podziatu tego prze-
dziatu, i jakiego§ wyboru punktow ¢;.

1 1 1 1 1
+ + o= | ==
(\/n—i—?) vn+6 vn+9 \/7n) n

1 1
_Zzlx/n—i-Siﬁ
P n+3in
_2n 1 1
i1 4/1+3L"
_1 2n 1
T n

Mozna sie juz wszystkiego domysleé: jest to suma Riemanna dla funkcji
flz) = \/ﬁ, dla przedzialu [0,2], podzialu rownomiernego na 2n pod-
przedziatow réwnej dhugosci %, i dla punktow ¢; bedacych prawymi konicami
podprzedzialéw. Skoro zidentyfikowaliSmy wyrazy naszego ciggu jako sumy
Riemanna, a §rednice podzialow odpowiadajacych kolejnym wyrazom ciggu

daza do zera, to ciag ten zbiega do calki oznaczonej

/ 2 dx

0o V 143 JZ'

Na razie nie jesteSmy w stanie obliczy¢ tej caltki. Juz wkrotce, dzieki za-

sadniczemu twierdzeniu rachunku rézniczkowego i catkowego policzymy ja z
2

tatwoscia, okaze sie rowna 5(\/7 — 1). Mamy nastepujace twierdzenie (cal-

kowalno$¢ wszedzie oczywiScie w sensie Riemanna).

Twierdzenie 10.6. (i) Jezeli f i g sq caltkowalne na przedziale [a,b] a ¢ jest
statq, to funkcje f £ g oraz cf tez sq¢ catkowalne, dla dowolnej statej c, oraz

/ab(f(x) +g(z)) dv = /abf(x) dr + /abg(m) da
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/abcf(x)dx:c/abf(x)dx.

(i1) Jezeli f i g sq catkowalne na |a,b] i dla wszystkich x w tym przedziale

zachodzi f(z) < g(x) to

/ab f(z)dx < /abg(:c) dx. (10.9)

(111) Jezeli f jest catkowalna na [a,b] oraz a < ¢ < b, to f jest tez calkowalna

na kazdym z podprzedziatow |a,c| i [c,b], oraz

/abf(l") dr = /acf(:v) dr + /be(x) d. (10.10)

Rowniez na odwrdt: jezeli [ jest catkowalna na przedziatach [a,c| i [c,b] (a <
c <b), to jest tez catkowalna na [a,b], i zachodzi (10.10).

(i) Jezeli | jest catkowalna na [a,b], to |f]| tez jest catkowalna na |a,b], i

/a (o) da

Uwaga: Czesé (ii) mozna troche wzmocnié, i udowodnié, ze jezeli dodat-
kowo f(x) < g(x) poza skonczona iloscia punktow przedziatu [a,b] (a < b),
to nieréwnos¢ (10.9) tez jest ostra. Dowod w zasadzie jest ten sam.

</ @) d.

Dowdd twierdzenia. (i) Niech dany bedzie podzial P odcinka [a, b]. Wtedy
L(P, )+ L(P,g) < L(P, f+g) SUP, f+9) <UL f) + U, g).
A wiec
UP, f+g)—L(P,f+9) U f) = L(P, [) + U(P,g) = L(P,g). (10.11)

Skoro f i g sa calkowalne, to dla dowolnego € > 0 istnieja podzialy P i P
takie, ze

U(Pl,f)—L(Pl,f)<6/2, U(PQ,g)_L(PQ,g)<6/2

Jezeli P* jest wspolnym rozdrobnieniem podzialow P, i P, to, jak wiemy
(10.3), nieréwnosci zachowuja sie dla P*, a wiec z (10.9)

U(P*af+g)_L(P*>f+g) <€
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Poniewaz € > 0 bylo dowolne, to f + ¢ jest calkowalna (Wniosek 10.3), i
dodatkowo

[ @)+ g@yde 0P £ +g)
<U(P* f)+U(P,g)
g/ f(x)dx+e/2+/ o(z) dz + ¢/2
ab b a
:/ f(x)dx—l—/ g(z)dzr + €.

Skoro € > 0 bylo dowolne, to

/a (F() + g(a)) o < / ) do / gl e

Przeciwng nieréwnosé pokazujemy podobnie, wykorzystujac L(P*, f + ¢g). Z
roznica funkcji postepujemy tak samo.

Niech ¢ > 0. Wtedy, oczywiscie L(P,cf) = cL(P,f) i U(P,cf) =
cU(P, f). W takim razie

U(P,Cf)-L(P,Cf):C(U(P,f)—L(P,f)>
Podobnie, jezeli ¢ < 0 to L(P,cf) =cU(P, f) i U(P,cf) =cL(P, f), i
W obu przypadkach dla € > 0 znajdujemy podzial P taki, ze

U(P, f) — L(P, f) < |—Z| = U(P,cf) — L(P,cf) < e.

Oczywiscie, jezeli ¢ = 0 to ¢f (x) = 0, wiec jest calkowalna, i calka jest rowna
0. W kazdym przypadku otrzymujemy teze.
(i) Mamy
b b b
[ a@ido [ syan= [o@) - f@)ar o2

Funkcja podcatkowa po prawej stronie jest catkowalna (punkt (i)) oraz nie-
ujemna. Latwo zauwazy¢, ze catka z nieujemnej funkcji tez jest nieujemna -
po prostu kazda suma dolna jest nieujemna. W takim razie wyrazenie (10.12)
jest > 0, i otrzymujemy

/a ) da < / ) do.
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(iii) Niech € > 0, i niech P bedzie podzialem przedziatu [a, b], takim, ze

U(P,f) — L(P,f) < (10.13)

Dodajmy punkt ¢ do punktéw podzialu P, i otrzymane tak rozdrobnienie
oznaczmy przez P*. Poniewaz P* jest rozdrobnieniem P, to (10.13) zachodzi
tez dla P*. Niech P i P, beda czesciami podzialu P* wpadajacymi do [a, c|
i [c,b] odpowiednio. P, i P, sa wiec podziatami przedziatow [a,c| i [c,b].
Zauwazmy, ze

L(P*7f>:L(P17f)+L<P27f)7 oraz U(P*af):U(P17f>+U(P27f)
Podstawiajac to do (10.13) otrzymujemy
(U, f) = L7y, f) + (U(Py, f) = LR, f)) =UP", f) = L(P", f) <e.

Kazda z wielkosci w nawiasach po lewej stronie jest nieujemna, wiec kazda
z osobna jest < e. Poniewaz € > 0 bylo dowolne, wiec funkcja f jest cal-
kowalna na przedziatach [a, ] i [¢,b]. Korzystajac z oszacowania z wniosku
10.3 otrzymujemy dodatkowo

t/ﬂ@®<U@iﬂ=WHJH%W%ﬁ

</acf(x)dm+6+/cbf(x)dx+e
:/acf(x)dx+/cbf(x)da:+26.

Powyzsza nier6wnos¢ jest prawdziwa dla dowolnego € > 0, wiec musi zacho-

dzié
[ twar< [ [

Nierownos¢ w drugg strone pokazujemy tak samo, wykorzystujac sumy dolne,
1 oszacowania z wniosku 10.3. Musi wiec zachodzié¢ réwnosé catek.

(iv) Niech ¢ = +1, w zaleznosci od znaku calki, a wiec

—w/f ar= [ eswar <[],

gdyz ¢ f(x) < le f(x)] = [f(z)]. —~

x)dx
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Nastepne dwa twierdzenia pokazuja zwigzek calki oznaczonej z catka nie-
oznaczona i z pochodnymi.

Twierdzenie 10.7. Niech [ bedzie funkcjg catkowalng na przedziale [a,b].
Dla x € [a,b] okreslamy
:/f@ﬁ

Wtedy F jest ciggla na |a,b] i rézniczkowalna w kazdym punkcie x w ktérym
funkcja podcatkowa f jest ciggta, oraz w takim punkcie x mamy

Dowdd. Skoro f jest calkowalna to jest domys§lnie ograniczona: |f(z)| < M,
a wiec dla dowolnych z,y € [a,b], x < y zachodzi oszacowanie

/f ﬂ /ﬁf|ﬁ<M(-@

Wynika z tego, ze F' jest ciagla, a nawet jednostajnie ciagla na [a,b]. Niech
€ (a,b). Niech € > 0 bedzie dowolne, i § > 0 bedzie takie, ze dla [t — x| < &

mamy
1f(t) = f(z)| <e

Zauwazmy, ze skoro f(x) jest stalg niezalezng od t, wiec mozemy napisac¢

z+h
= %/ f(x)dt

dla dowolnego h takiego, ze [z,z + h] C [a,b]. Dla 0 < h < 0 mozemy wiec
napisaé

|F(y) — F(z)| =

Pt F) ) L - gt
:‘%/ t——/:+hf(3€)dt'
:’%/ >>dt\
=4[ "vo-soes
<3
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Podobnie, dla —d < h <0

F(x+h) — F(x)
R

1 [
-5 [ o s

+h

o f o]

1 x
- | G- sw)
|h| x+h
<e.
Widzimy wiec, ze granica
lim F(zx+h)— F(x)
h—0
istnieje, i jest rowna f(x). O

Z powyzszego twierdzenia wynika natychmiast nastepujacy wniosek, na
ktory czekamy juz od poprzedniego rozdziatu:

Whniosek 10.8. Funkcja ciggta na przedziale ma na nim funkcje pierwotng.

Nastepujace twierdzenie jest gtownym narzedziem do liczenia catek ozna-
czonych. Samo twierdzenie jest proste i dosy¢ oczywiste, i jest znane jako
zasadnicze twierdzenie rachunku rézniczkowego i catkowego.

Twierdzenie 10.9 (Zasadnicze twierdzenie rachunku rézniczkowego i cal-
kowego). Jezeli funkcja f jest calkowalna na przedziale [a,b] (w sensie Rie-
manna), oraz istnieje funkcja pierwotna F, czyli

F'(z) = f(z)  x€(ab),

(czyli f jest catkowalna w sensie definicji 9.2), to

b
/fmm:F@—mwzﬂms

Zwroémy uwage na symbol F(x)|%, oznacza on przyrost funkcji F' pomie-
dzy a i b, i bedziemy go uzywa¢ w przysztosci.

Dowdd. Niech P ={a =129 < x; < --- < x, = b} bedzie dowolnym podzia-

lem przedziatu [a,b]. Dla kazdego przedziatu [z;, z;11] podziatu stosujemy

twierdzenie o wartosci $redniej, a wiec istnieje t; € (z;, x;41) takie, ze
F(xiy1) — F(x;)

f(t:) = , 1=0,...,n—1.
Tit1 — L
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A wiec

[y

n— n—

ft)(@ip—xi) =) (F(zi) = F(2) = F(2,) = F(xo) = F(b) — F(a).

1
1=0 7

Il
o

Dla kazdego podziatu P prawdziwe sy wiec nierownosci
L(P, f) < F(b) — F(a) <U(P, f).

F(b) — F(a) lezy wiec pomiedzy caltka dolng i catka gorna funkeji f na [a, b].
Skoro funkcja f jest catkowalna, to F'(b) — F'(a) musi wiec by¢ rowne calce.
]

Uwaga: W powyzszym twierdzeniu zakladamy, ze funkcja f jest catko-
walna w sensie Riemanna, i w sensie istnienia funkcji pierwotnej. Wiemy,
ze funkcje ciagte spelniaja to zatozenie. Sa calkowalne w sensie Riemanna
(twierdzenie 10.4) oraz maja funkcje pierwotna (wniosek 10.8). Zasadnicze
twierdzenie rachunku rozniczkowego i caltkowego odnosi sie wiec gtownie do
funkcji ciaglych.

