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Rozdziaª 1

Analiza matematyczna � FAQ

Analiza matematyczna nie jest zapewne najpopularniejszym przedmiotem
na informatyce. W ko«cu, je»eli kto± miaªby wielk¡ ochot¦ na analiz¦ ma-
tematyczn¡, to przypuszczalnie studiowaªby matematyk¦, a nie informatyk¦.
Tymczasem ±wie»o upieczeni studenci informatycy, nie mog¡cy doczeka¢ si¦
chwili, w której napisz¡ pierwsze linijki profesjonalnego kodu, musz¡ pochyli¢
si¦ nad pytaniami typu: czy dana suma niesko«czona jest zbie»na czy nie.
Okazuje si¦, »e w±ród przedmiotów obowi¡zkowych na pierwszym roku jest
wªa±nie analiza matematyczna!

Chciaªbym odpowiedzie¢ na kilka cz¦sto pojawiaj¡cych si¦ pyta«, i prze-
kona¢ pa«stwa, »e ten wykªad nie znalazª si¦ w programie przez pomyªk¦. �e
wr¦cz przeciwnie, jest to jeden z najwa»niejszych wykªadów pierwszych lat,
i »e warto si¦ do niego przyªo»y¢.

Cz¦sto pojawia si¦ nast¦puj¡ca w¡tpliwo±¢: po co informatykowi mate-
matyka. Przecie» nawet je»eli kiedy± pojawi si¦ potrzeba zastosowania ja-
kiego± wyniku matematycznego, to doczytamy sobie potrzebne rzeczy, albo
skonsultujemy si¦ ze specjalist¡. Taki argument to wynik nieporozumienia.
Podstawowy kurs analizy matematycznej to nie jest »adna specjalistyczna
wiedza. Nie nale»y oczekiwa¢, »e poj¦cia i twierdzenia, którymi b¦dziemy
si¦ zajmowali na tym wykªadzie rozwi¡»¡ nam jakie± konkretne problemy.
Caªa ta analiza matematyczna to jest po prostu j¦zyk którym si¦ posªugu-
jemy, kiedy chcemy sformuªowa¢ czy zrozumie¢ jaki± problem. Jest to j¦zyk
uniwersalny w naukach technicznych, równie» w informatyce. W dzisiejszych
czasach, je»eli chce si¦ by¢ prawdziwym, twórczym profesjonalist¡, praktycz-
nie w ka»dej dziedzinie, trzeba zna¢ angielski. Fachowa literatura jest po
angielsku, Internet jest (upraszczaj¡c troch¦) po angielsku, a »aden sta» za-
graniczny nie oka»e si¦ sukcesem bez znajomo±ci angielskiego. Podobnie jest
z analiz¡. Trzeba oswoi¢ si¦ z poj¦ciami takimi jak zbie»no±¢, ci¡gªo±¢, przy-
bli»enie, caªka, szereg pot¦gowy i temu podobne. Tego typu poj¦cia prze-

3



wijaj¡ si¦ wsz¦dzie i b¦d¡ pa«stwu towarzyszy¢ w przyszªej karierze. Wielu
z was pojedzie na sta»e do o±rodków za granic¡, na przykªad do siedziby
�rmy Microsoft w Redmond nad brzegiem jeziora Washington. Pami¦tajmy,
»e ka»dy absolwent studiów in»ynieryjnych, na przykªad w Stanach Zjedno-
czonych (obejmuje to tak»e informatyków), ma za sob¡ co najmniej 3 seme-
stry analizy matematycznej. Tacy ludzie b¦d¡ tworzyli wasze ±rodowisko, to
z nimi b¦dziecie robi¢ wspólne projekty. Nie znaj¡c podstawowego j¦zyka
nauk technicznych, czyli analizy, byli by±cie, je±li mo»na tak powiedzie¢,
profesjonalnymi analfabetami. Podkre±lmy wi¦c: podstawowy kurs analizy
matematycznej to nie jest »adna specjalistyczna wiedza, która mo»e si¦ przy-
da¢, ale nie musi. To podstawowe poj¦cia i zwi¡zki pomi¦dzy nimi, które
stale b¦d¡ si¦ przewija¢, w trakcie studiów, i potem, w zawodowym »yciu co-
dziennym. W trakcie dalszych studiów b¦d¡ pa«stwu oferowane ró»ne inne
wykªady matematyczne lub z pogranicza matematyki i informatyki. Wiele
z nich b¦dziecie mogli wybra¢ b¡d¹ opu±ci¢. Ale analiza, podobnie jak na
przykªad logika, peªni inn¡ rol¦ � jest podstawowa i obowi¡zkowa.

Cz¦sto pojawia si¦ nast¦puj¡cy problem. Studenci mówi¡: �No dobrze,
skoro si¦ pan upiera, to b¦dziemy si¦ uczy¢ analizy. Ale dlaczego tak szcze-
góªowo pan wszystko uzasadnia i dowodzi. Niektóre z pana dowodów s¡ na
caª¡ stron¦! My wierzymy panu, »e te twierdzenia s¡ prawdziwe. Zamiast
dowodów niech pan wyªo»y wi¦cej materiaªu.� Otó» jest to w dalszym ci¡gu
to samo nieporozumienie. Na tym wykªadzie chodzi nam o to, »eby zapo-
zna¢ si¦ z poj¦ciami, zale»no±ciami pomi¦dzy nimi, sposobem w jaki na siebie
wzajemnie wpªywaj¡. Sposób argumentacji jest tak samo wa»ny, jak same
fakty. Na tym wykªadzie pytanie �co?� jest równie wa»ne jak �dlaczego?�.
Zauwa»my te», »e wi¦kszo±¢ dowodów jest bardzo krótka i jasna. Je»eli do-
wód nie jest natychmiastowy, to zawsze staram si¦ podkre±li¢ jego pomysª.
Najpierw intuicyjnie staramy si¦ doj±¢ dlaczego dane twierdzenie miaªoby
by¢ prawdziwe, a kiedy ju» mamy ogólne poj¦cie, staramy si¦ doprecyzowa¢
rozumowanie, i caªo±¢ �ubra¢ w sªówka�. Je»eli wiemy od pocz¡tku o co w
dowodzie chodzi, to caªo±¢ nie jest ani trudna, ani zawiªa.

Wielu studentów zgªasza nast¦puj¡c¡ uwag¦: �Ten wykªad to zaledwie po-
wtórka tego, co mieli±my w szkole ±redniej. Wi¦kszo±¢ zada« na kolokwiach
i egzaminie jest tak ªatwa, »e a» wstyd. Chcemy i mo»emy wi¦cej, du»o
wi¦cej!� To prawda, du»a cz¦±¢ materiaªu zawiera si¦ w programie szkoªy
±redniej. Ale prosz¦ pami¦ta¢, to nie jest wykªad nastawiony na wyczyn na-
ukowy. Chcemy uporz¡dkowa¢ i utrwali¢ t¡ podstawow¡ wiedz¦, jak¡ jest
analiza. Nie ma wiele nowego materiaªu, ale to co jest jest wyªo»one szczegó-
ªowo, bez omijania spraw kªopotliwych. Na ¢wiczeniach jest te» do zrobienia
du»o zada«. Jak mówi¡ Amerykanie: �Co jest podstaw¡ rzetelnej wiedzy?
Repetition, repetition, repetition!� Bez obawy, je»eli szukacie pa«stwo gª¦-
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bokiej, rzetelnej wiedzy, to znale¹li±cie si¦ we wªa±ciwym miejscu. Oprócz
analizy czeka was wiele innych wykªadów, i nie b¦dziecie si¦ nudzi¢. Je»eli
interesuje was analiza, albo inne przedmioty matematyczne, to w s¡siednim
budynku znajdziecie wykªady z ka»dej dziedziny matematyki, i na ka»dym
poziomie. Wielu studentów informatyki ucz¦szcza na wykªady w Instytucie
Matematycznym, i wielu studentów matematyki przychodzi na zaj¦cia do In-
stytutu Informatyki. To nie przypadek, »e budynki s¡siaduj¡ ze sob¡, i mo»na
przechodzi¢ pomi¦dzy nimi �such¡ stop¡�. Nawet biblioteka jest wspólna. Za-
wsze te» jeste±cie mile widziani na konsultacjach, gdzie mo»ecie porozmawia¢
z wykªadowc¡, który z niejednego ju» pieca chleb matematyczny jadª.

Pojawia si¦ te» nast¦puj¡ce pytanie: �Notatki z wykªadu maj¡ 15 roz-
dziaªów, mniej wi¦cej tyle, ile tygodni b¦dzie trwaª wykªad. Mamy wi¦c plan
pracy, i dodatkowo gotowe notatki. Czy mo»emy w takim razie nie chodzi¢
na wykªad? Po co mamy zrywa¢ si¦ z ªó»ka na 12, »eby ogl¡da¢, jak przepi-
suje pan notatki na tablic¦? Po co chodzi¢ na ¢wiczenia i ogl¡da¢, jak kto±
rozwi¡zuje proste zadania?� Otó» nie, zdecydowanie powinni±cie pa«stwo
chodzi¢ na wykªad i na ¢wiczenia. Sªuchanie wykªadu to zupeªnie co innego
ni» czytanie notatek. Nawet nie chodzi o to, »e s¡ pytania, »e pojawiaj¡
si¦ nowe pomysªy. Z do±wiadczenia wiadomo, »e ka»dy wykªad jest inny.
Czasem ten sam temat przerabia si¦ w 15 minut, czasem w godzin¦. Z caª¡
pewno±ci¡ wykªad nie polega tylko na przepisywaniu notatek na tablic¦. Po-
dobnie z ¢wiczeniami. Nie da si¦ opanowa¢ tego materiaªu nie robi¡c zada«
samodzielnie. Wydaje mi si¦, »e mo»na tu zastosowa¢ analogi¦ do nauki j¦-
zyka obcego. Trzeba ¢wiczy¢, trzeba próbowa¢, i oczywi±cie trzeba samemu
chodzi¢ do tablicy i rozwi¡zywa¢ zadanie publicznie. Trzeba te» stara¢ si¦
by¢ �na bie»¡co�. W takim wykªadzie jak analiza ªatwo jest zgubi¢ si¦ w
jakim± momencie i straci¢ w¡tek. Kolejno wprowadzane poj¦cia b¦d¡ ju»
do ko«ca stale u»ywane. Obecno±¢ formalnie nie jest sprawdzana, ale prosz¦
pami¦ta¢, »e nie chodz¡c na wykªad czy ¢wiczenia mo»ecie wp¦dzi¢ si¦ w kªo-
poty. Nie jest ªatwo opanowa¢ ten materiaª tylko czytaj¡c gotowe notatki.
Oprócz egzaminu ko«cowego w trakcie semestru b¦d¡ 3 kolokwia, mniej wi¦-
cej co miesi¡c. Kolokwia powinny da¢ pa«stwu �w czasie rzeczywistym� jasny
obraz tego, jak wam idzie.

Je»eli macie pa«stwo inne pytania � pytajcie. Mój adres to

mpal@math.uni.wroc.pl
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Rozdziaª 2

Liczby rzeczywiste i zespolone

Liczby rzeczywiste
Nie b¦dziemy szczegóªowo zajmowa¢ si¦ konstrukcj¡ zbioru liczb rzeczywi-
stych. Konstrukcja zbioru liczb rzeczywistych, okre±lenie dziaªa« na liczbach
i pokazanie wszystkich potrzebnych wªasno±ci to temat bardzo ciekawy, i
na pewno warto si¦ nim zainteresowa¢. Ale na tym wykªadzie przypomnimy
tylko najwa»niejsze fakty, i zakªadamy, »e generalnie liczby rzeczywiste wszy-
scy znaj¡. Zbiór liczb rzeczywistych oznaczamy R, a liczb¦ rzeczywist¡ ro-
zumiemy jako rozwini¦cie dziesi¦tne (ci¡gi cyfr dziesi¦tnych), na przykªad
123, 357290 . . . . Rozwini¦cie dziesi¦tne zawiera przecinek, jest sko«czone po
lewej stronie i sko«czone lub niesko«czone po prawej stronie. Rozwini¦cia
mog¡ mie¢ znak − , wtedy nazywamy je liczbami ujemnymi. Wszyscy
wiemy, jak dodawa¢, odejmowa¢, mno»y¢ i dzieli¢ takie liczby, oraz znamy
wªasno±ci tych dziaªa«, na przykªad ª¡czno±¢ i rozdzielno±¢. Przypomnijmy
wa»ne fakty:

1. Je»eli pewien ukªad cyfr po przecinku powtarza si¦ okresowo, to ten
ukªad cyfr zapisujemy w nawiasie: 0, 03212512512 · · · = 0, 032(125).

2. Je»eli od pewnego miejsca po przecinku w rozwini¦ciu s¡ same zera, to
nie piszemy ich, i takie rozwini¦cie nazywamy sko«czonym 3, 234000000 · · · =
3, 234(0) = 3, 234.

3. W zasadzie ró»ne rozwini¦cia dziesi¦tne oznaczaj¡ ró»ne liczby. S¡ jed-
nak wyj¡tki, i zdarza si¦, »e 2 ró»ne rozwini¦cia dziesi¦tne oznaczaj¡
t¡ sam¡ liczb¦ rzeczywist¡. Wyj¡tek taki ma miejsce w sytuacji, gdy
w rozwini¦ciu od pewnego miejsca s¡ same 9. Takie rozwini¦cie re-
prezentuje t¡ sam¡ liczb¦, co rozwini¦cie, gdzie dziewi¡tki zast¡pimy
zerami, a pierwsz¡ (od prawej) cyfr¦ mniejsz¡ od 9 powi¦kszamy o 1.
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Na przykªad 0, 09999 · · · = 0, 0(9) = 0, 1. Mo»na to ªatwo udowodni¢,
korzystaj¡c z wªasno±ci dziaªa« (na przykªad tego, »e mno»enie przez 10
oznacza przesuni¦cie przecinka dziesi¦tnego w prawo o jedn¡ pozycj¦).
Niech x = 0, 0(9). Mamy wtedy

10 · x = 0, (9) = 0, 9 + 0, 0(9) = 0, 9 + x ⇒ 9 · x = 0, 9 ⇒ x = 0, 1.

Liczby rzeczywiste, których rozwini¦cia dziesi¦tne maj¡ po przecinku
same zera nazywamy liczbami caªkowitymi, i oznaczamy Z. Dodatnie liczby
caªkowite 1, 2, . . . (bez zera) nazywamy liczbami naturalnymi i oznaczamy
N.

Liczby wymierne
Liczby których rozwini¦cia s¡ sko«czone lub okresowe nazywamy liczbami
wymiernymi. Zbiór liczb wymiernych oznaczamy Q. Liczby wymierne mo»na
zapisa¢ jako uªamki m

n
, gdzie m,n ∈ Z, oraz n 6= 0. Je»eli n ∈ N oraz m i

n nie maj¡ wspólnego dzielnika, to przedstawienie liczby wymiernej x jako
uªamka m

n
jest jednoznaczne, a taki uªamek nazywamy nieskracalnym. Ka»d¡

liczb¦ wymiern¡ mo»na przedstawi¢ jako uªamek nieskracalny.
Przykªady: (a) 1

7
= 0, 1428571428 · · · = 0, (142857). Rozwini¦cie dziesi¦tne

otrzymujemy po prostu stosuj¡c �dªugie dzielenie�. Dziel¡c kolejno w pew-
nym momencie widzimy, »e reszta powtarza si¦, i zauwa»amy w zwi¡zku z
tym okres.
(b) 0, 123 = 123

1000
. Jest to uªamek nieskracalny, gdy» licznik i mianownik nie

maj¡ wspólnych dzielników, a mianownik jest dodatni.
(c) 0, (a1a2 · · · ak) = a1a2···ak

99···9 (k � dziewi¡tek w mianowniku). �atwo to udo-
wodni¢, wypisuj¡c i rozwi¡zuj¡c odpowiednie równanie na x = 0, (a1 · · · ak).

(d) Przeksztaªcimy nast¦puj¡ce rozwini¦cie dziesi¦tne na uªamek

0, 123(45) = 0, 123 + 0, 000(45) =
123

1000
+

0, (45)

1000

=
123

1000
+

1

1000

45

99
=

99 · 123 + 45

99000
=

12222

99000
.

Liczby niewymierne
Liczby rzeczywiste które nie s¡ wymierne, czyli których rozwini¦cia dziesi¦tne
s¡ niesko«czone i nieokresowe nazywamy liczbami niewymiernymi.
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Przykªady: (a) Napiszmy liczb¦, w której rozwini¦ciu dziesi¦tnym coraz
dªu»sze ci¡gi zer przedzielane s¡ jedynkami:

x = 0, 101001000100001 · · · 10 · · · 010 · · · .

Serie zer s¡ coraz dªu»sze, a wi¦c rozwini¦cie nie jest okresowe. Nie jest
te» sko«czone, bo zawiera niesko«czenie wiele jedynek. x jest wi¦c liczb¡
rzeczywist¡ niewymiern¡.
(b) Innym przykªadem liczby niewymiernej jest 3

√
15. Poka»emy, »e 3

√
15 nie

jest liczb¡ wymiern¡. Rozumowanie to jest typowe, i mo»na je zaadaptowa¢
do wielu przykªadów. Zaªó»my, »e 3

√
15 jest liczb¡ wymiern¡, i przedstawmy

j¡ w postaci uªamka nieskracalnego

3
√

15 =
m

n
⇒ 15 =

m3

n3
⇒ n3 · 15 = m3.

3 dzieli lew¡ stron¦ ostatniej równo±ci, wi¦c musi dzieli¢ praw¡ stron¦. 3
jest liczb¡ pierwsz¡, wi¦c je»eli dzieli iloczyn liczb, to musi dzieli¢ który± z
czynników (to jest wªasno±¢ liczb pierwszych). W takim razie 3 musi dzieli¢
m, a w takim razie prawa strona, jako sze±cian, dzieli si¦ przez 27. W takim
razie po lewej stronie równo±ci n3 musi si¦ dzieli¢ przez 3 (bo 15 dzieli si¦
tylko przez 3), a wi¦c znowu», skoro 3 jest liczb¡ pierwsz¡, n musi dzieli¢ si¦
przez 3. Uªamek m

n
nie jest wi¦c nieskracalny, co jest sprzeczne z zaªo»eniem.

Zaªo»enie, »e 3
√

15 jest liczb¡ wymiern¡ musi wi¦c by¢ faªszywe.
Uwagi: (i) Liczba pierwsza to liczna naturalna, wi¦ksza od 1, która nie ma
innych dzielników oprócz 1 i siebie samej. Liczby pierwsze maj¡ nast¦puj¡c¡
wªasno±¢: je»eli p jest liczb¡ pierwsz¡ i p|m · n (p dzieli m · n), to p|m lub
p|n.
(ii) Powy»sze rozumowanie stanowi zastosowanie rozkªadu liczby na czyn-
niki pierwsze. Ka»d¡ liczb¦ naturaln¡ mo»na rozªo»y¢ na iloczyn czynników,
które s¡ liczbami pierwszymi. Taki rozkªad nazywamy rozkªadem na czynniki
pierwsze. Rozkªad taki jest jednoznaczny. W równo±ci

n3 · 15 = m3

czynniki pierwsze n3 i m3 wyst¦puj¡ w kompletach po 3, a czynniki pierwsze
15, czyli 3 i 5 nie maj¡ takich kompletów. Istnienie i jednoznaczno±¢ roz-
kªadu liczb naturalnych na czynniki pierwsze to wªasno±¢ zbioru N, której
nie b¦dziemy dowodzi¢, ale o której zawsze warto pami¦ta¢. Jako ¢wiczenie
w którym rozkªad na czynniki pierwsze mo»e si¦ przyda¢ przytoczmy jeszcze
nast¦puj¡ce pytanie: ile zer ko«cowych ma liczba (1000)! (1000 silnia)?
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(iii) Pierwiastek wyst¦puj¡cy w poprzednim przykªadzie, podobnie jak loga-
rytm i pot¦gi wyst¦puj¡ce w nast¦pnym stanowi¡ przykªady funkcji elemen-
tarnych. Zakªadamy, »e znamy funkcje elementarne, i nie b¦dziemy zajmowa¢
si¦ ich de�nicjami. W nast¦pnym rozdziale krótko przypomnimy najwa»niej-
sze fakty z nimi zwi¡zane.
(c) log2 3. B¦dziemy rozumowa¢ tak jak w poprzednim przykªadzie, czyli nie
wprost. Zaªó»my, »e log2 3 jest liczb¡ wymiern¡, i niech log2 3 = m

n
b¦dzie

uªamkiem nieskracalnym

log2 3 =
m

n
⇒ 2

m
n = 3 ⇒ 2m = 3n.

Otrzymali±my sprzeczno±¢, gdy» lewa strona ostatniej równo±ci zawiera je-
dynie dwójki jako swoje czynniki pierwsze, a prawa strona jedynie trójki.
Zaªo»enie, »e log2 3 ∈ Q musi wi¦c by¢ faªszywe.
(d) Suma, ró»nica, iloczyn i iloraz dwóch liczb wymiernych s¡ wymierne
(oczywi±cie nie mo»na dzieli¢ przez zero). Suma, ró»nica, iloczyn i iloraz
liczby wymiernej i niewymiernej s¡ niewymierne (chyba »e, w przypadku
mno»enia i dzielenia, liczba wymierna jest równa 0). Wynik dziaªa« na dwóch
liczbach niewymiernych mo»e by¢ ró»ny, wymierny lub niewymierny, w za-
le»no±ci od konkretnych warto±ci.

Interpretacja geometryczna
O liczbach rzeczywistych mo»emy my±le¢ jako o punktach prostej. Na prostej
zaznaczamy miejsce zera i jedynki, a strzaªk¡ oznaczamy kierunek wzrostu.
Kierunek wzrostu zwi¡zany jest ze wzajemnym poªo»eniem zera i jedynki.
Tradycyjnie kierunek wzrostu jest zawsze w prawo. Ka»dej liczbie rzeczy-
wistej mo»na przyporz¡dkowa¢, w sposób wzajemnie jednoznaczny, punkt
takiej prostej.

0 1

Rysunek 2.1: Prosta rzeczywista
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Uporz¡dkowanie zbioru R

Je»eli x − y jest liczb¡ dodatni¡, to piszemy x > y (�x jest wi¦ksze od y�),
je»eli nieujemn¡, to piszemy x ≥ y. Podobnie, je»eli x− y jest liczb¡ ujemn¡
to piszemy x < y, je»eli niedodatni¡, to x ≤ y. Widzimy wi¦c, »e dla x, y ∈ R
mamy albo x = y, albo x < y albo x > y. W zwi¡zku z tym mówimy, »e zbiór
R jest uporz¡dkowany. Na prostej rzeczywistej x > y je»eli x jest bardziej
na prawo od y � symbolizuje to strzaªka w prawo � w prawo liczby rosn¡.

Przypomnijmy dwie wªasno±ci zbioru liczb rzeczywistych: aksjomat Ar-
chimedesa i aksjomat ci¡gªo±ci.

Symbole
∀ czytamy �dla ka»dego�, ∃ czytamy �istnieje�, ⇔ czytamy �wtedy i tylko
wtedy�, (· · · ) ⇒ (· · · ) czytamy �z (· · · ) wynika (· · · )�, ∈ czytamy �nale»y do�,
⊂ czytamy �jest podzbiorem�. Symbol ∧ czytamy �i�, a symbol ∨ czytamy
�lub�.

Aksjomat Archimedesa
Liczby rzeczywiste maj¡ nast¦puj¡c¡ wªasno±¢, która jest intuicyjnie zupeªnie
jasna: dla dowolnych x, y > 0 istnieje liczba naturalna n taka, »e

nx > y.

U»ywaj¡c przytoczonych powy»ej symboli aksjomat mo»emy zapisa¢ jako

∀ x, y > 0 ∃ n ∈ N nx > y.

Z aksjomatu Archimedesa wynika, na przykªad, »e istniej¡ liczby naturalne
dowolnie du»e (wi¦ksze od dowolnej ustalonej liczby rzeczywistej). Ponie-
wa» mno»enie przez −1 odwraca nierówno±ci, wi¦c z aksjomatu wynika te»,
»e istniej¡ liczby caªkowite dowolnie maªe (mniejsze od dowolnej ustalonej
liczby rzeczywistej). Zauwa»my, »e z aksjomatu wynika te», »e istniej¡ liczby
dodatnie dowolnie maªe (dodatnie, ale mniejsze od dowolnej innej dodatniej).
B¦dziemy u»ywali wszystkich tych faktów, nie powoªuj¡c si¦ ju» bezpo±rednio
na aksjomat Archimedesa.

Kresy
Mówimy, »e zbiór A ⊂ R jest:
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• ograniczony od góry, je»eli

∃ c ∀ x ∈ A x ≤ c,

• ograniczony od doªu, je»eli

∃ d ∀ x ∈ A x ≥ d,

• ograniczony, je»eli jest ograniczony od góry i od doªu jednocze±nie.

Staªe c i d w powy»szych warunkach nazywamy odpowiednio ogranicze-
niem zbioru A od góry i ograniczeniem zbioru A od doªu. Zbiór liczb natu-
ralnych jest ograniczony od doªu (ograniczeniem od doªu jest, na przykªad
liczba 1), ale nie jest ograniczony od góry (z aksjomatu Archimedesa wy-
nika, »e nie da si¦ znale¹¢ c, b¦d¡cego ograniczeniem N od góry). Je»eli
zbiór A ⊂ R jest ograniczony od góry, to najmniejsze ograniczenie A od góry
nazywamy kresem górnym A i oznaczamy

sup A (supremum A).

Je»eli A ⊂ R jest ograniczony od doªu, to najwi¦ksze ograniczenie A od doªu
nazywamy kresem dolnym A, i zapisujemy

inf A (in�mum A).

Czyli, s = sup A je»eli

• ∀ x ∈ A x ≤ s,

• ∀ u < s ∃ x ∈ A x > u.

Pierwszy warunek mówi, »e A jest ograniczony od góry i s jest ograniczeniem
od góry, a drugi warunek mówi, »e »adna liczba mniejsza od s nie jest ograni-
czeniem A od góry. Oba warunki razem mówi¡ wi¦c, »e s jest najmniejszym
ograniczeniem od góry zbioru A. Podobnie mo»emy podsumowa¢ de�nicj¦
kresu dolnego: k = inf A je»eli

• ∀ x ∈ A x ≥ k,

• ∀ l > k ∃ x ∈ A x < l.

Poj¦cie kresu górnego sup A i dolnego inf A wprowadzili±my w przypadku,
gdy zbiór A jest ograniczony, odpowiednio od góry lub od doªu. Dodatkowo
ustalmy, »e je»eli zbiór A nie jest ograniczony od góry, to b¦dziemy pisali

sup A = +∞,
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oraz gdy zbiór A nie jest ograniczony od doªu b¦dziemy pisali

inf A = −∞.

Na przykªad
inf N = 1 oraz supN = +∞.

Aksjomat ci¡gªo±ci
Aksjomat ten mówi, »e ka»dy zbiór A ⊂ R ograniczony od góry ma kres
górny. Równowa»nie mo»na sformuªowa¢ t¡ wªasno±¢ dla kresów dolnych:
ka»dy zbiór ograniczony od doªu ma kres dolny. Stwierdzenia te wyra»aj¡
pewn¡ wªasno±¢ ci¡gªo±ci zbioru liczb rzeczywistych � liczby rzeczywiste wy-
peªniaj¡ caª¡ prost¡ rzeczywist¡, bez przerw.
Uwaga: Zbiór mo»e zawiera¢ swój kres lub nie Na przykªad

sup{x : x < 1} = sup{x : x ≤ 1} = 1,

przy czym pierwszy zbiór nie zawiera 1, a drugi zawiera.
Przykªad: Rozwa»my nast¦puj¡cy zbiór

A =

{
m2 + n2

2mn
: m,n ∈ N, m < n

}
.

Zauwa»my, »e A nie jest ograniczony od góry. Istotnie, zbiór A zawiera
wszystkie liczby postaci m2+1

2m
, m ∈ N, m > 1. Ka»da taka liczba jest wi¦ksza

od m
2
, a wi¦c A zawiera liczby wi¦ksze od dowolnej liczby naturalnej. Nie

mo»e wi¦c by¢ ograniczony od góry. Zauwa»my, »e jest ograniczony od doªu,
i ograniczeniem od doªu jest 1. W tym celu wykorzystamy znan¡ nierówno±¢:

2ab ≤ a2 + b2 ⇒ m2 + n2

2mn
≥ 1 dla m,n > 0.

Przekonamy si¦ teraz, »e 1 jest najwi¦kszym ograniczeniem A od doªu. Niech
c > 1. Wtedy 1

c−1
jest liczb¡ dodatni¡, i z aksjomatu Archimedesa wynika,

»e istnieje liczba naturalna m wi¦ksza od 1
c−1

. Niech dodatkowo m ≥ 2, co
zawsze mo»emy zaªo»y¢, ewentualnie powi¦kszaj¡c m. Wtedy

2m(m− 1) > m >
1

c− 1
⇒ 1 +

1

2m(m− 1)
< c.

Mamy wi¦c

m2 + (m− 1)2

2m(m− 1)
=

m2 + m2 − 2m + 1

2m(m− 1)
=

2m(m− 1) + 1

2m(m− 1)
= 1+

1

2m(m− 1)
< c.
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Zakªadaj¡c, »e c > 1 znale¹li±my w zbiorze A element m2+(m−1)2

2m(m−1)
mniejszy

od c. Tak wi¦c »adne c > 1 nie jest ograniczeniem A od doªu, a wi¦c 1
jest najwi¦kszym ograniczeniem A od doªu, czyli inf A = 1. Przy okazji
zauwa»my, »e 1 /∈ A: gdyby 1 ∈ A, to istniaªyby m,n ∈ N, n 6= m, takie, »e
m2+n2 = 2mn. Wiemy jednak, »e taka równo±¢ jest równowa»na (m−n)2 =
0, czyli m = n.

Przedziaªy
Przedziaªy oznaczamy nast¦puj¡co:

(a, b) = {x : a < x < b}, (przedziaª otwarty),
[a, b] = {x : a ≤ x ≤ b}, (przedziaª domkni¦ty),

(a, b] = {x : a < x ≤ b}, (przedziaª lewostronnie otwarty),
[a, b) = {x : a ≤ x < b}, (przedziaª prawostronnie otwarty).

Wprzypadku przedziaªów (a, b) i (a, b] dopuszczamy a = −∞, a w przypadku
przedziaªów (a, b) i [a, b) dopuszczamy b = ∞. Takie przedziaªy oznaczaj¡
wtedy odpowiednie póªproste. Domy±lnie rozumiemy, »e a < b, a w przy-
padku przedziaªu domkni¦tego [a, b] dopuszczamy a = b.

Warto±¢ bezwzgl¦dna
Warto±¢ bezwzgl¦dn¡ liczby rzeczywistej de�niujemy nast¦puj¡co

|x| =
{

x je»eli x ≥ 0,

−x je»eli x < 0.

Warto±¢ bezwzgl¦dna ma nast¦puj¡ce wªasno±ci:

1. | − x| = |x| oraz −|x| ≤ x ≤ |x|,
2. |x + y| ≤ |x|+ |y| (nierówno±¢ trójk¡ta),

3. ||x| − |y|| ≤ |x− y|,
4. |x− y| reprezentuje odlegªo±¢ x od y na prostej rzeczywistej,

5. |x · y| = |x| · |y| oraz |x| =
√

x2,

6. |x| ≥ 0 oraz |x| = 0 ⇔ x = 0,

7. x ≤ y oraz −x ≤ y ⇒ |x| ≤ y.
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Dla przykªadu przeprowadzimy dowód nierówno±ci trójk¡ta 2. Rozpatrzymy
osobno dwa przypadki
(a) x i y maj¡ ten sam znak ±. Wtedy ich suma ma ten sam znak, a wi¦c

|x + y| = ±(x + y) = ±x +±y = |x|+ |y|.

W tym przypadku widzimy, »e nierówno±¢ trójk¡ta jest równo±ci¡.
(b) x i y maj¡ przeciwne znaki. Mo»emy zaªo»y¢, »e x ≤ 0 ≤ y, w przeciwnym
przypadku zamieniaj¡c miejscami x i y. Je»eli x + y ≥ 0 to

|x + y| = x + y ≤ −x + y = |x|+ |y|,

a je»eli x + y < 0 to

|x + y| = −(x + y) = −x− y ≤ −x + y = |x|+ |y|.

W tym przypadku, je»eli »adna z liczb x, y nie jest zerem, to nierówno±¢
trójk¡ta jest ostra.