Granice calkowania

Calke oznaczong zdefiniowaliSmy na przedziale [a, b], dla a < b. Dolna gra-
nica catkowania byla wiec mniejsza od goérnej. Wygodnie jest rozszerzyc¢ ta
definicje. WprowadZzmy wiec nastepujace oznaczenia. Jezeli a < b to

/baf(x) dwz—/abfu)dx,

/Ccf(x)dx:().

Przy tak dobranych oznaczeniach wzor (10.10) zachodzi niezaleznie od wza-
jemnych relacji pomiedzy liczbami a, b, ¢

oraz dla dowolnego ¢

/abf(x)dx:/acf(x)dx—i—/cbf(m)dx. Y a,b,c,

jezeli tylko wszystkie catki istnieja. Dowdd mozna przeprowadzi¢ rozpatrujac
przypadki.
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Calkowanie przez czeSci

Twierdzenie 10.9 daje nam nastepujace wzory na catki oznaczone. Jezeli
F' = f i G = g na przedziale [a,b], to

/ f(2)G(z) dr = F(QE)G(QJ)\Z—/ F(x)g(z) dx.

Wzér ten zachodzi, jezeli ktorakolwiek z calek istnieje (wtedy obie istnieja).

Przyklad:
e e e 1

/ log(z) dx = / 2’ log(z) dx = xlog(x)ﬁ—/ r—dr =e—z|] =e—etl =1.
1 1 1T

Calkowanie przez podstawienie

Jezeli f jest funkcja rézniczkowalng na [a, b], to

b f()

[ o r@ae= | ot (10.14)
a f(a

przy czym, tak jak poprzednio, wzér ten zachodzi, jezeli ktorakolwiek z calek

istnieje — wtedy obie istniejg.

Przyklad: W nastepujacej calce podstawiamy g(z) = sin(z) oraz f(z) = x?

s 1 K
/ wsin(z?) do = = / sin(2?)2 - xdr =
0 2 Jo

2
1 (7 1 2 1— 2
=3 /02 sin(y) dy = — 5 cos(y)ly = —C;S(W )

Bardzo czesto catkujemy przez podstawienie w nastepujacy sposob, stosujac
wzor (10.14) ,od tytu”

/49 VT da;—{x—(t+1)2 = d:c—Q(t+1)dt}_

VT —1
V9-1 2 42
t+1 t 2t +1
:/ L.2.<t+1)dt:2/ o+l
V-1 1 13

Ostatnig catke tatwo juz policzyé, znajdujac funkcje pierwotng. Zapis dz =
2(t+1) dt oznacza po prostu ‘Cil—’f = 2(t+1). Zauwazmy, ze powyzszy rachunek
jest catkowicie uzasadniony, i wynika ze wzoru (10.14). Wystarczy zauwazy¢,
ze funkcja © = (¢t + 1)? jest odwracalna na przedziale [1,2], i odwrotna do
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niej to funkcja t = /= — 1 na przedziale [4,9]. Czasem, stosujac ten sposob
odstawiania mozemy wpas$¢ w pulapke. Na przyktad

2 4
1

/ xzdx:{xQZt = 2xda::dt}:/ 5\/%(12520,

) 4

chociaz z drugiej strony wiemy, ze catka po lewej stronie jest rowna 1—36 > 0.
W zadaniach sytuacja moze nie by¢ tak oczywista, wiec zawsze warto doktad-
nie sprawdzi¢ rachunki, szczegoélnie w sytuacji, gdy robimy podstawienie, a
funkcja podstawiana nie jest odwracalna.
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Rozdzial 11

Zastosowania calek

Wiele wartosci fizycznych, ,namacalnych”, intuicyjnie zrozumiatych mozna
opisac¢ jako granice sum. Taka granice sum mozna czesto zinterpretowac jako
granice ciggu sum Riemanna dla pewnej funkcji, i w takim razie danag wielkos¢
fizyczna zinterpretowaé jako caltke oznaczona z jakiej$ funkcji. Calke taka
mozemy nastepnie obliczy¢ korzystajac ze znanych sposobow calkowania.
Omowimy kilka przyktadow.

Dtugosé tuku

Niech funkcja f, okreslona na przedziale [a, b] bedzie ciagla, rozniczkowalna,
oraz niech jej pochodna bedzie ciagla na (a,b). Obliczymy dlugosé¢ krzywej
na plaszczyznie, bedacej wykresem funkcji f, czyli krzywej {(z, f(z)); = €
la,b]}. Dlugos¢ krzywej okreslamy jako granice dlugosci tamanych, przy-
blizajacych krzywa. Innymi stowy, wybieramy na krzywej ciag weztow, a
nastepnie laczymy sasiednie wezty ze soba odcinkiem. Powstaje tamana,
ktorej dhugosé obliczamy. Nastepnie zageszczamy wezty na krzywej i znowu
liczymy dlugo$é powstalej tamanej. Powstaly w ten sposob cigg tamanych,
jezeli odlegtosci sasiednich wezlow zbiegaja do zera, powinien mie¢ dtugo-
Sci zbiezne. Granice tych dtugosci przyjmujemy za dtugos$é krzywej. Krzywa
moze nie mie¢ dtugosci. W przypadku ktory rozpatrujemy, to znaczy krzywej
bedacej wykresem odpowiednio regularnej funkcji dtugosé¢ istnieje, i wyraza
sie przez calke.

W przypadku naszej krzywej kazda tamana z weztami na wykresie f nad
przedzialem [a,b] wiaze sie z podzialem P = {a =29 < 21 < -+ < x,, =
b}. Punkty podzialu sa rzutami na o§ OX wezlow lamanej. Diugosé takiej
lamanej, zwigzanej z podzialem P dana jest wzorem
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Rysunek 11.1: Przyblizenie krzywej tamana.

i
L

~
3
Il

V(@i — 23)2 + (f(win — f2))? =

_ S(%H ) \/1 N (f(iﬂm) - f(ﬂfi))Q'

=0 Ti+1 — Li

I
o

Funkcja f jest rozniczkowalna w kazdym przedziale [z;, z,11], a wiec z twier-
dzenia o wartosci Sredniej w kazdym takim przedziale istnieje punkt ¢; taki,

ze
f(xH—l) B f(xz) _ f/(tz)
Tit1 — L4
Mamy wiec
n—1

Ly=) (zig1—xi)V/ 1+ f/(t:)
Dlugos¢ tamanej jest wiec suma Riemanna funkcji ciagtej /1 + f'(z)?. Za-
geszczanie weztow tamanej daje zageszczanie otrzymanych podziatow, a je-
zeli maksymalna odlegtos¢ sasiednich weztow dazy do zera, to rowniez mak-
symalna odlegtos¢ ich rzutow (czyli $rednica zwiazanych z nimi podzialow)
dazy do zera. W takim razie, korzystajac z Twierdzenia 10.5 sumy Riemanna
zbiegaja do catki

I
o

L= /b\/1+f’(:1:)2dx. (11.1)

Calka L reprezentuje dtugos¢ wykresu f. Jak wspomnieliSmy juz wczesniej
krzywa moze nie mie¢ dhugosci. Wtasnie uzasadniliSmy natomiast, ze wykres
funkcji majacej ciagta pochodng ma dtugosé, i dlugosé ta dana jest catka
(11.1).

Przyklad: Rozwazmy przyklad tak zwanego cosinusa hiperbolicznego
e’ +e "

f(z) = cosh(x) = 5 TE [—1,1].
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Wykresem tej funkcji jest tak zwana ,linia tancuchowa”. Gietka, ale nie-
rozciagliwa lina (na przyktad lancuch) zaczepiona na koncach, i zwisajaca
swobodnie, przyjmie ksztalt wykresu funkcji cosh(x), oczywiscie odpowied-
nio rozciggnietego w poziomie i pionie. Taki ksztalt uwazany jest za bardzo
solidny. Na przyktad stynny tuk w St. Louis nad rzeka Missisipi ma ksztatt
linii tancuchowej (do gory nogami).

Rysunek 11.2: Linia tancuchowa i tuk w St. Louis.

Dla tej funkcji mamy

Fla)= "% —sinh(x).

Wiemy tez, ze sinh’(x) = cosh(z) oraz ze funkcje hiperboliczne spelniaja tak
zwana ,,jedynke hiperboliczng”

cosh?(z) — sinh?(z) = 1.

Mozemy wiec obliczy¢ dtugosé wykresu

1 1 1

L:/ \/1+f’(x)2dx=/ \/1+sinh2(x)dx=/ \/cosh®(z) dx =
-1 -1 -1

1 ol _ ol gl _ ol 1

= / cosh(z) dz = sinh(z)|", = - —e— —.
-1

2 2 e
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Objetosé bryly obrotowej wokét osi OX

Niech bedzie dana funkcja f na odcinku [a,b], ciagta i nieujemna. Obra-
cajac obszar pod wykresem f wokol osi OX otrzymujemy tak zwang bryte
obrotowa

obszar pod
wykresem

<>

Rysunek 11.3: Bryta obrotowa.

Objetos¢ tej bryty mozemy przyblizyé¢ przy pomocy walcow, powstatych
przez obrot prostokatow wokot osi OX.

Rysunek 11.4: Przyblizanie objetosci walcami.

Wybierzmy podzial P = {a = 29 < 21 < -+ < z, = b}. Niech, dla
1=0,...,n—1

m; = inf{f(z); x; <z <xi1}, M; = sup{f(x); z; <x <z}

Rozwazmy ,plasterek” bryly obrotowej wokol przedzialu [z;, x;,1]. Walec o
promieniu m; jest calkowicie zawarty w tym plasterku, natomiast walec o
promieniu M; zawiera plasterek w calo$ci w swoim wnetrzu. Wynika z tego,
ze objetos¢ takiego plasterka (oznaczmy ja przez V;) musi by¢ liczba zawarta
pomiedzy objetosciami tych dwoch walcow, czyli

(Tip1 — z) mm; < V; < (@401 — a;) T MP.
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Widzimy wiec, ze objetos¢ V' calej bryty obrotowej, sktadajacej sie ze wszyst-
kich ,plasterkow” spelnia

—_
—_

n— n—

($i+1 — il?l) Wm? < \% < ($i+1 — Jfl) 7'(']\4Z2

%

I
o
Il
o

7

Sumy po lewej i prawej stronie powyzszej podwojnej nierdwnosci sg sumami
dolng i gérng funkeji m f2, dla podziatu P. Poniewaz nieréwnosci te zachodzg
dla wszystkich podzialéw, a funkcja 7 f? jest calkowalna (bo jest ciggla), wiec
V' musi by¢ réwne calce

V= W/abe(:p) dz.

R

—

Rysunek 11.5: Torus.

Przyklad: Rozwazmy torus o duzym promieniu R i maltym r (0 < r < R).
Torus taki mozemy przedstawi¢ jako bryte obrotowa powstala z obrotu kota

2+ (y— R)? <r? (11.2)

wokot osi OX. Obszar (11.2) nie jest obszarem pod wykresem funkcji, ale
mozemy go przedstawié¢ jako réznice dwoch takich obszaréw, i w ten sposob
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przedstawi¢ torus jako roznice dwoch bryl obrotowych, ktorych objetosci
potrafimy obliczy¢ przy pomocy catek. Wiekszg brylte otrzymujemy jako
obrot obszaru pod gérnym poélokregiem a mniejszag jako obrét obszaru pod
dolnym poétokregiem. Goérny i dolny poétokrag sa wykresami funkeji

fi(z) = R+ Vr? — 22, folzr)=R—vVr2—22, —r<z<r

R+ +Vr2 — a2 R—Vr?2 — a2

Rysunek 11.6: Obszar (11.2) jako roznica dwoch obszarow.

Mamy wiec wzor na objetos¢ torusa:
Vzw/_:ff(x)dx—w/_:fg(x)dx

w [ () - )i

=7 [ (ho) = b)) (o) + fola)) do

:W/TQ\/W-Z-RCZJ:

= 4Rr / V2 — 22 da.

Ostatnia catke mozemy obliczy¢ stosujac podstawienie x = sin(t), ale mozna
tez jej wartos¢ szybko odgadna¢. Zauwazmy, ze wykresem funkcji podcal-
kowej jest gorna polowka okregu o §rodku w punkeie (0,0) i promieniu 7.
Calka, jako pole obszaru pod wykresem, to w takim razie potowa pola kota
o0 promieniu 7, czyli “77'2 Otrzymaliémy wiec nastepujacy wzor na objetosé
torusa:

V =2n"Rr’
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Pole powierzchni bryly obrotowej wokétl osi OX

Rozwazmy obecnie pole powierzchni bocznej bryly obrotowej opisanej w po-
przednim punkcie. Zatézmy, ze funkcja f jest rézniczkowalna, jej pochodna
jest ciagla na (a,b) i ma skonczone granice na korcach a,b (do obliczenia
objetosci bryly obrotowej wystarczylto, zeby f byla ciagta). Ponownie roz-
wazmy podzial P = {a = 29 < -+- < x, = b} odcinka [a,b], i ,plasterek”
bryty obrotowej wokol przedziatu [z;, z;11]. Powierzchnie boczng plasterka
przyblizymy powierzchnia boczna stozka $cietego (nie walca), powstatego
przez obrot obszaru pod sieczng wykresu wokol osi OX.

T Tit1 T Tit1
Rysunek 11.7: Stozek przyblizajacy bryle obrotows.

Powstaly stozek Sciety ma promienie podstaw f(x;) i f(x;41), oraz wy-
soko$¢ x;11 — x;. Jak wiadomo z geometrii pole powierzchni bocznej takiego
stozka $cietego jest rowne dlugodci ,tworzacej” stozka razy $redni obwod.

Jezeli kto$ nie pamieta tego wzoru, to moze sobie taki wzor wyprowadzic,
rozcinajac stozek, i rozptaszczajac rozcieta Scianke boczng. W naszym przy-
padku stozka $cietego nad przedziatem [z;, z;11] $redni obwod czyli obwod w
potowie wysokosci to

f(@is) + f(z:)

2 ’

27
a dhugos¢ ,tworzacej” to

V(@i — 2:)2 + (f (i) — f2))?

Laczna powierzchnia boczna wszystkich stozkoéw przyblizajacych bryte jest
wiec dana wzorem

5 — 227 (f(xiﬂ);r f(l’v:)) "

X (Tip1 — @5) - \/1 + (f(xi“) +f(xi>>2. (11.3)

Tiv1 — X4
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sredni obwdd
tworzaca

Rysunek 11.8: Tworzaca i Sredni obwdd stozka Scietego.

Korzystajac z twierdzenia o wartosci Sredniej powyzsza sume mozemy zapisacé
jako

Z? e HCNER RV e L R

dla odpowiednich punktow ¢; € (x;, x;11). Zauwazmy, ze nie jest to suma Rie-
manna zadnej funkcji. Musimy wiec wykonaé jeszcze jeden krok. Poniewaz
f jest jednostajnie ciagta to dla kazdego ¢ > 0

’f(l’m) + f(x)

5 — f(ti)

<€

jezeli tylko érednica podziatu P jest odpowiednio mata. Z naszych zaltozen
wynika tez, ze [’ jest ograniczona, a wiec sume (11.3), ktora jest rowna (11.4)
mozna zastapi¢ suma

Zwa (Zig1 — 25) -1+ f(t:)2, (11.5)

z bledem dowolnie matym, jezeli §rednica podziatu P jest odpowiednio mala.
Suma (11.5) jest suma Riemanna funkcji ciaglej 2n f(x)/1 + f/(x)2, a wiec
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sumy Riemanna daza do calki z tej funkcji, gdy srednice podziatow daza do
zera. Pole S powierzchni bocznej powstalej bryty obrotowej jest wiec réwne

S:27r/ f(x) V14 f'(x)?dx.

Przykltad: Obliczymy pole powierzchni torusa, ktorego objetos¢ obliczy-
lisSmy w poprzednim punkcie. Wiemy, ze torus mozna zapisa¢ jako bryte
powstata z obrotu kota

2+ (y— R)? <r?

wokot osi OX, a w takim razie pole powierzchni bocznej torusa jest rowna
sumie sumie p6l powierzchni bocznych bryt powstalych przez obrét gérnego
i dolnego polokregu:

S—an / F@IF @) de + 2 / Fo@)/T+ fa(@) da,
gdzie, jak poprzednio
flx)=R+Vr2 =22 fo(x) =R—Vr?—22

Mamy wiec
1 1 -

B R GET A

r2 — 2

fi(z)

i podobnie
x

falx) = NeEreh

Obie pochodne réznig sie wiec tylko znakiem, i mamy
VI fi(@)? =1+ fi@)? =

\/1+ x? \/r2—x2—|—x2 r
r2 — g2 r2 — g2 2 — g2
Ostatecznie wiec

Sz27r/r <(R+M)ﬁ+(i€—x/ﬂ)ﬁ) dx

T

" dzx
=47 Rr R —
/_r Vr? — g2

4 R/T dz
= i B —
LV GF
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tnpr [ 2% :
e y:—
T r ., /1_(%)2 r

=4mRr /1 L

14/ 1—92
— 47 Ry arcsiny|',
=471 Rr.
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Rozdzial 12

Calki niewlasciwe

Calke oznaczong zdefiniowalismy dla funkcji ograniczonych na skonczonym
przedziale [a, b]. Teraz definicje te rozszerzymy na funkcje niekoniecznie ogra-
niczone i na przedzialy nieskonczone. Catki takie nazywamy catkami niewta-
Sciwymi. Najpierw rozwazmy przypadek funkcji, ktora nie jest ograniczona
na przedziale [a, b], ale jest ograniczona, i catkowalna, na kazdym podprze-
dziale postaci [c,b], a < ¢ < b. Rozpatrujemy wiec przypadek funkcji ktora
jest zupelnie porzadna'(ciagla) na przedziale [a, b] z wyjatkiem lewego konica
przedziatu, w ktérym zadnej regularnosci nie zaktadamy. Punkt a nawet nie
musi naleze¢ do dziedziny. Mozna jednak obliczy¢ catke na przedziatach po-
staci [, b] dla dowolnego ¢ € (a,b] na ktorych funkcja jest ciagla, i zapytac
sie czy takie calki sg zbiezne do czego$ gdy ¢ — a™. Jezeli istnieje granica

c—at

b
g — lim / () da, (12.1)
C
to mowimy, ze funkcja f jest calkowalna w sensie niewlasciwym na przedziale
[a, ], albo ze calka niewlasciwa po [a, b] jest zbiezna. Granice g oznaczamy,
oczywiscie, przez

c—at

/jf(@dm:g: lim /be(:r)d:c,

i nazywamy calka niewlasciwa f po [a,b]. Podobnie zdefiniowana jest caltka
niewlasciwa gdy funkcja f ma ,sobliwo$¢” w prawym koricu przedziatu cal-
kowania (czyli nie jest ograniczona w otoczeniu tego konca, i najczesciej nie
jest tez w tym punkcie okreslona). W tym przypadku catka niewlasciwa ist-
nieje (jest zbiezna) jezeli f jest catkowalna na kazdym przedziale [a, ¢], gdzie
a < ¢ < b, oraz istnieje granica

[

g=lim [ f(x)dz. (12.2)

c—b a
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Uwaga: Jezeli funkcja f jest calkowalna na [a, b] to oczywiscie granice (12.1)
i (12.2) istnieja, i sa rowne calce w zwyklym sensie. Calka niewtasciwa jest
wiec rozszerzeniem definicji catki zwyklej.

Catke niewlasciwa mozemy tez zdefiniowa¢ w sytuacjach, gdy funkcja f
ma ,,0sobliwosci” na obu koncach przedziatu catkowania [a, b], lub w jednym
lub kilku punktach wewnetrznych przedzialu. W tym celu najpierw dzielimy
przedziat catkowania na podprzedzialy tak, aby w kazdym podprzedziale
funkcja f miala tylko jedna ,0sobliwo$é¢”, na tylko jednym z dwoch koncow.
Na przyklad, jezeli badamy catkowalnos¢ funkcji f(z) = 9—16 na przedziale
[—1, 1], to rozpatrujemy osobno zbiezno$¢ caltek

O dx Ude

— oraz , (12.3)
1 X o T

i jezeli obie powyzsze calki sa zbiezne, to mowimy, ze calka niewlasciwa
po przedziale [—1, 1] istnieje. Zauwazmy, ze w tym konkretnym przypadku
zadna z powyzszych calek nie jest zbiezna (przyktad (b)).

Przyklady: (a) Rozpatrzmy f(z) = \/LE na przedziale [0, 1]. Funkcja ta jest
ciggla na (0, 1], ale ma ,osobliwo§¢” w 0. Sprawdzamy wiec

1

/1dyc /1 1y Tz
_— 1’2.’1::—

1

E\/E € 55

czyli catka niewtasciwa jest zbiezna, i

—2(1—e) =2 o

Udx

0o X

=2

(b) Rozwazmy funkcje f(z) = % na przedziale [—1,1]. Funkcja ta ma jedna

osobliwosé w punkcie 0 wewnatrz przedziatu catkowania. Musimy sprawdzi¢
zbieznosé kazdej z calek niewtasciwych (12.3) osobno. Sprawdzmy najpierw
catke po [0, 1]

! dx e—0t

1
— 1 — — — —
T log(z)|, = 0 — log(e) log(€> — 0.

Nie ma potrzeby sprawdzania zbieznosci drugiej catki z (12.3) (tez jest zreszta
rozbiezna). Skoro jedna z calek (12.3) nie jest zbiezna, to calka po calym
przedziale [—1, 1] nie istnieje.
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Drugi rodzaj catek niewtasciwych dotyczy nieskoriczonego przedziatu cal-
kowania. Niech funkcja f(z) bedzie calkowalna w kazdym przedziale [a, M],
dla pewnego a i kazdego M > a. Jezeli istnieje granica

g = lim /Mf(x) dx,

M—o0

to mowimy, ze f jest calkowalna w sensie niewlasciwym na [a, 00) i piszemy

0 M
| twdr=g= tm [ s

Podobnie definiujemy caltke niewlasciwa po przedziale (—oo, b):

b b
| fa@yde= g [ s

o ile kazda z calek po prawej stronie rownosci istnieje (w sensie wlasciwym),
oraz istnieje granica. W koricu catke na calej prostej (—oo, 00) definiujemy

jako sume
o) b o)
| t@as= [ saies [ p@a

o ile obie catki po prawej stronie, niezaleznie od siebie, istnieja. Zauwazmy,
ze definicja ta nie zalezy od punktu b w ktérym rozdzielamy potproste.