Cz¦±¢ caªkowita i uªamkowa
Cz¦±¢ caªkowita x to najwi¦ksza liczba caªkowita nie wi¦ksza od x. Cz¦±¢
caªkowit¡ x oznaczamy przez [x]. Cz¦±¢ uªamkowa x to {x} = x− [x]. Cz¦±¢
caªkowita ma wi¦c nast¦puj¡ce wªasno±ci

• [x] ∈ Z,

• [x] ≤ x < x + 1 czyli x− 1 < [x] ≤ x,

• [x] = x ⇔ x ∈ Z.

Przykªady: [1, 5] = 1, [−1, 5] = −2, {−1, 5} = 0, 5.

G¦sto±¢ liczb wymiernych i niewymiernych w R

W ka»dym przedziale (a, b) le»y liczba wymierna i niewymierna. Niech (a, b)
b¦dzie dowolnym przedziaªem (pami¦tamy,»e a < b, wi¦c przedziaª ten nie
jest zbiorem pustym). Udowodnimy, »e w (a, b) musi le»e¢ liczba wymierna.
Liczb¦ niewymierna pozostawimy jako ¢wiczenie. 1

b−a
> 0, wi¦c z aksjomatu

Archimedesa istnieje n ∈ N taka, »e n > 1
b−a

czyli 1
n

< (b − a). Rozwa»my
zbiór liczb postaci {

k

n
: k ∈ Z

}
.
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−2 −1 0 1 2

f(x) = [x]

−2 −1 0 1 2

f(x) = {x}

Rysunek 2.2: Cz¦±¢ caªkowita i cz¦±¢ uªamkowa

Poka»emy, »e która± z liczb z powy»szego zbioru musi wpa±¢ do przedziaªu
(a, b). Niech k0 b¦dzie najwi¦ksz¡ spo±ród liczb caªkowitych k takich , »e

k ≤ na.

Zbiór liczb k ∈ Z speªniaj¡cych powy»szy warunek jest oczywi±cie ograni-
czony od góry, i w takim razie taka najwi¦ksza liczba k0 ∈ Z istnieje. Za-
uwa»my, »e k0+1

n
> a oraz skoro k0

n
≤ a, a 1

n
< (b−a), to k0+1

n
< a+(b−a) = b.

Tak wi¦c k0+1
n

∈ (a, b) i jest oczywi±cie liczb¡ wymiern¡.

Zasada indukcji
Zbiór liczb naturalnych ma nast¦puj¡c¡ wªasno±¢: Ka»dy jego niepusty pod-
zbiór posiada element najmniejszy. Z tej wªasno±ci wynika nast¦puj¡ca za-
sada indukcji. Niech T (n), n ≥ n0 b¦dzie pewnym ci¡giem twierdze«. Cz¦-
sto w zastosowaniach s¡ to równo±ci b¡d¹ nierówno±ci, w których wyst¦puje
liczba naturalna n. Niech:

1. T (n0) b¦dzie prawdziwe (punkt startowy indukcji),

2. ∀ n ≥ n0 zachodzi wynikanie (T (n) � prawdziwe) ⇒ (T (n + 1) � praw-
dziwe) (krok indukcyjny).

Wtedy wszystkie twierdzenia T (n), n ≥ n0 s¡ prawdziwe. Zasada indukcji
jest intuicyjnie oczywista, i mo»na j¡ ªatwo udowodni¢: Je»eli nie wszystkie
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twierdzenia T (n), n ≥ n0 s¡ prawdziwe, to niech A ⊂ N b¦dzie zbiorem tych
n ≥ n0, dla których T (n) nie jest prawdziwe. A ma element najmniejszy
który oznaczymy przez ñ. Zauwa»my, »e z warunku 1. wynika, »e ñ >
n0. Mamy wi¦c T (ñ) faªszywe (bo ñ ∈ A), ale T (ñ − 1) prawdziwe, gdy»
ñ−1 /∈ A. Ale to przeczy warunkowi 2., gdy» z prawdziwo±ci T (ñ−1) wynika
prawdziwo±¢ T (ñ).
Przykªad: Poka»emy, »e ∀ n ∈ N prawdziwe jest twierdzenie T (n), które
w tym przypadku jest nierówno±ci¡ 10n < 2n + 25. Przeprowadzimy krok
indukcyjny, czyli dowód 2. Zaªó»my wi¦c

10n < 2n + 25,

i spróbujmy, przy wykorzystaniu powy»szego udowodni¢

10(n + 1) < 2n+1 + 25. (2.1)

Mamy wi¦c
10(n + 1) = 10n + 10 < 2n + 25 + 10. (2.2)

�eby doko«czy¢ dowód, i doj±¢ do prawej strony (2.1) potrzebujemy nierów-
no±¢ 10 ≤ 2n, która, niestety, jest prawdziwa tylko dla n ≥ 4. Zaªó»my wi¦c,
»e n ≥ 4, i doko«czmy (2.2):

2n + 25 + 10 < 2n + 2n + 25 = 2n+1 + 25,

czyli mamy zrobiony krok indukcyjny, dla dowolnego n ≥ 4. Oznacza to, »e
zasad¦ indukcji b¦dziemy mogli zastosowa¢ tylko do udowodnienia nierówno-
±ci dla n ≥ 4. Co z nierówno±ciami dla n = 1, 2, 3? Tych kilka przypadków
sprawdzimy r¦cznie, niezale»nie od indukcji. Dodatkowo zostaª jeszcze przy-
padek n0 = 4, który jest punktem startowym dla indukcji n ≥ 4. Musimy
wi¦c sprawdzi¢ bezpo±rednio:
n = 1 : 10 < 2 + 25 prawdziwe,
n = 2 : 20 < 22 + 25 prawdziwe,
n = 3 : 30 < 23 + 25 prawdziwe, oraz w ko«cu
n = 4 : 40 < 24 + 25 = 41 te» prawdziwe.

Skorzystali±my z zasady indukcji, »eby przeprowadzi¢ dowód dla n ≥ 4,
a pozostaªe przypadki sprawdzili±my bezpo±rednio. To jest typowy przy-
kªad: próbuj¡c wykona¢ krok indukcyjny znajdujemy ograniczenie na n przy
którym krok indukcyjny jest mo»liwy. Do tego ograniczenia dopasowujemy
punkt startowy indukcji, a pozostaªe przypadki sprawdzamy �r¦cznie�.
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Liczby zespolone
Zbiór liczb zespolonych C to zbiór symboli a + b i, gdzie a, b ∈ R. Symbole
dodajemy, odejmujemy i mno»ymy zgodnie ze wzorami

(a + b i)± (c + d i) = (a± c) + (b± d) i,

(a + b i) · (c + d i) = (ac− bd) + (ad + cb) i.

Mo»emy te» dzieli¢ przez liczby niezerowe:

a + b i

c + d i
=

(a + bd) + (−ad + cd) i

c2 + d2
, c2 + d2 > 0.

Liczby rzeczywiste traktujemy jako podzbiór liczb zespolonych R ⊂ C po-
przez identy�kacj¦ x ∼ x + 0 i. Zauwa»my, »e ta identy�kacja zachowuje
dziaªania: na przykªad (a + 0 i) + (b + 0 i) = (a + b) + 0 i. Zauwa»my te»
»e (i)2 = (0 + i i)2 = −1 + 0 i = −1. Przy powy»szej identy�kacji i2 = −1,
a liczby zespolone traktujemy jako rozszerzenie zbioru liczb rzeczywistych.
Zbiór C ma zalet¦: ka»dy wielomian o wspóªczynnikach zespolonych rozkªada
si¦ na iloczyn czynników liniowych. Dzi¦ki temu liczby zespolone stanowi¡
wa»ne narz¦dzie i dla matematyków i dla in»ynierów (tak»e dla informatyków
:-)). Przypomnijmy nast¦puj¡ce poj¦cia:

• <(a + b i) = cz¦±¢ rzeczywista (a + b i) = a,

• =(a + b i) = cz¦±¢ urojona (a + b i) = b,

• a + b i = sprz¦»enie (a + b i) = a− b i.

Mamy nast¦puj¡ce wªasno±ci

1. (z) = z, z + w = z + w, z · w = z · w,

2. <(z) = z+z
2

, =(z) = z−z
2 i

,

3. z = z ⇔ z ∈ R,

4. z · z = <(z)2 + =(z)2 � nieujemna liczba rzeczywista.

Moduª
Moduª liczby zespolonej de�niujemy jako

|z| =
√
<(z)2 + =(z)2.
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Przykªady: | − 1 + 2 i| =
√
−1)2 + 22 =

√
5, |i| = |0 + 1 i| = 1.

Moduª liczby zespolonej jest odpowiednikiem warto±ci bezwzgl¦dnej liczby
rzeczywistej. Mamy nast¦puj¡ce wªasno±ci moduªu

• |z| ≥ 0 i |z| = 0 ⇔ z = 0,

• |z| = | − z| = |z|, |αz| = |α| · |z| dla α ∈ R,

• |z · w| = |z| · |w|,

• |z + w| ≤ |z|+ |w| (nierówno±¢ trójk¡ta),

• |z − w| ≥ |z| − |w|.

Interpretacja geometryczna
Liczby zespolone, czyli wyra»enia postaci a + b i mo»na uto»samia¢ z punk-
tami pªaszczyzny R2 = {(x, y) : x, y ∈ R}. Przy tej interpretacji dodawanie

z = a + i b

b

a

Rysunek 2.3: Pªaszczyzna liczb zespolonych

jest zgodne z dodawaniem wektorów, a mno»enie przez liczb¦ rzeczywist¡ z
mno»eniem przez skalar. Sprz¦»enie jest odbiciem wzgl¦dem osi poziomej, a
moduª oznacza euklidesow¡ odlegªo±¢ od pocz¡tku ukªadu wspóªrz¦dnych.
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z

z

w

w

Rysunek 2.4: Sprz¦»enie liczby zespolonej

Posta¢ trygonometryczna
Liczb¦ zespolon¡ a + b i mo»na zapisa¢ w tak zwanej postaci trygonome-
trycznej. W tej postaci liczby ªatwo mno»y si¦, podnosi do pot¦gi, wyci¡ga
pierwiastki. Niech z = a + b i 6= 0

z = a + b i =
√

a2 + b2

(
a√

a2 + b2
+

b√
a2 + b2

i

)
.

Mo»na znale¹¢ tak¡ liczb¦ ϕ ∈ [0, 2π), »e

cos ϕ =
a√

a2 + b2
, sin ϕ =

b√
a2 + b2

.

Mo»emy to podstawi¢ do wzoru na z, i otrzymamy posta¢ trygonometryczn¡
liczby zespolonej

z = |z|(cos ϕ + i sin ϕ).

U»ywaj¡c interpretacji geometrycznej zapis liczby zespolonej a+b i w postaci
trygonometrycznej r(cos ϕ+ i sin ϕ) odpowiada przedstawieniu punktu (a, b)
na pªaszczy¹nie we wspóªrz¦dnych biegunowych (r, ϕ).

Liczb¦ ϕ nazywamy argumentem z. Poniewa» funkcje sin i cos s¡ okre-
sowe o okresie 2π, wi¦c istnieje niesko«czenie wiele argumentów ka»dej liczby
z, ró»ni¡cych si¦ dokªadnie o caªkowit¡ wielokrotno±¢ 2π. Ten spo±ród argu-
mentów, który le»y w przedziale [0, 2π) (jest dokªadnie jeden taki) nazywamy
argumentem gªównym z.
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z = r(cosϕ+ i sinϕ)

ϕ

r

w = s(cosψ + i sinψ)

ψ

s

Rysunek 2.5: Posta¢ trygonometryczna liczby zespolonej

Przykªad: z = 1− i =
√

2( 1√
2

+ −1√
2
i). Szukamy ϕ ∈ [0, 2π), takiej, »e

cos ϕ =
1√
2
, sin ϕ = − 1√

2
.

�atwo zauwa»y¢, »e ϕ = 7
4
π.

Uwagi: (i) Dwie liczby zespolone s¡ równe, je»eli ich cz¦±ci rzeczywiste i
urojone s¡ równe. W przypadku zapisu liczb w postaci trygonometrycznej
mamy

r1(cos ϕ1 + i sin ϕ1) = r2(cos ϕ2 + i sin ϕ2)

wtedy gdy r1 = r2 oraz ϕ1 − ϕ2 jest caªkowit¡ wielokrotno±ci¡ 2π,
(ii) r1(cos ϕ1 + i sin ϕ1) · r2(cos ϕ2 + i sin ϕ2) = r1r2(cos(ϕ1 +ϕ2)+ i sin(ϕ1 +
ϕ2)) (moduªy mno»ymy, argumenty dodajemy),
(iii) z = r(cos ϕ + i sin ϕ) ⇒ zn = rn(cos(nϕ) + i sin(nϕ)),
(iv) pierwiastkiem liczby zespolonej z stopnia n ∈ N nazywamy liczb¦ zespo-
lon¡ w tak¡, »e wn = z. Posªuguj¡c si¦ postaci¡ trygonometryczn¡ poka»emy,
»e ka»da liczba zespolona z 6= 0 ma dokªadnie n ró»nych pierwiastków stop-
nia n. Niech z = r(cos ϕ + i sin ϕ) (przy czym niech ϕ b¦dzie argumentem
gªównym z) oraz n ∈ N. Wprowad¹my nastepuj¡ce liczby

wk = n
√

r(cos ψk + i sin ψk), gdzie ψk =
ϕ + 2kπ

n
k = 0, 1, . . . , n− 1.
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Zauwa»my, »e ka»da z liczb wk jest pierwiastkiem stopnia n z z, oraz wszyst-
kie s¡ ró»ne:ψk − ψl = k−l

n
2π, przy czym −1 < k−l

n
< 1. Jedyn¡ liczb¡

caªkowit¡ speªniaj¡c¡ obie nierówno±ci jest zero, a wi¦c je»eli wk = wl to
k = l. Mamy wi¦c n ró»nych pierwiastków. Wi¦cej nie mo»e by¢, gdy»
ka»dy pierwiastek stopnia n z liczby z jest pierwiastkiem wielomianu stopnia
n P (w) = wn−z. Wiemy, »e wielomiany stopnia n maj¡ najwy»ej n ró»nych
pierwiastków.
Przykªad: Obliczmy nast¦puj¡ce pierwiastki: 4

√
1− i = 8

√
2(cos ψk+i sin ψk),

gdzie ψk =
7
4
π+2kπ

4
= (7+8kπ)

16
, k = 0, 1, 2, 3.
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Rozdziaª 3

Funkcje

Przypomnimy najwa»niejsze potrzebne nam poj¦cia dotycz¡ce funkcji. Niech
A ⊂ R b¦dzie podzbiorem liczb rzeczywistych. Funkcj¡ f okre±lon¡ na A o
warto±ciach rzeczywistych nazywamy przyporz¡dkowanie ka»demu punktowi
A jakiej± liczby rzeczywistej. Funkcja jest o warto±ciach zespolonych, je»eli
ka»demu punktowi A przyporz¡dkowana jest liczba zespolona. Piszemy

f : M → R lub f : M → C.

Zbiór A nazywa si¦ dziedzin¡ funkcji f i cz¦sto oznaczany jest przez Df .
Zbiór

{y : ∃ x ∈ Df f(x) = y}
nazywa si¦ obrazem f , lub zbiorem warto±ci f .

Okre±lenie funkcji (czyli przyporz¡dkowanie warto±ci elementom dzie-
dziny) najcz¦±ciej ma posta¢ wzoru. Cz¦sto dziedzina rozdzielona jest na
podzbiory, i funkcja zadana jest ró»nymi wzorami na poszczególnych cz¦-
±ciach dziedziny. Tak zde�niowan¡ funkcj¦ nazywamy funkcj¡ �sklejon¡� z
kawaªków. Cz¦sto nie okre±la si¦ wprost dziedziny Df . Wtedy domy±lnie
funkcja jest okre±lona na najwi¦kszym zbiorze, na którym wzór de�niuj¡cy
funkcj¦ ma sens. Taki maksymalny zbiór nazywamy dziedzin¡ naturaln¡ f .

Monotoniczno±¢ funkcji
f jest rosn¡ca (lub ±ci±le rosn¡ca), je»eli

x < y ⇒ f(x) < f(y).

Mówimy, »e jest sªabo rosn¡ca (lub niemalej¡ca), je»eli

x < y ⇒ f(x) ≤ f(y).
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Podobnie f jest malej¡ca (±ci±le malej¡ca) je»eli

x < y ⇒ f(x) > f(y)

oraz sªabo malej¡ca (nierosn¡ca) je»eli

x < y ⇒ f(x) ≥ f(y).

Innymi sªowy funkcj¦ rosn¡c¡ mo»na zastosowa¢ do obu stron nierówno±ci, i
nierówno±¢ si¦ zachowa, a w przypadku funkcji malej¡cej nierówno±¢ zamieni
si¦ na przeciwn¡. Mówimy, »e f jest monotoniczna, je»eli jest albo rosn¡ca,
albo malej¡ca, i to samo z przymiotnikami �±ci±le� lub �sªabo�. Funkcje mog¡
by¢ monotoniczne kawaªkami. Na przykªad, f(x) = x3 jest ±ci±le rosn¡ca, a
wi¦c nierówno±ci mo»emy podnosi¢ stronami do 3 pot¦gi. Natomiast f(x) =
x2 jest kawaªkami monotoniczna � malej¡ca dla x ≤ 0 i rosn¡ca dla x ≥ 0.
Nierówno±ci mo»emy wi¦c podnosi¢ stronami do kwadratu, pod warunkiem,
»e dotycz¡ liczb nieujemnych.

Wykres
Je»eli f jest funkcj¡ o warto±ciach rzeczywistych, to wykresem f nazywamy
nast¦puj¡cy podzbiór pªaszczyzny

{(x, y) : x ∈ Df , y = f(x)} ⊂ R2.

Zawsze przy badaniu funkcji warto spróbowa¢ naszkicowa¢ wykres. Z wy-
kresu mo»na odczyta¢ informacje o funkcji, które nie tak ªatwo odczyta¢ ze
wzoru. Wykres nie zast¦puje oczywi±cie de�nicji funkcji.

Dziaªania na funkcjach
W ka»dym punkcie warto±ci funkcji s¡ liczbami, wi¦c mo»na je dodawa¢,
odejmowa¢, mno»y¢ i dzieli¢. W takim razie te same operacje mo»emy prze-
prowadza¢ na funkcjach. Je»eli mamy dwie funkcje, f oraz g, z dziedzinami
Df i Dg, to mo»emy utworzy¢ funkcje

f ± g, gdzie (f ± g)(x) = f(x)± g(x),

f · g, gdzie (f · g)(x) = f(x) · g(x),

f

g
, gdzie

(
f

g

)
(x) =

f(x)

g(x)
.

Dziedzin¡ tak utworzonych funkcji jest cz¦±¢ wspólna dziedzin Df i Dg, przy
czym w przypadku dzielenia z dziedziny ilorazu usuwamy punkty, w których
mianownik jest zerem (nie mo»na dzieli¢ przez 0).
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Zªo»enie funkcji i funkcja odwrotna
Je»eli mamy dwie funkcje f i g oraz zbiór warto±ci funkcji f zawiera si¦ w
dziedzinie funkcji g, to mo»na rozwa»a¢ tak zwane zªo»enie funkcji f z g:

(g ◦ f)(x) = g(f(x)), x ∈ Df .

Zaªó»my, »e mamy funkcj¦ f z dziedzin¡ Df . Je»eli pewna funkcja g z dzie-
dzin¡ Dg równ¡ zbiorowi warto±ci funkcji f speªnia

(g ◦ f)(x) = x ∀x ∈ Df oraz (f ◦ g)(y) = y ∀y ∈ Dg,

to funkcj¦ g nazywamy funkcj¡ odwrotn¡ do funkcji f . Funkcj¦ odwrotn¡
do f oznaczamy f−1. Funkcja f ma funkcj¦ odwrotn¡ je»eli jest ró»nowar-
to±ciowa to znaczy f(x) = f(y) ⇒ x = y. Funkcje ±ci±le monotoniczne s¡
ró»nowarto±ciowe.
Przykªad: Funkcja f(x) = x2 nie jest ró»nowarto±ciowa i nie ma funkcji
odwrotnej. Je»eli natomiast zaw¦»ymy dziedzin¦ f do x ≥ 0 to f jest ±ci±le
rosn¡ca, i ma funkcj¦ odwrotn¡ g(y) =

√
y okre±lon¡ dla y ≥ 0. Podobnie,

je»eli zaw¦»ymy dziedzin¦ f do x ≤ 0, to f jest funkcja ±ci±le malej¡c¡ i ma
funkcj¦ odwrotn¡ g(y) = −√y okre±lon¡ dla y ≥ 0.

Funkcje elementarne
Najcz¦±ciej spotykane funkcje to tak zwane funkcje elementarne. Przypo-
mnijmy krótko najwa»niejsze funkcje elementarne.
(a) Wielomiany to funkcje postaci f(x) = a0 + a1x + · · ·+ anx

n. Wspóªczyn-
niki mog¡ by¢ rzeczywiste lub zespolone. Df = R. Wielomian stopnia n ma
nie wi¦cej ni» n pierwiastków. Wielomian o wspóªczynnikach rzeczywistych
stopnia nieparzystego ma co najmniej 1 pierwiastek rzeczywisty, natomiast
stopnia parzystego mo»e wogóle nie mie¢ pierwiastków rzeczywistych. Dla
du»ych |x| wielomian zachowuje si¦ podobnie do swojego wyrazu wiod¡cego
anxn.
(b) Funkcje wymierne to funkcje postaci f(x) = P (x)

Q(x)
, gdzie P i Q s¡ wielo-

mianami. Df = {x : Q(x) 6= 0}.
(c) Funkcja pot¦gowa f(x) = xα. Df zale»y od α Je»eli α = m

n
jest wymierna

to xα = n
√

xm. x0 = 1 dla ka»dego x, oraz dla m < 0 mamy xm = 1
x−m . Je»eli

α jest niewymierna, to

xα = sup{xq : q ∈ Q, q < α}.
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Rysunek 3.1: Przykªadowe wielomiany stopnia 3 i 4.
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Rysunek 3.2: Przykªad funkcji wymiernej.
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Rysunek 3.3: Dwie funkcje pot¦gowe, z wykªadnikami 0, 25 i 1, 5.

Poza szczególnymi przypadkami α (na przykªad α ∈ N) mamy Df = R+ =
{x ∈ R : x > 0}. Je»eli wykªadnik jest wi¦kszy od 0 to funkcja pot¦gowa
jest rosn¡ca, je±li wykªadnik jest mniejszy od 0, to funkcja pot¦gowa jest ma-
lej¡ca. Oczywi±cie, je»eli wykªadnik jest równy 0, to funkcja pot¦gowa jest
staªa, równa 1. Szczególnym przypadkiem funkcji pot¦gowej jest pierwiastek
x1/n = n

√
x dla n ∈ N.

(d) Funkcja wykªadnicza f(x) = ax, a > 0. Df = R. Je»eli podstawa jest
wi¦ksza od 1 to funkcja jest rosn¡ca, a je»eli podstawa jest mniejsza od 1 to
funkcja jest malej¡ca. Je»eli podstawa jest równa 1, to funkcja wykªadnicza
jest oczywi±cie staªa, równa 1.
(e) Logarytm f(x) = loga x, a > 0, a 6= 1. Df = R+. Logarytm jest funkcja
odwrotn¡ do wykªadniczej, czyli y = loga x ⇔ ay = x. Je»eli podstawa jest
wi¦ksza od 1, to logarytm jest rosn¡cy, a je»eli podstawa jest mniejsza od 1,
to logarytm jest malej¡cy.
Mamy nast¦puj¡ce wªasno±ci pot¦g i logarytmów (w ka»dym przypadku mu-
simy pami¦ta¢ o ewentualnych ograniczeniach na zakres zmiennych): (xα)β =
xα·β, (x · y)α = xαyα, xαxβ = xα+β, loga(x · y) = loga x + loga y, loga(x

α) =
α loga x, logb x = loga x

loga b
.

(f) Funkcje trygonometryczne. Na okr¦gu jednostkowym odmierzamy od
punktu (1, 0) odlegªo±¢ ϕ przeciwnie do ruchu wskazówek zegara je»eli ϕ > 0
i zgodnie z ruchem wskazówek zegara je»eli ϕ < 0. Daje nam to pewien
punkt na okr¦gu jednostkowym (x, y). Wspóªrz¦dne tego punktu nazywamy
funkcjami cos i sin odpowiednio:

x = cos ϕ, y = sin ϕ.
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Rysunek 3.4: Funkcje wykªadnicze o podstawach mniejszej i wi¦kszej od 1
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Rysunek 3.5: Logarytmy, o podstawach mniejszej i wi¦kszej od 1.
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Rysunek 3.6: Funkcje sin(x) i cos(x).

Funkcje cos i sin s¡ okresowe o okresie 2π, to znaczy obie speªniaj¡ f(x +
2π) = f(x) (bo dªugo±¢ caªego okr¦gu jednostkowego to 2π). Mamy te»
sin2 x + cos2 x = 1 (bo promie« okr¦gu jest równy 1), oraz równo±ci

cos(ϕ + ψ) = cos ϕ cos ψ − sin ϕ sin ψ,

sin(ϕ + ψ) = cos ϕ sin ψ + sin ϕ cos ψ.

Funkcja tan x to iloraz sinusa przez cosinus:

tan x =
sin x

cos x
, x 6= π

2
+ k π, k = 0,±1,±2, . . . .
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Rozdziaª 4

Ci¡gi

De�nicja 4.1. Ci¡g rzeczywisty to funkcja a : N → R, a ci¡g zespolony to
funkcja a : N → C.

W przypadku ci¡gów warto±¢ a w n nazywamy n-tym wyrazem ci¡gu,
a zamiast a(n) cz¦sto piszemy an. Ci¡g o wyrazach an oznaczamy {an}∞n=1

lub krócej {an}. B¦dziemy gªównie rozwa»a¢ ci¡gi rzeczywiste, je»eli gdzie±
pojawi¡ si¦ ci¡gi zespolone, to zwrócimy na to uwag¦.
Przykªady: (a) Ci¡g (post¦p) geometryczny: a, aq, aq2, . . . , an = aqn−1,
(b) ci¡g staªy an = c,
(c) ci¡g harmoniczny an = 1

n
,

(d) a1 =
√

2, an+1 =
√

2 + an,
(e) ci¡g Fibonacciego a1 = a2 = 1, an+2 = an + an+1.

�eby zde�niowa¢ ci¡g musimy jednoznacznie opisa¢ w jaki sposób maj¡
by¢ obliczane wyrazy an. Mo»na to zrobi¢ wzorem ogólnym, jak w przy-
kªadach (a)�(c), lub rekurencyjnie, jak w przykªadach (d) i (e). De�nicja
rekurencyjna (czasem nazywana te» indukcyjn¡) opisuje w jaki sposób na-
st¦pny wyraz ci¡gu obliczy¢ znaj¡c poprzednie. Trzeba te» zde�niowa¢ wy-
starczaj¡co wiele wyrazów pocz¡tkowych. Na przykªad w de�nicji ci¡gu Fi-
bonacciego kolejne wyrazy obliczamy z dwóch poprzednich, a wi¦c jako punkt
wyj±ciowy musimy poda¢ dwa pierwsze wyrazy.

Mówimy, »e ci¡g jest:

• ±ci±le rosn¡cy je»eli an < an+1, ±ci±le malej¡cy je»eli an > an+1,

• sªabo rosn¡cy je»eli an ≤ an+1, sªabo malej¡cy je»eli an ≥ an+1,

• ±ci±le monotoniczny je»eli jest albo ±ci±le rosn¡cy albo ±ci±le malej¡cy,
oraz sªabo monotoniczny je»eli jest sªabo rosn¡cy lub sªabo malej¡cy.
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Czasem mówimy po prostu, »e ci¡g jest rosn¡cy lub malej¡cy, je»eli nie jest
wa»ne, czy chodzi nam ±cisª¡, czy sªab¡ monotoniczno±¢.

Ci¡g harmoniczny z przykªadu (c) jest ±ci±le malej¡cy, natomiast ci¡gi z
przykªadów (d) i (e) ±ci±le rosn¡ce. Przykªad (c) wynika wprost ze wzoru:
an > an+1 to nic innego ni» n + 1 > n. Przykªady (d) i (e) mo»na sprawdzi¢
indukcyjnie. W przypadku (d) najpierw dowodzimy, »e wszystkie wyrazy
an s¡ mniejsze ni» 2, a nast¦pnie korzystaj¡c z tego dowodzimy, »e ci¡g jest
rosn¡cy. Oba dowody mo»na przeprowadzi¢ przy pomocy metody indukcji.
Podobnie w przykªadzie (e), najpierw indukcyjnie pokazujemy, »e wszystkie
wyrazy s¡ ±ci±le dodatnie an > 0, a nast¦pnie wprost ze wzoru rekurencyjnego
pokazujemy, »e ci¡g jest rosn¡cy an+2 = an + an+1 > an+1. To jest typowa
sytuacja � je»eli ci¡g zde�niowany jest rekurencyjnie, to jego wªasno±ci daj¡
si¦ z reguªy udowodni¢ indukcyjnie.

Dziaªania na ci¡gach
Ci¡gi dodajemy, odejmujemy, mno»ymy i dzielimy tak jak funkcje: (a±b)n =
an + bn, (a · b)n = an · bn,

(
a
b

)
n

= an

bn
, bn 6= 0.

Ci¡gi ograniczone
Mówimy, »e ci¡g {an} jest ograniczony, je»eli

∃ M ∀ n ∈ N |an| ≤ M,

mówimy, »e jest ograniczony od góry, je»eli

∃ M ∀ n ∈ N an ≤ M,

oraz mówimy, »e jest ograniczony od doªu, je»eli

∃ M ∀ n ∈ N an ≥ M.

Przykªady: (a) ci¡g harmoniczny an = 1
n
jest ograniczony, od doªu przez 0,

i od góry przez a1 = 1. Ogólniej, ci¡g malej¡cy zawsze jest ograniczony od
góry przez swój pierwszy wyraz, podobnie ci¡g rosn¡cy jest ograniczony od
doªu przez swój pierwszy wyraz,
(b) Ci¡g Fibonacciego nie jest ograniczony od góry. Mówili±my ju», »e wy-
razy tego ci¡gu s¡ dodatnie. Podobnie, indukcyjnie mo»na udowodni¢, »e
wyrazy tego ci¡gu speªniaj¡ an ≥ n dla n ≥ 6. Z tego wida¢ ju», »e ci¡g nie
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mo»e by¢ ograniczony od góry.
(c) Ci¡g an =

√
n + 1−√n jest ograniczony. Wida¢ od razu, »e wyrazy tego

ci¡gu s¡ dodatnie (pierwiastek jest funkcja rosn¡c¡), czyli ci¡g jest ograni-
czony od doªu przez 0. Poka»emy, »e jest te» ograniczony od góry.

an =
√

n + 1−√n = (
√

n + 1−√n)

√
n + 1 +

√
n√

n + 1 +
√

n

=
n + 1− n√
n + 1 +

√
n
≤ 1√

1 + 1 + 1
≤ 1

2
.

(d) Post¦p geometryczny an = aqn−1 jest ograniczony, je»eli |q| ≤ 1 i nie-
ograniczony, je»eli |q| > 1 i a 6= 0. Pierwsze stwierdzenie jest oczywiste:
|an| = |aqn−1| = |a||q|n−1 ≤ |a|. Drugie stwierdzenie wymaga pewnego do-
wodu. Mo»emy wykorzysta¢ na przykªad nast¦puj¡c¡ wa»n¡ nierówno±¢,
któr¡ mo»na udowodni¢ na przykªad indukcyjnie: dla ε > 0

(1 + ε)n > 1 + nε. (4.1)

Je»eli |q| > 1 to |q| = (1 + ε) dla pewnego ε > 0. Mamy wi¦c

|an| = |a| · |q|n−1 =
|a|
|q| (1 + ε)n >

|a|
|q| (1 + nε).

Je»eli |an| ≤ M , to

|a|
|q| (1 + nε) ≤ M ⇒ n ≤ 1

ε

(
M

|q|
|a| − 1

)
.

Z powy»szego wida¢ ju», »e ci¡g an nie mo»e by¢ ograniczony.

Zbie»no±¢ ci¡gu
Przechodzimy teraz do najwa»niejszego dla nas poj¦cia dotycz¡cego ci¡gów

De�nicja 4.2. Mówimy, »e ci¡g {an} jest zbie»ny do liczby g je»eli

∀ ε > 0 ∃ n0 ∈ N ∀ n ≥ n0 |an − g| < ε.