W konicu mozemy potaczy¢é oba rodzaje catek niewtasciwych, i catko-
waé po przedziale nieskonczonym funkcje ktora ma ,,0sobliwosci” w pewnych
punktach. Przedziat calkowania dzielimy na podprzedzialy tak, aby funk-
cja w kazdym podprzedziale skoriczonym miata tylko jedng ,,0sobliwos¢” na
ktoryms koncu, oraz zeby na nieskoniczonych nie miata zadnych osobliwosci,
i nastepnie sprawdzamy zbiezno$¢ kazdej z caltek niewtasciwych osobno. Na
przyktad, istnienie catki niewtasciwej z funkcji f(x) = 33—12 na calej prostej
(—00,00) oznacza istnienie kazdej z calek niewtasciwych

/1dx /de /1dx /oodx

e $2 ) _1 I2 ) 0 x2 ] 1 x2 .

W tym konkretnym przypadku calki pierwsza i ostatnia sg zbiezne, ale druga
i trzecia sa rozbiezne, wiec catka niewlasciwa

/ > dx o
nie istnieje.

2
o T
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T 2 37 47 T 2T 37 47

Rysunek 12.1: Funkcje 51% j Lsinel

xT

Przyklady: (a) Funkcje 22 x) |Sm($)| sa ciggle na polprostej [0, 0o) (wartosci
w 0 ustalamy na 1). Plerwsza Jest calkowalna w sensie niewlasciwym na tej
potprostej, a druga nie jest.

WezZmy dowolne M > 0, i rozwazmy

2r M _: 2w [M] 2 M _:
sinx sin sin
/ dz = / dr + / dzx.
0 T 0 T orM] T

Gdy M — oo druga catka po prawej stronie ma granice 0, gdyz dlugosé
przedziatu calkowania nie przekracza 27, a wartos¢ funkcji podcatkowej jest
ograniczona przez co dazy do 0 gdy M — oco. W takim razie mamy

2 [M]
2n M _: 2n[M] :
lim Y gy = lim ST dx, (12.4)
M —o0 0 xT M—oo 0 X

istnienie jednej granicy pocigga za soba istnienie drugiej. Zajmiemy si¢ w
takim razie granicg po prawej stronie, i pokazemy, ze istnieje. Rozl6zmy
calke:

2n[M] M]=1 or(k+1)
[ S,
0 x o 27k Z

Przyjrzyjmy sie wyrazom szeregu:

/27r(k+1 Slnx /QﬂkJrﬂ sin . /27r(k+1) sin p
X x
2rk 2k 2wk+m z
/ sinx / 4 sinz J
x+2/€77 o z+ 2k+1)m
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gdzie wykorzystalismy fakt, ze sin(z+2k7) = sin(z) oraz sin(x+ (2k+1)7) =
— sin(z). Kontynuujac, mamy

27 (k+1) sin T 1 1
/ de = / sin x — dx
ok x 0 r+2krt 4+ (2k+ )m

Zauwazmy, ze calka jest dodatnia, gdyz funkcja podcatkowa jest dodatnia
wewnatrz przedziatu calkowania. Szereg (12.5) ma wiec dodatnie wyrazy, i
jest zbiezny (czyli jest zbiezna calka po lewej stronie (12.5)) dokladnie wtedy,
gdy jest ograniczony. Oszacujmy jeszcze ostatnig catke. Dla £ > 0 mamy

/7& 1 | ]
in — =
M\ 2k rr 2krnn)

4 T
[ dr <
/0 G 2k (et 2k D)

<7 T 1
S Lo, = o

natomiast dla k£ = 0 oszacujmy brutalnie

2T ginx I
dr <
0 oy 0

sin x
dr < 2m.

x
Mamy wiec

M gin g SR |
dr < 2
/0 z 0= T kz:; 2mk?

1 M7y
—or 4 -
7r+27T ; k2

1 =1
<2+ — —.
W+27T ;/@

Jak juz wspomnieliSmy lewa strona jest niemalejaca funkcja M, i jest ogra-
niczona, czyli ma granice, gdy M — oco. Granice (12.4) istnieja wiec, a wiec

calka niewlasciwa ]
/ *sinx
dx
0
jest zbiezna. Mozna pokaza¢ (ale to wymaga zupelnie innych narzedzi), ze

catka ta jest rowna \/g Catka ta jest wazna, i pojawia sie w zastosowa-
niach. I[stnienie jej zawdzieczamy temu, ze ,pagorki” sinusa wystepuja na
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przemian powyzej i ponizej osi OX, i ich pola sie skracaja. Natomiast suma
pol wszystkich ,pagérkéw” wykresu jest nieskonczona. Innymi stowy, po na-
lozeniu wartosci bezwzglednej na funkcje podcatkowa catka niewlasciwa nie
istnieje. Zeby sie o tym przekonaé, wezmy dowolne M > 0, i obliczmy

M | sinz| IMI | gin |
dr > —d
T B

[(M]—1

(k+D)7 | o
_ Z / ’SIHZU| dgj
kT X

[M] 1
Z / sin

x—i—/mr
[M] 1

> Z kw—l—w/ sinx dx
i”:z
km
k=1
Gdy M — oo to [M] — oo i w takim razie

/”M | sin z| dr — oo
7
0

T

czyli catka niewlasciwa nie jest zbiezna.

(b) Pokazemy, ze catka z funkcji f(z) = e na calej prostej (—oo, c0) jest

zbiezna. Pokazemy najpierw, ze catka po potprostej dodatniej istnieje. Niech
M > 0. Poniewaz funkcja podcatkowa jest dodatnia, to catka

M 2
/ e " dx (12.6)
0

rosnie wraz z M, wiec granica gdy M — oo istnieje, jezeli catki te sa wspolnie
ograniczone od gory dla wszystkich M.

M 2 ! 2 M 2
/ e’ da:':/ e ” d:c—l—/ e ¥ dx
0 0 1
N M
g/ e’ dx—l—/ e dx
0 1
L u
:/ e dr — e‘“”‘l
0
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1
_p2 _ _
:/e’”dm+el—eM
0

1
2
</ e dr 4+ et
0

Calki (12.6) stanowia wiec ograniczona i rosnaca funkcje M, maja wiec gra-
nice gdy M — oo. Rozwazmy teraz druga catke niewtasciwa. Skorzystamy
z parzystoéci funkcji podcatkowej. Niech M > 0.

0 2 0 2 M 2
/ e dx = —/ e’ d:r;:/ e " dx,
-M M 0

czyli, jak przed chwila udowodnili$émy, catki te maja granice gdy M — oo.
Calki niewlasciwe funkcji e po przedzialach (—oo,0] i [0,00) istnieja, a
wiec istnieje catka niewtasciwa po calej prostej. Mozna pokazaé, ze

/ e~ dx = /T,

o0

ale wymaga to dodatkowych narzedzi. Funkcja e to tak zwana funkcja

Gaussa, i jest jedna z wazniejszych funkcji w matematyce i zastosowaniach.

(¢) Niech f(z) =2, z > 1. Jezeli obrocimy wykres tej funkcji wokoét osi OX,
to otrzymamy nieskonczony ,lejek”. Obliczymy objeto$¢ tego ,lejka”; i pole
jego powierzchni bocznej. Stozek jest nieskoriczony, i zauwazmy, ze pasuje
dokladnie do naszych calek niewlasciwych. Jego objetos¢ jest rowna granicy
objetosci lejkow ucietych, i jego pole powierzchni bocznej jest granica pol
powierzchni bocznych lejkow z uciety ,koncowka”. Widzimy wiec, ze wielkosci
te wyrazaja sie catkami niewlasciwymi, i istnienie tych wielkoSci wiaze sie z
istnieniem calek niewtasciwych

001 001 1/ 2
V:7T/ — dz, S:27r/ — 1+(—) dx.
. 1 xv x

Policzmy te calki.
, M , 1M _ 1
V=1lmwn« —2d$:7rhm ——| =x lim ——+1) =m.
1 €T 1 M—oco M

M —o0 M—o0 x

Widzimy wiec, ze catka niewlasciwa jest zbiezna, a wiec objeto$¢ nieskon-
czonego ,lejka” jest skonczona i wynosi m. Obliczmy teraz pole powierzchni
bocznej
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Rysunek 12.2: Nieskonczony ,lejek”.

M N 2 M
1 1 1 1
27?/ - 1+(—) dx:27r/ — 1—1——4de
1 x\/ x . ox x
Ml M M —o0
22%/ —dr =2rlogz|] =2nlogM —— oc.
Lz

Widzimy wiec, ze catka niewlasciwa nie istnieje. Pole powierzchni bocz-
nej,lejka” jest wiec nieskonczone. Whbrew pozorom, moglibySmy jednak po-
malowaé taki lejek farba, pomimo nieskoriczonej powierzchni. Wystarczy m
litrow farby nala¢ do $rodka lejka. Wnetrze — to chyba jasne — w calosci
sie pomaluje.
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Rozdzial 13

Wzory Wallisa 1 Stirlinga

Wykorzystamy te okazje, zeby udowodni¢ wzér Stirlinga. Wzor ten stosuje
sie do przyblizonego obliczania silni, ktora jest czasem potrzebna w zasto-
sowaniach, na przyklad w statystyce. Silnia tylko pozornie jest tatwa do
obliczenia. W praktyce liczenie duzej liczby z definicji jest niemozliwe, za
duzo dzialan.

Wzor Wallisa

Najpierw udowodnimy nastepujacy wzor, znany jako wzor Wallisa.
1 2-4----2n > 1/ @) \?
™= lim — = lim — | ————— | .
n—oom \1-3----- (2n —1) n—oon \ (2n — 1)!!
Wzor Wallisa zastosujemy w dowodzie wzoru Stirlinga. Mamy, dla n > 2

T s
3 3
/ sin” x dx = / sinz sin” !z dx
0 0

™
= /2 (—cosz) sin" ! xdr
0

™

s 2
= —cosx sin"! x‘g + / cosx (n — 1) sin" 2z cosz dx
0

us
2

=(n— 1)/ cos’ z sin" % x dx
0

=(n-1) /2 (1 —sin®z) sin" 2z dx
0

= (n—l)/2 sin”_Qxd:B—(n—l)/2sin”:vd93.
0 0
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Wynika stad, ze

us us
2 n—1 (2
/ sin" x dx = / sin" 2 z dz.
0 nJo

Iterujac to, otrzymujemy

L. 1:3:5----. (2k—1)/§ 2k — DI =
d - d —_ - . —
/0 S I N 75 N A TS TS

5 A6 3 1
/2 sin?**t! ¢ do = 3 2:4-6 (2k) / sinz dr = (2k)!
0 0

M

cH T (2k+1) (2k + D)1V
czyli
T fog sin®* x dx (2R fog sin®* x dzx B
PR eIy T

2k 2 1 0% sin?* x dx
(<( )>!!> ( : (13.1)

2k — 1 2k +1) [%sin?*H zde

Zauwazmy, ze mamy

s s

2 2
0< / sin?* ! g de < /
0 0

| < [975 sin®* ¢ dx < fof sin?*~ 1 x dx _

s sin?**1 g dx I sin?**1 g dx
(2(k—1)N (2k+ )N _2k+1
(2k — ! (k) 2k

s
2

sin?* zdx < / sin?*1 z du,
0

czyli

Wyrazenia na poczatku i koricu powyzszego ciagu nieréwnosci daza do 1,
wiec z twierdzenia o 3 ciagach widzimy, ze iloraz calek w (13.1) tez dazy do
1, a wiec

T 1 (k)1 \* 1 po L (2K 2

Otrzymali$émy wiec zapowiadany wzor Wallisa. Wzor ten wykorzystamy teraz
do dowodu wzoru Stirlinga.

161



Wzér Stirlinga
Wzor Stirlinga to nastepujacy wzor:

) nlem
lim — =1.
n—oo \/2 T nn"

Niech

nle®
N

Oczywiscie a, > 0, pokazemy tez, ze ciag {a,} jest malejacy. Najpierw
zauwazmy, 7e

P e

Uny1  /mnm (n+1)lentl e n

Ay =

(13.2)

Chcemy pokazaé, ze powyzsza wielko$é jest wieksza niz 1. Wstawmy i za
n, i rozwazmy funkcje bedaca logarytmem z wyrazenia (13.2), pomnozonego
przez e.

xz

flz) = (1 + %) log(1+z), z>0. (13.3)

Pokazemy, 7e funkcja f jest zawsze wieksza od 1, czyli funkcja ef® jest
zawsze wicksza od e, w szczegdlnosci jest wieksza od e w punktach postaci
x = L czyli wyrazenie (13.2) jest wigksze od 1 dla kazdego n =1,2,3,...,
czyli ciag {a,} jest malejacy. Wroémy wiec do funkeji (13.3), i pokazmy, ze
f(z) > 1 dla z > 0. Jest to typowe ¢wiczenie na analize przebiegu funkcji.
Po pierwsze mamy

1 1
li = lim —log(l+2)+ = lim log(l+z)=1
g S0 = g losl+ ) 45 o os1 +0)
(pierwsza granice liczylismy w przesztosci, mozna pokazac z regulty de I'Hopitala,
ze wynosi 1, a druga granica wynosi 0, i wynika z ciagtosci logarytmu). Ob-
liczymy teraz pochodna i pokazemy, ze f jest rosnaca dla z > 0.

1 1 1 1
'(z) = — — log(1 Sz .
Fe) = - %<+a»+<x+2)1+$

Chcemy pokaza¢, ze dla x > 0 powyzsze wyrazenie jest > 0, czyli

1 1 1 1
— ~ loe(1 SaZ) =
" og( +x)+<m+2) 1+x>07

2

—(1+4x) log(1+x)+x+%>0.

162



Rozpatrzmy pomocnicza funkcje

2
x
gx)=—1+xz)log(l+2z)+z+ 5
Wtedy g(0) =0, oraz ¢'(z) = —log(1+2) —14+1+2 =2 —log(l +z) >0,
(ostatnia nier6wno$¢ to po prostu €* > 1+ dla = > 0). Funkcja g jest wiec
rosnaca, a poniewaz ,startuje” z 0, wiec jest wieksza od 0 dla z > 0. Mamy
wiec f'(x) > 0 czyli f jest rosnaca, a wiec
> i t)=1.
flw) > lim £(2)
Pokazalismy wiec ze f jest wieksza od 1, a wiec wyrazenie (13.2) jest wieksze
od 1 dla wszystkich n € N, a wiec ciag {a,} jest malejacy. Ciag malejacy, o
wyrazach dodatnich musi by¢ zbiezny, i niech jego granica wynosi g.
g = lim a,.
Skoro wyrazy ciagu sa dodatnie, to automatycznie g > 0. Pokazemy, ze
g > 0. W tym celu pokazemy, ze wszystkie wyrazy a, sa wieksze niz pewna
dodatnia liczba. Mamy

1 1
log aazlz(n+§)log(1~l—g)—1. (13.4)

Bedziemy potrzebowali nastepujacej nieréwnosci:
1 1 /1 1

1 1+— )<= = . 13.5

og( +n)_2(n+n+1) (135)

k sieczna wykresu

/

wykres f(x) = 1

T

n n+1
Rysunek 13.1: Oszacowanie (13.5).

Na rysunku 13.1 pole obszaru pod wykresem, od n do n + 1 to catka
z funkcji I, po przedziale [n,n + 1], czyli log(n + 1) — logn = log(1 + +).
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Natomiast pole trapezu, czyli pole obszaru pod sieczna to = %(% + n+r1)
2

Funkcja £ jest wypukla: (2)” = % > 0. Wykres lezy wiec pod kazda sieczna,
pomiedzy punktami przeciecia, czyli obszar pod wykresem zawiera sie we-
wnatrz trapezu, czyli pole obszaru pod wykresem jest nie wieksze niz pole

trapezu, czyli otrzymujemy oszacowanie (13.5). Wstawiajac (13.5) do (13.4)

otrzymujemy
log 0 < 1 n 1 1 n 1 ]
0 —(n+=)|— —
& an = 2 2)\n " nt1
S SR L — 1
S 2 n+1 2n 2n+2
1 1
C4n 4An+4
Dodajac do siebie powyzsze oszacowania dlan =1,...,k — 1 mamy

Qr—1
Qg

logﬂ:logﬂ+log%+---+log
Qg (05} as

Otrzymujemy wiec

ay 1 _
— < et = ap>ae
Qg

3
:64,

PN

gdyz ap = e. Wszystkie wyrazy ciagu sa wiec wieksze niz e%, a wiec takze
g > e1 > (. Pozostalo nam jeszcze troche manipulacji.

,  (n)?Ze2m _ (2n)te?n

In = Tppen aZn_\/Zn(Zn)Q’"b7

czyli

a2 (n)?  V2n(2n)*  (nl)222n

V2 mn2ny2  (2n) 2n)lVa

Zauwazmy zwiazek ze wzorem Wallisa, ktory mozemy zapisa¢ tak

1 (2n)
v @n-nn v
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Zauwazmy tez nastepujace zwiazki

2n)ll=2-4-----2n=2"nl,
2n)!  (2n)!
2n— 1M =13 o9n—1) = - .
(2n—1) @n =1 =01~ 2

Sktadajac to razem otrzymujemy

1 (2o L 2"nl2"n!  (n!)?2%" a?

n

Vi @n=D T Vi 2ol T @nVe a2

W koricu wiec

aQ g2
T = lim —2%_ = = ¢*—V21g=0 = g=V2m,
VT Pl Sy Ay g g g

gdyz g > 0. Zauwazmy, ze udowodniliémy w ten sposéb wzor Stirlinga
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Rozdzial 14

Calkowanie numeryczne

Jest kilka typowych algorytmoéw catkowania numerycznego. Opiszemy me-
tode trapezéw, metode Simpsona i, jako ciekawostke, metode Monte Carlo.
Metoda trapezow i metoda Simpsona to podstawowe metody catkowanie w
przypadku funkcji, o ktorych niewiele wiadomo. Sprawdzaja sie dobrze w
sytuacji, gdy catkowana funkcja ma dobre oszacowanie na druga pochodna
(metoda trapezow) lub 4 pochodna (metoda Simpsona).

Metoda trapezow

Chcemy obliczy¢ catke funkcji f na przedziale [a,b]. Funkcje f przyblizamy
funkcja liniowa, o tych samych wartosciach na koncach przedziatu catko-
wania, i zamiast calki z f obliczamy calke z otrzymanej funkcji liniowe;j.
Oznaczmy xg = a i x7 = b, oraz yo = f(x9) i y1 = f(x1). Funkcja liniowa,
ktora w punktach zy i £ przyjmuje warto$ci odpowiednio ¥y i y; dana jest

wzorem
Y1 — Yo

xr1 — Zo

w(z) = yo + (x — ), (14.1)

a catka z niej wynosi

71
/ w(z)dr = (x; — xg) yo—;yl.
zo

Mamy nastepujace oszacowanie bledu metody trapezow.
Fakt 14.1. Jezeli funkcja f ma ograniczong drugq pochodna, czyli spetnia
lf"(x)] < M, x € (a,b), (14.2)

to catka z funkcji f na przedziale [a,b] rézni sie od catki z funkeji liniowej
(14.1) o nie wiecej niz
M —a)?

R <
- 12

(14.3)
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Dowadd. Mamy udowodni¢ oszacowanie

b —a)?
/a gp(x)daj S%?

dla funkcji ¢(z) = f(z) — w(x). Funkcja p(z) spelnia wiec

pla) =) =0, " (@) = /()| < M,

(14.4)

gdyz w”(x) = 0. Najpierw udowodnimy (14.4) dla szczegolnego przypadku

a = —1, b = 1. Ogoélny przypadek dowolnych a < b otrzymamy z tego
szczegblnego przypadku przez zamiane zmiennych. Niech wiec a = —1 i
b=1. Wtedy

/_llgo(x)dw:/_llx'-go(.m)dw

1 1
= -2 J@)| +: / 2% () dx
2 L 2)
1 1 1 /!
— - /_1 _ = /1 - 2 /! d
(2<p( ) 290()>+2/1x ¢ (x) dx

Zauwazmy teraz, z zasadniczego twierdzenia rachunku rézniczkowego i cat-

kowego, ze
(5e0-ten) =1 [
5 ? 5 ? =3 _1g0 x)dz.

Wstawiajac to do poprzedniego rachunku, otrzymujemy

e

_ % ’/_11(1;2 1) () de

IA

3/ I =)@l

/_1(1—x2)dx

1




2

3
Zauwazmy, ze otrzymalismy dokladnie oszacowanie (14.4) w szczegdlnym
przypadku @ = —1 1 b = 1. Obecnie rozciagniemy to na dowolne a < b.

Niech wiec funkcja ¢ spetnia p(a) = ¢(b) =0, i |¢"(x)] < M dla x € [a, b].
Zdefiniujmy pomocnicza funkcje

() = go(b’T“ (x+1)+a). (14.5)

Wtedy, ¥(—1) = ¢(a) =01 (1) = p(b) =0, oraz

czyli
2
" ()] < M(%52%)? = M—(”‘f’ = M.

Z udowodnionego juz oszacowania otrzymujemy, ze
1 / 2
2M" M(b—
[ vira] 2 0o
~1

6
7 drugiej strony, stosujac zamiane zmiennych, mamy

Laczymy wszystko razem, i ostatecznie otrzymujemy

/ab o(x) dx /_11 () dx M(b— a)”

< —7

- 12
czyli (14.4). Zauwazmy jeszcze, ze powyzszego oszacowania bledu nie da
sie, ogoélnie rzecz biorac, poprawi¢. Przykladem moze by¢ a = —1, b = 1,
i f(z) = 2®. W tym przypadku calka dokladna z funkcji wynosi 2, catka z
funkcji przyblizajacej liniowej wynosi 2, czyli btad metody trapezéw wynosi

3. Z drugiej strony (b—a)® =8, f"(z) = 2, czyli

b—a
2

Mb—a)?® 16 4

12 T 12 3
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N

a = xo T b=xy

Rysunek 14.1: Metoda trapezow, n = 2.