Zapisujemy to
lim

n→∞
an = g lub an

n→∞−−−→ g.
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gg − ε g + ε

przedzia l |x − g| < ε

Rysunek 4.1: Granica ci¡gu

De�nicja odnosi si¦ do ci¡gów i rzeczywistych i zespolonych, w tym dru-
gim przypadku granica te» mo»e by¢ liczb¡ zespolon¡, a | · | oznacza moduª
liczby zespolonej.
Przykªady: (a) an = 1

n
. Mo»na ªatwo udowodni¢, »e limn→∞ an = 0.

(b) an =
√

n + 1−√n
n→∞−−−→ 0. Udowodnijmy to.

|an − 0| = √
n + 1−√n =

1√
n + 1 +

√
n
≤ 1

2
√

n
.

Wystarczy wi¦c rozwi¡za¢ nierówno±¢ 1
2
√

n
< ε

1

2
√

n
< ε ⇔ 2

√
n >

1

ε
⇔ n >

1

4 ε2
.

Dla zadanego ε > 0 istnieje wi¦c n0 =
[

1
4ε2

]
+1 speªniaj¡ce warunek de�nicji.

(c) an = n2+2
2 n2−1

M→∞−−−−→ 1
2
. Podobnie jak w poprzednim przykªadzie rozwi¡-

»emy odpowiedni¡ nierówno±¢. Tym razem uªatwimy sobie rachunki stosuj¡c
oszacowania, zamiast rozwi¡zania dokªadnego

∣∣∣∣
n2 + 2

2 n2 − 1
− 1

2

∣∣∣∣ =
5

2 (2n2 − 1)
≤ 5

2 n
.

Ostatnie oszacowanie, czyli 2(2n2 − 1) ≥ 2n jest prawdziwe dla wszystkich
n ∈ N, i mo»na je udowodni¢ rozwi¡zuj¡c nierówno±¢ kwadratow¡. Na koniec
wystarczy wi¦c rozwi¡za¢ prost¡ nierówno±¢ 5

2n
< ε co daje n > 5

2ε
. Niech

wi¦c, dla zadanego ε > 0 b¦dzie n0 = [ 5
2ε

] + 1.
(d) Ci¡g staªy an = c ma granic¦ limn→∞ an = c.
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Zbie»no±¢ ci¡gów do podanych granic w powy»szych przykªadach poka-
zali±my korzystaj¡c wprost z de�nicji. W praktyce najcz¦±ciej pokazujemy
zbie»no±¢ korzystaj¡c z ró»nych wªasno±ci granic. Na przykªad, mamy na-
st¦puj¡ce podstawowe twierdzenie

Twierdzenie 4.3. Je»eli limn→∞ an = a, limn→∞ bn = b to ci¡gi {(a± b)n}
i {(a · b)n} s¡ zbie»ne, oraz

lim
n→∞

(a± b)n = lim
n→∞

an ± lim
n→∞

bn = a± b,

lim
n→∞

(a · b)n = lim
n→∞

an · lim
n→∞

bn = a · b.

Je»eli dodatkowo bn 6= 0 dla wszystkich n ∈ N i b 6= 0 to ci¡g ilorazów {(a
b
)n}

jest zbie»ny, oraz
lim

n→∞

(a

b

)
n

=
limn→∞ an

limn→∞ bn

=
a

b
.

W dowodzie twierdzenia wykorzystamy nast¦puj¡ce obserwacje

Fakt 4.4. (i) Ci¡g zbie»ny jest ograniczony. �eby si¦ o tym przekona¢ niech
ci¡g {an} b¦dzie zbie»ny do a i we¹my dowolne ε > 0, na przykªad ε = 1.
Wtedy istnieje n0 ∈ N takie, »e dla wszystkich n ≥ n0 zachodzi |an| − |a| ≤
|an − a| < 1, czyli |an| < |a|+ 1. Niech

M = max{|a1|, |a2|, . . . , |an0−1|, |a|+ 1}.
Wtedy ci¡g {an} jest ograniczony przez M : ∀ n ∈ N |an| ≤ M .
(ii) Ci¡g {bn} liczb ró»nych od zera, zbie»ny do granicy b ró»nej od zera jest
�oddzielony od zera�:

∃ δ > 0 ∀ n ∈ N |bn| ≥ δ.

�eby si¦ o tym przekona¢, niech ε = |b|
2
. Wtedy, z de�nicji zbie»no±ci istnieje

n0 ∈ N takie, »e |b| − |bn| ≤ |b− bn| < |b|
2
, czyli |bn| > |b| − |b|

2
= |b|

2
. Niech

δ = min

{
|b1|, |b2|, . . . , |bn0−1|, |b|

2

}
> 0.

Wtedy ∀ n ∈ N mamy |bn| ≥ δ.

Dowód twierdzenia. Przeprowadzimy dowód dla iloczynu, pozostaªe przy-
padki pozostawiaj¡c jako ¢wiczenie. Dla iloczynu nierówno±ci¡, któr¡ b¦-
dziemy chcieli rozwi¡za¢ ze wzgl¦du na n b¦dzie

|an · bn − a · b| < ε.

33



Zróbmy tak

|a·bn − a · b| = |a·bn − a · bn + a · bn − a · b|
≤ |an · bn − a · bn|+ |a · bn − a · b|
= |an − a| · |bn|+ |a| · |bn − b|.

Wyra»enie po lewej stronie b¦dziemy wi¦c mogli oszacowa¢ korzystaj¡c z
tego, »e mo»emy oszacowa¢ wyra»enie po prawej stronie. Wiemy, »e ci¡g
{bn} jest ograniczony (skoro jest zbie»ny), wi¦c niech |bn| ≤ M . Niech M̃ =
max{M, |a|, 1}. Niech ε > 0. Ustalmy ε̃ = ε

2 M̃
> 0 (mo»emy wykona¢

dzielenie, bo wiemy, ze M̃ > 0). Wtedy istnieje n1 ∈ N takie, »e |an− a| < ε̃
dla n ≥ n1 oraz istnieje n2 ∈ N takie, »e |bn − b| < ε̃ dla n ≥ n2. Niech
n0 = max{n1, n2}. Wtedy |an − a| < ε̃ oraz |bn − b| < ε̃ dla n ≥ n0. Mamy
wi¦c, dla n ≥ n0

|an · bn| ≤ |an − a| · |bn|+ |a| · |bn − b|
≤ |an − a| M̃ + |bn − b| M̃

< ε̃ M̃ + ε̃ M̃

=
ε

2
+

ε

2
= ε,

co ko«czy dowód

Przykªad: Niech
an =

n2 + 2

2 n2 − 1
=

1 + 2
n2

2− 1
n2

.

Mamy 1
n
→ 0 ⇒ 1

n2 = 1
n
· 1

n
→ 0 ⇒ 2

n2 = 2 · 1
n2 → 0 a wi¦c licznik d¡»y do 1,

a mianownik do 2, a wi¦c

an =
1 + 2

n2

2− 1
n2

n→∞−−−→ 1

2
.

Granic¦ t¦ obliczyli±my wcze±niej z de�nicji, ale teraz mogli±my to zrobi¢
znacznie sprawniej.

Granice niewªa±ciwe
De�nicja 4.5. Ci¡g rzeczywisty {an} ma granic¦ niewªa±ciw¡ +∞ (mówimy,
»e jest rozbie»ny do +∞) je»eli

∀ M ∃ n0 ∈ N ∀ n ≥ n0 an > M.
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Ci¡g rzeczywisty {an} ma granic¦ niewªa±ciw¡ −∞ (jest rozbie»ny do −∞)
je»eli

∀ M ∃ n0 ∈ N ∀ n ≥ n0 an < M.

Ci¡g zespolony {an} ma granic¦ niewªa±ciw¡ ∞ (jest rozbie»ny do ∞) je»eli

∀ M ∃ n0 ∈ N ∀ n ≥ n0 |an| > M,

(w przypadku ci¡gów zespolonych nie rozró»niamy niesko«czono±ci).

Przykªad: Ci¡g an = n2−3
n+1

jest rozbie»ny do +∞: dla n ≥ 3 mamy

n2 − 3

n + 1
≥

1
2
n2

2 n
=

n

4
,

natomiast n
4

> M ⇔ n ≥ [4M ] + 1. Niech wi¦c n0 = max{3, [4M ] + 1},
wtedy dla n ≥ n0 mamy |an| > M .

Twierdzenie o dziaªaniach na granicach rozszerza si¦ na niektóre przy-
padki granic niewªa±ciwych. Na przykªad, niech an → a, bn → b (ci¡gi
rzeczywiste). Wtedy

a = +∞, b > 0 ⇒ an · bn → +∞,

a = +∞, b < 0 ⇒ an · bn → −∞.

Warunek Cauchy'ego
Twierdzenie 4.6. Ci¡g {an} jest zbie»ny wtedy i tylko wtedy, gdy speªnia
tak zwany warunek Cauchy'ego:

∀ ε > 0 ∃ n0 ∈ N ∀ m,n ≥ n0 |am − an| < ε.

Dowód. Dowód przeprowadzimy dla ci¡gów rzeczywistych. Rozszerzenie go
na ci¡gi zespolone jest ju» prostym ¢wiczeniem. Dowód ma dwie cz¦±ci:
ze zbie»no±ci warunek Cauchy'ego (cz¦±¢ �⇒�), oraz z warunku Cauchy'ego
zbie»no±¢ (cz¦±¢ �⇐�).
⇒ Zakªadamy, »e {an} jest zbie»ny do a. Niech ε > 0 b¦dzie dowolne.
Wtedy, z de�nicji zbie»no±ci ∃ n0 ∈ N ∀n ≥ n0 zachodzi |an − a| < ε/2.
We¹my m,n ≥ n0, wtedy |am − a| < ε/2 i |an − a| < ε/2, a wi¦c

|am − an| = |am − a + a− an| ≤ |am − a|+ |an − a| < ε

2
+

ε

2
= ε.

Warunek Cauchy'ego jest wi¦c speªniony.

35



⇐ Zaªó»my, »e ci¡g {an} speªnia warunek Cauchy'ego. Zauwa»my, »e w
takim razie ci¡g {an} musi by¢ ograniczony: niech ε = 1, a wi¦c

∃ n0 ∈ N ∀ m,n ≥ n0 |am − an| < 1.

Czyli, bior¡c n = n0 otrzymujemy dla ka»dego m ≥ n0 |am − an0| < 1 ⇒
|am| < |an0|+ 1. Niech

M = max{a1, |a2|, . . . , |an0−1|, |an0|+ 1}.
Wtedy, dla ka»dego n ∈ N mamy |an| ≤ M .

Utwórzmy dwa pomocnicze ci¡gi

αk = inf{an : n ≥ k} ← ci¡g niemalej¡cy,
βk = sup{an : n ≥ k} ← ci¡g nierosn¡cy,

oraz niech
A = sup{αk : k ∈ N},
B = inf{βk : k ∈ N}. (4.2)

Wszystkie kresy istniej¡, gdy» ci¡g jest ograniczony. W pierwszym kroku
poka»emy, »e A ≤ B. Ta nierówno±¢ jest prawdziwa dla wszystkich ci¡gów.
Zaªó»my nie wprost, »e A > B, i poka»emy, »e takie zaªo»enie prowadzi do
sprzeczno±ci, czyli musi by¢ faªszywe. Je»eli A > B to niech 0 < ε < A−B

2
. Z

de�nicji kresów znajdziemy k1 ∈ N takie, »e

αk1 > A− ε.

Skoro ci¡g {αk} jest niemalej¡cy, to powy»sza nierówno±¢ zachodzi dla wszyst-
kich k ≥ k1. Podobnie, musi istnie¢ k2 ∈ N takie, »e

βk2 < B + ε, ⇒ ∀ k ≥ k2 βk < B + ε.

Niech teraz k0 = max{k1, k2}. Mamy

A− ε < αk0 ≤ βk0 < B + ε ⇒ A−B

2
< ε,

czyli sprzeczno±¢. Musi wi¦c zachodzi¢

A ≤ B.

Tak, jak ju» wspomnieli±my, powy»sza nierówno±¢ wynika jedynie z de�nicji
liczb A i B i jest prawdziwa dla wszystkich ci¡gów, a nie tylko tych speªnia-
j¡cych warunek Cauchy'ego. Teraz poka»emy, »e dla ci¡gów speªniaj¡cych
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warunek Cauchy'ego zachodzi równo±¢: A = B. B¦dziemy znowu rozumo-
wali nie wprost. Niech A < B, i niech 0 < ε < A−B

2
. Istnieje n0 ∈ N takie,

ze dla wszystkich m, n ≥ n0 zachodzi |am − an| < ε, w szczególno±ci

∀ n ≥ n0 |an0 − an| < ε ⇒ an0 − ε < an < an0 + ε.

St¡d wynika, »e

αn0 = inf{an : n ≥ n0} ≥ an0 − ε ⇒ A ≥ an0 − ε

βn0 = sup{an : n ≥ n0} ≤ an0 + ε ⇒ B ≤ an0 + ε.

Mamy wi¦c

B − A ≤ an0 + ε− an0 + ε = 2ε ⇒ ε ≥ B − A

2
,

czyli sprzeczno±¢. Musimy wi¦c mie¢ równo±¢ A = B. Niech wi¦c g = A = B.
Z de�nicji kresów mamy

∀ ε > 0 ∃ n0 ∈ N ∀ n ≥ n0 |g − αn| < ε oraz |g − βn| < ε.

Bior¡c pod uwag¦, »e ci¡g {αn} jest sªabo rosn¡cy a {βn} sªabo malej¡cy
powy»sze nierówno±ci oznaczaj¡ odpowiednio

g − ε < αn ≤ g oraz g ≤ βn < g + ε.

W takim razie, dla wszystkich n ≥ n0 skoro αn ≤ an ≤ βn to g − ε < αn ≤
an ≤ βn < g + ε, czyli |an − g| < ε.

Uwaga: Staªe A i B zde�niowane w powy»szym dowodzie maj¡ sens dla
dowolnego ci¡gu ograniczonego {an}. Staªe te nosz¡ nazwy granicy dolnej i
górnej ci¡gu {an}. Wkrótce omówimy dokªadniej te poj¦cia.
Przykªady: (a) Ci¡g an = (−1)n nie speªnia warunku Cauchy'ego. Niech
ε = 1. Wtedy |an − an+1| = 2 > ε dla wszystkich n.
(b) Ci¡g an = n−1

n
speªnia warunek Cauchy'ego. Sprawd¹my to: niech m > n,

wtedy

|am − an| = m− 1

m
− n− 1

n
=

(m− 1)n− (n− 1)m

m · n =
m− n

m · n <
m

m · n =
1

n
.

Wida¢ wi¦c, »e wystarczy wzi¡¢ n0 = [1
ε
] + 1, wtedy je»eli m,n ≥ n0 to

1
m

, 1
n

< ε i warunek Cauchy'ego jest speªniony.
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Twierdzenie 4.7. (i) Ka»dy ci¡g monotoniczny ograniczony ma granic¦
(wªa±ciw¡).
(ii) Ka»dy ci¡g monotoniczny nieograniczony ma granic¦ niewªa±ciw¡.

Uwaga: Wystarczy monotoniczno±¢ sªaba, i tylko od pewnego miejsca.

Dowód. (i) Zaªó»my, »e {an} jest sªabo rosn¡cy i ograniczony, to znaczy

an ≤ an+1 oraz |an| ≤ M dla n = 1, 2, . . . .

Istnieje wi¦c kres górny

g = sup{an : n = 1, 2, . . . }.

Z de�nicji kresu mamy

∀ n ∈ N an ≤ g oraz ∀ ε > 0∃ n0 ∈ N an0 > g − ε.

Skoro {an} jest sªabo rosn¡cy, to ∀ n ≥ n0 mamy an ≥ an0 > g − ε, czyli
g − ε < an ≤ g ⇒ |an − g| < ε.
(ii) Zaªó»my, »e ci¡g {an} jest sªabo rosn¡cy i nie jest ograniczony, czyli nie
jest ograniczony od góry (od doªu jest ograniczony przez a1). Niech dana
b¦dzie liczba M . Skoro ci¡g {an} nie jest ograniczony od góry, to istnieje
n0 ∈ N takie, »e an0 > M . Skoro ci¡g jest sªabo rosn¡cy, to

∀ n ≥ n0 an ≥ an0 > M.

Speªniony jest wi¦c warunek z de�nicji granicy niewªa±ciwej +∞. Przypadek
ci¡gów sªabo malej¡cych mo»na udowodni¢ podobnie.

Uwaga: Zauwa»my, »e przy okazji udowodnili±my, »e je»eli ci¡g {an} jest
rosn¡cy i ograniczony, to

lim
n→∞

an = sup{an : n ≥ 1},

a je»eli jest malej¡cy i ograniczony, to

lim
n→∞

an = inf{an : n ≥ 1}.
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Dwumian Newtona
Przypomnijmy nast¦puj¡cy wzór, tak zwany wzór dwumianowy Newtona.
Dla n ∈ N silnia n to iloczyn wszystkich liczb naturalnych k ≤ n: n! =
1 · 2 · 3 · . . . · (n− 1) · n. Przyjmujemy te» oznaczenie 0! = 1. Dla 0 ≤ k ≤ n
wprowadzamy tak zwany wspóªczynnik dwumianowy Newtona

(
n

k

)
=

n!

k! (n− k)!
, k, n ∈ Z, 0 ≤ k ≤ n.

Nast¦puj¡cy wzór nazywa si¦ wzorem dwumianowym Newtona. Mo»na go
udowodni¢ na przykªad przy pomocy indukcji. Jest to jeden ze wzorów, z
którego b¦dziemy stale korzysta¢, wi¦c warto go dobrze zapami¦ta¢. Niech
a, b ∈ R, n ∈ N, wtedy

(a + b)n =

(
n

0

)
a0 bn +

(
n

1

)
a1 bn−1 +

(
n

2

)
a2 bn−2 + · · ·+

(
n

n

)
an b0

=
n∑

k=0

(
n

k

)
ak bn−k.

Ostatnia równo±¢ to po prostu rozwini¦cie symbolu sumowania Σ. Symbolu
tego b¦dziemy stale u»ywa¢. Oznacza on po prostu sum¦ wyra»enia dla
wszystkich warto±ci parametru k z opisanego na symbolu zakresu, w tym
wypadku k = 0, 1, . . . , n.

Liczba e

Rozwa»my nast¦puj¡cy ci¡g: an = (1 + 1
n
)n. Poka»emy, »e ten ci¡g jest

rosn¡cy i ograniczony, a wi¦c zbie»ny. Zauwa»my, »e ani to, »e {an} jest
rosn¡cy ani to, »e jest ograniczony nie jest oczywiste: co prawda pot¦ga
ro±nie, ale podstawa maleje do 1. Na przykªad

a1 = 2, a2 =

(
3

2

)2

= 2,25, a3 =

(
4

3

)3

= 2,370 . . . ,

a4 =

(
5

4

)4

= 2,441 . . . , a5 =

(
6

5

)5

= 2,488 . . . .

Poka»emy teraz, »e ci¡g {an} jest rosn¡cy. Zauwa»my nast¦puj¡c¡ równo±¢
dla k = 0, 1, . . . , n

(
n

k

) (
1

n

)k

=
n!

k! (n− k)!

(
1

n

)k
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=
(n− k + 1) · (n− k + 2) · . . . · (n− 1) · (n)

k! n · n · . . . · n · n
=

1

k!

n− 1

n
· n− 2

n
· . . . · n− (k − 1)

n

=
1

k!

(
1− 1

n

)
·
(

1− 2

n

)
· . . . ·

(
1− k − 1

n

)
.

Wyrazy ci¡gu {an} rozwiniemy teraz korzystaj¡c ze wzoru dwumianowego
Newtona, a nast¦pnie zastosujemy powy»sz¡ równo±¢.

an =

(
n

0

)(
1

n

)0

+

(
n

1

)(
1

n

)1

+

(
n

2

)(
1

n

)2

+ . . .

. . . +

(
n

k

)(
1

n

)k

+ . . . +

(
n

n

)(
1

n

)n

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ . . . (4.3)

. . . +
1

k!

(
1− 1

n

)
· . . . ·

(
1− k − 1

n

)
+ . . .

. . . +
1

n!

(
1− 1

n

)
· . . . ·

(
1− n− 1

n

)
.

Zauwa»my, »e w takiej postaci w jakiej zapisali±my go powy»ej, wyraz an wraz
ze wzrostem n zawiera coraz wi¦cej dodatnich skªadników, a tak»e ka»dy ze
skªadników robi si¦ coraz wi¦kszy (z wyj¡tkiem 2 pierwszych skªadników,
1 + 1, które nie zmieniaj¡ si¦). Je»eli wyrazy ci¡gu zapiszemy wi¦c w tej po-
staci, to wida¢, »e ci¡g {an} jest rosn¡cy. Dodatkowo zauwa»my, »e mo»emy
oszacowa¢ an od góry

an ≤ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
< 1 + 1 +

1

2
+

1

22
+ · · ·+ 1

2n−1
. (4.4)

Pierwsz¡ nierówno±¢ otrzymujemy z postaci (4.3), poprzez pomini¦cie czyn-
ników mniejszych ni» 1, natomiast drug¡ nierówno±¢ otrzymujemy poprzez
zast¡pienie czynników wi¦kszych ni» 2 w mianownikach przez 2. Mianowniki
s¡ wi¦c mniejsze, czyli uªamki wi¦ksze. Pozostaje nam skorzysta¢ ze wzoru
na sum¦ post¦pu geometrycznego: dla q 6= 1, oraz l ∈ N mamy

1 + q + q2 + · · ·+ ql−1 =
1− ql

1− q
. (4.5)

Równo±¢ powy»sz¡ mo»na udowodni¢ na przykªad indukcyjnie. Jest to jedna
z tych równo±ci, które trzeba zawsze pami¦ta¢, i b¦dzie pojawiaªa si¦ wielo-
krotnie. Suma z prawej strony naszego oszacowania (4.4) to wªa±nie suma
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post¦pu geometrycznego, z q = 1
2
, oraz z jedn¡ dodatkow¡ 1 z przodu. Mamy

wi¦c
an < 1 +

1− (1
2
)n

1− 1
2

< 1 +
1
1
2

= 3.

Pokazali±my wi¦c, »e ci¡g {an} jest rosn¡cy i ograniczony, a wi¦c zbie»ny.
Granic¦ tego ci¡gu nazywamy e

e = lim
n→∞

(
1 +

1

n

)n

.

Wiemy te» z oszacowa«, »e 2 < e < 3. e to wa»na liczba, która b¦dzie
pojawiaªa si¦ na naszym wykªadzie stale, gªownie jako podstawa logarytmów
i funkcji wykªadniczej.

Twierdzenie 4.8 (o 3 ci¡gach). Zaªó»my, »e mamy 3 ci¡gi speªniaj¡ce nie-
równo±ci

an ≤ bn ≤ cn, n = 1, 2, 3, . . . , (4.6)
oraz »e skrajne ci¡gi {an} oraz {cn} s¡ zbie»ne do wspólnej granicy

a = lim
n→∞

an = lim
n→∞

cn.

Wtedy ci¡g {bn} tez jest zbie»ny, do tej samej granicy

a = lim
n→∞

bn.

Uwaga: Wystarczy, »e ci¡gi speªniaj¡ nierówno±ci (4.6) od pewnego n0 ∈ N.

Dowód twierdzenia. Niech ε > 0 i niech n1 ∈ N b¦dzie takie, »e dla n ≥ n1

|an − a| < ε ⇒ an > a− ε,

oraz niech n2 ∈ N b¦dzie takie, »e dla n ≥ n2 zachodzi

|cn − a| < ε ⇒ cn < a + ε.

Istnienie takich n1 i n2 wynika ze zbie»no±ci ci¡gów {an} i {cn} do wspólnej
granicy a. Wtedy, dla n ≥ n0 = max{n1, n2} mamy

a− ε < an ≤ bn ≤ cn < a + ε ⇒ |bn − a| < ε. (4.7)

Zauwa»my jeszcze, »e je»eli nierówno±ci (4.6) zachodz¡ tylko od pewnego
miejsca, na przykªad dla n ≥ k, to wystarczy zmody�kowa¢ de�nicj¦ n0:
niech n0 = max{n1, n2, k}, i nierówno±¢ (4.7) zachodzi. W ten sposób uza-
sadnili±my uwag¦ poni»ej twierdzenia.
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Przykªady: (a) Niech an =
√

n (
√

n + 1 − √
n). Skorzystamy z twierdze-

nia o 3 ci¡gach, a w tym celu wykonamy kilka przeksztaªce« i oszacowa«.
Widzieli±my ju» wcze±niej, jak przeksztaªci¢ ró»nic¦ dwóch pierwiastków

√
n (
√

n + 1−√n) =
√

n
1√

n + 1 +
√

n
=

1√
n+1

n
+ 1

=
1√

1 + 1
n

+ 1
.

Nast¦pnie

1 ≤
√

1 +
1

n
≤ 1 +

1

n
⇒ 1

1 + 1
n

+ 1
≤ an ≤ 1

2
.

Dwa skrajne ci¡gi maj¡ wspóln¡ granic¦ 1
2
, wi¦c an → 1

2
.

(b) Niech a > 1 i an = n
√

a. Wyrazy ci¡gu s¡ pierwiastkami coraz wy»szego
rz¦du z liczby wi¦kszej od 1. Zauwa»my od razu, »e taki ci¡g musi mie¢
granic¦, gdy» jest malej¡cy, i ograniczony od doªu przez 1. Ta obserwacja
nie b¦dzie nam potrzebna, gdy» skorzystamy z twierdzenia o 3 ci¡gach. Po
pierwsze, skoro a > 1 to tak»e an > 1 dla wszystkich n. Niech εn = an−1 > 0.
Skorzystamy z nierówno±ci (4.1), i otrzymujemy

a = (1 + εn)n ≥ 1 + nεn ⇒ 0 < εn ≤ a− 1

n
.

Skrajne ci¡gi zbiegaj¡ do 0, a wi¦c tak»e εn → 0 czyli

lim
n→∞

an = lim
n→∞

n
√

a = 1.

(c) Niech an = n
√

n. Podobnie jak w poprzednim przykªadzie zapiszmy an =
1 + εn, a wi¦c εn > 0. Skorzystamy teraz z innej nierówno±ci prawdziwej dla
ε > 0 i n ≥ 2

(1 + ε)n >

(
n

2

)
ε2 =

n (n− 1)

2
ε2.

Nierówno±¢ powy»sz¡ mo»na udowodni¢ korzystaj¡c ze wzoru dwumianowego
Newtona. Korzystaj¡c z niej, otrzymujemy dla n ≥ 2

n = (1+εn)n >
n (n− 1)

2
ε2
n ⇒ ε2

n <
2 n

n (n− 1)
⇒ 0 < εn <

√
2

n− 1
.

Prawy skrajny ci¡g zbiega do 0. Mo»na to pokaza¢ z de�nicji, a mo»na sko-
rzysta¢ z ogólnego twierdzenia o zbie»no±ci pierwiastków, które udowodnimy
poni»ej. Korzystaj¡c z 3 ci¡gów ponownie pokazali±my, »e εn → 0, a wi¦c

lim
n→∞

an = lim
n→∞

n
√

n = 1.
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Twierdzenie 4.9. Niech an → a, an ≥ 0 oraz m ∈ N. Wtedy

lim
n→∞

m
√

an = m
√

a.

Dowód. Rozpatrzymy 2 przypadki: a = 0 i a > 0. Je»eli a = 0 to niech ε > 0
b¦dzie dowolne, i niech ε̃ = εm. Z de�nicji granicy

∃ n0 ∈ N ∀ n ≥ n0 0 ≤ an < ε̃ ⇒ 0 ≤ m
√

an < ε.

W przypadku a = 0 twierdzenie jest wi¦c udowodnione. Rozpatrzmy teraz
pozostaªy przypadek, czyli niech a > 0. Wykorzystamy nast¦puj¡c¡ równo±¢,
dla α, β ≥ 0, m ∈ N

(α− β) (αm−1 + αm−2 β + · · ·+ α βm−2 + βm−1) = αm − βm.

Nierówno±¢ t¡ mo»na udowodni¢ bezpo±rednio (na przykªad indukcyjnie),
albo mo»na j¡ wywnioskowa¢ ze wzoru na sum¦ post¦pu geometrycznego
(4.5). Mamy wi¦c

| m
√

an − m
√

a| =
=

|an − a|(
( m
√

an)m−1 + ( m
√

an)m−2 m
√

a + · · ·+ ( m
√

a)m−1
) ≤ |an − a|(

m
√

a
)m−1 .

Wystarczy teraz, podobnie jak w poprzednim przypadku wzi¡¢ ε̃ = ( m
√

a)m−1ε
i mamy

|an − a| < ε̃ ⇒ | m
√

an − m
√

a| < ε.

Zauwa»my, »e powy»sze twierdzenie pozwala nam �wej±¢ z granic¡ pod�
dowoln¡ pot¦g¦ wymiern¡, je»eli tylko an i a s¡ takie, »e pot¦g¦ mo»na za-
stosowa¢

lim
n→∞

(an)
p
q =

(
lim

n→∞
an

) p
q , p ∈ Z, q ∈ N.

Przykªad: Niech a1 =
√

2 i niech an+1 =
√

2 + an dla n ≥ 1. Rozwa»ali±my
ju» ten przykªad, i pokazali±my, »e {an} jest rosn¡cy i ograniczony, czyli
zbie»ny. Wykorzystamy to teraz do znalezienia jego granicy

g = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

√
2 + an =

√
2 + lim

n→∞
an =

√
2 + g.

Widzimy wi¦c, »e granica g musi speªnia¢ równanie kwadratowe g2−g−2 = 0.
Równanie to ma dwa pierwiastki g = −1 i g = 2. Granica nie mo»e by¢
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liczb¡ ujemn¡, bo ci¡g skªada si¦ z liczb dodatnich, wi¦c pozostaje jedyna
mo»liwo±¢: g = 2.
Uwaga: Skorzystali±my z nast¦puj¡cego faktu: je»eli an → a oraz an ≥ 0
to a ≥ 0. Fakt ten mo»na sformuªowa¢ ogólniej: je»eli an → a i bn → b oraz
an ≤ bn (przynajmniej od pewnego miejsca), to a ≤ b. Pozostawiamy to jako
¢wiczenie.

Podci¡gi
De�nicja 4.10. Podci¡giem ci¡gu {an} nazywamy ci¡g postaci {ank

}∞k=1,
gdzie {nk} jest ±ci±le rosn¡cym ci¡giem liczb naturalnych.

Uwaga: W de�nicji istotne jest to, »eby ci¡g indeksów {nk} byª ±ci±le ro-
sn¡cy. Innymi sªowy, a1, a5, a6, a17, . . . mo»e by¢ podci¡giem ci¡gu {an},
natomiast a1, a1, a5, a2, . . . nie jest podci¡giem. Zauwa»my te», »e zgodnie
z de�nicj¡ sam ci¡g {an} jest swoim wªasnym podci¡giem, wystarczy wzi¡¢
nk = k. De�nicja podci¡gu sprowadza si¦ do wybrania z naszego ci¡gu je-
dynie niektórych wyrazów, z tym, »e wybiera¢ musimy na ka»dym kroku
spo±ród wyrazów dalszych, ni» ju» wybrane.
Przykªad: Ci¡g 1, 1

4
, 1

9
, 1

16
, . . . , 1

n2 , . . . jest podci¡giem ci¡gu 1, 1
2
, 1

3
, 1

4
, . . . . Tu-

taj an = 1
n
oraz nk = k2, a wi¦c ank

= 1
k2 .

Twierdzenie 4.11. Ka»dy podci¡g ci¡gu zbie»nego te» jest zbie»ny, do tej
samej granicy.

Dowód. Niech b¦dzie b¦dzie dany podci¡g ci¡gu {an}, z ci¡giem indeksów
{nk}. Niech ε > 0, i niech n0 ∈ N b¦dzie takie, »e dla n ≥ n0 zachodzi
|an − g| < ε. Niech

k0 = min{k ∈ N : nk ≥ n0}.
Wtedy, je»eli k ≥ k0 to nk ≥ nk0 ≥ n0, i |ank

− g| < ε.

Przykªad: Niech l ∈ N oraz

an =

(
1 +

1
l

n

)n

.