Na rysunku 14.1 widzimy dlaczego metoda nazywa sie metoda trapezow.
W celu zwiekszenia doktadno$ci przyblizenia catki dzielimy przedzial na n
podprzedzialow jednakowej dtugosci a = 2o < 21 < --- < x,, = b, oznaczamy
yi = f(z;), i =0,1,...,n i stosujemy metode trapezéow w kazdym kolejnym
podprzedziale. Otrzymujemy

n—1 n—1
B Yi +Yiy1 b—a _
S = ‘ (Tig1 — m3) 5 = 5. Z(Z/z + Yit1) =
=0 1=0
b—a
=5 (Yo+2y1 + 202+ + 2Yn—1 + Un)-

Jezeli funkcja f spelia (14.7), to blad przyblizenia w kazdym podprzedziale

jest nie wiekszy niz Mg;;”, i bledow takich jest m, czyli catkowity blad
przyblizenia jest nie wiekszy niz Mf’;;;‘ &

Metoda Simpsona

Ta metoda jest podobna do poprzedniej, z tym ze catkowang funkcje f przy-
blizamy funkcjg kwadratows, ktora ma te same wartosci co f w koncach i
w posrodku przedzialu [a,b]. Oznaczmy zy = a, 1 = “T“’, x9 = b, oraz
y; = f(x;) dlai = 0,1,2. Szukana przez nas funkcja kwadratowa to funkcja
postaci

w(r) = az’+ fr+7, (14.6)

speliajaca w(x;) = y;, ¢ = 0, 1,2, czyli nastepujace 3 warunki

ad®+ Ba+v =y,

a+b 2 a+b
« 92 +6 9 +7:y17
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ab®+ Bb+vy =y

Nie musimy wylicza¢ «, ( ani v, catke z funkcji w wyrazimy przy pomocy
Yo, Y1 1Yo

b b
/w(:v)dx:/(a:)s2+ﬂx+7)da:

b

= (a%3+ﬁx—2+7x> )
_a%3+5b2+7b—aa—3—6—2—70
:%(b3—a3)+§(b2—a ) +7(b—a)
= b_Ta(Qabz+2aab+2aa2+35b+3ﬁa+67)
- b;a(acﬂ+ﬁa+7—|—ab2+ﬁb+7+a(b2+2ab~|—a2)+25(b+a)+47)
:[)_Ta(3/0+y2+404(b—’2_a) +4ﬁb+a+47)
b—

a
7% (Yo + 411 + o).

Dla metody Simpsona mamy nastepujace oszacowanie bledu.

Fakt 14.2. Jezeli funkcja f ma ograniczong czwartg pochodna, czyli spetnia
fP@)| <M, e (ab), (14.7)

to catka z funkcji f na przedziale [a,b] rézni sie od catki z funkcji kwadratowej
(14.6) o nie wiecej niz
M(b—a)’
R<—— 2
— 2880
Dowoad. O

(14.8)

W celu zwiekszenia doktadnosci dzielimy przedzial catkowania na 2n pod-
przedziatow, i w kazdym podprzedziale przeprowadzamy powyzszy rachunek.
Mamy 2n punktéow podziatu a = xy < ;1 < -+ < mg, = b (wliczajac w to
srodki n podprzedzialow), jak zwykle oznaczamy y; = f(z;) i piszemy

[y

b—a <

(y2i + 4 Y2it1 + Y2ir2)

<.
I
o

(yo +ym+2Wotys+ -t Yoamo)+ 4t ys+ -+ Yono1)).
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riN

a = xo T b=xy

Rysunek 14.2: Metoda Simpsona, n = 2.

Monte Carlo

Majac funkcje nieujemna (i, oczywiscie, ograniczona) f na [a,b] mozemy
postepowaé nastepujaco. Wyznaczmy ograniczenie f od gory, powiedzmy
f(z) < M. Nastepnie generujemy losowo n punktow (x;,y;) w prosto-
kacie [a,b] x [0, M] (,;rzucamy” losowo n punktow na prostokat). Rozklad
prawdopodobieristwa powinien by¢ jednostajny (czyli prawdopodobieristwo,
ze punkt wpadnie w jaki§ obszar powinno by¢ proporcjonalne do pola po-
wierzchni tego obszaru), a wszystkie liczby losowe x;,y;, i = 1,...,n powinny
by¢ generowane niezaleznie (niezalezne zmienne losowe). Nastepnie zliczamy
wszystkie przypadki, w ktorych y; < f(x;). To sa te losowo rzucone punkty,
ktore wpadly w obszar pod wykresem funkcji f, i niech ich bedzie m. Wtedy
proporcja ©* powinna by¢ taka sama, jak proporcja pola pod wykresem do
pola calego prostokata

m 1P f(x) da

n  (b—a) M’

Taka metoda liczenia calki nazywa sie metoda Monte Carlo. W niektorych
zastosowaniach (na przyktad przy pomiarach wielkosci elektrycznych) tego
typu metody sa stosowane.

171



Rozdzial 15
Ciagi 1 szeregl funkcyjne

Niech f,, n = 1,2,... beda funkcjami okreslonymi na pewnym zbiorze FE.
Mowimy, ze tworza one ciagg funkcyjny na E. Zauwazmy, ze dla dowolnego
ustalonego punktu x € E mamy ciag liczbowy {f.(x)}. Ciag taki moze by¢
zbiezny lub nie. Jezeli dla kazdego = € F istnieje granica lim,, .., fn(x), to
mowimy, ze ciag funkcyjny {f,} jest zbiezny punktowo. Podobnie, jezeli dla
kazdego © € E szereg liczbowy > >° | f.(x) jest zbiezny, to mowimy, ze szereg
funkeyjny > 7 | f,, jest zbiezny punktowo na E.

Naszym celem jest zbadanie mozliwosci zamiany kolejnosci wykonywania
dziatan analitycznych na funkcjach. Na przyklad rézniczkowanie szeregu
funkcyjnego wyraz za wyrazem (,wejécie” z pochodna pod znak sumy).

Przyklady: (a) Rozwazmy szereg

o
Sy
n=1
Ten szereg jest zbiezny dla |g| < 1 (mozna zastosowac na przyklad kryterium

d’Alemberta), ale jaka jest jego suma? Napiszmy

- 1
fx) = Zx" =1 dla z € (—1,1).
n=0

Pochodng funkcji f tatwo policzyé: f'(z) = ﬁ Gdybysmy mogli r6znicz-

kowa¢ szereg funkcyjny > x" wyraz za wyrazem, to

1 Oo n S n— 1 S n
A =@ =D @) =) nat ==y nat
( l‘) n=0 n=1 L n=1
Otrzymalibysmy wiec
an”: q 5, dla gl < 1.
— (1—q)
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(b) Przypus$émy, ze szukamy funkcji f dla ktorej

f'(x) = a f(x). (15.1)

Sprobujmy znalez¢ f w postaci szeregu potegowego f(z) = > 7 a,z". Gdy-
by$my mogli szereg rézniczkowaé¢ wyraz za wyrazem to, podstawiajac wynik
do rownania (15.1)

:(ianx”)/:inanxn_lzi(n—i-l ) Q1 " Zaan
n=0

n=0 n=1

Wida¢, ze wystarczy znalez¢ takie wspotczynniki a,,, aby spelnione byto row-
nanie
(n+1)apy =aa,, dlan=0,1,....

Jest to rownanie rekurencyjne, ktore tatwo mozna rozwigzac:

a n Q0
" = g, =a"—
+1 n!’

Up41 = &

Otrzymaliby$Smy wiec rozwiazanie
C an n ax
x):Zagmx =aqape™”. (15.2)
n=0

Zauwazmy, ze chociaz nie wiemy na razie, czy powyzsze rozumowanie jest
prawidlowe, to znaczy czy w powyzszej sytuacji istotnie szereg potegowy
mozna rozniczkowaé wyraz za wyrazem, to funkcja dana w (15.2) rzeczywiscie
spetnia réwnanie (15.1)

(¢) Niech ciag funkcyjny bedzie dany wzorem

sin(nz)

Zauwazmy, ze dla kazdego ustalonego x € R ciagg zbiega f,(z) — 0, gdy
n — oo. Wyrazy ciagu sa funkcjami rozniczkowalnymi, i f/ (x) = y/ncosnz.
Ciag funkcji pochodnych nie zbiega wiec do pochodnej granicy ciaggu, bo,
na przyklad f/(0) = \/n - 0. Widzimy wiec, ze w tym wypadku granica
pochodnych nie jest pochodng granicy.

falz) =

(d) Rozwazmy ciag funkcyjny

fol@)=nz(l-2*)", dla 0<z<1.
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Ciag ten ma granice w kazdym punkcie, i ta granica jest funkcja f(x) stale
rowna 0:

fn(0)=0, lim f,(x)=0 dla =z € (0,1].

n—oo

7 drugiej strony
1 1
/ folz)dx = n/ r(1—2*)"dr
0 0

0
z—ﬁ/t”dt
2y
1
:ﬁ/t"dt
2 Jo

n thrl 1
:E n+1 0
n 1
—_ — =,
2n+ 2 2

chociaz fol O0dx = 0. W tym wypadku catka z granicy nie jest réwna granicy
catek.

Przyklady (a) i (b) pokazuja, ze zamiana kolejnosci operacji analitycz-
nych, na przyktad roézniczkowanie szeregu funkcyjnego wyraz za wyrazem,
moze by¢ przydatna, natomiast przyklady (c) i (d) pokazuja, ze sprawa jest
delikatna, i czasem taka zamiana nie jest mozliwa. Teraz zbadamy to za-
gadnienie dokladniej, i, na przyktad, pokazemy, ze szeregi potegowe mozna
rozniczkowa¢ wyraz za wyrazem.

Definicja 15.1. Cigg funkcyjny {f.} jest zbiezny jednostajnie do funkcji f
na zbiorze E, jezeli

Ve>o dngeN Vn>ny YVexeE |fulr)— f(z)] <e,
(czyli nie tylko cigg jest zbiezny w kazdym punkcie, ale ng mozna wybraé

niezaleznie od x € E). Podobnie, szereg funkcyjny > | fajest zbieiny jed-
nostajnie na £, jezeli cigg sum czesciowych

sn(2) = Z fi(x)

jest zbiezny jednostajnie.

Warto chwile zastanowié¢ sie nad ta definicja. Zbiezno$¢ ciagu jedno-
stajna na zbiorze E oznacza, ze ciag jest zbiezny w kazdym punkcie, oraz,
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dodatkowo, ze predkos$é¢ zbieznosci jest rownomierna we wszystkich punktach.
Majac dane € > 0 mozemy dobra¢ ng € N, ktore bedzie dobre we wszystkich
punktach z € F.

Twierdzenie 15.2. Cigg funkcyjny {f.} jest zbiezny jednostajnie na zbiorze
E wtedy i tylko wtedy, gdy spetnia jednostajnie warunek Cauchy’ego, czyli

gdy
Ve>o dngeN Vmn>ny VeeE |[f.(x)— f(2r)] <e

Dowadd. Jezeli f, zbiega jednostajnie do f, to dla e > 0 mozna znalezé¢ ny € N
takie, ze Vm,n>ny Vaxek
€ €
ful@) = F@)] < 5, Ufnle) = F@)] < 5.
Wtedy
€ €
[fal@) = fn(@)] < [fal2) = f@)] + |fl2) = fl@)l < 5+ 5 =€
a wiec widzimy, ze ze zbieznosci jednostajnej wynika jednostajny warunek
Cauchy’ego. Teraz w druga strone. Jezeli spelniony jest jednostajny warunek
Cauchy’ego, to jest tez spetlniony warunek Cauchy’ego w kazdym punkcie
x € E. W takim razie w kazdym punkcie istnieje granica f(z):

f(z) = lim f,(x), VzeE.

n—oo

Niech teraz € > 0 a ng € N bedzie takie, ze dla m,n >ngiz € E

() = fn(2)] <e.

Gdy m — oo to ciag liczbowy po lewej stronie jest zbiezny do |f,(z) — f(z)],
a wiec takze

|[fn(2) = f2)] <e

Poniewaz powyzsze jest spelnione dla wszystkich n > ngix € E,ae >0
byto dowolne, to f,, — f jednostajnie. ]

Twierdzenie 15.3. Granica jednostajnie zbieznego ciggu funkcji cigglych
jest ciggta.

Dowdd. Niech f, — f jednostajnie na zbiorze E, oraz niech wszystkie funkcje
fn beda ciggle. Niech x € E, i niech ¢ > 0 bedzie dane. Wtedy istnieje
ng € N takie, ze

Vnzng VyeE |fuly) - f)l <3

175



Funkcja f,, jest ciagla, wiec istnieje 6 > 0 takie, ze

€
VyGE ‘y_$|<6 = ‘fno(y)_fno<x)’<§'

Wtedy

|f(y) = f(@)] < |f(y) = fao(y)|+
+ ‘fno(y) - fno(x)’ + |fno<x> - f(l')’ < E + -+ - =c¢€

Funkcja graniczna f jest wiec ciagta w punkcie z. [l

Przyktad: Niech f,(z) = 2" na [0,1]. Kazda z funkcji f, jest ciagla na
przedziale [0, 1]. Jak latwo zauwazy¢

lim f,(z) = {1: r=1

0: z<l1.

Granica ciagu jest wiec funkcja nieciagla (w punkcie 1), a w takim razie f,
nie moze by¢ zbiezny jednostajnie.

Twierdzenie 15.4. Niech {f,} bedzie ciggiem funkcji catkowalnych na [a, b]
w sensie Riemanna i niech f, — f jednostagnie na [a,b]. Wtedy f tez jest
catkowalna w sensie Riemanna oraz

n—o0o
a

/ f(z)dx = lim fo(z) dx. (15.3)

Dowdd. Niech € > 0 bedzie dane. Z jednostajnej zbieznosci ciagu {f,} wy-
nika, ze istnieje ng € N takie, ze

€

Vn>ny Yac¢€lab |fn(x)—f(x)]<e’:m.

Wynika stad, ze

€ €

< (@) < fule) + 5

Vn>ny Vaéelab fn(ilf)—2 (b—a)’

(b—a)

a wiec, w szczegdlnosci f jest funkcjg ograniczona. Wezmy podziat P odcinka
la, b], wtedy

U(P,f) < U(P,fn+ m)

176



a wiec

/f dg:</ (fn() Q(be_a)>dz:/abfn(a:)dx+§.

Podobnie,

we 2 (P y5ea) = L h@arz [ e

Mamy wiec
0</f dx—/fn dx< —1—52

Poniewaz e bylo dowolne, wiec calki dolna i gérna musza byé¢ réowne, a wiec
funkcja f jest catkowalna w sensie Riemanna. Pozostala jeszcze do pokazania
rownosé (15.3). Niech, znowu, € > 0 bedzie dowolne, i niech ny € N bedzie
takie, ze

Vn>nyg Vaelab |[fulx)—f(z)<

x)dr — /bfn(x) dx| =

(f() fu(2)) dx

(b—a)
Wtedy

/|f ()] dz < e.

Poniewaz powyzsze oszacowanie zachodzi dla dowolnego n > ny wiec otrzy-
mujemy (15.3). O

Uwaga: Powyzsze twierdzenie udowodnilisémy dla catek wtasciwych. Dla
catek niewlasciwych niekoniecznie jest prawdziwe. Na przyktad, niech

o) = {% cos (%) : |z <ZF

0: ]w|>%

Widaé, ze f,, — 0 jednostajnie na catej prostej R, ale

oo nr 1 1
/ folz)de = ’ ECOS( )dx—{——t} / costdt = sint|?. = 2.

Widzimy wiec, ze
/ fn(x)dx—/»/ 0-dr=0.

W przypadku catek niewtasciwych, zeby przechodzi¢ do granicy pod znakiem
calki trzeba wiec zalozy¢ co$ wiecej niz tylko zbieznos¢ jednostajna ciggu.
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Whiosek 15.5. Jezeli funkcje f, sq catkowalne w sensie Riemanna na |a, b
i

= Z fn(x) jednostajnie na |a, b,
=1

to

/abf(x)dx:/an dx—Z/ fo() da.

Nastepujace twierdzenie podaje warunki pod jakimi mozna ,wejs¢” z roz-
niczkowaniem pod znak granicy.

Twierdzenie 15.6. Niech {f,} bedzie ciggiem funkcji rozniczkowalnych na

przedziale [a,b], takim, Ze cigg pochodnych {f!} jest zbiezny jednostajnie na

la,b]. Jezeli sam cigg {f,} jest zbieiny chociaz w jednym punkcie, to jest

zbiezny jednostajnie do pewnej funkcji f, rézniczkowalnej na |a,b], oraz
fl(@) = lim_f(z).

Dowdd. Niech ciag { .} bedzie zbiezny w punkcie x € [a, b]. Istnienie takiego

punktu jest w zalozeniach. Niech € > 0 i niech ng € N bedzie takie, ze dla
wszystkich m,n > ng zachodzi

[Fa(@) = fanl@)| < 5,

oraz
€

2(b—a)’

Skorzystaliémy z obu zalozen, zbieznosci w jednym punkcie ciagu {f,} oraz
zbieznosci jednostajnej ciaggu pochodnych. Nastepnie ustalmy pewne m,n >
no, 1 do funkcji ®(y) = fu(y) — fin(y) zastosujmy twierdzenie o wartosci
redniej (oczywiscie @ jest rozniczkowalna).

[D(y)| = |P(y) — () + O(z)|
(y)

|fo(y) = fn ()] < y € la,b].

|®
< [®(y) — @(z)] + |@()]
<|®()|- ly — x| + |®(x)] (dla pewnego 6 pomiedzy y i x)
€ €
— |y — - 15.4
< gl S (15.4)
€L
- 2
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Poniewaz powyzsze oszacowanie jest prawdziwe dla wszystkich m,n > ng
i dla wszystkich y € [a,b], to ciag {f.} spelia jednostajny warunek Cau-
chy’ego, a wiec, zgodnie z Twierdzeniem 15.2, jest jednostajnie zbiezny do
pewnej funkcji f. Funkcja f, jako granica jednostajnie zbieznego ciagu funk-
cji ciagltych jest tez ciagla. Pokazemy, ze jest takze rozniczkowalna i jej
pochodna jest granica ciagu {f/}. Ustalmy punkt x € [a,b] i niech funkcje
@ oraz ¢, beda dane wzorami

() = —f(y;:f;(w) Cy # o, () = —fn(ygif;"(w) Ly £,
Y A=1lim, . fl(x) y=uz, oy fl(x) Sy =,
Zauwazmy, ze w kazdym punkcie y € [a,b] mamy ¢, (y) — ¢(y). Zauwazmy
tez, ze z definicji wynika natychmiast, ze funkcje ¢, sa ciggte w kazdym punk-
cie, a funkcja ¢ jest ciagta w kazdym punkcie réznym od x. Teraz bedziemy
chcieli pokaza¢ ciagto$¢ funkceji ¢ w punkcie z. Cigglo$¢ w = oznaczalaby do-
kladnie, ze f jest rozniczkowalna w punkcie x, i jej pochodna w tym punkcie
jest granicag pochodnych funkcji f,. Naszym celem obecnie bedzie pokaza-
nie, ze zbieznos¢ p, — ¢ jest jednostajna na [a,b], z czego wynika¢ bedzie
ciaglos¢ ¢ (przypomnijmy, ze funkcje ¢, sa ciagte). Niech m,n € N beda
dowolne, y # x i obliczmy

onlt) — only) = 2= fm<yz> ()~ (o)

y— )
(f1.(0) = f1.(0)) (y — x)
(y — )

)

gdzie w liczniku zastosowali$émy twierdzenie o wartosci sredniej dla funkcji
® = f, — fm, a 0 jest punktem posrednim pomiedzy y i x. Zgodnie z (15.4)
mamy wiec

|on(y) — em)] = |£,(6) — [L(0)] <e,

jezeli tylko ng € N jest wystarczajaco duze, i m,n > ng, a y # x. Widzimy
wiec, ze ciag {©n} spehia jednostajny warunek Cauchy’ego na zbiorze E =
[a,b] \ {z}, a wiec jest na tym zbiorze jednostajnie zbiezny. Rowniez w
punkcie = ciag jest zbiezny:

pn(z) = folr) = A= o(z). (15.5)

Oczywiscie skoro ciag {y,} jest zbiezny jednostajnie na [a,b] \ {z} i dodat-
kowo zbiezny w punkcie z, to jest jednostajnie zbiezny na calym przedziale
[a, b]. Wynika to wprost z obserwacji, ze jezeli ciag jest zbiezny jednostajnie
na zbiorze F; i jednostajnie na zbiorze Es, to jest tez zbiezny jednostajnie
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na sumie zbiorow E; U E,. Odcinek [a, b] jest suma zbiorow [a, b] \ {x} oraz
zbioru jednopunktowego {x}. Zbieznosé¢ jednostajna na pierwszym zbiorze
wlasnie pokazaliémy, a na zbiorze jednopunktowym zbiezno$¢ jednostajna
oznacza doktadnie zbieznos¢é w tym punkcie, czyli (15.6).

Tak jak wspomnieli$my juz wezesniej, skoro ciag funkcji ciagtych {p,}
jest zbiezny jednostajnie do funkcji {¢}, to granica tez jest funkcja ciagta, w
szczegolnoscei ciagta w punkcie z. Oznacza to, ze

lim f!(2) = A = p(x) = lim p(y) = lim 24 =)

/
= f(x).
n—ee y—z y—r Y — T fz)
Punkt = € [a,b] byl dowolny, a wiec pokazalismy, ze w kazdym punkcie
x € [a,b] zachodzi

F(x) = lim fi ()

Wprost z powyzszego twierdzenia wynika nastepujacy wniosek

Wnhiosek 15.7. Niech cigg {f.} bedzie zbiezny do f jednostajnie na prze-
dziale [a,b], @ niech F = f,, czyli niech F, bedq funkcjami pierwotnymi
funkeji f,. Zatozimy dodatkowo, ze dla jakiegos x € [a,b] cigg F,(x) jest
zbiezny. Wtedy ciag funkcji pierwotnych {F,} jest zbiezny jednostajnie do
pewnej funkcji F', i funkcja F jest funkcjg pierwotng funkcji f:

F'(z) = f(x), x € (a,b).

Mozna to sformutowaé w jezyku catek nieoznaczonych. Niech f, — [ jedno-
stajnie na [a,b], i niech cigg

/fn(x) dx (15.6)

bedzie zbiezny w jakim$ punkcie przedziatu [a,b]. Wtedy cigg (15.6) jest
zbiezny w kazdym punkcie przedziatu [a,b] (nawet jednostajnie na |a,b), oraz

nh—{{olo fo(z)de = /Jirgof(x) dzx.