Niech nl = lk. Jest to ci¡g ±ci±le rosn¡cy, oraz

an =

(
1 +

1

l n

)n

=

((
1 +

1

l n

)l n
) 1

l

,
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czyli, je±li bn = (1 + 1
n
)n (ci¡g okre±laj¡cy liczb¦ e), to ak = l

√
bnk

. Wiemy,
»e bn → e, a wi¦c

bnk

k→∞−→ e ⇒ l
√

bnk

k→∞−→ l
√

e,

czyli mamy
lim

n→∞
an = e

1
l .

Twierdzenie 4.12 (Bolzano-Weierstrassa). Z ka»dego ci¡gu ograniczonego
mo»na wybra¢ podci¡g zbie»ny

Dowód. Niech ci¡g {an} b¦dzie ograniczony. Przypomnijmy konstrukcj¦ z
Twierdzenia 4.6, dotycz¡cego warunku Cauchy'ego.

αk = inf{an : n ≥ k}, A = sup{αk : k ≥ 1} = lim
k→∞

αk.

Wiemy, »e kresy istniej¡, bo ci¡g {an} jest z zaªo»enia ograniczony. Wiemy
te», »e A jest kresem górnym zbiory warto±ci ci¡gu {αk}, a tak»e granic¡ tego
ci¡gu, gdy» ci¡g ten jest rosn¡cy, by¢ mo»e sªabo. Poka»emy teraz, »e istnieje
podci¡g {ank

} zbie»ny do A. Konstrukcja tego podci¡gu jest nast¦puj¡ca.
Niech an1 b¦dzie elementem ci¡gu {an} odlegªym od α1 o mniej ni» 1

2
. Wiemy,

»e taki element musi istnie¢, z de�nicji kresu. Mamy wi¦c

α1 ≤ an1 < α1 +
1

2
.

Dalej konstrukcja podci¡gu b¦dzie indukcyjna. Nast¦pnego elementu pod-
ci¡gu musimy szuka¢ w±ród an'ów o numerach wi¦kszych ni» n1, wi¦c niech
an2 elementem ci¡gu {an}, n ≥ n1, odlegªym od αn1+1 o mniej ni» 1

4
. Mamy

wi¦c n2 > n1 oraz
αn1+1 ≤ an2 < αn1+1 +

1

22
.

Opiszemy teraz ogólny krok indukcyjnej de�nicji. Zaªó»my, »e skonstruowa-
li±my kawaªek podci¡gu an1 , an2 , . . . , anm taki, »e n1 < n2 < · · · < nm, oraz

αnl+1 ≤ anl+1
< αnl+1 +

1

2l+1
, l = 1, 2, . . . ,m− 1.

Niech teraz nast¦pny indeks nm+1 b¦dzie taki, »e po pierwsze nm+1 ≥ nm +1
(indeksy musz¡ ±ci±le rosn¡¢), oraz

αnm+1 ≤ anm+1 < αnm+1 +
1

2m+1
.
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Zauwa»my, »e taki wybór jest zawsze mo»liwy, ze wzgl¦du na de�nicj¦ ci¡gu
{αk} jako ci¡gu kresów. W ten sposób, indukcyjnie, zde�niowali±my podci¡g
{ank

}, o wªasno±ci

αnk−1+1 ≤ ank
< αnk−1+1 +

1

2k
, k = 2, 3, . . . .

Po skrajnych stronach nierówno±ci mamy ci¡gi zbie»ne do A ({αnk−1+1} jest
podci¡giem ci¡gu {αn} a 1

2k → 0), wi¦c z 3 ci¡gów otrzymujemy

lim
k→∞

ank
= lim

k→∞
αk = A.

Uwaga: Twierdzenie jest intuicyjnie jasne. Je»eli ci¡g jest ograniczony, to
jego wyrazy (których jest niesko«czenie wiele) musz¡ gdzie± si¦ zag¦szcza¢.
Powy»szy dowód stanowi sprecyzowanie tego stwierdzenia.

De�nicja 4.13. Liczb¦ α nazywamy punktem skupienia ci¡gu {an} je»eli
istnieje podci¡g {ank

} zbie»ny do α.

Twierdzenie 4.14. α jest punktem skupienia ci¡gu {an} wtedy i tylko wtedy,
gdy

∀ ε > 0 ∀ n0 ∈ N ∃ n ≥ n0 |an − g| < ε. (4.8)
Innymi sªowy, ka»de otoczenie punktu α zawiera wyrazy ci¡gu {an} o do-
wolnie dalekich indeksach (w szczególno±ci ka»de otoczenie punktu α zawiera
niesko«czenie wiele wyrazów ci¡gu {an}).
Dowód. Je»eli α jest punktem skupienia ci¡gu {an} to z de�nicji istnieje
podci¡g {ank

} zbie»ny do α. Niech wi¦c ε > 0, a k0 b¦dzie takie, »e dla
k ≥ k0 mamy ank

− α| < ε. Je»eli dane jest n0 ∈ N, to niech k ≥ k0 speªnia
nk ≥ n0. Takie k musi istnie¢, bo ci¡g indeksów {nk} jest rozbie»ny do +∞.
Indeks nk jest wymaganym indeksem w (4.8). Z drugiej strony, niech b¦dzie
speªniony warunek (4.8). Indukcyjnie skonstruujemy podci¡g {ank

} zbie»ny
do α. Niech n1 b¦dzie numerem takiego elementu ci¡gu, który speªnia

|an1 − α| < 1

2
.

Istnienie takiego elementu wynika z (4.8). Dalej, zaªó»my, »e mamy ju»
skonstruowany ci¡g rosn¡cy indeksów n1 < n2 < · · · < nk speªniaj¡cy

|anl
− α| < 1

2l
, l = 1, 2, . . . , k.

46



Niech nk+1 b¦dzie indeksem elementu ci¡gu {an} który speªnia

|ank+1
− α| < 1

2k+1
,

oraz nk+1 > nk. Istnienie takiego elementu wynika z (4.8). W ten sposób
otrzymali±my podci¡g {ank

} speªniaj¡cy

0 ≤ |ank
− α| < 1

2k
, k = 1, 2, . . . .

Korzystaj¡c z 3 ci¡gów widzimy, »e podci¡g jest zbie»ny do α, czyli α istotnie
jest punktem skupienia ci¡gu {an}.

Je»eli ci¡g {an} jest ograniczony, to zbiór jego punktów skupienia (który,
zgodnie z twierdzeniem Bolzano-Weierstrassa jest niepusty) te» jest ograni-
czony (¢wiczenie). Posiada wi¦c kresy.

De�nicja 4.15. Kresy dolny i górny zbioru punktów skupienia nazywamy
granic¡ doln¡ i górn¡ ci¡gu {an}, i oznaczamy

lim inf
n→∞

an granica dolna lim sup
n→∞

granica górna.

Uwagi: (i) Granica dolna jest mniejsza lub równa od granicy górnej.
(ii) Zbiór punktów skupienia ci¡gu ograniczonego osi¡ga swoje kresy. Gra-
nica dolna jest wi¦c najmniejszym punktem skupienia ci¡gu, a granica górna
najwi¦kszym punktem skupienia ci¡g ograniczonego.
(iii) Ci¡g ograniczony jest zbie»ny wtedy i tylko wtedy gdy jego granice górna
i dolna s¡ równe. Innymi sªowy, ci¡g ograniczony jest zbie»ny wtedy i tylko
wtedy, gdy ma dokªadnie jeden punkt skupienia.
(iv) Staªe A i B które pojawiªy si¦ w (4.2) w dowodzie Twierdzenia 4.6 s¡
odpowiednio granicami doln¡ i górn¡ ci¡gu {an}.
Przykªad: Niech m ∈ N b¦dzie ustalona, i niech an = (1 + m

n
)n. Poka»emy,

»e
lim

n→∞
an = lim

n→∞

(
1 +

m

n

)n

= em.

Najpierw niech 0 ≤ x < 1, i niech bn = (1 + 1
n+x

)n. Zauwa»my, »e mamy
nast¦puj¡ce oszacowanie

(
1 +

1

n + 1

)n

<

(
1 +

1

n + x

)n

≤
(

1 +
1

n

)n

,
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Prawy skrajny ci¡g d¡»y do e, lewy skrajny, jak ªatwo si¦ przekona¢ te»:
(

1 +
1

n + 1

)n

=

(
1 +

1

n + 1

)n+1 (
n + 1

n + 2

)
n→∞−−−→ e · 1 = e. (4.9)

Korzystaj¡c z 3 ci¡gów mamy wi¦c, »e bn → e. Ustalmy teraz l = 0, . . . , m−1,
i niech nk = mk + l. Zauwa»my, »e odpowiadaj¡cy temu podci¡g ci¡gu {an}
zbiega do em:

ank
=

(
1 +

m

mk + l

)mk+l

=

(
1 +

1

k + l
m

)mk+l

=




(
1 +

1

k + l
m

)k



m

·
(

1 +
1

k + l
m

)l

k→∞−−−→ em,

zgodnie z (4.9). Wszystkie powy»sze podci¡gi maj¡ wi¦c t¡ sam¡ granic¦ em.
Ka»dy element ci¡gu {an} nale»y do którego± podci¡gu, i podci¡gów tych
jest sko«czenie wiele. Wynika z tego, »e {an} jest zbie»ny, i jego granic¡ jest
em. Przekonajmy si¦ o tym. Niech {nl

k} b¦dzie ci¡giem nl
k = mk + l dla

l = 0, 1, . . . , m − 1. Wiemy, »e ka»dy podci¡g {anl
k
} zbiega do em, wi¦c dla

dowolnego ε > 0 istniej¡ kl
0 ∈ N taki, »e dla k ≥ kl

0 zachodzi

|anl
k
− em| < ε.

Niech teraz n0 = max{mk0
0,mk1

0 + 1, . . . , mkm−1
0 + m − 1}. Je»eli n ≥ n0,

to n musi nale»e¢ doktórego± ci¡gu nl
k i dodatkowo k ≥ kl

0. an speªnia wi¦c
|an − em| < ε. Niech m, k ∈ N. Jako prosty wniosek z powy»szych oblicze«
mamy

(
1 +

m
k

n

)n

=

((
1 +

m

k · n
)k·n) 1

k

= (akn)
1
k

n→∞−−−→ (em)
1
k = e

m
k .

Dla p = m
k
, m, k ∈ N mamy wi¦c

lim
n→∞

(
1 +

p

n

)n

= ep.

Powy»sz¡ równo±¢ mo»na uogólni¢ najpierw na dowolne p ∈ R, p > 0, a
nast¦pnie na dowolne p ∈ R. Zostawiamy to jako ¢wiczenie
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Rozdziaª 5

Szeregi

Szeregi to sumy niesko«czone. Do ich de�nicji potrzebne jest poj¦cie zbie»-
no±ci. Sumy niesko«czone nie s¡ niczym dziwnym, wyst¦puj¡ w praktyce, na
przykªad kiedy chcemy obliczy¢ pola �gur. Niech b¦dzie dany ci¡g {an}, i
utwórzmy ci¡g kolejnych sum

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, sn = a1 + a2 + · · ·+ an, . . .

De�nicja 5.1. Je»eli ci¡g {sn} ma granic¦ s to mówimy, »e szereg (suma
niesko«czona)

∑∞
n=1 an jest zbie»ny, i »e jego suma wynosi s. Piszemy s =∑∞

n=1 an. Ci¡g {sn} nazywamy ci¡giem sum cz¦±ciowych szeregu
∑

an, a jego
elementy sk sumami cz¦±ciowymi szeregu. Je»eli ci¡g {sn} nie jest zbie»ny,
to mówimy, »e szereg jest rozbie»ny, a wyra»enie

∑
an jest tylko symbolem i

nie ma interpretacji liczbowej.

Przykªady: (a) Niech an = (2
3
)n. Wtedy

sn =
2

3
+

(
2

3

)2

+ · · ·+
(

2

3

)n

=
2

3

1− (2
3
)n

1− 2
3

= 2

(
1−

(
2

3

)n)
n→∞−−−→ 2.

Szereg
∑∞

n=1(
2
3
)n jest wi¦c zbie»ny, i

∑∞
n=1(

2
3
)n = 2 (jest to przykªad tak

zwanego szeregu geometrycznego). Skorzystali±my ze wzoru na sum¦ post¦pu
geometrycznego (4.5)
(b) Niech an = 1

n (n+1)
. Zauwa»my, »e an = 1

n
− 1

n+1
. Mamy wi¦c

sn =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n− 1
− 1

n

)
+

(
1

n
− 1

n + 1

)

= 1− 1

n + 1

n→∞−−−→ 1.
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Szereg
∑∞

n=1
1

n (n+1)
jest wi¦c zbie»ny, i jego suma wynosi 1.

(c) Szereg
∑∞

n=1(−1)n jest rozbie»ny, bo sn = −1 lub 0, w zale»no±ci od tego,
czy n jest parzyste czy nieparzyste.

Dziaªania na szeregach
Twierdzenie dziaªaniach na granicach przenosi si¦ na szeregi:

∞∑
n=1

(an ± bn) =
∞∑

n=1

an ±
∞∑

n=1

bn

∞∑
n=1

(c · an) = c ·
∞∑

n=1

an,

przy zaªo»eniu »e szeregi po prawej stronie s¡ zbie»ne. Twierdzenie o granicy
iloczynu czy ilorazu nie ma tu bezpo±redniego zastosowania.

Twierdzenie 5.2. Je»eli szereg ∑
an jest zbie»ny, to limn→∞ an = 0.

Dowód. Je»eli szereg jest zbie»ny, to znaczy, »e zbie»ny jest jego ci¡g sum
cz¦±ciowych sn = a1 + · · ·+ an. Dla n ≥ 2 an = sn − sn−1, a wi¦c

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = 0.

Uwaga: Powy»sze twierdzenie daje tak zwany warunek konieczny zbie»no±ci
szeregu. lim an = 0 nie gwarantuje zbie»no±ci szeregu

∑∞
n=1 an. Twierdzenie

przydaje si¦ wi¦c gªównie, »eby pokaza¢ rozbie»no±¢.
Przykªad: Niech an = 1

n
. Szereg

∑∞
n=1

1
n
jest rozbie»ny. Jest to tak zwany

szereg harmoniczny. Poka»emy, »e ci¡g sum cz¦±ciowych nie jest ograniczony.
Wystarczy pokaza¢ podci¡g ci¡gu {sn} rozbie»ny do +∞.

s2n = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·+ 1

2n

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .

· · ·+
(

1

2n−1 + 1
+

1

2n−1 + 2
+ · · ·+ 1

2n

)
.
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W ka»dym kolejnym nawiasie mamy 2k − 2k−1 = 2k−1 skªadników, a ka»dy
skªadnik jest ≥ 1

2k . Suma ka»dego nawiasu jest wi¦c wi¦ksza od 2k−1 · 1
2k = 1

2

s2n ≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·+

(
1

2n
+

1

2n
+ · · ·+ 1

2n

)

= 1 +
1

2
+

1

2
+ · · ·+ 1

2︸ ︷︷ ︸
n razy

= 1 + n · 1

2
= 1 +

n

2
.

Mamy wi¦c s2n ≥ 1+n
2
, a wi¦c ci¡g sum cz¦±ciowych {sn} nie jest ograniczony,

a wi¦c nie jest zbie»ny.

Twierdzenie 5.3. Szereg ∑∞
n=1 an jest zbie»ny wtedy i tylko wtedy, gdy ci¡g

sum cz¦±ciowych {sn} speªnia warunek Cauchy'ego:

∀ ε > 0 ∃ n0 ∈ N ∀ m,n ≥ n0 |sm − sn| < ε.

Warunek ten mo»na przeformuªowa¢:

∀ ε > 0 ∃ n0 ∈ N ∀ m ≥ n ≥ n0 |an + an+1 + · · ·+ am| < ε.

Dowód. Twierdzenie wynika natychmiast z Twierdzenia 4.6 dla ci¡gów.

Przykªad: Je»eli |r| < 1 to szereg geometryczny
∑∞

n=0 rn jest zbie»ny. Niech
m ≥ n ≥ n0.

|an + an+1 + · · ·+ am| ≤ |an|+ |an+1|+ · · ·+ |am| = |rn|+ |rn+1|+ · · ·+ |rm|
= |r|n + |r|n+1 + · · ·+ |r|m = |r|n(1 + |r|+ · · ·+ |r|m−n)

= |r|n · 1− |r|m−n+1

1− |r| <
|r|n

1− |r| ≤
|r|n0

1− |r| .

Ci¡g |r|n
1−|r| jest zbie»ny do 0, wi¦c wystarczy dobra¢ n0 do zadanego ε.

Kryteria zbie»no±ci
Badanie zbie»no±ci szeregów w wi¦kszo±ci przypadków mo»na sprowadzi¢ do
zastosowania jednego z nast¦puj¡cych kilku kryteriów.

Twierdzenie 5.4 (kryterium porównawcze).

(i) Je»eli |an| ≤ bn i szereg
∑∞

n=1 bn jest zbie»ny, to szereg
∑∞

n=1 an te» jest
zbie»ny.
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(ii) Je»eli 0 ≤ an ≤ bn i szereg
∑∞

n=1 an jest rozbie»ny, to szereg
∑∞

n=1 bn

te» jest rozbie»ny.
Dowód. (i) Skoro

∑
bn jest zbie»ny, to ci¡g jego sum cz¦±ciowych speªnia

warunek Cauchy'ego. Z drugiej strony mamy

|an + an+1 + · · ·+ an+k| ≤ |an|+ |an+1|+ · · ·+ |an+k|
≤ bn + bn+1 + · · ·+ bn+k = |bn + bn+1 + · · ·+ bn+k|.

Ci¡g sum cz¦±ciowych szeregu
∑

an te» speªnia wi¦c warunek Cauchy'ego.
(ii) Szereg

∑
an ma wyrazy nieujemne, i jest rozbie»ny, wi¦c jego ci¡g sum

cz¦±ciowych jest rosn¡cy (mo»e sªabo), a skoro nie jest zbie»ny, to nie jest
ograniczony. Ci¡g sum cz¦±ciowych szeregu

∑
bn ma wyrazy nie mniejsze,

wi¦c te» nie jest ograniczony, a wi¦c nie mo»e by¢ zbie»ny.

Uwaga: Wystarcz, »e oszacowania s¡ speªnione tylko od pewnego miejsca.
Przykªady: (a) Szereg

∑∞
n=1

1
n2+2n

jest zbie»ny, bo

1

n2 + 2n
≤ 1

n2 + n
=

1

n(n + 1)
.

(b) Szereg
∑∞

n=1
1

n+1
jest rozbie»ny, bo

1

n + 1
≥ 1

n + n
=

1

2n
,

a szereg
∑

1
2n

jest rozbie»ny. Zauwa»my, »e w tym przykªadzie oszacowanie
1

n+1
< 1

n
nic nie daje.

Twierdzenie 5.5 (kryterium o zag¦szczaniu). Niech ci¡g {an} b¦dzie dodatni
i sªabo malej¡cy, a1 ≥ a2 ≥ · · · ≥ 0. Wówczas szereg

∑∞
n=1 an jest zbie»ny

wtedy i tylko wtedy, gdy szereg
∑∞

n=1 2na2n jest zbie»ny.
Powy»sze kryterium nie rozstrzyga w sposób bezpo±redni, czy dany sze-

reg jest zbie»ny, czy nie, ale pozwala sprowadzi¢ badanie zbie»no±ci jednego
szeregu do badania zbie»no±ci innego szeregu.

Dowód. Oznaczmy przez {sn} ci¡g sum cz¦±ciowych szeregu
∑

an, a przez
{s′n} ci¡g sum cz¦±ciowych szeregu

∑
2na2n . Poniewa» wyrazy obu szeregów

s¡ nieujemne, to oba ci¡gi sum cz¦±ciowych s¡ niemalej¡ce. Poka»emy, u»y-
waj¡c odpowiednich szacowa«, »e ci¡gi te s¡ równocze±nie ograniczone lub
nieograniczone. Mamy

sn = a1 + a2 + a3 + · · ·+ an,
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s′n = 2 · a2 + 4 · a4 + 8 · a8 + . . . 2n · a2n

= 2 (a2 + 2 · a4 + 4 · a8 + · · ·+ 2n−1 · a2n).

Zauwa»my wi¦c, »e
1

2
s′n = a2 + 2 · a4 + 4 · a8 + · · ·+ 2n−1 · a2n

≤ a1 + a2 + a3 + a4 + · · ·+ a2n−1 + a2n

= s2n

Do sumy po lewej stronie dodali±my a1 ≥ 0, a ka»dy skªadnik sumy 2k−1 ·a2k

zast¡pili±my nie mniejszym wyra»eniem a2k−1+1 + · · · + a2k , k = 1, . . . , n.
Je»eli ci¡g {sn} jest ograniczony to ograniczony jest te» ci¡g {s′n}.

Z drugiej strony zauwa»my, »e

s2n+1−1 = a1 + a2 + a3 + a4 + · · ·+ a2n+1−1

≤ a1 + 2 · a2 + 4 · a4 + · · ·+ 2n · a2n

= a1 + s′n.

Nierówno±¢ uzyskali±my zast¦puj¡c sumy a2k +a2k+1+ · · ·+a2k+1−1 (2k skªad-
ników sumy) przez nie mniejsze wyra»enie 2k · a2k , k = 1, . . . , n. Je»eli
ci¡g {s′n} jest ograniczony, to z powy»szej nierówno±ci wynika, »e podci¡g
{s2n+1−1} ci¡gu {sn} te» jest ograniczony. Ci¡g {sn} jest niemalej¡cy, i za-
wiera podci¡g ograniczony, a wi¦c caªy musi by¢ ograniczony (¢wiczenie).

Przykªad: Rozpatrzymy teraz szeregi postaci
∑∞

n=1
1
np . Je»eli p ≤ 0 to ci¡g

{ 1
np nie jest zbie»ny do 0, a wi¦c szereg nie mo»e by¢ zbie»ny. Je»eli p > 0

to ci¡g { 1
np jest dodatni i malej¡cy, a wi¦c speªnia zaªo»enia kryterium o

zag¦szczaniu. Zamiast szeregu
∑

1
np rozwa»my wi¦c szereg o wyrazach

2n 1

(2n)p
= 2n 1

2n·p =
1

2n·(p−1)
=

(
1

2p−1

)n

.

Szereg
∑

( 1
2p−1 )

n jest szeregiem geometrycznym. Je»eli p − 1 > 0 to iloraz
szeregu 1

2p−1 < 1 i szereg jest zbie»ny, natomiast je»eli p − 1 ≤ 1, to iloraz
1

2p−1 ≥ 1, i szereg nie jest zbie»ny. Mamy wi¦c
∞∑

n=1

1

np
←

{
zbie»ny je»eli p > 1,
rozbie»ny je»eli p ≤ 1.

(5.1)

Zauwa»my, »e przypadek p = 1 zrobili±my ju» wcze±niej. Szeregi tej postaci
s¡ bardzo przydatne. Je»eli wyrazy jakiego± badanego szeregu mo»na w
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jakikolwiek sposób oszacowa¢ przez funkcj¦ pot¦gow¡ n, to powstaªy szereg
mo»emy porówna¢ z szeregami (5.1), których zbie»no±¢ jest rozstrzygni¦ta w
zale»no±ci od p.

Twierdzenie 5.6 (kryterium d'Alemberta). Niech {an} b¦dzie ci¡giem o
wyrazach ró»nych od 0. Wtedy

(i) je»eli lim supn→∞ |an+1

an
| < 1 to szereg

∑
an jest zbie»ny,

(ii) je»eli lim infn→∞ |an+1

an
| > 1 to szereg

∑
an jest rozbie»ny (obejmuje to

te» przypadek granicy niewªa±ciwej limn→∞ |an+1

an
| = +∞).

Dowód. (i) Zauwa»my, »e skoro granica górna ci¡gu |an+1

an
| jest mniejsza od

1, to istniej¡ 0 < c < 1 oraz n0 ∈ N takie, »e dla n ≥ n0

∣∣∣∣
an+1

an

∣∣∣∣ ≤ c,

w szczególno±ci dla k ≥ 0

|an0+k| =
∣∣∣∣

an0+k

an0+k−1

∣∣∣∣ ·
∣∣∣∣
an0+k−1

an0+k−2

∣∣∣∣ · . . . ·
∣∣∣∣
an0+1

an0

∣∣∣∣ · |an0| (5.2)

≤ |an0| · ck =
|an0|
cn0

· cn0+k.

Iloczyn pojawiaj¡cy si¦ w (5.2) nazywa si¦ czasem iloczynem teleskopowym,
gdy» wysuwamy b¡d¹ chowamy potrzebn¡ ilo±¢ czynników. Ci¡g {an} speªnia
wi¦c (dla n ≥ n0) nierówno±¢

|an| ≤ |an0|
cn0

· cn, 0 < c < 1,

czyli jest zbie»ny z kryterium porównawczego.
(ii) Zauwa»my, »e skoro granica dolna ci¡gu |an+1

an
| jest wi¦ksza od 1 (a tak»e

je»eli ci¡g ten ma granic¦ niewªa±ciw¡ +∞), to istniej¡ c > 1 i n0 ∈ N takie,
»e dla n ≥ n0 ∣∣∣∣

an+1

an

∣∣∣∣ ≥ c.

Podobnie jak w poprzednim przypadku, dla k ≥ 0 mamy

|an0+k| =
∣∣∣∣

an0+k

an0+k−1

∣∣∣∣ ·
∣∣∣∣
an0+k−1

an0+k−2

∣∣∣∣ · . . . ·
∣∣∣∣
an0+1

an0

∣∣∣∣ · |an0| ≥ |an0| · ck ≥ |an0|,

czyli ci¡g {an} nie jest zbie»ny do 0. Szereg
∑

an musi wi¦c by¢ rozbie»ny.
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Kryterium d'Alemberta pozostawia wiele przypadków nierozstrzygni¦-
tych. Na przykªad dla szeregów postaci

∑
1
np mamy

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

np

(n + 1)p
=

(
lim
nto∞

n

n + 1

)p

= 1.

Ten rodzaj szeregów nie jest obj¦ty ani przez (i) ani przez (ii) przypadek
kryterium d'Alemberta. Istotnie, jak wiemy szeregi tego rodzaju mog¡ by¢
zbie»ne lub rozbie»ne, w zale»no±ci od parametru p.

Twierdzenie 5.7 (kryterium Cauchy'ego). Niech dany b¦dzie ci¡g {an} i
niech

g = lim sup
n→∞

n
√
|an|, granica wªa±ciwa lub niewªa±ciwa.

Wtedy

(i) je»eli g < 1 to szereg
∑

an jest zbie»ny,

(ii) je»eli g > 1 to szereg
∑

an jest rozbie»ny (obejmuje to tak»e przypadek
granicy górnej niewªa±ciwej g = +∞).

Dowód. (i) Podobnie jak w przypadku kryterium d'Alemberta, istniej¡ 0 <
c < 1 i n0 ∈ N takie, »e dla n ≥ n0

n
√
|an| ≤ c ⇒ |an| ≤ cn,

czyli z kryterium porównawczego szereg
∑

an jest zbie»ny.
(ii) Je»eli g > 1, to istieje podci¡g {ank

} taki, »e |ank
| ≥ 1. Ci¡g {an} nie

mo»e wi¦c by¢ zbie»ny do 0, a wi¦c szereg
∑

an nie jest zbie»ny,

Uwagi: (i) Podobnie jak w przypadku kryterium d'Alemberta kryterium
Cauchy'ego pozostawia nierozstrzygni¦ty przypadek g = 1. W takim przy-
padku dla ró»nych szeregów mo»e by¢ ró»nie.
(ii) Oba kryteria maj¡ zastosowanie dla szeregów o wyrazach zespolonych.
Warto±¢ bezwzgl¦dna jest wtedy moduªem liczby zespolonej.
Przyklad: Szereg

∑∞
n=0

1
n!
. Mamy an = 1

n!
, a wi¦c

∣∣∣∣
an+1

an

∣∣∣∣ =
n!

(n + 1)!
=

1

n + 1

n→∞−−−→ 0.

55



Korzystaj¡c z kryterium d'Alemberta otrzymujemy, »e szereg
∑

1
n!
jest zbie»ny.

Udowodnimy teraz, »e
∞∑

n=0

1

n!
= e. (5.3)

Przypomnijmy, »e liczba e jest granic¡

e = lim
n→∞

(
1 +

1

n

)n

.

Dowodz¡c istnienia tej granicy pokazali±my w (4.4), »e
(

1 +
1

n

)n

≤ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
= sn,

gdzie {sn} jest ci¡giem sum cz¦±ciowych szeregu
∑∞

n=0
1
n!
. Przechodz¡c do

granicy po n po obu stronach nierówno±ci otrzymujemy

e ≤
∞∑

n=0

1

n!
. (5.4)

Z drugiej strony, ustalmy k ∈ N i niech n ≥ k. Wtedy z rozwini¦cia (4.3)
(ucinaj¡c rozwini¦cie po k-tym wyrazie) mamy

(
1 +

1

n

)n

≥ 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ . . .

. . . +
1

k!

(
1− 1

n

)
· . . . ·

(
1− k − 1

n

)
.

Przechodz¡c do granicy wzgl¦dem n po obu stronach nierówno±ci (k pozo-
stawiaj¡c ustalone) otrzymujemy

e ≥ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

k!
= sk,

dla ka»dego k ∈ N. Teraz przechodz¡c do granicy po k (lewa strona jest
staªa) otrzymujemy

e ≥
∞∑

n=0

1

n!
,

co razem z (5.4) daje (5.3).
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Szeregi zbie»ne absolutnie
De�nicja 5.8. Je»eli szereg ∑ |an| jest zbie»ny, to mówimy, »e szereg

∑
an

jest zbie»ny absolutnie. Je»eli szereg
∑

an jest zbie»ny, ale nie jest zbie»ny
absolutnie (to znaczy szereg

∑ |an| nie jest zbie»ny), to mówimy, »e szereg∑
an jest zbie»ny warunkowo.

Uwagi: (i) Je»eli szereg jest zbie»ny absolutnie to jest te» zbie»ny w zwykªym
sensie. Wynika to z warunku Cauchy'ego:

|an+1 + an+2 + · · ·+ am| ≤ |an+1|+ |an+2|+ · · ·+ |am|.

Je»eli
∑ |an| jest zbie»ny, to speªnia warunek Cauchy'ego, a wi¦c

∑
an te»

speªnia warunek Cauchy'ego, czyli te» jest zbie»ny. Zbie»no±¢ absolutna jest
to wi¦c szczególny rodzaj zbie»no±ci.
(ii) Je»eli wyrazy szeregu

∑
an nie zmieniaj¡ znaku, to zbie»no±¢ absolutna

wynika ze zbie»no±ci zwykªej, i oba rodzaje zbie»no±ci s¡ równowa»ne. Zbie»-
no±¢ absolutna jest wi¦c istotna dla szeregów których wyrazy zmieniaj¡ znak.

(iii) Zauwa»my, »e wszystkie kryteria zbie»no±ci poznane omawiane dotych-
czas dotycz¡ zbie»no±ci absolutnej. �adne z tych kryteriów nie umo»liwia
stwierdzenia zbie»no±ci warunkowej.
(iv) Zabie»no±¢ absolutna jest wa»na � tylko dla szeregów zbie»nych abso-
lutnie zbie»no±¢ i suma nie zale»¡ od kolejno±ci sumowania i rozstawienia
nawiasów.

Szeregi naprzemienne
Mówimy, »e szereg

∑
an jest naprzemienny je»eli jego wyrazy na przemian

zmieniaj¡ znak, to znaczy an = (−1)n · bn i bn ≥ 0 lub bn ≤ 0 dla wszystkich
n.

Twierdzenie 5.9 (kryterium Leibniza). Je»eli ci¡g {an} jest malej¡cy (sªabo)
i limn→∞ an = 0, to szereg naprzemienny

∞∑
n=1

(−1)n+1an

jest zbie»ny.
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Dowód. Niech sn = a1 − a2 + a3 − a4 + · · · + ±an b¦dzie ci¡giem sum cz¦-
±ciowych. Zauwa»my, »e podci¡g o numerach parzystych s2n jest rosn¡cy:

s2(n+1) = s2n + a2n+1 − a2n+2 ≥ s2n,

a podci¡g o numerach nieparzystych s2n+1 malej¡cy:

s2(n+1)+1 = s2n+1 − a2n+2 + a2n+3 = s2n+1 − (a2n+2 − a2n+3) ≤ s2n+1.

Zauwa»my, »e podci¡g s2n (który jest rosn¡cy) jest ograniczony od góry:

s2n = a1 − a2 + a3 − a4 + · · · − a2n

= a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−1 − a2n) ≤ a1,

a podci¡g s2n+1 (który jest malej¡cy) jest ograniczony od doªu

s2n+1 = a1 − a2 + a3 − a4 + · · · − a2n + a2n+1

= (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n) + a2n+1 ≥ 0.

Oba podci¡gi s¡ wi¦c zbie»ne. Niech s = limn→∞ s2n. Wtedy

lim
n→∞

s2n+1 = lim
n→∞

(s2n + a2n+1) = lim
n→∞

s2n + lim
n→∞

a2n+1 = s + 0 = s.

Oba podci¡gi maj¡ wi¦c wspóln¡ granic¦. Ci¡g {sn} rozkªada si¦ wi¦c na 2
podci¡gi, wyrazy o numerach parzystych i wyrazy o numerach nieparzystych.
Ka»dy element ci¡gu {sn} nale»y do jednego z dwóch podci¡gów, i oba pod-
ci¡gi maj¡ wspóln¡ granic¦ s. Wynika z tego, »e caªy ci¡g {sn} jest zbie»ny
do s. Zapiszmy to rozumowanie. Niech ε > 0. Z tego, »e limn→∞ s2n = s
wynika, »e

∃ k1 ∈ N ∀ k ≥ k1 |s2k − s| < ε,

a z tego, »e limn→∞ s2n+1 = s mamy

∃ k2 ∈ N ∀ k ≥ k2 |s2k+1 − s| < ε.

Niech n0 = max{2k1, 2k2 + 1}. Wtedy, je»eli n ≥ n0 to n = 2k, k ≥ k1 lub
n = 2k + 1, k ≥ k2, w zale»no±ci od parzysto±ci n. W obu przypadkach

|sn − s| < ε.
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Uwaga: Zauwa»my, »e z dowodu wynika te» oszacowanie warto±ci sumy. Dla
dowolnych k, l ∈ N

s2l ≤
∞∑

n=1

(−1)n+1an ≤ s2k+1.

Suma jest wi¦ksza od ka»dej parzystej sumy cz¦±ciowej, a mniejsza od ka»dej
nieparzystej. Odnosi si¦ to do szeregów naprzemiennych których wyrazy
parzyste s¡ ≤ 0 a nieparzyste ≥ 0.
Przykªad: Szereg

∑∞
n=1

(−1)n+1

n
jest zbie»ny, ale nie absolutnie. W niedalekiej

przyszªo±ci przekonamy si¦, »e
∞∑

n=1

(−1)n+1

n
= log 2.

Szeregi pot¦gowe
De�nicja 5.10. Szeregiem pot¦gowym nazywamy szereg postaci

∑∞
n=0 anxn,

gdzie ci¡g wspóªczynników {an} oraz liczba x mog¡ by¢ rzeczywiste lub zespo-
lone.

Uwagi: (i) Szereg pot¦gowy, dla ustalonego ci¡gu {an} mo»e by¢ zbie»ny
lub nie, w zale»no±ci od liczby x. Zawsze jest zbie»ny dla x = 0.
(ii) W tych punktach x, w których szereg potegowy jest zbie»ny de�niuje on
funkcj¦:

f(x) =
∞∑

n=1

an xn.

Funkcje, b¦d¡ce sumami zbie»nych szeregów pot¦gowych s¡ bardzo wa»ne.
Zobaczymy, »e praktycznie ka»da funkcja ma t¡ posta¢, w szczególno±ci
wszystkie funkcje elementarne mo»na zapisa¢ w ten sposób (mówi si¦ cza-
sem, »e mo»na je �rozwin¡¢ w szereg pot¦gowy�).
(iii) Oczywi±cie, ka»dy szereg liczbowy mo»na zapisa¢ w postaci szeregu po-
t¦gowego, z odpowiednio dobranymi wspóªczynnikami. Okre±lenie �szereg
pot¦gowy� odnosi si¦ wi¦c do sposobu zapisu szeregu liczbowego.
(iv) W dalszym ci¡gu skoncentrujemy si¦ na szeregach o wyrazach rzeczywi-
stych.

Twierdzenie 5.11. Szereg pot¦gowy
∑∞

n=0 anx
n jest albo zbie»ny absolutnie

dla ka»dego x ∈ R, albo istnieje liczba R ≥ 0 taka, »e

(i) dla x ∈ (−R,R) szereg jest zbie»ny absolutnie,
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(ii) dla x /∈ [−R,R] szereg jest rozbie»ny.

Zbiór tych x dla których szereg pot¦gowy
∑∞

n=0 anxn jest zbie»ny ma wi¦c
posta¢ przedziaªu, zawieraj¡cego jeden lub oba ko«ce albo bez ko«ców (mo»e
to by¢ caªa prosta R). Zbiór ten nazywamy �przedziaªem zbie»no±ci szeregu�.
Liczb¦ R nazywamy �promieniem zbie»no±ci� (w przypadku gdy przedziaªem
zbie»no±ci jest (−∞,∞), to mówimy, »e promie« zbie»no±ci jest niesko«-
czony).

Uwaga: Na ko«cach przedziaªu zbie»no±ci mo»e by¢ ró»nie. Na przykªad,
szereg

∑
xn ma przedziaª zbie»no±ci (−1, 1), szereg

∑
1
n
xn ma przedziaª

zbie»no±ci [−1, 1), natomiast szereg
∑

1
n2 x

n przedziaª zbie»no±ci [−1, 1].

Dowód twierdzenia. Je»eli dla x0 ∈ R szereg
∑

anx
n
0 jest zbie»ny, to ci¡g

{anxn
0} jest zbie»ny do 0, a wi¦c w szczególno±ci jest ograniczony:

∃ M ∀ n ∈ N |anx
n
0 | ≤ M.

Je»eli |x| < |x0| to niech q = |x|
|x0| < 1. Mamy wtedy

|anxn| =
∣∣∣∣an xn

0

xn

xn
0

∣∣∣∣ = |an xn
0 | ·

( |x|
|x0|

)n

≤ M · qn.

Szereg geometryczny o wyrazach qn jest zbie»ny, gdy» 0 ≤ q < 1. Z kryterium
porównawczego szereg

∑
anx

n jest wi¦c zbie»ny absolutnie. Niech

A =

{
|x| :

∞∑
n=0

an xn jest zbie»ny, x ∈ R

}
.

Je»eli A nie jest ograniczony, to szereg jest zbie»ny absolutnie dla ka»dego
x ∈ R. Dla ka»dego x ∈ R znajdziemy bowiem x0 takie, »e |x0| > |x| oraz
szereg

∑
anx

n
0 jest zbie»ny. Je»eli A jest ograniczony, to niech

R = sup A.

Tak zde�niowane R speªnia warunki twierdzenia. Je»eli bowiem |x| < R, to
znajdziemy x0 takie, »e |x0| > |x|, i szereg ∑

anx
n
0 jest zbie»ny. W takim

razie szereg
∑

anx
n jest zbie»ny absolutnie. Z drugiej strony, je»eli |x| > R to

szereg
∑

anx
n nie mo»e by¢ zbie»ny: w przeciwnym przypadku mieliby±my

|x| ∈ A, czyli |x| ≤ R.

60



Przykªady: (a) Szereg
∑∞

n=1
xn

n
ma promie« zbie»no±ci R = 1, co mo»na

sprawdzi¢ z kryterium d'Alemberta. W punkcie x = 1 jest rozbie»ny (jest to
wtedy szereg harmoniczny), a w punkcie x = −1 jest zbie»ny, co wynika z
kryterium Leibniza.
(b) Szereg

∑∞
n=0

xn

n!
ma promie« zbie»no±ci niesko«czony, co mo»na sprawdzi¢

z kryterium d'Alemberta:
∣∣∣∣∣

xn+1

(n+1)!

xn

n!

∣∣∣∣∣ = |x| · 1

n + 1

n→∞−−−→ 0,

niezale»nie od x.
(c) Szereg

∑∞
n=0 nnxn ma promie« zbie»no±ci R = 0:

∣∣∣∣
(n + 1)n+1 xn+1

nn xn

∣∣∣∣ = |x| · (n + 1)

(
1 +

1

n

)n
n→∞−−−→ +∞,

dla ka»dego x 6= 0.
Stosuj¡c znane kryteria zbie»no±ci szeregów otrzymujemy ró»ne wzory na

promie« zbie»no±ci.
Twierdzenie 5.12. Rozwa»my szereg pot¦gowy

∑
anx

n i niech

g = lim sup
n→∞

n
√
|an|.

Je»eli g = 0 to promie« zbie»no±ci szeregu jest niesko«czony, je»eli g = +∞
to R = 0, a je»eli 0 < g < ∞ to

R =
1

g
.

Dowód. Zastosujmy kryterium Cauchy'ego do szeregu
∑

anx
n.

lim sup
n→∞

n
√
|an xn| = lim sup

n→∞
|x| n

√
|an| = |x| · lim sup

n→∞
n
√
|an| = |x| · g.

Je»eli g = 0 to szereg jest zbie»ny (absolutnie) dla ka»dego x ∈ R, czyli
promie« zbie»no±ci jest niesko«czony. Je»eli g = +∞ to szereg jest rozbie»ny
dla ka»dego x 6= 0, czyli R = 0. W ko«cu, je»eli 0 < g < ∞ to szereg jest
zbie»ny (absolutnie) dla |x| < 1

g
i rozbie»ny dla |x| > 1

g
, czyli R = 1

g
.

Uwaga: Stosuj¡c kryterium d'Alemberta w podobny sposób otrzymaliby±my
nast¦puj¡ce twierdzenie: je»eli

g = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣
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istnieje (wªa±ciwa lub niewªa±ciwa), to R = 1
g
(przy czym rozumiemy, »e

R = 0 dla g = +∞ i R niesko«czony dla g = 0).
Przykªad: Rozwa»my szereg

∑∞
n=0

nn

n!
xn. Stosuj¡c powy»sz¡ uwag¦ liczymy:

∣∣∣∣
an+1

an

∣∣∣∣ =
(n + 1)n+1

(n + 1)!
· n!

nn
=

(n + 1)n

n!
· n!

nn
=

(
1 +

1

n

)n
n→∞−−−→ e.

A wi¦c R = 1
e
. Przy okazji, porównuj¡c to z Twierdzeniem 5.12 mo»emy

wywnioskowa¢, »e

lim sup
n→∞

n

√
nn

n!
= lim sup

n→∞

n
n
√

n!
= e.

Poka»emy teraz, »e ci¡g { n

√
nn

n!
} jest rosn¡cy, a skoro tak, to jego granica

górna jest te» granic¡ (¢wiczenie), i mamy nast¦puj¡cy wniosek, który warto
zapami¦ta¢

lim
n→∞

n
n
√

n!
= e.

Sprawd¹my, »e ci¡g ten istotnie jest rosn¡cy. Wprowad¹my oznaczenie cn =
(1 + 1

n
)n. Wiemy, »e 2 = c1 < c2 < c3 < · · · < e, a wi¦c

(n + 1)n2

nn2 =

(
n + 1

n

)n2

=

(
1 +

1

n

)n2

= cn
n > c1·c2·. . .·cn−1 =

nn

n!
. (5.5)

Ostatni¡ równo±¢ mo»emy udowodni¢ indukcyjnie: dla n = 2 mamy c1 =
22

2
= 2, czyli równo±¢ jest prawdziwa. Nast¦pnie wykonajmy krok induk-

cyjny:

c1 · · · · · cn−1 · cn =
nn

n!
· cn =

nn

n!

(
1 +

1

n

)n

=
nn

n!

(
n + 1

n

)n

=
(n + 1)n

n!
=

(n + 1)n+1

(n + 1)!
.

Mamy wi¦c udowodnion¡ nierówno±¢ (5.5). Wynika z niej natychmiast na-
st¦puj¡ce nierówno±ci:

(n + 1)n2

nn(n+1)
>

1

n!
⇒ (n + 1)n2

(n!)n
>

nn(n+1)

(n!)n+1
.

Teraz wystarczy wyci¡gn¡¢ stronami pierwiastki stopnia n(n + 1), i otrzy-
mujemy

n+1

√
(n + 1)n+1

(n + 1)!
> n

√
nn

n!
,

czyli to, co chcieli±my.
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Rozdziaª 6

Granica funkcji

Niech f b¦dzie funkcj¡ zmiennej rzeczywistej o warto±ciach rzeczywistych,
to znaczy f : Df → R, Df ⊂ R, dziedzina f . Niech Df b¦dzie �uzupeªnie-
niem� Df , czyli zbiorem tych wszystkich punktów x, dla których istnieje ci¡g
{xn} ⊂ Df , xn 6= x, zbie»ny do x. Na przykªad, dziedzin¡ naturaln¡ funkcji
f(x) = 1

x
jest zbiór Df = {x : x 6= 0}. Wtedy Df = R. Poj¦cie granicy

funkcji w punkcie b¦dziemy chcieli wprowadzi¢ dla punktów z Df , czyli ta-
kich, które nale»¡ do dziedziny f (ale nie s¡ izolowane), albo nie nale»¡, ale
s¡ na �samym brzegu� dziedziny.

De�nicja 6.1. Mówimy, »e funkcja f ma w punkcie x0 ∈ Df granic¦ g, je»eli

∀ ε > 0 ∃ δ > 0 ∀ x ∈ Df 0 < |x− x0| < δ ⇒ |f(x)− g| < ε.

W takiej sytuacji piszemy
lim

x→x0

f(x) = g.

Mówimy, »e funkcja f ma w punkcie x0 ∈ Df granic¦ niewªa±ciw¡ ∞ (−∞)
je»eli

∀M ∈ R ∃ δ > 0 ∀ x ∈ Df 0 < |x−x0| < δ ⇒ f(x) > M (f(x) < M).

Piszemy wtedy
lim

x→x0

f(x) = ±∞.

De�nicj¦ granicy funkcji w punkcie mo»na natychmiast przetªumaczy¢ na
j¦zyk zbie»no±ci ci¡gów liczbowych:

Twierdzenie 6.2. Niech x0 ∈ Df . Wtedy limx→x0 f(x) = g wtedy i tylko
wtedy, gdy dla ka»dego ci¡gu {xn} ⊂ Df , xn 6= x0, limn→∞ xn = x0 zachodzi

lim
n→∞

f(xn) = g.
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Podobnie, limx→x0 f(x) = ±∞ wtedy i tylko wtedy, gdy dla ka»dego ci¡gu
{xn} ⊂ Df , xn 6= x0, limn→∞ xn = x0 zachodzi

lim
n→∞

f(xn) = ±∞.

Dowód. Niech f ma w punkcie x0 granic¦ g

g = lim
x→x0

f(x).

Niech {xn} b¦dzie dowolnym ci¡giem z Df , zbie»nym do x0, xn 6= x0. Poka-
»emy, »e ci¡g {f(xn)} zbiega do g. Niech ε > 0. Z de�nicji granicy wynika,
»e istnieje δ > 0 takie, »e je»eli x ∈ Df , x 6= x0 to

|x− x0| < δ ⇒ |f(x)− g| < ε. (6.1)

Skoro xn → x0 to (δ peªni rol¦ ε z de�nicji granicy ci¡gu) istnieje n0 ∈ N
takie, »e ∀ n ≥ n0 mamy |xn − x0| < δ, czyli, korzystaj¡c z (6.1)

|f(xn)− g| < ε.

W ten sposób pokazali±my, »e limn→∞ f(xn) = g.
Teraz dowód w drug¡ stron¦. Niech f(xn) → g dla ka»dego ci¡gu xn →

x0, speªniaj¡cego xn 6= x0 i {xn} ⊂ Df . Poka»emy, »e f ma w x0 granic¦
g. Dowód przeprowadzimy nie wprost. Zaªó»my, »e f nie ma granicy g w
x0, czyli »e nie zachodzi warunek z de�nicji granicy funkcji w punkcie, czyli,
innymi sªowy zaªó»my, »e

∃ ε0 > 0 ∀ δ > 0 ∃ x ∈ Df 0 < |x− x0| < δ ∧ |f(x)− g| ≥ ε0.

Korzystaj¡c z powy»szego zde�niujemy ci¡g {xn} który da nam sprzeczno±¢.
Ci¡g {xn} de�niujemy nast¦puj¡co. Dla n ∈ N niech δ = 1

n
, a xn niech

b¦dzie tym elementem Df , który speªnia 0 < |x−x0| < 1
n
∧ |f(x)− g| ≥ ε0.

Zauwa»my, »e tak powstaªy ci¡g {xn} speªnia {xn} ⊂ Df , xn 6= x0, xn → x0,
ale f(xn) 9 g. Otrzymali±my wi¦c sprzeczno±¢.

Przypadek granic niewªa±ciwych pozostawiamy jako ¢wiczenie dla czytel-
nika.

Korzystaj¡c z powy»szego twierdzenia, i twierdze« o zbie»no±ci i granicach
ci¡gów mamy nast¦puj¡cy wniosek.

Wniosek 6.3. (i) Je»eli a = limx→x0 f(x) i b = limx→x0 g(x) to

lim
x→x0

(f ± g)(x) = a± b, lim
x→x0

(f · g)(x) = a · b,
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a je»eli dodatkowo b 6= 0 to

lim
x→x0

(
f

g

)
(x) =

a

b
.

(ii) Je»eli w pewnym otoczeniu x0 mamy

g(x) ≤ f(x) ≤ h(x),

oraz
lim

x→x0

g(x) = lim
x→x0

h(x) = a,

to tak»e
lim

x→x0

f(x) = a.

(iii) Z granic¡ funkcji w punkcie mo»emy �wchodzi¢ pod pierwiastki�, czyli

lim
x→x0

k
√

f(x) = k

√
lim

x→x0

f(x),

o ile odpowiednie pierwiastki s¡ okre±lone (f ≥ 0 dla k parzystego).

Przykªady: (a) Obliczymy granic¦

lim
x→2

3x− 5

x3 − 1
.

Mianownik x3−1 jest ró»ny od zera w otoczeniu punktu x0 = 2, wi¦c 2, wraz
z pewnym otoczeniem nale»y do dziedziny funkcji. Niech xn → 2, xn 6= 2,
oraz x3

n 6= 1. Wtedy
3xn − 5

x3
n − 1

→ 3 · 2− 5

23 − 1
=

1

7
,

czyli limx→2
3x−5
x3−1

= 1
7
. (b) limx→0 sin x. Skorzystamy z nast¦puj¡cego

oszacowania: dla 0 ≤ x ≤ π
2

0 ≤ sin x ≤ x. (6.2)

Wynika to z Rysunku 6.1. x
2
to pole sektora koªa wyci¦tego k¡tem x, nato-

miast sin x
2

to pole zawartego w sektorze trójk¡ta (trójk¡t ten ma podstaw¦
1 i wysoko±¢ sin x. Poniewa» sin(−x) = − sin(x) (sin jest nieparzysty), wi¦c
dla −π

2
≤ x ≤ 0 z powy»szego otrzymujemy

x ≤ sin x ≤ 0.
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10

r
=
1

x

(cosx, sinx)

h = sinx

Rysunek 6.1: Oszacowanie sin x.

W takim razie, dla |x| ≤ π
2
mamy

0 ≤ | sin x| ≤ |x|,

czyli limx→0 sin x = 0.
(c) W przypadku cos x mo»emy skorzysta¢ z tego, co pokazali±my dla sin x.
W otoczeniu zera cos x jest dodatni, a wi¦c

lim
x→0

cos x = lim
x→0

√
1− sin2 x =

√
1− (

lim
x→0

sin x
)2

= 1.

(d) Korzystaj¡c z to»samo±ci trygonometrycznych mo»emy znale¹¢ granice
w innych punktach

lim
x→x0

sin x = lim
x→0

sin(x + x0)

= lim
x→0

(sin x cos x0 + cos x sin x0)

= cos x0 lim
x→0

sin x + sin x0 lim
x→0

cos x

= sin x0,

oraz

lim
x→x0

cos x = lim
x→0

cos(x + x0)

= lim
x→0

(cos x cos x0 − sin x sin x0)
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= cos x0 lim
x→0

cos x− sin x0 lim
x→0

sin x

= cos x0.

1

−1

−2 −1 1 2

Rysunek 6.2: Funkcja sin 1
x
w otoczeniu 0.

(e) Zauwa»my, »e granica limx→0 sin 1
x
nie istnieje. We¹my dwa ci¡gi, xn =

1
π/2+2nπ

oraz yn = 1
3π/2+2nπ

. Zauwa»my, »e

sin
1

xn

= sin
(π

2
+ 2nπ

)
= sin

(π

2

)
= 1,

sin
1

yn

= sin
(3 π

2
+ 2nπ

)
= sin

(3 π

2

)
= −1,

a wi¦c limn→∞ f(xn) = 1, oraz limn→∞ f(yn) = −1. Sytuacj¦ wyja±nia Ry-
sunek 6.2.
(f) Niech a > 1. Poka»emy, »e limx→0 ax = 1. Niech ε > 0 i x > 0. Mamy
wi¦c ax > 1. Niech n0 ∈ N b¦dzie takie, »e n

√
a − 1 < ε dla n ≥ n0.

Korzystamy z tego, »e wiemy, »e n
√

a → 1. Niech δ0 = 1
n0
. Wtedy, je»eli

0 < x < δ0 ⇒ 1 < ax < a
1

n0 ⇒ 0 < ax − 1 < n0
√

a− 1 < ε.

Niech teraz x < 0. Wiemy, »e

n

√
1

a
=

1
n
√

a
→ 1,
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i niech n1 ∈ N b¦dzie takie, »e dla n ≥ n1 zachodzi 0 < 1− n
√

1/a < ε. Niech
δ1 = 1

n1
, wtedy je»eli −δ1 < x < 0 to

a
− 1

n1 < ax < 1 ⇒ n

√
1

a
< ax < 1 ⇒ 0 < 1− ax < 1− n1

√
1

a
< ε.

Ostatecznie niech δ = min{δ0, δ1}, wtedy 0 < |x| < δ poci¡ga |1− ax| < ε.
(g) Niech a > 1, wtedy limx→x0 ax = ax0 . Mamy

lim
x→x0

ax = lim
x→0

ax+x0 = lim
x→0

ax · ax0 = ax0 · lim
x→0

ax = ax0 .

10 cosx

r
=
1

x

(cosx, sinx)

h2 =
sin x

cos x

h1 = sinx

Rysunek 6.3: Dalsze oszacowanie funkcji sin(x).

(h) Ponownie odwoªajmy si¦ do de�nicji funkcji sin(x), i porównajmy pole
sektora koªa jednostkowego, wyci¦tego k¡tem ±rodkowym x, oraz pole du-
»ego trójk¡ta (Rysunek 6.3). Pole sektora to x

2
, natomiast du»y trójk¡t ma

wysoko±¢ sin(x)
cos(x)

i podstaw¦ 1, czyli pole równe tan(x)
2

. Dla 0 ≤ x ≤ π
2
mamy

wi¦c
x

2
≤ sin(x)

2 cos(x)
,

a wi¦c, ª¡cz¡c to z (6.2) otrzymujemy podwójne oszacowanie

cos(x) ≤ sin(x)

x
≤ 1. (6.3)

Rozwa»aj¡c parzysto±¢ funkcji, otrzymujemy (6.3) tak»e dla |x| ≤ π
2
. Skrajne

funkcje maj¡ granic¦ 1 w zerze, wi¦c tak»e

lim
x→0

sin(x)

x
= 1. (6.4)
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Jest to jedna z wa»nych granic, która b¦dzie si¦ jeszcze pojawia¢ na tym
wykªadzie.

Granice jednostronne
Je»eli w de�nicji granicy ograniczymy si¦ tylko do x > x0 (lub x < x0)i
warunek jest speªniony, to mówimy, »e funkcja ma w punkcie x0 granic¦ pra-
wostronn¡ (lewostronn¡). Na przykªad dla granic wªa±ciwych (sko«czonych)
warunek na istnienie granicy prawostronnej jest nast¦puj¡cy

∀ ε > 0 ∃ δ > 0 ∀ x ∈ Df 0 < x− x0 < δ ⇒ |f(x)− g| < ε.

Dla granicy lewostronnej warunek wygl¡da nast¦puj¡co
∀ ε > 0 ∃ δ > 0 ∀ x ∈ Df 0 < x0 − x < δ ⇒ |f(x)− g| < ε.

Granice prawostronn¡ i lewostronn¡ oznaczamy odpowiednio
lim

x→x+
0

f(x), oraz lim
x→x−0

f(x).

Dla granic niewªa±ciwych warunki te trzeba zmody�kowa¢ w zwykªy sposób.
Wniosek 6.4. (i) g = limx→x±0

f(x) je»eli dla dowolnego ci¡gu {xn} ⊂ Df ,
xn > x0 (lub xn < x0) i xn → x0 mamy f(xn) → g. Sytuacja jest caªkowicie
analogiczna do Twierdzenia 6.2.
(ii) Funkcja f ma w punkcie x0 granic¦ g (wªa±ciw¡ lub niewªa±ciw¡) wtedy i
tylko wtedy, gdy ma w x0 obie granice jednostronne, i s¡ sobie równe. Wynika
to wprost z de�nicji.
(iii) Twierdzenia dotycz¡ce dziaªa« na granicachodnosz¡ si¦ tak»e do granic
jednostronnych, na przykªad

lim
x→x+

0

(f + g)(x) = lim
x→x+

0

f(x) + lim
x→x+

0

g(x).

Przykªady: (a) f(x) = [x]. Je»eli x0 ∈ Z to, jak ªatwo sprawdzi¢
lim

x→x+
0

f(x) = x0, oraz lim
x→x−0

f(x) = x0 − 1.

W punktach x0 ∈ Z f ma wi¦c ró»ne granice jednostronne, czyli zwykªej
(obustronnej) granicy nie ma. W pozostaªych punktach f ma granic¦ obu-
stronn¡.
(b) f(x) = 2

1
x . Dziedzina Df = {x : x 6= 0}, a wi¦c 0 ∈ Df . Mamy

lim
x→0+

f(x) = +∞ oraz lim
x→0−

f(x) = 0.

Pierwsza granica wynika st¡d, »e funkcja 2y jest rosn¡ca i nieograniczona.
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0 1 2 3

1

2

Rysunek 6.4: Granice jednostronne funkcji [x].

Rysunek 6.5: Granice w zerze funkcji 2
1
x .

Granice w niesko«czono±ci
Je»eli dziedzina funkcji to umo»liwia, to mo»emy rozwa»a¢ granice funkcji
w +∞ i −∞. Granice te mog¡ by¢ wªa±ciwe (sko«czone), lub niewªa±ciwe
(niesko«czone).

De�nicja 6.5. Mówimy, »e funkcja f ma w +∞ (−∞) granic¦ g, je»eli

∀ ε > 0 ∃ M ∀ x ∈ Df x > M ⇒ |f(x)−g| < ε (x < M ⇒ |f(x)−g| < ε).

Piszemy wtedy
g = lim

x→±∞
f(x).
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Podobnie de�niujemy granice niewªa±ciwe. Na przykªad, limx→+∞ f(x) =
+∞ je»eli

∀ M ∃ K ∀ x ∈ Df x > K ⇒ f(x) > M.

Wniosek 6.6. Powy»sz¡ de�nicj¦ równie» mo»na wyrazi¢ przy pomocy ci¡-
gów. Na przykªad, limx→+∞ f(x) = +∞ wtedy i tylko wtedy gdy dla ka»dego
ci¡gu {xn} z dziedziny funkcji f , rozbie»nego do +∞ ci¡g {f(xn)} te» jest
rozbie»ny do +∞.

Przykªady: (a) Znajdziemy granic¦ w +∞ funkcji f(x) = ex

x
. Oczywi±cie

funkcja ta ma granic¦ 0 w −∞. Natomiast gdy x → +∞ zarówno licznik jak
i mianownik d¡»¡ do +∞. Najpierw rozwa»my ci¡g

en

n
=

(
e

n
√

n

)n

.

Poniewa» n
√

n → 1, wi¦c
e

n
√

n
→ e.

W takim razie

∃ n0 ∈ N ∀ n ≥ n0
e

n
√

n
> 2 ⇒ en

n
> 2n.

Ci¡g 2n jest rozbie»ny do +∞, mamy wi¦c granic¦ niewªa±ciw¡

lim
n→∞

en

n
= +∞.

Mamy te» nast¦puj¡ce oszacowania. Oznaczmy na chwil¦ ε = x − [x], wi¦c
0 ≤ ε < 1, wi¦c

ex

x
=

e[x]+ε

[x] + ε
≥ e[x]

[x] + 1
=

1

e

e[x]+1

[x] + 1
.

Niech xn → +∞ i niech M > 0. Wtedy

∃ n0 ∈ N ∀ n ≥ n0
en

n
≥ e · M,

oraz
∃ n1 ∈ N ∀ n ≥ n1 xn ≥ n0 ⇒ [xn] ≥ n0.

Czyli dla n ≥ n1 mamy

exn

xn

≥ 1

e

e[xn]+1

[xn] + 1
≥ 1

e
· e · M = M.
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Udowodnili±my wi¦c, »e
lim

x→+∞
ex

x
= +∞. (6.5)

Mo»na to rozumie¢ nast¦puj¡co. Gdy x ro±nie do ∞ to funkcja wykªadnicza
ex ro±nie szybciej ni» x. Zauwa»my, »e powy»sze rozumowanie mo»na ªatwo
zmody�kowa¢, i pokaza¢, »e funkcja wykªadnicza ro±nie szybciej ni» dowolny
wielomian.
(b) Rozwa»my granic¦

lim
x→+∞

(
1 +

1

x

)x

. (6.6)

Granic¦ odpowiedniego ci¡gu (gdy x = n) znamy, to jest z de�nicji liczba
e. Teraz w chcieliby±my zaadaptowa¢ rozumowanie z przykªadu (a), i osza-
cowa¢ warto±ci funkcji w punktach x przez warto±ci w pewnych punktach
naturalnych n. Potrzebne nam b¦d¡ ró»ne oszacowania, ale rozumowanie
jest proste. Niech ε > 0, ci¡g xn →∞, i oznaczmy kn = [xn]. Zauwa»my, »e
kn →∞ i speªniaj¡ one

kn ≤ xn < kn + 1

1

kn + 1
<

1

xn

≤ 1

kn

,

(wystarczy, »e xn ≥ 1), wi¦c dalej

1 +
1

kn + 1
< 1 +

1

xn

≤ 1 +
1

kn(
1 +

1

kn + 1

)kn

<

(
1 +

1

xn

)xn

<

(
1 +

1

kn

)kn+1

(
1 +

1

kn + 1

)kn+1
1

1 + 1
kn+1

<

(
1 +

1

xn

)xn

<

(
1 +

1

kn

)kn
(

1 +
1

kn

)

Wiemy, »e ci¡gi
(

1 +
1

n

)n

·
(

1 +
1

n

)
oraz

(
1 +

1

n + 1

)n+1

· n + 1

n + 2

s¡ zbie»ne do e, a wi¦c istnieje 1 ∈ N takie, »e dla n ≥ n1

(
1 +

1

n

)n

·
(

1 +
1

n

)
< e+ε oraz

(
1 +

1

n + 1

)n+1

· n + 1

n + 2
> e−ε.

Niech n0 ∈ N b¦dzie takie, »e dla n ≥ n0 mamy xn ≥ n1 czyli kn = [xn] ≥ n1.
Wtedy
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e− ε <

(
1 +

1

kn + 1

)kn+1
1

1 + 1
kn+1

<

<

(
1 +

1

xn

)xn

<

(
1 +

1

kn

)kn
(

1 +
1

kn

)
< e + ε,

czyli ∣∣∣∣
(

1 +
1

xn

)xn

− e

∣∣∣∣ < ε.

Podobnie mo»emy udowodni¢, »e granica tej funkcji w −∞ te» wynosi e.
Dowód b¦dzie podobny, z wykorzystaniem znanej nam granicy ci¡gu

lim
n→∞

(
1− 1

n

)n

=
1

e
.
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Rozdziaª 7

Funkcje ci¡gªe

De�nicja 7.1. Mówimy, »e funkcja f jest ci¡gªa w punkcie x swojej dzie-
dziny, je»eli

f(x) = lim
y→x

f(y).

Mówimy, »e funkcja jest ci¡gªa na zbiorze A ⊂ Df je»eli jest ci¡gªa w ka»dym
punkcie x ∈ A. Je»eli funkcja jest ci¡gªa w ka»dym punkcie swojej dziedziny,
to mówimy po prostu, »e jest ci¡gªa.

Mówi¡c kolokwialnie funkcja ci¡gªa to taka, �pod któr¡ mo»na wej±¢� z
granic¡. Intuicyjne znaczenie jest takie, »e wykres f jest lini¡ ci¡gª¡.
Uwaga: Przypominaj¡c de�nicj¦ granicy funkcji w punkcie otrzymujemy
nast¦puj¡cy warunek na ci¡gªo±¢ funkcji w punkcie x

∀ ε > 0 ∃ δ > 0 ∀ y ∈ Df |y − x| < δ ⇒ |f(y)− f(x)| < ε.