Zwrocmy jeszeze uwage, ze zalozenie, ze ciag (15.6) jest zbiezny przynaj-
mniej w jednym punkcie przedziatu [a, b] jest istotne, i tak naprawde spro-
wadza sie do wyboru statych catkowania dla ciagu caltek nieoznaczonych.

Nastepujace twierdzenie jest bardzo wygodnym w praktyce kryterium
zbieznosci jednostajnej.
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Twierdzenie 15.8 (Kryterium Weierstrassa). Jezeli |f,(x)| < a, dla n =
1,2,... ix € E, oraz szereg y | a, jest zbiezny, to szereg funkcyjny

> falw)

jest zbiezny jednostajnie na zbiorze E.

Dowdd. Ciag sum cze$ciowych s, = > ;| ay jest zbiezny, czyli spelnia wa-
runek Cauchy’ego:

m

Ve>0 dngeN Vm>n>ng |[S,— su| = Zak<e.
k=n+1

Mamy, dla kazdego x € E

m

D ful@) = fulw)

k=1

= <D @< )Y w<e

> ful@)

k=n+1

Ciag sum cze$ciowych szeregu >~ fr(z) spelnia wiec jednostajny warunek
Cauchy’ego, jest wiec jednostajnie zbiezny. O

Szeregi potegowe

Udowodnione powyzej twierdzenia zastosujemy do szeregéw potegowych, ktore
stanowig typowy przyktad szeregéw funkcyjnych. Wiemy, ze szereg funkcyjny
postaci

Zan(a: — xo)" (15.7)

jest zbiezny wewnatrz przedzialu zbieznosci (xg — R, 2o + R) (nie wiadomo
w ogdlnym przypadku jak jest na koncach x¢ £ R), jezeli R > 0, gdzie
1

lim ¢ |an|7

n—oo

przy czym R = oo jezeli lim, oo {/|a,] = 0, a jezeli lim, oo ¥/]an| = +00 to
R =0, i szereg (15.7) jest zbiezny tylko dla x = z(. Szereg taki definiuje
wiec funkcje, ktorej dziedzing jest przedzial zbieznosci szeregu:

[e.9]

flx) =) an(z—x0)" (15.8)



Twierdzenie 15.9. 1. Szereg potegowy (15.8) jest zbiezny jednostajnie na
kazdym przedziale domknietym (zwierajgcym swoje korice) [xo—r, xo+7]
zawartym wewngtrz przedziatu zbieznosci, to znaczy v < R:

[xg — 1,20 + 7] C (20 — R, z0 + R).

2. Szereg pochodnych

Znan (x —x0)" ' = Z(n + 1) api1(x —x)" (15.9)

ma ten sam promien zbieznosci R co szereg wyjsciowy (15.8), a wiec jest
tez zbiezny jednostajnie w kazdym przedziale domknietym [xo—r, xo—+7]
dlar < R.

3. Szereg potegowy mozna wiec rozniczkowacé i catkowaé wyraz za wyrazem
wewngtrz przedziatu zbieznodci (rg — R, xo + R).

Dowdd. Niech

n

sp(x) = Zak(x —x0)F

k=0

bedzie ciggiem sum czesciowych. Wtedy dla x € [xg — r, 2o + ] mamy
lap(z — 20)*| = |ag| |z — 20" < |ag| r*. (15.10)

Zauwazmy, ze szereg
oo
§ |an|r"
n=0

jest zbiezny, wynika to z kryterium Cauchy’ego zbieznosci:

n—oo

lim {/|a,|r™ =r- lim {/|a,| -l <1
n—oo R

W takim razie, zgodnie z (15.10) i kryterium Weierstrassa szereg potegowy
(15.8) jest zbiezny jednostajnie na przedziale [zg — r, 2o+ r]. Udowodnilismy
wiec cze$¢ 1. twierdzenia.

2. Mamy
Ylana|(n 4 1) = V] anst| Vn + 1. (15.11)

Nietrudno pokazaé¢, ze granica gorna (skoriczona lub nieskonczona) ciagu
(15.11) jest taka sama, jak granica gorna ciagu lim,, o ¥/|a,|, a wiec promien
zbieznosci szeregu pochodnych (15.9) jest taki sam, jak promien zbieznosci
R szeregu (15.8). Szereg pochodnych jest wiec rowniez zbiezny jednostajnie
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na kazdym przedziale [xg — r, xo + 7|, dla r < R.

3. Rozniczkowanie i catkowanie wyraz za wyrazem szeregu potegowego w
kazdym punkcie wewnatrz przedzialu zbieznosci wynika z Twierdzen 15.4 i
15.6, z faktu, ze dla kazdego punktu z; € (xg — R, ¢ + R) mozemy znalezé
r < R takie, ze x; € [xg — r,x0 + r|, oraz z udowodnionych juz czesci 1. i
2. O

7 powyzszego twierdzenia mamy nastepujacy wniosek

Whiosek 15.10. Szereg potegowy > an (x — x0)", ktdrego promien zbiez-
nosci R > 0 okresla na przedziale (xo— R, xo+ R) funkcje nieskoriczenie wiele
razy rozniczkowalng

f@) = an (x— )", (15.12)
n=0
dla ktorej
™ (z0) = nlay.

Dowdd. Roézniczkowalno$é jednokrotna wynika z poprzedniego twierdzenia,
a rozniczkowalno$¢ nieskonczenie wiele razy przez indukcje, gdyz szereg po-
chodnych jest kazdorazowo rowniez szeregiem potegowym, o tym samym pro-
mieniu zbieznosci. Rozniczkujac n-razy szereg (15.12) wyraz za wyrazem
otrzymujemy, dla = € (zg — R,z + 1)

£ (2) :Zk(k_l)-----(k;—n+1)ak(x—$o)k_n-
k=n

Wstawiajac x = xp otrzymujemy
™ (zg)=n(n—1)----- la, =nlay,.
[

Whiosek 15.11. Szereqg Taylora funkcji danej szeregiem (15.12) to ten sam
szereg.

Przyklad: Rozwiniemy w szereg Taylora funkcje f(x) = ﬁ wokot punktu
To = % Mozna to zrobié¢ prosto

1 1 1 > 1\"
l—z $—-(1-3) 1—2(z—3) nZ:o 2

Wiemy, ze szereg potegowy po prawej jest zbiezny dla [z — 1| < 1, jego suma
jest réwna, ﬁ W takim razie, zgodnie z powyzszym wnioskiem, szereg po
prawej jest szeregiem Taylora funkcji po lewej. Nie musieliémy liczy¢ ani
jednej pochodnej.
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Whiosek 15.12. Jezeli dwa szeregi potegowe o promieniach zbieznosci wiek-

szych od zera
Z an (x — x0)" 1 Z by (x — )"
n=0 n=0

sq sobie réwne w jakims przedziale (o — €, xg + €), to muszq byé identyczne:

a,=b, n=0,1,....

Przyklady: (a) Niech f(x) = arctan(z). Rozwiniemy funkcje f w szereg

MacLaurina (xy = 0).
tan( )—/ 5
arctan(x
14 22

— /2 (—2%)" da
S [

n=0
00 . xQn—&-l
=2 (1) 2n+1
n=0
.733 ,T5

Powyzsze wynika z faktu, ze szereg potegowy > - (—2?)" mozna calkowac
wyraz za wyrazem. Wybierajac dla calek wyrazow state catkowania rowne 0
(tak jak w powyzszych obliczeniach), scatkowany szereg jest zbiezny, na przy-
ktad w punkcie xy = 0 do funkeji arctan(z). Jako wniosek mamy nastepujacy
wzOr na pochodne

arctan™ (z) = {(_1)"51 (n =1 :n - nieparzyste

0 1 n - parzyste.

(b) Podobnie znajdziemy rozwiniecie w szereg MacLaurina funkeji f(z) =
log(1 + z).

d
log(l+ ) = / 1 fx

_ / g(_$)n dz
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(c) Szereg Taylora moze by¢ zbiezny, ale do innej funkcji. Niech, na przyktad

B efz% cx#0
f(x)—{ 0 2 =0.

Rysunek 15.1: Funkcja z przykladu (c).

Funkcja f jest rozniczkowalna w kazdym punkcie. W kazdym punkcie
roznym od 0 wynika to wprost ze wzoru na f, natomiast w 0 wymaga to
sprawdzenia. Obliczymy granice ilorazu roéznicowego w 0, oddzielnie granice
prawo- i lewostronna.

1
. e 22 —0 .eY ) Y : 1
lim ——— = lim = lim —5 = lim ——5 =0.
z—0F T y—teo o y——+o0 €Y y——+o0 29 €Y

Podobnie obliczamy granice lewostronna, gdy * — 0~. Pochodna f’(0) ist-
nieje wiec, 1 jest rowna 0. Poza zerem, ze wzoru mamy

f’(m)zze_x%, x # 0.

3
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Podobnie jak pierwsza pochodna, korzystajac z reguty de 'Hopitala spraw-
dzamy, ze f”(0) = 0. Nietrudno zauwazy¢, ze pochodna dowolnego rzedu
f™(x), 2 #0 Jest suma skladnikow postaci e — , wiec indukcyjnie mozna
pokazaé, ze f(™(0) istnieje dla dowolnego n € N, i jest réwna 0. Funkcja f
jest wiec rozniczkowalna nieskonczenie wiele razy, a jej szereg Taylora w 0
jest szeregiem zerowym

0+0-24+0-22+---=0.

Z drugiej strony f(x) # 0 dla x # 0, czyli funkcja nie jest nigdzie, oprocz 0,
rOwna swojemu szeregowi Taylora.

(d) Znajdziemy wzor na sume szeregu » - n*z". Przedzialem zbieznosci

tego szeregu, jak sie tatwo przekona¢ jest przedziat (—1,1). Mamy

Zn Zn+2) n+1)z" —Z?)TLQ? —ZZx
:Z(x”“) —3Z(n+1)x”+2x"

I
NE
N
&

5
Q
o
MS\

N
&
5
Q
+
NE
R3

n=1 n=1 n=1
() " 00 ! oo
_ anw) —3 (Z xn—l—l) + "
n=1 n=1 n=1
oo " 00 / 0o
= Zx”) —3( x”) +Zx"
n=3 n=2 n=1
() " 00 ! )
= x32x”> —3<x22x") +x Zx”
=0 n=0 n=0
2 /

; 2
_ [z 3 = L
(1—9&) (1—x> 11—z

_22°—62+6x 6z —3a? x

I—27  (1-27 1=z
22 —ba*+5x
o (=ep

Sprawdzanie jednostajnej zbieznosSci

Wypiszmy proste fakty, ktore w wiekszoéci wypadkow pozwalaja nam roz-
strzygnac¢ czy zbiezno$é ciggu funkcji jest jednostajna. Niech f,(z) — f(x)
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w kazdym punkcie x € E.

(a) Jesli | f(z) — f(2)| < a, dla kazdego x € E'i a;, — 0, to f, — f jedno-
stajnie na F.

(b) Jezeli istnieje ciag {z,} C F taki, ze | f,(z,) — f(z,)| nie jest zbiezny do
0, to f, nie jest zbiezny jednostajnie do f na F.

(c) Jezeli E = E; U E, oraz f, — f jednostajnie na E; oraz jednostajnie
na Fs, to f, — f jednostajnie na FE. W praktyce oznacza to, ze zbiezno$¢
jednostajna mozna sprawdzaé¢ przedziatami.
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