Stosuj¡c j¦zyk ci¡gów, czyli Twierdzenie 6.2 otrzymujemy nast¦puj¡ce sfor-
muªowanie ci¡gªo±ci funkcji w punkcie x

∀ {xn} ⊂ Df xn → x ⇒ f(xn) → f(x).

Podobnie jak w przypadku granicy funkcji w punkcie mamy wi¦c dwa po-
wy»sze równowa»ne sformuªowania ci¡gªo±ci funkcji w punkcie. Pierwsze
sformuªowanie tradycyjnie nazywa si¦ �de�nicj¡ Cauchy'ego", a drugie sfor-
muªowanie �de�nicj¡ Heinego¢i¡gªo±ci.

Wniosek 7.2. Wszystkie funkcje elementarne, czyli wielomiany, funkcje wy-
mierne, trygonometryczne, funkcje pot¦gowa i wykªadnicza s¡ ci¡gªe.

Twierdzenie 7.3. Suma, ró»nica, iloczyn, iloraz oraz zªo»enie funkcji ci¡-
gªych s¡ ci¡gªe w ka»dym punkcie, w którym operacja jest wykonalna.
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Dowód. Poka»emy tylko przypadek zªo»enia. Pozostaªe dziaªania na funk-
cjach ci¡gªych s¡ natychmiastow¡ konsekwencj¡ twierdzenia o dziaªaniach
na granicach funkcji. Niech zªo»enie g ◦ f b¦dzie wykonalne, czyli niech
warto±ci funkcji f wpadaj¡ do dziedziny funkcji g, oraz niech f i g b¦d¡ ci¡-
gªe. Niech xn → x, xn, x ∈ Df . Wtedy f(xn) → f(x) (ci¡gªo±¢ f w x) oraz
g(f(xn)) → g(f(x)) (ci¡gªo±¢ g w f(x)). Mamy wi¦c (g◦f)(xn) → (g◦f)(x),
czyli zªo»enie jest ci¡gªe.

Przykªad: Rozwa»my funkcj¦ f(x) = xx dla x > 0 oraz f(0) = 1. Poka-
»emy, »e f jest ci¡gªa w 0, czyli

lim
x→0+

xx = 1.

Oznacza to, »e f w 0 zachowuje si¦ jak funkcja wykªadnicza. Wykorzystamy
nast¦puj¡c¡ znan¡ nam granic¦ (6.5)

lim
x→∞

ex

x
= ∞.

Jak ªatwo zauwa»y¢, stosuj¡c zamian¦ zmiennych y = ex otrzymujemy z
powy»szego nast¦puj¡c¡ granic¦

lim
y→∞

y

log(y)
= ∞.

Z powy»szej granicy, przechodz¡c do odwrotno±ci, otrzymujemy nast¦puj¡c¡

lim
y→∞

log(y)

y
= 0.

W ko«cu ponownie zamieniaj¡c zmienne x = 1
y
, i zauwa»aj¡c, »e wtedy

y → +∞⇔ x → 0+ otrzymujemy granic¦

lim
x→0+

x log x = 0.

Ostatnia granica wynika z poprzedniej, gdy» xn → ∞ ⇔ 1
x
→ 0+. Wró¢my

do funkcji f , i zastosujmy cz¦sto stosowany �chªyt":

f(x) = xx = elog(xx) = ex log(x).

Wykorzystuj¡c ci¡gªo±¢ funkcji wykªadniczej otrzymujemy

lim
x→0+

xx = lim
x→0+

ex log x = elimx→0+ x log x = e0 = 1.
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W podobny sposób b¦dziemy mogli pokaza¢ ci¡gªo±¢ funkcji f w pozosta-
ªych punktach dziedziny, kiedy udowodnimy ci¡gªo±¢ funkcji log(x). To z
kolei b¦dzie konsekwencj¡ twierdzenia o ci¡gªo±ci funkcji odwrotnej, które
udowodnimy wkrótce.
Uwaga: Funkcja mo»e by¢ nieci¡gªa z ró»nych powodów. Na przykªad, mo»e
istnie¢ granica funkcji w punkcie

g = lim
y→x

f(y),

ale g 6= f(x). Z tak¡ sytuacj¡ mamy na przykªad do czynienia w przypadku
f(x) = [−|x|]. Je»eli 0 < |x| < 1 to −1 < −|x| < 0 a wi¦c f(x) = −1, czyli

lim
y→0

f(y) = −1.

Z drugiej strony f(0) = 0. Tego typu nieci¡gªo±¢ nazywamy nieci¡gªo±ci¡
usuwaln¡. Wystarczy zmieni¢ warto±¢ funkcji w punkcie x na warto±¢ granicy
w tym punkcie, i tak zmieniona w jednym punkcie funkcja jest ju» w tym
punkcie ci¡gªa.

Inny rodzaj nieci¡gªo±ci to tak zwana nieci¡gªo±¢ skokowa. Je»eli istniej¡
granice jednostronne funkcji w punkcie, ale s¡ ró»ne, to mówimy, »e funkcja
ma nieci¡gªo±¢ skokow¡. Przykªadem mo»e by¢ funkcja f(x) = [x], która ma
nieci¡gªo±ci skokowe w punktach b¦d¡cych liczbami caªkowitymi.

lim
x→k−

f(x) = k − 1, lim
x→k+

f(x) = k, k ∈ Z.

x x

Rysunek 7.1: Nieci¡gªo±¢ usuwalna i nieci¡gªo±¢ skokowa.

Funkcja

f(x) =

{
sin 1

x
: x 6= 0

0 : x = 0,

ma nieci¡gªo±¢ jeszcze innego rodzaju. Nie istniej¡ nawet granice jedno-
stronne funkcji f w zerze.
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Wªasno±ci funkcji ci¡gªych
Funkcje ci¡gªe maj¡ wiele wa»nych wªasno±ci, z których najwa»niejsze teraz
udowodnimy. Funkcja ci¡gªa na odcinku sko«czonym [a, b] jest ograniczona
i osi¡ga swoje warto±ci najwi¦ksz¡ i najmniejsz¡, oraz przyjmuje wszystkie
warto±ci po±rednie pomi¦dzy najmniejsz¡ i najwi¦ksz¡.
Twierdzenie 7.4. Funkcja f ci¡gªa na przedziale [a, b] (sko«czonym i za-
wieraj¡cym ko«ce) jest ograniczona.
Dowód. Udowodnimy, »e f jest ograniczona od góry. Dowód tego, »e jest
te» ograniczona od doªu pozostawiamy czytelnikowi. Mo»na przerobi¢ do-
wód ograniczono±ci od góry, albo zauwa»y¢, »e funkcja −f jest ograniczona
od góry dokªadnie wtedy, gdy funkcja f jest ograniczona od doªu. Dowód
ograniczono±ci od góry przeprowadzimy metod¡ nie wprost. Zaªó»my wi¦c,
»e f nie jest ograniczona od góry. Istnieje zatem ci¡g punktów {xn} ⊂ [a, b],
dla których

f(xn) > n, n = 1, 2, . . . .

Ci¡g ten konstruujemy wykorzystuj¡c, kolejno, »e f nie jest ograniczona od
góry przez 1, przez 2, i przez kolejne n ∈ N. Ci¡g {xn} jest ograniczony
(bo zawiera si¦ w sko«czonym odcinku [a, b]), a zatem mo»na wybra¢ z niego
podci¡g {xnk

} zbie»ny do jakiej± liczby x∞ ∈ [a, b] (Twierdzenie 4.12):

xnk
→ x∞.

Z de�nicji ci¡gªo±ci mamy f(xnk
) → f(x∞), co jest sprzeczno±ci¡, bo ci¡g

{f(xnk
)} nie jest ograniczony, i nie mo»e wi¦c w ogóle by¢ zbie»ny.

Uwaga: Istotne jest, »e przedziaª [a, b] jest sko«czony, i »e zawiera ko«ce.
Bez tych zaªo»e« funkcja mo»e nie by¢ ograniczona. Na przykªad, funkcja
f(x) = x jest ci¡gªa na [0,∞), a f(x) = 1

x
jest ci¡gªa na (0, 1), a »adna z nich

nie jest ograniczona. Uwaga ta odnosi si¦ te» do nast¦pnego twierdzenia.
Twierdzenie 7.5. Funkcja f ci¡gªa na przedziale [a, b] (sko«czonym i za-
wieraj¡cym ko«ce) przyjmuje swoje warto±ci najwi¦ksz¡ i najmniejsz¡.
Dowód. Poka»emy tylko, »e f przyjmuje warto±¢ najwi¦ksz¡. Niech

M = sup{y : y = f(x), x ∈ [a, b]}.
Wiemy, »e zbiór warto±ci funkcji f jest ograniczony, wi¦c powy»szy kres
górny istnieje (jest sko«czony). Z de�nicji kresu wynika, »e istnieje ci¡g
{xn} ⊂ [a, b] taki, »e f(xn) → M . Ci¡g {xn} jest ograniczony, wi¦c mo»na z
niego wybra¢ podci¡g {xnk

} zbie»ny do jakiej± liczby x∞ ∈ [a, b] (ponownie
Twierdzenie 4.12). Mamy wi¦c f(xnk

) → f(x∞), czyli f(x∞) = M .
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Twierdzenie 7.6 (Wªasno±¢ Darboux). Funkcja f ci¡gªa na przedziale [a, b]
przyjmuje wszystkie warto±ci pomi¦dzy swoj¡ warto±ci¡ najmniejsz¡ m i naj-
wi¦ksz¡ M . Innymi sªowy, zbiorem warto±ci funkcji ci¡gªej na przedziale [a, b]
jest przedziaª [m,M ].

Dowód. Wiemy, »e funkcja f przyjmuje swoje warto±ci ekstremalne, czyli
istniej¡ liczby c, d ∈ [a, b] takie, »e f(c) = m i f(d) = M . Rozpatrzmy
przypadek gdy c < d. W przypadku, gdy c = d f jest staªa, a w przypadku
nierówno±ci przeciwnej mo»emy rozwa»a¢ −f zamiast f , albo zmody�kowa¢
ten dowód. Niech wi¦c c < d. Zaªó»my, »e y0 ∈ (m,M), czyli y0 jest warto±ci¡
po±redni¡, pomi¦dzy warto±ci¡ najmniejsz¡ i najwi¦ksz¡. Rozwa»my zbiór

{t ∈ [c, d] : f(x) < y0 dla x ∈ [c, t]}.

Wiemy, »e zbiór ten jest niepusty, gdy» zawiera przynajmniej c (f(c) = m <
y0), oraz jest ograniczony, gdy» rozwa»amy tylko t ∈ [c, d]. Kres górny tego
zbioru wi¦c istnieje (jest sko«czony), i oznaczmy go przez x0:

x0 = sup{t ∈ [c, d] : f(x) < y0 dla x ∈ [c, t]}.

Poka»emy, »e musi zachodzi¢

f(x0) = y0, (7.1)

czyli istotnie y0 jest warto±ci¡ funkcji f . Udowodnimy (7.1) poprzez wy-
kluczenie pozostaªych mo»liwo±ci. Zaªó»my najpierw, »e f(x0) < y0. Wtedy,
skoro f jest ci¡gªa, to istnieje δ > 0 takie, »e f(x) < y0 dla x ∈ (x0−δ, x0+δ).
Widzimy wi¦c, »e f(x) < y0 na przedziale [c, x0 + δ), co przeczy de�nicji x0.
Mamy wi¦c sprzeczno±¢, a wi¦c nie mo»e by¢ f(x0) < y0. Zaªó»my wi¦c, »e
f(x0) > y0. Tym razem, z ci¡gªo±ci f w x0 mamy, »e f(x) > y0 na pew-
nym przedziale (x0 − δ, x0 + δ), dla pewnego δ > 0. Natomiast z de�nicji x0

wynika, »e f(x) < y0 dla x < x0, a wi¦c znowu mamy sprzeczno±¢. Jedyn¡
mo»liwo±ci¡ pozostaje (7.1).

Uwaga: Powy»sze twierdzenie mo»e by¢ wykorzystane do przybli»onego
znajdowania pierwiastków równa«. Je»eli wiemy, »e funkcja f jest ci¡gªa,
i f(a) · f(b) < 0, to f ma pierwiastek w przedziale (a, b):

f(x) = 0 dla pewnego x ∈ (a, b).

Algorytm przybli»onego znajdowania tego pierwiastka, tak zwana metoda
�przez poªowienie�, jest rekurencyjny. Niech c = a+b

2
. Albo f(c) = 0, i

wtedy pierwiastek jest znaleziony, albo f(c) 6= 0 a wi¦c musi by¢ f(a) ·
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f(c) < 0 lub f(c) · f(b) < 0. Innymi sªowy, pierwiastek musi by¢ albo
w lewej poªówce przedziaªu [a, b], albo w prawej. Tra�amy wi¦c do punktu
wyj±cia (to znaczy wiemy, »e pierwiastek jest w przedziale), ale z przedziaªem
o poªow¦ krótszym. Na przykªad, »eby obliczy¢ numerycznie

√
2 mo»emy,

szuka¢ pierwiastka równania
f(x) = x2 − 2 = 0.

Mamy f(1) · f(2) = −2 < 0, a funkcja f jest ci¡gªa, wi¦c istnieje pierwiastek
w przedziale (1, 2) (niewielka niespodzianka). �atwo zauwa»y¢, »e metod¡
poªowienia osi¡gamy 3 dodatkowe cyfry dziesi¦tne przybli»enia na ka»de 10
iteracji. Ka»da iteracja sprowadza si¦ (w tym przykªadzie) do 1 mno»enia,
czyli algorytm jest bardzo efektywny � 3 cyfry dziesi¦tne dokªadno±ci na 10
mno»e«.
Twierdzenie 7.7. Je»eli funkcja f jest ci¡gªa na przedziale [a, b] i ró»no-
warto±ciowa, to funkcja g, odwrotna do f , jest ci¡gªa na zbiorze warto±ci
f , czyli na przedziale [m,M ], gdzie staªe m i M oznaczaj¡, podobnie jak w
poprzednim twierdzeniu warto±¢ najmniejsz¡ i najwi¦ksz¡ funkcji f na [a, b].
Dowód. Obrazem (zbiorem warto±ci) f , zgodnie z Twierdzeniem 7.6,jest prze-
dziaª [m,M ], i jest wi¦c on dziedzin¡ funkcji odwrotnej g. Je»eli m ≤ y ≤ M
to g jest okre±lona w punkcie y. Niech yn → y i yn ∈ [m,M ] dla n = 1, 2, . . . .
Skoro yn i y nale»¡ do zbioru warto±ci f , to istniej¡ x, xn ∈ [a, b] takie, »e
f(xn) = yn i f(x) = y. Ci¡g {xn} jest ograniczony. Niech jego granica dolna
b¦dzie oznaczona przez x′, a granica górna przez x′′. Niech podci¡gi {xn′k} i
{xn′′k} odpowiednio zbiegaj¡ do x′ i x′′. Z ci¡gªo±ci f wynika, »e

f(x′) = lim
k→∞

f(xn′k) = lim
k→∞

yn′k = y,

i podobnie
f(x′′) = lim

k→∞
f(xn′′k ) = lim

k→∞
yn′′k = y.

Mamy wi¦c f(x′) = f(x′′) = y = f(x). Skoro f jest ró»nowarto±ciowa, to
x = x′ = x′′. Granica górna i dolna ci¡gu {xn} s¡ wi¦c równe x, a wi¦c ci¡g
jest zbie»ny do x. Mamy wi¦c

g(yn) = xn
n→∞−−−→ x = g(y),

czyli g jest ci¡gªa w y.
Wniosek 7.8. Funkcja loga(x) jest ci¡gªa na (0,∞), jako funkcja odwrotna
do funkcji ci¡gªej ax (a > 0, a 6= 1).

Uwaga: Funkcja ci¡gªa, ró»nowarto±ciowa na odcinku [a, b] musi by¢ ±ci±le
monotoniczna. Dowód tego prostego faktu pozostawiamy jako ¢wiczenie.
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Rysunek 7.2: Funkcja sin(x) i arcsin(x).

Funkcje cyklometryczne
Funkcje sin(x) i cos(x) nie s¡ ró»nowarto±ciowe a wi¦c nie s¡ odwracalne.
Mo»na jednak rozwa»a¢ te funkcje na mniejszej dziedzinie, na której s¡ ró»-
nowarto±ciowe. Funkcja sin(x) z dziedzin¡ ograniczon¡ do [−π

2
, π

2
] jest funk-

cj¡ ±ci±le rosn¡c¡ od −1 do 1, a wi¦c jest ró»nowarto±ciowa i odwracalna.

1

−1

π

1−1

π

Rysunek 7.3: Funkcja cos(x) i arccos(x).

Funkcja odwrotna, okre±lona na [−1, 1] nazywa si¦ arcsin(x), i zgodnie
z powy»szym twierdzeniem, jest ci¡gªa. Podobnie cos(x), z dziedzina ogra-
niczon¡ do przedziaªu [0, π] jest funkcj¡ ±ci±le malej¡c¡ od 1 do −1, a wi¦c
odwracaln¡ Funkcja odwrotna, okre±lona na przedziale [−1, 1] nazywa si¦
arccos(x), i równie» jest ci¡gªa.

Funkcja tan(x) jest okresowa, o okresie π, i skªada si¦ z �gaª¦zi�. Z dzie-
dzin¡ ograniczon¡ do (−π

2
, π

2
) jest funkcj¡ ±ci±le rosn¡c¡, odwracaln¡. Funk-

cja odwrotna, okre±lona na caªej prostej R nazywa si¦ arctan(x) i równie»
jest ci¡gªa.
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Rysunek 7.4: Gaª¡¹ funkcji tan(x) i funkcja arctan(x).

81



Rozdziaª 8

Pochodna

Pochodna funkcji to chwilowa pr¦dko±¢ jej zmian.

De�nicja 8.1. Pochodn¡ funkcji f w punkcie x nazywamy granic¦

lim
h→0

f(x + h)− f(x)

h
, (8.1)

o ile ta granica istnieje. Je»eli istnieje, to mówimy, »e f jest ró»niczkowalna
w punkcie x (albo »e �ma pochodn¡� w punkcie x). Pochodn¡ funkcji f w
punkcie x oznaczamy

f ′ (�f prim�) lub df

dx
(�df po dx�).

Uwagi: (i) Pochodna funkcji f te» jest funkcj¡, której dziedzin¡ jest zbiór
punktów, w których f jest ró»niczkowalna. Obliczanie pochodnej nazywa si¦
�ró»niczkowaniem� funkcji.
(ii) Iloraz

f(x + h)− f(x)

h

wyst¦puj¡cy w granicy (8.1) nazywamy �ilorazem ró»nicowym�. Iloraz ró»ni-
cowy, czyli przyrost funkcji podzielony przez przyrost argumentu wyznacza
±redni¡ pr¦dko±¢ wzrostu funkcji f na przedziale [x, x + h] (je»eli h > 0, w
przeciwnym wypadku na przedziale [x+h, x]). St¡d interpretacja pochodnej
jako chwilowej pr¦dko±ci zmian funkcji.
(iii) Pochodna ma te» interpretacj¦ geometryczn¡. Iloraz ró»nicowy (8.1)
to tangens k¡ta nachylenia ϕ siecznej wykresu, poprowadzonej przez punkty
(x, f(x)) i (x + h, f(x + h)). Gdy h → 0 sieczna staje si¦ styczn¡, wi¦c w
interpretacji geometrycznej pochodna to tangens k¡ta nachylenia stycznej do
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wykresu w punkcie (x, f(x)). Istnienie pochodnej oznacza po prostu istnienie
stycznej do wykresu, rozumianej jako granica siecznych.
(iv) Granic¦ (8.1) mo»na oczywi±cie zapisa¢ jako

lim
y→x

f(y)− f(x)

y − x
,

u»ywaj¡c zmiennej y = x + h.

f(x + h)

f(x)

x x + h

f(x + h) − f(x)

h

Rysunek 8.1: Iloraz ró»nicowy i sieczna wykresu.

(v) Pochodna mo»e nie istnie¢. Na przykªad, dla funkcji f(x) = |x| mamy

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

|h|
h

= lim
h→0+

h

h
= 1,

lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−

|h|
h

= lim
h→0−

−h

h
= −1.

Ilorazy ró»nicowe maj¡ ró»ne granice jednostronne w zerze, a wi¦c f nie jest
ró»niczkowalna w 0. Interpretacja geometryczna nieró»niczkowalno±ci w 0
jest szczególnie sugestywna: wykres f ma w punkcie (0, 0) �dziubek�, i nie
ma stycznej.
(vi) Pochodn¡ funkcji f de�niujemy w punktach �wewn¦trznych� dziedziny,
to znaczy w takich punktach x, które nale»¡ do dziedziny f wraz z pewnym
otoczeniem (x− δ, x + δ).

Twierdzenie 8.2. Je»eli f jest ró»niczkowalna w punkcie x to jest tak»e
ci¡gªa w x.
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Rysunek 8.2: Wykres f(x) = |x| i nieró»niczkowalny �dzióbek�.

Dowód. Zauwa»my, »e

lim
y→x

f(y)− f(x) = lim
y→x

(f(y)− f(x))

= lim
y→x

(
f(y)− f(x)

y − x
· (y − x)

)

= lim
y→x

f(y)− f(x)

y − x
· lim

y→x
(y − x)

= f ′(x) · 0

= 0.

Twierdzenie 8.3. Je»eli f i g s¡ ró»niczkowalne w punkcie x, to tak»e f +g,
f − g, f · g i (je»eli dodatkowo g(x) 6= 0) f

g
s¡ ró»niczkowalne w punkcie x

oraz mamy wzory

• (f ± g)′(x) = f ′(x)± g′(x),

• (f · g)′(x) = f ′(x)g(x) + f(x)g′(x) (tak zwana reguªa Leibniza),

• (
f
g

)′
(x) = f ′(x)g(x)−f(x)g′(x)

g2(x)
, (je»eli g(x) 6= 0).

Dowód. Poka»emy iloczyn i iloraz, natomiast sum¦ i ró»nic¦ pozostawiamy
czytelnikowi. Zacznijmy od iloczynu. W liczniku odejmujemy i dodajemy
wyra»enie f(x)g(x + h)

lim
h→0

f(x + h)g(x + h)− f(x)g(x)

h
=
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= lim
h→0

f(x + h)g(x + h)− f(x)g(x + h) + f(x)g(x + h)− f(x)g(x)

h

= lim
h→0

(
(f(x + h)− f(x))g(x + h)

h
+

(g(x + h)− g(x))f(x)

h

)

= lim
h→0

f(x + h)− f(x)

h
· g(x + h) + lim

h→0
f(x) · g(x + h)− g(x)

h
= f ′(x)g(x) + f(x)g′(x).

Przypomnijmy, »e g musi by¢ ci¡gªa w x, a wi¦c g(x+h) → g(x) gdy h → 0.
Rozwa»my teraz pochodn¡ ilorazu. Je»eli g(x) 6= 0 to g musi by¢ ró»na od
zera w pewnym otoczeniu x (bo jest ci¡gªa w x), a wi¦c iloraz f

g
istnieje nie

tylko w x ale te» w pewnym jego otoczeniu.

lim
h→0

f(x+h)
g(x+h)

− f(x)
g(x)

h
= lim

h→0

f(x + h)g(x)− f(x)g(x + h)

h g(x + h) g(x)

= lim
h→0

f(x+h)g(x)−f(x)g(x)−(f(x)g(x+h)−f(x)g(x))
h

g(x + h) g(x)

=
limh→0

f(x+h)−f(x)
h

· g(x)− f(x) · limh→0
g(x+h)−g(x)

h

g2(x)

=
f ′(x)g(x)− f(x)g′(x)

g2(x)
.

Przykªady: (a) Funkcja staªa f(x) = c.

f ′(x) = lim
h→0

c− c

h
= 0.

Pochodna funkcji staªej jest równa 0.
(b) f(x) = x. Mamy

f ′(x) = lim
h→0

x + h− x

h
= lim

h→0

h

h
= 1.

(c) f(x) = xn, dla n ∈ N. Pochodna jest równa f ′(x) = nxn−1. Mo»emy
to udowodni¢ posªuguj¡c si¦ (b) (to przypadek n = 1), reguª¡ Leibniza i
indukcj¡. Mo»emy te» zastosowa¢ wzór dwumianowy Newtona.
(d) Wielmian stopnia n: f(x) = anxn + · · · + a1x + a0. Pochodna f ′(x) =
nan−1

n + · · ·+ a1, czyli jest wielomianem stopnia n− 1.
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(e) f(x) = sin x. Mamy

f ′(x) = lim
h→0

sin(x + h)− sin(x)

h

= lim
h→0

2 sin(1
2
h) cos(x + 1

2
h)

h

= lim
h→0

sin(1
2
h)

1
2
h

· lim
h→0

cos(x +
1

2
h)

= cos x.

Skorzystali±my z to»samo±ci trygonometrycznej
sin(a + b)− sin(a− b) = 2 sin b cos a,

dla a = x + 1
2
h i b = 1

2
h.

(f) f(x) = cos x. Podobnie jak w (e) z tym, »e dla funkcji cos skorzystamy z
to»samo±ci

cos(a + b)− cos(a− b) = −2 sin a sin b.

Liczymy wi¦c

f ′(x) = lim
h→0

cos(x + h)− cos(x)

h

= lim
h→0

−2 sin(1
2
h) sin(x + 1

2
h)

h

= − lim
h→0

sin(1
2
h)

1
2
h

· lim
h→0

sin(x +
1

2
h)

= − sin x.

(g) f(x) = log x. Korzystaj¡c z wªasno±ci logarytmu mamy:

f ′(x) = lim
h→0

log(x + h)− log(x)

h

= lim
h→0

1

h
log

(
x + h

x

)

= lim
h→0

log

(
x + h

x

) 1
h

.

Jak wiemy logarytm jest funkcj¡ ci¡gª¡, wi¦c z granic¡ mo»emy �wej±¢� pod
logarytm. Rozwa»my wyra»enie pod logarytmem.

(
x + h

x

) 1
h

=

(
1 +

h

x

) 1
h

=

( (
1 +

1
x
h

) x
h

) 1
x

.
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Wiemy, »e z granic¡ mo»na �wej±¢� pod dowoln¡ pot¦g¦ (w tym przypadku
pod (· · · ) 1

x ). Zauwa»my, »e gdy h → 0+ to x
h
→ +∞, a gdy h → 0− to

x
h
→ −∞ (przypomnijmy, »e x > 0). Zamieniaj¡c x

h
na t otrzymujemy

lim
h→0+

(
1 +

1
x
h

) x
h

= lim
t→+∞

(
1 +

1

t

)t

= e,

lim
h→0−

(
1 +

1
x
h

) x
h

= lim
t→−∞

(
1 +

1

t

)t

= e.

Obie powy»sze granice rozwa»ali±my wcze±niej (6.6). Poniewa» granice jed-
nostronne s¡ równe, wi¦c

lim
h→0

(
1 +

1
x
h

) x
h

= e.

Skªadaj¡c kawaªki rozumowania otrzymujemy

f ′(x) = log e
1
x =

1

x
log e =

1

x
.

Twierdzenie 8.4 (Ró»niczkowanie funkcji odwrotnej). Niech funkcja f okre-
±lona na przedziale [a, b] b¦dzie ci¡gªa i ró»nowarto±ciowa, oraz ró»niczko-
walna w punkcie x ∈ (a, b), przy czym f ′(x) 6= 0. Niech g b¦dzie funkcj¡
odwrotn¡ do f . Wtedy g jest ró»niczkowalna w punkcie y = f(x), i zachodzi
wzór:

g′(y) =
1

f ′(x)
.

Dowód. Oznaczmy k = f(x + h) − f(x) (k jest zwi¡zane z h). Poniewa»
f(x) = y, wi¦c y +k = f(x+h), a zatem g(y +k) = x+h gdy» g jest funkcj¡
odwrotn¡ do f . Dla k → 0 mamy wi¦c h → 0, bo g jest ci¡gªa. Zauwa»my
jeszcze, »e g(y + k)− g(y) = f(x) + h− f(x) = h, i mamy:

g′(y) = lim
k→0

g(y + k)− g(y)

k

= lim
k→0

h

f(x + h)− f(x0)

=
1

lim
h→0

f(x + h)− f(x0)

h

=
1

f ′(x)
.
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Wniosek 8.5. Dla funkcji f(x) = log x funkcj¡ odwrotn¡ jest g(y) = ey.
Ustalmy y = log x czyli x = ey, i otrzymujemy

g′(y) = (ey)′ =
1

log′(x)
=

1
1
x

= x = ey.

Mamy wi¦c (ex)′ = ex.

Ekstrema funkcji
Mówimy, »e w punkcie x funkcja f ma maksimum (czasem podkre±lamy:
lokalne maksimum), je»eli

f(y) ≤ f(x),

dla y ∈ Df z pewnego otoczenia x. Podobnie, mówimy, »e ma w x minimum
(lokalne minimum), je»eli

f(y) ≥ f(x),

dla y ∈ Df z pewnego otoczenia x. Ogólnie, mówimy »e f ma w punkcie x
ekstremum, je»eli ma w tym punkcie maksimum lub minimum.

xmax xmin

Rysunek 8.3: Lokalne maksimum i minimum.

Twierdzenie 8.6. Je»eli f ′(x) > 0 to w pewnym otoczeniu punktu x mamy
f(y) > f(x) dla y > x oraz f(y) < f(x) dla y < x. (8.2)

Podobnie, je»eli f ′(x) < 0 to w pewnym otoczeniu punktu x

f(y) < f(x) dla y > x oraz f(y) > f(x) dla y < x. (8.3)
Dowód. Wystarczy rozwa»y¢ znak ilorazu ró»nicowego. Je»eli f ′(x) > 0, to
w pewnym otoczeniu punktu x musi zachodzi¢:

f(y)− f(x)

y − x
> 0.

Licznik i mianownik maj¡ ten sam znak, i otrzymujemy (8.2). Podobnie w
przypadku f ′(x) < 0, licznik i mianownik ilorazu ró»nicowego musz¡ mie¢
przeciwne znaki, a wi¦c otrzymujemy (8.3).
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Otrzymujemy natychmiast nast¦puj¡cy bardzo u»yteczny wniosek:

Wniosek 8.7. Je»eli f jest ró»niczkowalna w punkcie x i ma w tym punkcie
ekstremum, to f ′(x) = 0.

Uwagi: (i) Punkt w którym pochodna funkcji przyjmuje warto±¢ zero na-
zywa si¦ punktem krytycznym funkcji.
(ii) Je»eli f ma w punkcie x ekstremum, to f ′(x) = 0, ale nie na odwrót. Na
przykªad, funkcja f(x) = x3 speªnia f ′(0) = 0, ale nie ma w 0 ekstremum.
Innymi sªowy, w punkcie krytycznym funkcja mo»e mie¢ ekstremum, ale nie
musi.
(iii) Powy»szy wniosek mo»e sªu»y¢ do szukania warto±ci najwi¦kszej czy
najmniejszej funkcji. Warto±¢ najwi¦ksza i najmniejsza jest przyj¦ta albo
w punkcie, gdzie funkcja nie jest ró»niczkowalna (na przykªad na ko«cach
przedziaªu na którym badamy funkcj¦), albo w punkcie krytycznym.
(iv) Twierdzenie 8.6 i Wniosek 8.7 s¡ oczywiste geometrycznie. Na przy-
kªad, je»eli funkcja ma w punkcie ekstremum, to styczna do wykresu w tym
punkcie (je»eli istnieje) musi by¢ pozioma.

Twierdzenie 8.8 (Rolle'a). Niech f(x) b¦dzie ci¡gªa na przedziale [a, b], i
ró»niczkowalna w (a, b). Zaªó»my, »e f(a) = f(b). Wtedy istnieje c ∈ (a, b)
takie, »e f ′(c) = 0.

Dowód. f(x) przyjmuje swoje warto±ci najmniejsz¡ i najwi¦ksz¡. Je»eli obie
s¡ przyj¦te na ko«cach przedziaªu [a, b], to znaczy, »e funkcja jest staªa,
i f ′(x) ≡ 0 na caªym przedziale (a, b). W przeciwnym wypadku jedno z
ekstremów musi by¢ przyj¦te w punkcie wewn¦trznym przedziaªu c ∈ (a, b),
a w takim razie w tym punkcie musi by¢ f ′(c) = 0.

Nast¦puj¡ce twierdzenie jest wa»ne i z punktu widzenia teorii, i z punktu
widzenia zastosowa«.

Twierdzenie 8.9 (O warto±ci ±redniej). Je»eli f jest ci¡gªa na [a, b], i ró»-
niczkowalna na (a, b), to istnieje punkt c ∈ (a, b) taki, »e

f(b)− f(a)

b− a
= f ′(c).

Dowód. Zauwa»my, »e funkcja

g(x) = f(x)−
(

f(a) + (x− a)
f(b)− f(a)

b− a

)
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speªnia zaªo»enia twierdzenia Rolle'a: g(a) = g(b) = 0. Po prostu od funkcji
f odj¦li±my funkcj¦ liniow¡ o tych samych warto±ciach punktach a i b. Z
Twierdzenia 8.8 istnieje wi¦c punkt c ∈ (a, b) taki, »e g′(c) = 0. Ale

g′(x) = f ′(x)− f(b)− f(a)

b− a
,

co ko«czy dowód.

Z twierdzenia o warto±ci ±redniej natychmiast otrzymujemy nast¦puj¡cy
wniosek.

Wniosek 8.10. Je»eli na jakim± przedziale (a, b) mamy:

• f ′ ≥ 0 to funkcja f jest rosn¡ca na (a, b),

• f ′ ≤ 0 to funkcja f jest malej¡ca na (a, b),

• f ′ = 0 to funkcja f jest staªa na (a, b),

Dowód. Niech x, y ∈ (a, b) i x < y. Z twierdzenia o warto±ci ±redniej

f(y)− f(x)

y − x
= f ′(c), c ∈ (x, y) ⊂ (a, b).

Je»eli f ′ ≥ 0 na caªym przedziale (a, b) to tak»e iloraz po lewej stronie rów-
no±ci, a wi¦c i licznik musz¡ by¢ ≥ 0. Podobnie w pozostaªych dwóch przy-
padkach. Zauwa»my, »e je»eli f ′ jest stale ±ci±le dodatnia, lub ±ci±le ujemna,
to funkcja jest ±ci±le rosn¡ca, lub ±ci±le malej¡ca na (a, b).

Uwagi: (i) Zauwa»my, »e we wniosku zakªadamy, »e odpowiednia nierów-
no±¢ zachodzi na odcinku. To jest wa»ne zaªo»enie, bo na przykªad funkcja 1

x

ma pochodn¡ stale ±ci±le ujemn¡ na caªej swojej dziedzinie, a nie jest male-
j¡ca. Jest malej¡ca na ka»dym z odcinków (−∞, 0) i (0,∞), ale nie na caªej
swojej dziedzinie.
(ii) Wprost z de�nicji pochodnej wynika nast¦puj¡ca obserwacja: je»eli pew-
nym otoczeniu x funkcja f jest rosn¡ca, to ilorazy ró»nicowe w tym punkcie
s¡ dodatnie, a wi¦c f ′(x) ≥ 0. Podobnie je»eli f jest w jakim± otoczeniu
punktu x malej¡ca, to ilorazy ró»nicowe w tym punkcie s¡ ujemne, a wi¦c
f ′(x) ≤ 0. Widzimy wi¦c, »e monotoniczno±¢ funkcji jest ±ci±le zwi¡zana ze
znakiem pochodnej. przypomnijmy te» zwi¡zane z tym Twierdzenie 8.6.

Nast¦puj¡ce twierdzenie jest podstawowym narz¦dziem do praktycznego
liczenia pochodnych.
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Twierdzenie 8.11 (Reguªa ªa«cuchowa). Niech funkcje f i g b¦d¡ ró»nicz-
kowalne. Zaªó»my, »e zªo»enie g ◦ f b¦dzie okre±lone, to znaczy warto±ci f
wpadaj¡ do dziedziny g. Wtedy zªo»enie g ◦ f te» jest funkcj¡ ró»niczkowaln¡
i zachodzi nast¦puj¡cy wzór na jej pochodn¡:

(g ◦ f)′(x) = g′(f(x)) f ′(x). (8.4)

Dowód. Ustalmy punkt x i zaªó»my, »e funkcja f jest ró»niczkowalna w x, a g
ró»niczkowalna w f(x). Rozpatrzmy najpierw przypadek f ′(x) 6= 0. Zgodnie
z Twierdzeniem 8.6 dla h 6= 0 wystarczaj¡co maªego mamy f(x + h) 6= f(x).
Zapiszmy nast¦puj¡cy iloraz ró»nicowy

g(f(x + h))− g(f(x))

h
=

g(f(x + h))− g(f(x))

f(x + h)− f(x)
· f(x + h)− f(x)

h
.

Oczywi±cie, gdy h → 0 to f(x + h) → f(x) (f jest ci¡gªa w x), czyli

lim
h→0

g(f(x + h))− g(f(x))

h
=

= lim
y→f(x)

g(y)− g(f(x))

y − f(x)
· lim

h→0

f(x + h)− f(x)

h
= g′(f(x)) · f ′(x).

Teraz rozpatrzmy przypadek f ′(x) = 0. Ustalmy ε > 0. Iloraz ró»nicowy

g(y)− g(f(x))

y − f(x)
, y 6= f(x)

ma granic¦ (równ¡ g′(f(x))) gdy y → f(x), a wi¦c jest w pewnym otoczeniu
f(x) ograniczony:

∃α > 0 ∃M ∀ y 0 < |y − f(x)| < α ⇒
∣∣∣∣
g(y)− g(f(x))

y − f(x)

∣∣∣∣ < M.

Z drugiej strony f jest ci¡gªa w x, a wi¦c

∃ δ1 > 0 ∀h |h| < δ1 ⇒ |f(x + h)− f(x)| < α.

W ko«cu, skoro f ′(x) = 0, to

∃ δ2 > 0 ∀h 0 < |h| < δ2 ⇒
∣∣∣∣
f(x + h)− f(x)

h

∣∣∣∣ <
ε

M
.

Niech δ = min{δ1, δ2} i 0 < |h| < δ. Je»eli f(x + h) = f(x) to

g(f(x + h))− g(f(x))

h
= 0.
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W przeciwnym przypadku
∣∣∣∣
g(f(x + h))− g(f(x))

h

∣∣∣∣ =

=

∣∣∣∣
g(f(x + h))− g(f(x))

f(x + h)− f(x)

∣∣∣∣ ·
∣∣∣∣
f(x + h)− f(x)

h

∣∣∣∣ < M · ε

M
= ε.

Poniewa» ε byªo dowolne, to pokazali±my, »e

(g ◦ f)′(x) = lim
h→0

g(f(x + h))− g(f(x))

h
= 0,

czyli, skoro tak»e f ′(x) = 0, pokazali±my (8.4).
Wniosek 8.12. Niech f(x) = xa, gdzie a jest dowoln¡ pot¦g¡ rzeczywist¡.
Mamy wtedy

xa = ea log x ⇒ (xa)′ = ea log x(a log x)′ = xa · a

x
= a xa−1.

Wzór ten udowodnili±my wcze±niej w przypadku gdy a ∈ N.
Nast¦puj¡ce twierdzenie to tak zwana reguªa de l'Hôpitala. Jest to bardzo

proste twierdzenie, jednak zaskakuj¡co przydatne. B¦dziemy je stosowa¢ wie-
lokrotnie. Pozwala ono w wielu przypadkach obliczy¢ granice (je»eli istniej¡)
postaci

lim
y→x

f(y)

g(y)
,

gdzie obie funkcje f i g maj¡ granice równe 0. Wyra»enie takie nazywamy
wyra»eniem nieoznaczonym typu 0

0
� ªatwo si¦ domy±le¢ dlaczego.

Wyra»aj¡c si¦ ±ci±lej, zaªó»my, »e funkcje f i g s¡ ci¡gªe w pewnym oto-
czeniu punktu x, oraz f(x) = g(x) = 0. Zaªó»my, »e obie funkcje s¡ ró»-
niczkowalne w pewnym otoczeniu x, poza, by¢ mo»e, samym punktem x.
Zakªadamy tak»e, »e w pewnym otoczeniu punktu x okre±lone s¡ ilorazy

f(y)

g(y)
oraz f ′(y)

g′(y)
,

(to znaczy w jakim± otoczeniu x, z wyj¡tkiem samego punktu x, zachodzi
g(y) 6= 0 i g′(y) 6= 0). W tak opisanej sytuacji prawdziwe jest nast¦puj¡ce
twierdzenie.
Twierdzenie 8.13 (Reguªa de l'Hôpitala). Zaªó»my, »e istnieje granica (wªa-
±ciwa lub niewªa±ciwa)

lim
y→x

f ′(y)

g′(y)
.
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Wtedy istnieje tak»e granica
lim
y→x

f(y)

g(y)
,

i obie te granice s¡ sobie równe

lim
y→x

f(y)

g(y)
= lim

y→x

f ′(y)

g′(y)
. (8.5)

Reguªa de l'Hôpitala jest równie» prawdziwa dla granic jednostronnych.
Dowód przeprowadzimy wªa±nie dla granic prawostronnych. Zauwa»my, »e
przypadek granic lewostronnych i obustronnych ju» z tej wersji wynika.

Dowód. Udowodnimy wersje twierdzenia dla granic prawostronnych. Punkt
x jest wi¦c ustalony, i wszystkie zaªo»enia opisane powy»ej s¡ speªnione dla
y > x, a wszystkie granice s¡ prawostronne dla y → x+. Niech h > 0 b¦dzie
ustalone, i rozwa»my przedziaª [x, x+h]. Poka»emy, »e istnieje c ∈ (x, x+h)
takie, »e

f(x + h)

g(x + h)
=

f(x + h)− f(x)

g(x + h)− g(x)
=

f ′(c)
g′(c)

. (8.6)

Zauwa»my, »e w przypadku gdy g(y) = y powy»sza równo±¢ to jest po prostu
twierdzenie o warto±ci ±redniej. Ogólny przypadek nie wynika z twierdzenia
o warto±ci ±redniej, ale mo»na go udowodni¢ dokªadnie tak, jak dowodzili±my
tego twierdzenia. Wprowadzimy odpowiedni¡ funkcj¦ pomocnicz¡, i skorzy-
stamy z twierdzenia Rolle'a. Wprowad¹my nast¦puj¡c¡ funkcj¦ na przedziale
[x, x + h]:

Φ(y) = f(y)− g(y)
f(x + h)

g(x + h)
.

Mamy Φ(x) = Φ(x + h) = 0 czyli z twierdzenia Rolle'a istnieje c ∈ (x, x + h)
takie, »e Φ′(c) = 0. To oznacza

f ′(c)− g′(c)
f(x + h)

g(x + h)
= 0,

czyli dokªadnie (8.6) Zauwa»my te», »e gdy h → 0+ to c → x+. Je»eli istnieje
granica

lim
y→x+

f ′(y)

g′(y)
, (8.7)

to granica
lim

h→0+

f ′(c)
g′(c)

,
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te» musi istnie¢ i jest równa granicy (8.7). Mamy wi¦c

lim
y→x+

f(y)

g(y)
= lim

h→0+

f(x + h)

g(x + h)
= lim

h→0+

f ′(c)
g′(c)

= lim
y→x+

f ′(y)

g′(y)
,

o ile granica po prawej stronie istnieje.

Uwagi: (i) Zwró¢my uwag¦, »e równo±¢ (8.5) zachodzi o ile granica po prawej
stronie istnieje. Mo»e si¦ zdarzy¢, »e granica po lewej stronie istnieje, chocia»
ta po prawej stronie (8.5) nie istnieje. Na przykªad rozwa»my funkcje

f(x) = x2 sin
(1

x

)
, g(x) = x,

(niech f(0) = 0). Obie funkcje s¡ ci¡gªe i ró»niczkowalne na caªej prostej,
uªamek f

g
jest wyra»eniem nieoznaczonym typu 0

0
w zerze, istnieje granica

lim
y→0

f(y)

g(y)
= lim

y→0
x sin

(1

x

)
= 0,

chocia» granica wyra»enia

f ′(y)

g′(y)
=

2x sin
(

1
x

)− x2 cos
(

1
x

) · 1
x2

1
= 2x sin

(1

x

)
− cos

(1

x

)

nie istnieje.
(ii) Reguª¦ de l'Hôpitala mo»na iterowa¢. Na przykªad rozwa»my granic¦

lim
x→0

sin(x)− x

x3
.

Ró»niczkuj¡c licznik i mianownik znowu otrzymujemy wyra»enie nieozna-
czone typu 0

0
w zerze, cos(x)−1

3x2 . Ró»niczkuj¡c licznik i mianownik ponownie
otrzymujemy − sin(x)

6x
, wci¡» wyra»enie nieoznaczone typu 0

0
w zerze. Mogli-

by±my ró»niczkowa¢ ponownie, ale akurat t¡ granic¦ znamy, (6.4), wynosi
ona −1

6
. Wracamy wi¦c, stosuj¡c reguª¦ de l'Hôpitala dwukrotnie.

lim
x→0

− sin(x)

6x
= −1

6
⇒ lim

x→0

cos(x)− 1

3x2
= −1

6
⇒ lim

x→0

sin(x)− x

x3
= −1

6
.

(iii) Reguª¦ de l'Hôpitala mo»na te» stosowa¢ do granic w niesko«czono±ci.
Rozwa»my na przykªad granic¦

lim
x→+∞

f(x)

g(x)
,
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gdzie f(x) → 0 i g(x) → 0 gdy x → +∞. Wprowad¹my oznaczenia

ϕ(t) = f

(
1

t

)
oraz ψ(t) = g

(
1

t

)
,

wtedy ϕ(t) → 0 i ψ(t) → 0 gdy t → 0+, oraz

ϕ′(t) = f ′
(

1

t

)
·
(−1

t2

)
, oraz ψ′(t) = g′

(
1

t

)
·
(−1

t2

)
.

Otrzymujemy wi¦c
ϕ′(t)
ψ′(t)

=
f ′(1

t
)(− 1

t2
)

g′(1
t
)(− 1

t2
)

=
f ′(1

t
)

g′(1
t
)
.

Wynika z tego, »e granice

lim
x→+∞

f ′(x)

g′(x)
oraz lim

t→0+

ϕ′(t)
ψ′(t)

s¡ identyczne, istnienie jednej jest równowa»ne istnieniu drugiej i je»eli ist-
niej¡ to s¡ sobie równe. Oczywi±cie identyczne s¡ równie» granice

lim
x→+∞

f(x)

g(x)
oraz lim

t→0+

ϕ(t)

ψ(t)
,

czyli mamy

A = lim
x→+∞

f ′(x)

g′(x)
= lim

t→0+

ϕ′(t)
ψ′(t)

⇒ A = lim
t→0+

ϕ(t)

ψ(t)
= lim

x→+∞
f(x)

g(x)
.

(iv) Mo»na te» udowodni¢ (z grubsza w podobny sposób) wersj¦ reguªy de
l'Hôpitala dla wyra»e« nieoznaczonych postaci ∞∞ : je»eli limy→x f(y) = ±∞
oraz limy→x g(y) = ±∞ to zachodzi reguªa de l'Hôpitala, to znaczy mamy
równo±¢ (8.5) (o ile granica po prawej stronie istnieje, wªa±ciwa lub niewªa-
±ciwa). Podobnie jak w przypadku Twierdzenia 8.13 udowodnimy wersj¦ dla
granic prawostronnych, z której wynikaj¡ pozostaªe wersje, równie» dla gra-
nic w ±∞, analogicznie jak w tamtym przypadku. Zróbmy wi¦c nast¦puj¡ce
zaªo»enia: niech f , f ′, g, g′ oraz ilorazy f

g
i f ′

g′ b¦d¡ okre±lone w jakim±
otoczeniu prawostronnym punktu x i niech

lim
y→x+

g(y) = ±∞ (8.8)

(nie musimy nawet zakªada¢ limy→x+ f(y) = ±∞). Zaªó»my, »e istnieje
granica (wªa±ciwa)

lim
y→x+

f ′(y)

g′(y)
= α.
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Ustalmy ε > 0 i niech δ > 0 b¦dzie taka, ze dla x < y < x + δ
∣∣∣∣
f ′(y)

g′(y)
− α

∣∣∣∣ < ε. (8.9)

Wybierzmy i ustalmy y0 ∈ (x, x + δ), i rozwa»my dowolne y ∈ (x, y0). Po-
dobnie jak w dowodzie reguªy de l'Hôpitala 8.13 mo»emy pokaza¢, »e istnieje
c ∈ (y, y0), oczywi±cie zale»ne od y, takie, »e

f(y)− f(y0)

g(y)− g(y0)
=

f ′(c)
g′(c)

,

czyli, bior¡c pod uwag¦ (8.9)
∣∣∣∣
f(y)− f(y0)

g(y)− g(y0)
− α

∣∣∣∣ < ε.

Dzielimy licznik i mianownik uªamka przez g(y), mo»emy to zapisa¢ w postaci

α− ε <

f(y)
g(y)

− f(y0)
g(y)

1− g(y0)
g(y)

< α + ε.

Dzielenie przez g(y) jest dopuszczalne, gdy» ze wzgl¦du na (8.8) je»eli tylko
δ jest wystarczaj¡co maªa, to g(y) 6= 0 w (x, x + δ). Z tego samego wzgl¦du
mianownik d¡»y do 1 gdy y → x+, a wi¦c w szczególno±ci, gdy y jest wy-
starczaj¡co blisko x, to mianownik jest dodatni. Niech wi¦c y < x + η ≤ y0,
wtedy powy»sze nierówno±ci mo»emy zapisa¢

(α− ε) ·
(

1− g(y0)

g(y)

)
+

f(y0)

g(y)
<

f(y)

g(y)
< (α + ε) ·

(
1− g(y0)

g(y)

)
+

f(y0)

g(y)
.

We¹my dowolny ci¡g {yn}, taki, »e yn → x i yn > x. Od pewnego miejsca
yn < x + η, wi¦c mo»emy zastosowa¢ powy»sze nierówno±ci. Otrzymujemy
wi¦c

α− ε ≤ lim inf
n→∞

f(yn)

g(yn)
≤ lim sup

n→∞

f(yn)

g(yn)
≤ α + ε.

ε byªo dowolne, wi¦c widzimy, »e musi istnie¢ granica, i

lim
n→∞

f(yn)

g(yn)
= α.

Ci¡g {yn} byª dowolny, wi¦c

lim
y→x+

f(y)

g(y)
= α = lim

y→x+

f ′(y)

g′(y)
.
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W ten sposób udowodnili±my reguª¦ de l'Hôpitala w przypadku granicy α
wªa±ciwej (sko«czonej). Mo»na j¡ te» udowodni¢ dla granicy α niewªa±ciwej.

Przykªady: (a) limx→0
log(1+x)

x
. Jest to wyra»enie postaci 0

0
, wi¦c mamy

lim
x→0

log(1 + x)

x
= lim

x→0

1
1+x

1
= 1.

(b) limx→0+ x log x. Jest to wyra»enie postaci 0 · ∞, ale przenosz¡c x do
mianownika otrzymujemy wyra»enie postaci ∞∞ . Mamy wi¦c

lim
x→0+

x log x = lim
x→0+

log x
1
x

= lim
x→0+

1
x
−1
x2

= − lim
x→0+

x = 0.

(c) limx→0+(cos x)
1
x . Jest to wyra»enie postaci 1∞. Przeksztaªcamy je wi¦c

w zwykªy sposób
(cos x)

1
x = e

1
x

log cos x = e
log cos x

x .

W wykªadniku jest wyra»enie typu 0
0
, wi¦c obliczmy granic¦ w wykªadniku

lim
x→0+

log cos x

x
= lim

x→0+

1
cos x

(− sin x)

1
= 0 ⇒ lim

x→0+
(cos x)

1
x = e0 = 1.

(d) limx→+∞
log x√

x
. Jest to wyra»enie postaci ∞∞ w ∞, wi¦c mamy

lim
x→+∞

log x√
x

= lim
x→+∞

1
x

1
2

1√
x

= lim
x→+∞

2√
x

= 0.

Logarytm ro±nie do ∞ wolniej ni» pierwiastek.

Pochodne funkcji cyklometrycznych
(a) f(x) = arcsin(x). f jest okre±lona na przedziale [−1, 1] i jest funkcj¡ od-
wrotn¡ do funkcji sin(x) zaw¦»onej do przedziaªu [−π

2
, π

2
]. Niech x ∈ (−1, 1)

i x = sin(y) dla pewnego y ∈ (−π
2
, π

2
). Z Twierdzenia 8.4 wiemy, »e f jest

ró»niczkowalna w x i

f ′(x) =
1

sin′(y)
=

1

cos(y)
=

1

cos arcsin(x)
.
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Wyra»enie to mo»na upro±ci¢. Dla y ∈ (−π
2
, π

2
) cos(y) > 0, a wi¦c cos(y) =√

1− sin2(y). Mamy wi¦c

f ′(x) =
1

cos arcsin(x)
=

1√
1− x2

.

(b) f(x) = arccos(x). Jest to funkcja okre±lona na przedziale [−1, 1], od-
wrotna do funkcji cos(x) zaw¦»onej do przedziaªu [0, π]. Niech x ∈ (−1, 1), i
x = cos(y) dla pewnego y ∈ (0, π).

f ′(x) =
1

cos′(y)
=

1

− sin(y)
=

−1

sin arccos(x)
.

Podobnie jak poprzednio, sin(x) jest dodatni na (0, π), wi¦c sin(y) =
√

1− cos2(y),
czyli

f ′(x) =
−1

sin arccos(x)
=

−1√
1− x2

.

(c) f(x) = arctan(x). Funkcja f jest okre±lona na caªej prostej R, i jest
funkcj¡ odwrotn¡ do funkcji tan(x) zaw¦»onej do przedziaªu (−π

2
, π

2
). Niech

x = tan(y) dla pewnego y ∈ (−π
2
, π

2
). Mamy

f ′(x) =
1

tan′(y)
=

1
1

cos2(y)

= cos2(y).

Z drugiej strony

cos2(y) =
cos2(y)

cos2(y) + sin2(y)
=

1

1 + ( sin(y)
cos(y)

)2
=

1

1 + tan2(y)
=

1

1 + x2
.

Ostatecznie wi¦c
f ′(x) =

1

1 + x2
.

Pochodne wy»szych rz¦dów
Je»eli pochodna f ′ sama jest ró»niczkowalna, to jej pochodna, jest tak zwan¡
drug¡ pochodn¡ funkcji f

(f ′)′(x) = f ′′(x) = f (2)(x).

Podobnie mo»emy obliczy¢ pochodne dowolnego rz¦du f (n) (je»eli funkcja f
jest ró»niczkowalna odpowiedni¡ ilo±¢ razy). Piszemy f (0) = f .
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Przykªady: (a)

sin(n)(x) =

{
(−1)

n−1
2 cos(x) n � nieparzyste,

(−1)
n
2 sin(x) n � parzyste.

(b)

f(x) =

{
x3 x ≥ 0,

0 x < 0.

Funkcja f jest ró»niczkowalna w ka»dym punkcie x 6= 0 i f ′(x) = 3x2 dla
x > 0 oraz f ′(x) = 0 dla x < 0. Jest te» ró»niczkowalna w zerze, i f ′(0) = 0:

lim
x→0+

f(x)− 0

x
= lim

x→0+

x3

x
= 0, lim

x→0−

f(x)− 0

x
= lim

x→0−

0

x
= 0.

f jest wi¦c ró»niczkowalna w ka»dym punkcie, i

f ′(x) =

{
3x2 x ≥ 0,

0 x ≤ 0.

1

2

3

−1 1

1

2

3

−1 1

1

2

3

−1 1

Rysunek 8.4: Funkcje f , f ′ i f ′′ z przykªadu (b).

Obliczamy teraz pochodn¡ f ′. Dla x > 0 f ′′(x) = 6x, a dla x < 0
f ′′(x) = 0. W zerze f ′ te» jest ró»niczkowalna, i f ′′(0) = 0:

lim
x→0+

f ′(x)− 0

x
= lim

x→0+

3x2

x
= 0, lim

x→0−

f ′(x)− 0

x
= lim

x→0−

0

x
= 0.

f jest wi¦c ró»niczkowalna 2-krotnie w ka»dym punkcie, i

f ′′(x) =

{
6x x ≥ 0,

0 x ≤ 0.
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Zauwa»my, »e f ′′ nie jest ró»niczkowalna w zerze:

lim
x→0+

f ′′(x)− 0

x
= lim

x→0+

6x

x
= 6, lim

x→0−

f ′′(x)− 0

x
= lim

x→0−

0

x
= 0.

f jest wi¦c 2-krotnie ró»niczkowalna w ka»dym punkcie, ale nie jest 3-krotnie
ró»niczkowalna w zerze.
Uwaga: Wszystkie funkcje elementarne s¡ ró»niczkowalne niesko«czenie
wiele razy w ka»dym punkcie swojej dziedziny.

Badanie przebiegu funkcji
Omówimy teraz procedur¦ badania przebiegu funkcji. Badanie przebiegu
funkcji to typowe zadanie w zastosowaniach.
Uwaga: Procedura badania zmienno±ci funkcji odnosi si¦ do funkcji odpo-
wiednio regularnych. Istniej¡ funkcje, których wykresu nie da si¦ naszkico-
wa¢, na przykªad

f(x) =

{
1 x ∈ Q,

0 x /∈ Q.

Funkcje, które badamy najcz¦±ciej s¡ przynajmniej przedziaªami ci¡gªe.
Przyst¦puj¡c do zbadania przebiegu funkcji post¦pujemy nast¦puj¡co.

Kolejno±¢ poszczególnych operacji w zasadzie nie ma znaczenia.
(1) Ustalamy dziedzin¦ funkcji, je»eli nie jest podana jawnie. Ustalamy
punkty ci¡gªo±ci, nieci¡gªo±ci, ró»niczkowalno±ci i nieró»niczkowalno±ci. Z re-
guªy funkcja badana jest przedziaªami ci¡gªa i przedziaªami ró»niczkowalna,
wi¦c ustalamy te przedziaªy.
(2) Sprawdzamy parzysto±¢ i okresowo±¢ funkcji. Je»eli f jest parzysta to
znaczy f(−x) = f(x) lub nieparzysta, to znaczy f(−x) = −f(x), to wy-
starczy zbada¢ jej przebieg dla x ≥ 0 a nast¦pnie wyniki odpowiednio prze-
nie±¢ na x < 0. Je»eli funkcja jest okresowa, to znaczy istnieje T takie, »e
f(x + T ) = f(x), to wystarczy zbada¢ funkcj¦ na dowolnym przedziale dªu-
go±ci jednego okresu.
(3) Ustalamy pierwiastki funkcji, czyli punkty x w których

f(x) = 0,

oraz ustalamy przedziaªy na których funkcja zachowuje znak.
(4)Ustalamy przedziaªy monotoniczno±ci i wyznaczamy ekstrema lokalne.
Badamy znak pochodnej. Mo»na z tego wyci¡gn¡¢ wnioski na temat eks-
tremów. Czasem pomocne jest nast¦puj¡ce twierdzenie
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Twierdzenie 8.14. Je»eli w pewnym punkcie x f ′(x) = 0 i f ′′(x) 6= 0 to f
ma w x ekstremum. Je»eli f ′′(x) < 0 to jest to maksimum, a je»eli f ′′(x) > 0
to jest to minimum.
Dowód. Je»eli f ′′(x) > 0 to stosuj¡c Twierdzenie 8.6 do f ′, pami¦taj¡c, »e
f ′(x) = 0 otrzymujemy, »e f ′ jest ujemna na lewo od x (czyli f maleje)
i dodatnia na prawo od x (czyli f ro±nie). W takim razie w x funkcja f
ma minimum. Podobnie w przypadku f ′′(x) < 0: wtedy w x funkcja f ma
maksimum.

Nale»y pami¦ta¢, »e ekstrema mog¡ znajdowa¢ si¦ w punktach, w których
funkcja nie jest ró»niczkowalna.
(5) Je»eli funkcja f ma drug¡ pochodn¡ i na jakim± przedziale f ′′(x) > 0, to
mówimy, »e jest na tym przedziale wypukªa. Je»eli na jakim± przedziale
f ′′(x) < 0 to mówimy, »e jest na tym przedziale wkl¦sªa. Je»eli w ja-
kim± punkcie funkcja zmienia si¦ z wypukªej na wkl¦sª¡, albo na odwrót,
to taki punkt nazywamy punktem przegi¦cia. Taki punkt jest punktem eks-
tremalnym pochodnej. Znajdujemy punkty przegi¦cia funkcji, i okre±lamy
przedziaªy wypukªo±ci/wkl¦sªo±ci. Wypukªo±¢ i wkl¦sªo±¢ maj¡ interpretacj¦
geometryczn¡. Na odcinku na którym funkcja jest wypukªa styczne do wy-
kresu le»¡ pod wykresem, a sieczne nad wykresem. Je±li funkcja jest wkl¦sªa
to odwrotnie, styczne le»¡ nad wykresem a sieczne pod.
(6) Znajdujemy ewentualne asymptoty. Asymptoty mog¡ by¢ ró»nego ro-
dzaju.
(a) Je»eli w jakim± punkcie a mamy limx→a± f(x) = ±∞, to prost¡ pionow¡
o równaniu x = a nazywamy asymptot¡ pionow¡ funkcji.
(b) Je»eli istnieje granica limx→±∞ f(x) = A, to prost¡ poziom¡ o równaniu
y = A nazywamy asymptot¡ poziom¡ funkcji w +∞ (lub w −∞).
(c) Je»eli isnieje staªa m taka, »e istnieje granica limx→±∞(f(x) −mx) = c,
to prost¡ o równaniu y = mx + c nazywamy asymptot¡ uko±n¡ funkcji w
+∞ (lub w −∞). Asymptota pozioma to szczególny przypadek asymptoty
uko±nej, dla której m = 0. Je»eli funkcja f ma w +∞ albo −∞ asymptot¦
uko±n¡ , to staªa m jest równa ka»dej z granic

lim
x→±∞

f(x)

x
, lim

x→±∞
(f(x + 1)− f(x)), lim

x→±∞
f ′(x),

(ostatnia granica mo»e nie istnie¢, nawet je»eli asymptota uko±na istnieje).
Nale»y jednak pami¦ta¢, »e istnienie którejkolwiek z tych granic nie gwaran-
tuje jeszcze istnienia asymptoty uko±nej. �eby istniaªa asymptota uko±na
musi jeszcze istnie¢ granica

lim
x→±∞

(f(x)−mx) = c.
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Przykªady: (a) f(x) = x
x−1

ma asymptot¦ pionow¡ x = 1 oraz asymptoty
poziome y = 1 w obu niesko«czono±ciach (Rys. 8.5).

asymptota pionowa
x = 1

asymptota pozioma
y = 1

Rysunek 8.5: Asymptoty funkcji f(x) = x
x−1

.

(b) f(x) = x3−2x2+3
2x2 . Funkcja ma asymptot¦ pionow¡ x = 0. B¦dziemy

szukali asymptot uko±nych.

f(x)

x
=

x3 − 2x2 + 3

2x3
=

1

2
− 1

x
+

3

2x3

x→±∞−−−−→ 1

2
,

f(x)− 1

2
x =

x3 − 2x2 + 3

2x2
− x

2
=

x3 − 2x2 + 3− x3

2x2

=
−2x2 + 3

2x2
= −1 +

3

2x2

x→±∞−−−−→ −1.

f ma wi¦c asymptot¦ uko±n¡ y = 1
2
x − 1 w obu niesko«czono±ciach (Rys.

8.6).
(c) Zbadajmy przebieg zmienno±ci funkcji

f(x) =
2

3
√

x2

x + 1
.

Naturaln¡ dziedzin¡ funkcji jest Df = R \ {−1}, funkcja jest ci¡gªa w ka»-
dym punkcie dziedziny i jest ró»niczkowalna w ka»dym punkcie x 6= 0. Prze-
dziaªy ci¡gªo±ci to (−∞,−1) i (−1, +∞), a przedziaªy ró»niczkowalno±ci to
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12

16

20

asymptota pionowa

x = 0

asymptota ukośna

y = x−2

2

x =
3
√

6 - minimum

Rysunek 8.6: Asymptoty funkcji z przykªadu (b).

(−∞,−1), (−1, 0) oraz (0, +∞). Funkcja nie jest ani okresowa ani parzy-
sta ani nieparzysta. Jedynym pierwiastkiem jest pierwiastek licznika, czyli
x = 0. f jest dodatnia dla x > −1, x 6= 0 i ujemna dla x < −1. Obliczmy
pochodn¡

f ′(x) =
2 2

3
x−

1
3 (1 + x)− 2 x

2
3

(x + 1)2

=
2 x

2
3

(x + 1)2
·

(
2

3

1 + x

x
− 1

)

=
2 x

2
3

3 (x + 1)2

(
2

x
− 1

)
.

Pierwszy czynnik jest zawsze dodatni, wi¦c znak pochodnej zale»y tylko od
znaku ( 2

x
− 1). Po ªatwych rachunkach otrzymujemy, »e pochodna jest do-
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datnia na przedziale (0, 2) i ujemna na przedziaªach (−∞,−1), (−1, 0) oraz
(2, +∞). Funkcja f ro±nie na przedziale (0, 2), a maleje na pozostaªych prze-
dziaªach. Widzimy wi¦c, »e ma minimum w zerze (jest to punkt nieró»nicz-
kowalno±ci), i maksimum w 2. Widzimy , »e funkcja ma asymptot¦ pionow¡
x = −1, oraz poziom¡ w ±∞ y = 0. Rozstrzygniemy teraz wypukªo±¢. W
tym celu policzymy drug¡ pochodn¡.

x = 2 - maksimum

x = 0 - minimum

x = −1

asymptota pionowa

y = 0

asymptota pozioma

Rysunek 8.7: Wykres funkcji z przykªadu (c).

f ′′(x) =

(
4
3
x−

1
3

x + 1
− 2 x

2
3

(x + 1)2

)′

=
−4

9
x−

4
3 (x + 1)− 4

3
x−

1
3

(x + 1)2
−

4
3
x−

1
3 (x + 1)2 − 2 x

2
3 2 (x + 1)

(x + 1)4

=
−4

9
x−

4
3 (x + 1)2 − 8

3
x−

1
3 (x + 1) + 4 x

2
3

(x + 1)3

= −4

9
x−

4
3

(x + 1)2 + 6 x (x + 1)− 9 x2

(x + 1)3

=
4

9
x−

4
3

2 x2 − 8 x− 1

(x + 1)3
.
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Wyra»enie 4
9
x−

4
3 jest zawsze dodatnie, a mianownik jest < 0 dla x < −1 i

> 0 dla x > −1. Z kolei licznik jest > 0 dla x /∈ (2 − 3√
2
, 2 + 3√

2
) i < 0 dla

x ∈ (2− 3√
2
, 2 + 3√

2
). Zauwa»my jeszcze, »e −1 < 2− 3√

2
< 0, a wi¦c funkcja

f(x) jest:
• wkl¦sªa na (−∞,−1), (2− 3√

2
, 0) oraz (0, 2 + 3√

2
),

• wypukªa na (−1, 2− 3√
2
) oraz (2 + 3√

2
, +∞),

• ma punkty przegi¦cia w 2± 3√
2
.

Wiemy ju» wszystko co chcieli±my, i mo»emy naszkicowa¢ wykres funkcji
(Rys. 8.7).

Dowodzenie nierówno±ci
Metody badanie funkcji mo»na zastosowa¢ do dowodzenia nierówno±ci.
Przykªady: (a) Udowdnimy nierówno±¢ (1 + x)p ≥ 1 + px dla x > −1. Nie-
równo±¢ tak¡ udowodnili±my wcze±niej dla wykªadnika p naturalnego. Obec-
nie udowodnimy j¡ dla dowolnego p ≥ 1. Rozwa»my funkcj¦

f(x) = (1 + x)p − 1− px, x ≥ −1.

Mamy
f ′(x) = p (1 + x)p−1 − p.

Dla x ≥ 0 1 + x ≥ 1 oraz p− 1 ≥ 0 wi¦c (1 + x)p−1 ≥ 1 czyli f ′(x) ≥ 0. Dla
x ≤ 0 1 + x ≤ 1 czyli (1 + x)p−1 ≤ 1, a wi¦c f ′(x) ≤ 0. Funkcja f maleje dla
x < 0 i ro±nie dla x > 0, a wi¦c ma w zerze swoj¡ warto±¢ najmniejsz¡

f(x) ≥ f(0) = 0.

Funkcja jest wi¦c zawsze ≥ 0, czyli
(1 + x)p ≥ 1 + p x.

(b) Dla x ≥ 0 mamy x − x3

6
≤ sin(x) ≤ x. Prawa cz¦±¢ nierówno±ci jest

jasna, i byªa pokazana. Poka»emy lew¡ cz¦±¢. Niech

f(x) = sin(x)− x +
x3

6
.

Mamy f ′(x) = cos(x) − 1 + x2

2
, f ′(0) = 0, f ′′(x) = − sin(x) + x. f ′′(x) ≥ 0

dla x ≥ 0, czyli f ′ ro±nie dla x ≥ 0, a skoro f ′(0) = 0, to f ′(x) ≥ 0 dla x ≥ 0.
Sama funkcja wi¦c ro±nie dla x ≥ 0, a wi¦c

f(x) ≥ f(0) = 0, dla x ≥ 0.
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Wzór Taylora
Twierdzenie o warto±ci ±redniej mo»na zapisa¢ w postaci

f(b) = f(a) + (b− a)f ′(c), dla pewnego c ∈ (a, b).

Niech h = b− a, wtedy wzór przyjmuje posta¢

f(a + h) = f(a) + h f ′(a + θ h), dla pewnego θ ∈ (0, 1).

Twierdzenie o warto±ci ±redniej zapisane w tej postaci stanowi szczególny
przypadek nast¦puj¡cego twierdzenia.

Twierdzenie 8.15 (Wzór Taylora). Niech funkcja f b¦dzie ró»niczkowalna
n-razy w przedziale (a− δ, a + δ), dla pewnego δ > 0. Wtedy, dla dowolnego
h, |h| < δ istnieje θ ∈ (0, 1) takie, »e

f(a + h) = f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
f (n−1)(a) + Rn

=
n−1∑

k=0

hk

k!
f (k)(a) + Rn,

gdzie
Rn =

hn

n!
f (n)(a + θh).

Dowód. Mamy dane h. Oznaczmy b = a+h, i utwórzmy nast¦puj¡ce funkcje
pomocnicze

ϕ(x) =f(b)− f(x)− (b− x)

1!
f ′(x)− · · · − (b− x)n−1

(n− 1)!
f (n−1)(x)

= f(b)−
n−1∑

k=0

(b− x)k

k!
f (k)(x),

Φ(x) = ϕ(x)− ϕ(a)

(b− a)n
(b− x)n.

Φ speªnia zaªo»enia twierdzenia Rolle'a na przedziale o ko«cach a, b ([a, b]
lub [b, a] w zale»no±ci od znaku h).

Φ(a) = ϕ(a)− ϕ(a)

(b− a)n
(b− a)n = 0, Φ(b) = ϕ(b)− 0 = 0.

Istnieje wi¦c punkt c wewn¡trz przedziaªu o ko«cach a, b, taki, »e

Φ′(c) = 0.
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Punkt c mo»emy zapisa¢ jako a + θ (b− a) = a + θ h dla pewnego θ ∈ (0, 1).
Mamy wi¦c

Φ′(a + θ h) = ϕ′(a + θ h)− ϕ(a)

(b− a)n
n (h− θ h)n−1 (−1) = 0. (8.10)

Musimy policzy¢ pochodn¡ ϕ′(x):

ϕ′(x) = −f ′(x)−
(

n−1∑

k=1

(b− x)k

k!
f (k)(x)

)′

= −f ′(x)−
n−1∑

k=1

(
(b− x)k

k!
f (k)(x)

)′

= −f ′(x)−
n−1∑

k=1

(
− (b− x)k−1

(k − 1)!
f (k)(x) +

(b− x)k

k!
f (k+1)(x)

)

= −f ′(x) +
n−2∑

k=0

(b− x)k

k!
f (k+1)(x)−

n−1∑

k=1

(b− x)k

k!
f (k+1)(x)

= −f ′(x) + f ′(x)− (b− x)(n−1)

(n− 1)!
f (n)(x)

= −(b− x)(n−1)

(n− 1)!
f (n)(x).

Wstawiaj¡c to do (8.10) otrzymujemy

−(h− θ h)(n−1)

(n− 1)!
f (n)(a + θ h) +

ϕ(a)

(b− a)n
n (h− θ h)n−1 = 0,

czyli
ϕ(a) =

(b− a)n

n!
f (n)(a + θ h) =

hn

n!
f (n)(a + θ h).

Pozostaje zauwa»y¢, »e ϕ(a) jest dokªadnie reszt¡ Rn:

f(b) =
n−1∑

k=0

hk

k!
f (k)(a) + ϕ(a)

= f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
f (n)(a + θ h).
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n = 1

n = 3

n = 5

Rysunek 8.8: Wielomiany Taylora stopnia n funkcji sin(x).

Uwagi: (i) Rn to tak zwana reszta. Wzór Taylora to wzór na przybli»enie
funkcji f wielomianem, w otoczeniu punktu a, przy czym Rn jest bª¦dem
tego przybli»enia.
(ii) Dokªadno±¢ przybli»enia zale»y od wielko±ci Rn w otoczeniu punktu a
(Rn zale»y od h). Im wi¦cej pochodnych funkcja f ma w otoczeniu a (czyli
im f jest �gªadsza� w otoczeniu a) tym dokªadno±¢ przybli»enia jest lepsza.
(iii) Reszt¦ Rn we wzorze Taylora mo»na zapisa¢ w wielu ró»nych postaciach
Posta¢ podana w powy»szym twierdzeniu to tak zwana reszta w postaci La-
grange'a. Ró»ne postaci tej samej reszty przydaj¡ si¦, gdy» w konkretnych
przypadkach ró»ne postaci mog¡ da¢ si¦ ªatwiej szacowa¢.
(iv) Zauwa»my, »e je»eli sup{|f (n)(x)|; x ∈ (a− δ, a + δ), n ∈ N} istnieje, to
dla dowolnego h, |h| < δ mamy Rn → 0 gdy n →∞, czyli

f(a + h) =
∞∑

k=0

hk

k!
f (k)(a). (8.11)

Jest to tak zwany szereg Taylora funkcji f w punkcie a. Pami¦tajmy, »e
szereg Taylora funkcji f nie musi by¢ zbie»ny, a nawet je»eli jest zbie»ny, to
mo»e si¦ zdarzy¢, »e

f(a + h) 6=
∞∑

k=0

hk

k!
f (k)(a).

108



Za ka»dym razem musimy sprawdzi¢ zbie»no±¢ reszt Rn do zera. Dopiero
ta zbie»no±¢ gwarantuje zbie»no±¢ szeregu Taylora i wzór (8.11). Je»eli a =
0 to otrzymujemy szczególny przypadek szeregu Taylora, tak zwany szereg
Maclaurina

f(x) =
∞∑

n=0

xn

n!
f (n)(0).

Przykªady: (a) f(x) = sin(x), a = 0. Wiemy, »e

f (n)(0) =

{
(−1)

n−1
2 n− nieparzyste

0 n− parzyste.

Wiemy tak»e, »e |f (n)(x)| ≤ 1 dla wszystkich x, n. Mamy wi¦c Rn → 0 i
otrzymujemy rozwini¦cie funkcji sin(x) w szereg Maclaurina

sin(x) =
∞∑

n=0
n-nieparz.

(−1)
n−1

2
xn

n!
=

∞∑
n=0

(−1)n x2n+1

(2n + 1)!

= x− x3

3!
+

x5

5!
− x7

7!
+ . . . .

(b) f(x) = ex, a = 0. f (n)(x) = ex, czyli f (n)(0) = 1. Zauwa»my, »e je»eli
|h| ≤ M to |f (n)(θ h)| ≤ eM . Reszty d¡»¡ wi¦c do zera, a wi¦c

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . .

(c) f(x) = log(1 + x), a = 0. Obliczmy pochodne

f ′(x) =
1

1 + x
, f ′′(x) = (−1)

1

(1 + x)2
,

f ′′′(x) = 2
1

(1 + x)3
, f (4)(x) = (−1) 2 · 3 1

(1 + x)4
.

Mamy wi¦c

f (n)(x) = (−1)n+1 (n− 1)!

(1 + x)n
⇒ f (n)(0) = (−1)n+1 (n− 1)!.

Musimy oszacowa¢ reszt¦

|Rn| ≤ |h|n
n!

· (n− 1)!

(1− |h|)n
=

1

n

( |h|
1− |h|

)n

,

109



czyli dla |h| ≤ 1
2
mamy

|h|
1− |h| ≤ 1 ⇒ |Rn| → 0.

Mamy wi¦c, dla |x| ≤ 1
2

log(1 + x) =
∞∑

n=1

(−1)n+1 xn

n
= x− x2

2
+

x3

3
− x4

4
+ . . . .

Uwaga: U»ywaj¡c dokªadniejszych oszacowa« mo»na pokaza¢, »e powy»szy
wzór jest prawdziwy dla x ∈ (−1, 1].

Przybli»one obliczanie warto±ci funkcji
Wykorzystamy wzór Taylora do oblicze« przybli»onych
medskip
(a) Obliczymy przybli»on¡ warto±¢ liczby e

e =
n−1∑

k=0

1

k!
+

eθ

n!
⇒ e '

n−1∑

k=0

1

k!
i bª¡d ≤ 3

n!
.

Przy okazji: e nie jest liczb¡ wymiern¡. Zaªó»my, »e e jest liczb¡ wymiern¡,
i e = m

n
, dla m,n ∈ N. Wtedy

e =
m

n
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!
+

eθ

(n + 1)!

⇒
(

m

n
− 1− 1− 1

2!
− · · · − 1

n!

)
· n! =

eθ

n + 1
.

Zauwa»my, »e lewa strona jest liczb¡ caªkowit¡, czyli eθ

n+1
te» musi by¢ caª-

kowita. To jest niemo»liwe, bo 1 < eθ < 3, czyli musieliby±my mie¢

1

n + 1
<

eθ

n + 1
<

3

n + 1
.

Jedyna mo»liwo±¢ to przypadek n = 1, czyli e musiaªoby by¢ liczb¡ naturaln¡,
a ªatwo sprawdzi¢, »e nie jest.
(b) Obliczymy przybli»on¡ warto±¢ 3

√
9. Niech f(x) = x

1
3 . Zauwa»my, »e

f(9) = f(8 + 1), a f(8) = 2. Policzmy kilka pochodnych

f ′(x) =
1

3
x−

2
3 , f ′′(x) = (−1)

1

3

2

3
x−

5
3 ,
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f ′′′(x) =
1

3

2

3

5

3
x−

8
3 , f (4)(x) = (−1)

1

3

2

3

5

3

8

3
x−

11
3 .

�atwo si¦ domy±le¢, »e

f (n)(x) = (−1)n+1 1

3

2

3

5

3
. . .

3n− 4

3
x−

3n−1
3 .

W takim razie

f (n)(8) = (−1)n+1 2 · 5 . . . (3n− 4)

3n
8−

3n−1
3 = (−1)n+1 2 · 5 . . . (3n− 4)

3n 8n
2.

Wstawiaj¡c to do wzoru Taylora, z n = 3 otrzymujemy

3
√

9 = f(8 + 1) = f(8) + f ′(8) +
f ′′(8)

2
+ R3

= 2 +
1

12
− 2

2 · 3 · 3 · 32
+ R3

= 2 +
1

12
− 1

288
+ R3.

Mo»emy oszacowa¢ bª¡d przybli»enia

|R3| ≤ 2 · 5
3!3 · 3 · 3

1

(8 + θ)
8
3

<
10

162

1

8
8
3

=
10

162 · 256

=
10

41472
<

10

40000
=

1

4000
= 0, 00025.
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Rozdziaª 9

Caªki

Funkcja pierwotna
De�nicja 9.1. Funkcj¦ F nazywamy funkcj¡ pierwotn¡ funkcji f , je»eli F
jest ró»niczkowalna i F ′(x) = f(x) dla ka»dego x ∈ Df .

Uwagi: (i) Funkcja f mo»e nie mie¢ funkcji pierwotnej. Je»eli ma funkcj¦
pierwotn¡, to ma ich niesko«czenie wiele:

F ′(x) = f(x) ⇒ (F (x) + c)′ = F ′(x) = f(x).

Je»eli F jest funkcj¡ pierwotn¡ funkcji f , to F +c tak»e jest funkcj¡ pierwotn¡
f , dla dowolnej staªej c.
(ii) Je»eli F i G s¡ funkcjami pierwotnymi tej samej funkcji f , to (F −
G)′(x) = F ′(x) − G′(x) = 0, dla ka»dego x ∈ Df . Na ka»dym przedziale
zawartym w dziedzinie funkcji f funkcje pierwotne F i G ró»ni¡ si¦ wi¦c o
jak¡± staª¡. Staªa ta mo»e by¢ ró»na na ró»nych przedziaªach.

Caªka nieoznaczona
De�nicja 9.2. Je»eli funkcja f ma funkcj¦ pierwotn¡, to mówimy, »e jest
caªkowalna. Dowoln¡ funkcj¦ pierwotn¡ funkcji caªkowalnej f nazywamy jej
caªk¡ nieoznaczon¡, i oznaczamy

∫
f(x) dx.

Okre±lenie �caªka nieoznaczona� odnosi si¦ wi¦c do caªej rodziny funkcji,
które na poszczególnych przedziaªach Df ró»ni¡ si¦ o staª¡. Cz¦sto podkre-
±lamy to, dodaj¡c do otrzymanego wzoru na funkcj¦ pierwotn¡ staª¡ c. W
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oznaczeniu caªki
∫

. . . dx stanowi kompletny symbol, który zawsze powinien
wyst¦powa¢ razem. dx podkre±la zmienn¡, wzgl¦dem której caªka jest funk-
cj¡ pierwotn¡. W przypadku, je»eli funkcja �podcaªkowa� zawiera uªamek,
to czªon dx cz¦sto dopisujemy do licznika, na przykªad

∫
1

x
dx =

∫
dx

x
.

Przykªady:

(a)

∫
0 dx = c,

(b)
∫

a dx = ax + c, dla dowolnej staªej a,

(c)
∫

xa dx =
1

a + 1
xa+1 + c a 6= −1, x > 0,

(d)

∫
cos x dx = sin x + c,

(e)
∫

sin x dx = − cos x + c,

(f)

∫
dx

cos2 x
= tan x + c,

(staªa c mo»e by¢ ró»na na ró»nych przedziaªach),

(g)

∫
dx

x
= log |x|+ c, (podobna uwaga odno±nie staªej),

(h)

∫
ex dx = ex + c.

Dowód ka»dego z powy»szych wzorów sprowadza si¦ do obliczenia pochodnej
prawej strony, i porównania z funkcj¡ podcaªkow¡. Zwró¢my uwag¦ na staªe
c dopisane po prawej stronie. Nie s¡ one bardzo wa»ne (wiadomo, »e dodanie
staªej nie zmienia pochodnej), ale dobrze jest o nich pami¦ta¢. Podkre±lmy, »e
je»eli dziedzina funkcji podcaªkowej skªada si¦ z wi¦cej ni» jednego przedziaªu,
to zapis +c we wzorze na caªk¦ nieoznaczon¡ rozumiemy jako staª¡, która
mo»e by¢ ró»na na ró»nych przedziaªach.

Ze wzorów na pochodne wynikaj¡ nast¦puj¡ce wzory na caªki nieozna-
czone:

(a)
∫

(f(x)± g(x)) dx =

∫
f(x) dx±

∫
g(x) dx,

(b)
∫

a f(x) dx = a

∫
f(x) dx, a - dowolna staªa
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(c)
∫

f ′(x)g(x) dx = f(x)g(x)−
∫

f(x)g′(x) dx,

(tak zwany wzór na caªkowanie przez cz¦±ci)

(d)
∫

(g ◦ f)(x)f ′(x) dx =

∫
g(y) dy przy czym y = f(x),

(tak zwany wzór na caªkowanie przez podstawienie).

Przykªady: (a) Caªka z wielomianu jest wielomianem, stopnia o jeden wi¦k-
szego:

∫
(anx

n + an−1x
n−1 + · · ·+ a1x + a0) dx =

=
an

n + 1
xn+1 +

an−1

n
xn + · · ·+ a1

2
x2 + a0 x + c.

(b) Skorzystamy ze wzoru na caªkowanie przez cz¦±ci:
∫

log x dx =

∫
(x)′ log x dx

= x log x−
∫

x (log x)′ dx

= x log x−
∫

x · 1

x
dx

= x log x−
∫

1 · dx

= x log x− x + c.

Sprawdzamy: (x log x− x + c)′ = log x + x · 1
x
− 1 = log x.

(c) skorzystamy ze wzoru na caªkowanie przez podstawienie:
∫

x

1 + x2
dx =

1

2

∫
1

1 + x2
· 2x dx niech f(x) = 1 + x2

=
1

2

∫
1

f(x)
f ′(x) dx

=
1

2

∫
1

y
dy f(x) = y

=
1

2
log |y|+ c

=
1

2
log |1 + x2|+ c
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= log
√

1 + x2 + c.

Zauwa»my, »e (log |x|)′ = 1
x
. Dla x > 0 wzór ten ju» znamy, a dla x < 0

mamy |x| = −x, wi¦c

(log |x|)′ = (log(−x))′ =
1

(−x)
· (−x)′ =

−1

−x
=

1

x
.

W tym przykªadzie 1 + x2 > 0, wi¦c warto±¢ bezwzgl¦dna nic nie zmienia.
Sprawd¹my nasz¡ caªk¦: (log

√
1 + x2)′ = 1√

1+x2 · 1
2
· 1√

1+x2 ·2 x = x
1+x2 , a wi¦c

zgadza si¦.
(d) Jeszcze raz wzór na caªkowanie przez podstawienie

∫
tan x dx =

∫
sin x

cos x
dx

= −
∫ − sin x

cos x
dx

= −
∫

1

f(x)
f ′(x) dx f(x) = cos x

= −
∫

1

y
dy y = cos x

= − log |y|+ c

= − log | cos x|+ c.

(e) Nast¦puj¡c¡ caªk¦ otrzymujemy natychmiast, je»eli pami¦tamy wzory na
ró»niczkowanie funkcji cyklometrycznych:

∫
1√

1− x2
dx = arcsin(x) + c, |x| < 1.

Je»eli nie pami¦tamy odpowiednich wzorów to mo»emy zastosowa¢ wzór na
caªkowanie przez podstawienie:
∫

1√
1− x2

dx =

∫
1√

1− f(t)2
f ′(t) dt, x = f(t)

=

∫
1√

1− sin2(t)
cos(t) dt, f(t) = sin(t), t ∈ (−π

2
,
π

2
)

=

∫
1

cos(t)
cos(t) dt

=

∫
1 dt
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−π 0 π

2

4

6

Rysunek 9.1: Wykres funkcji f(x) = − log | cos x|.

= t + c

Skorzystali±my z tego, »e dla t ∈ (−π
2
, π

2
) mamy cos(t) > 0 a wi¦c

√
1− sin2(t) =

cos(t). Skoro x = sin(t), to t = arcsin(x), i otrzymujemy ten sam wzór.
(f) Caªk¦ z funkcji sin2(x) policzyny na dwa sposoby. Mo»emy skorzysta¢ z
to»samo±ci trygonometrycznej

cos(2x) = 1− 2 sin2(x) ⇒ sin2(x) =
1− cos(2x)

2
.

Mamy wtedy
∫

sin2(x) dx =
1

2

∫
(1− cos(2x)) dx

=
1

2

(
x− sin(2x)

2

)
+ c

=
x

2
− sin(2x)

4
+ c.

Mo»emy te» skorzysta¢ ze wzoru na caªkowanie przez cz¦±ci. Caªkuj¡c przez
cz¦±ci nie otrzymamy caªki ªatwiejszej do policzenia, ale otrzymamy równa-
nie, które nast¦pnie rozwi¡»emy.

∫
sin2(x) dx =

∫
sin(x) · sin(x) dx
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=

∫
sin(x) · (− cos(x))′ dx

= − sin(x) cos(x) +

∫
(sin(x))′ cos(x) dx

= − sin(x) cos(x) +

∫
cos(x) · cos(x) dx

= − sin(x) cos(x) +

∫
cos2(x) dx

= − sin(x) cos(x) +

∫
(1− sin2(x)) dx

= − sin(x) cos(x) + x−
∫

sin2(x) dx.

To, co otrzymali±my jest równaniem na nasz¡ szukan¡ caªk¦. Przenosz¡c
caªk¦ z prawej strony na lew¡ i dziel¡c przez 2 otrzymujemy

∫
sin2(x) dx =

− sin(x) cos(x) + x

2
.

Caªkowalno±¢ funkcji
Caªkowanie funkcji wymiernych
Funkcje wymierne to funkcje postaci f = P

Q
, gdzie P i Q s¡ wielomianami.

Uªamki proste to szczególny rodzaj funkcji wymiernych, postaci

A

(x− a)n
,

Bx + C

(x2 + px + q)n
, n = 1, 2, . . . , (9.1)

gdzie A,B, C, a, p, q to dowolne staªe, a wyra»enie kwadratowe x2 + px + q
nie ma pierwiastka, czyli p2 − 4q < 0. Okazuje si¦, »e ka»d¡ funkcj¦ wy-
miern¡ mo»na przedstawi¢ jako sum¦ uªamków prostych plus, ewentualnie,
wielomian. Z drugiej strony istniej¡ wzory na caªki nieoznaczone uªamków
prostych. W ten sposób otrzymujemy procedur¦ na obliczanie caªek nieozna-
czonych funkcji wymiernych.

Twierdzenie 9.3. Ka»d¡ funkcj¦ wymiern¡ mo»na przedstawi¢ jako sum¦
wielomianu i uªamków prostych.

Procedura rozkªadu: Zamiast dowodu naszkicujemy procedur¦ rozkªadu
funkcji. Szkic ten mo»na u±ci±li¢ i zrobi¢ z niego dowód, ale my pozostaniemy
przy szkicu. Maj¡c konkretn¡ funkcj¦ f = P

Q
najpierw dzielimy wielomian
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P przez Q �z reszt¡�, to znaczy znajdujemy wielomiany W (iloraz) oraz R
(reszta) takie, »e

P (x) = W (x) ·Q(x) + R(x), ⇒ P (x)

Q(x)
= W (x) +

R(x)

Q(x)
,

przy czym stopie« reszty R jest mniejszy od stopnia Q. Robimy to u»ywaj¡c
zwykªej procedury �dªugiego dzielenia�, czy �pisemnego dzielenia�, dokªadnie
tak samo, jak dziel¡c liczby naturalne.
Przykªady: (a) x3−2x2−1

x2−1
= (x− 2) + x−3

x2−1

(b) x4−2x3−35
x3−2x2+3x−6

= x + −3x2+6x−35
x3−2x2+3x−6

.

Po wydzieleniu cz¦±ci wielomianowej pozostaje nam uªamek R
Q
, w którym

licznik ma stopie« ni»szy od mianownika. W nast¦pnym kroku przeprowa-
dzamy faktoryzacj¦ mianownika, czyli rozkªad mianownika na czynniki nie-
rozkªadalne. Czynnikami nierozkªadalnymi s¡ wielomiany liniowe (x−a) oraz
kwadratowe (x2 + px + q), nie posiadaj¡ce rzeczywistych pierwiastków, czyli
takie, dla których p2 − 4q < 0. Przypomnijmy, »e w przypadku wielomia-
nów o wspóªczynnikach zespolonych czynnikami nierozkªadalnymi s¡ jedynie
wielomiany liniowe. Ka»dy wielomian stopnia wy»szego ni» 1 mo»na dalej
rozkªada¢ na czynniki. W przypadku wielomianów o wspóªczynnikach rzeczy-
wistych mog¡ istnie¢ czynniki nierozkªadalne (czyli, zgodnie z twierdzeniem
Bezout, nie posiadaj¡ce pierwiastków) stopnia wy»szego ni» 1, ale okazuje
si¦, »e takie czynniki nierozkªadalne nie mog¡ mie¢ stopnia wy»szego ni» 2.
Przeprowadzamy wi¦c rozkªad mianownika Q na czynniki nierozkªadalne, i
w efekcie przedstawiamy Q jako iloczyn wyra»e« postaci

(x− a)n oraz (x2 + px + q)n. (9.2)

Rozkªad mianownika na czynniki nierozkªadalne to, w praktyce, gªówny pro-
blem w caªkowaniu funkcji wymiernych. W zadaniach które b¦dziemy robi¢
albo faktoryzacja b¦dzie bardziej lub mniej oczywista, albo b¦dzie jawnie po-
dana. W przykªadach rozpatrywanych jako ilustracja procedury faktoryzacja
jest prosta: x2− 1 = (x− 1)(x + 1) oraz x3− 2x2 + 3x− 6 = (x− 2)(x2 + 3).
Je»eli wielomian ma wspóªczynniki caªkowite, i wspóªczynnik przy wyrazie o
najwy»szej pot¦dze równy 1, to w pierwszej kolejno±ci szukamy pierwiastków
spo±ród dzielników wyrazu wolnego. Maj¡c pierwiastek wydzielamy odpo-
wiedni czynnik liniowy, i otrzymujemy wielomian ni»szego stopnia, który
�obrabiamy� do skutku. Je»eli wielomian nie ma pierwiastków musimy sobie
radzi¢ inaczej. Na przykªad rozwa»my wielomian Q(x) = x4 + 1. Wiemy,
»e rozkªada si¦ na iloczyn dwóch wielomianów kwadratowych, przy czym
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mo»emy tak dobra¢ staªe, aby ich wyrazy wiod¡ce miaªy wspóªczynniki 1.
Piszemy wi¦c najogólniejsz¡ posta¢ takiego rozkªadu, a nast¦pnie mno»ymy
czynniki:

x4+1 = (x2+ax+b)(x2+cx+d) = x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd.

Porównuj¡c wspóªczynniki po obu stronach otrzymujemy ukªad równa«, który
b¦dzie mo»na rozwi¡za¢. W naszym przypadku ªatwo znajdujemy rozwi¡za-
nie:

x4 + 1 = (x2 −
√

2x + 1) · (x2 +
√

2x + 1).

Maj¡c rozkªad mianownika na czynniki nierozkªadalne postaci (9.2) mo-
»emy napisa¢ prototyp rozkªadu funkcji na uªamki proste. W pierwszym
kroku wypisujemy wszystkie uªamki proste postaci (9.1) które znajd¡ si¦ w
rozkªadzie, a w nast¦pnym kroku ustalimy staªe w licznikach. Dla ka»dego
czynnika postaci (x− a)n w rozkªadzie mianownika wypisujemy n uªamków
prostych

A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
,

natomiast dla ka»dego czynnika (x2 + px + q)n w rozkªadzie mianownika
wypisujemy n uªamków

B1x + C1

(x2 + px + q)
+

B2x + C2

(x2 + px + q)2
+ · · ·+ Bnx + Cn

(x2 + px + q)n
.

Zauwa»my, »e wypisuj¡c powy»szy rozkªad wypisali±my ª¡cznie dokªadnie
tyle nieoznaczonych (na razie) staªych Ai, Bi, Ci jaki jest stopie« mianownika.
Wypiszmy nasz rozkªad dla rozwa»anych przykªadów:
(a):

x− 3

x2 − 1
=

x− 3

(x− 1)(x + 1)
=

A

x− 1
+

B

x + 1
,

(b):
−3x2 + 6x− 35

x3 − 2x2 + 3x− 6
=
−3x2 + 6x− 35

(x− 2)(x2 + 3)
=

A

x− 2
+

Bx + C

x2 + 3
.

Na ostatnim etapie rozkªadu wyznaczamy staªe w licznikach uªamków
prostych. W tym celu sum¦ wszystkich wymaganych uªamków prostych spro-
wadzamy do wspólnego mianownika, którym jest wielomian Q. W liczniku
otrzymamy wielomian stopnia ni»szego ni» mianownik Q (gdy» wszystkie
uªamki proste maj¡ liczniki stopnia ni»szego ni» mianowniki). Wielomian
ten musi by¢ identyczny z wielomianem R, który jest licznikiem rozkªadanej
funkcji wymiernej. Oba wielomiany musz¡ wi¦c mie¢ te same wspóªczynniki.
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Daje to dokªadnie n równa«, gdy» wielomiany stopnia n− 1 maj¡ n wspóª-
czynników. Mamy wi¦c n równa« liniowych, i n niewiadomych, i okazuje
si¦, »e ukªad ten zawsze mo»na rozwi¡za¢. Nie b¦dziemy tego dowodzi¢, ale
zobaczmy jak to dziaªa na przykªadach.
(a):

x− 3

x2 − 1
=

A

x− 1
+

B

x + 1
=

(A + B)x + (A−B)

(x− 1)(x + 1)
,

czyli A + B = 1 oraz A−B = −3. Otrzymujemy A = −1 i B = 2, a wi¦c w
ko«cu

x− 3

x2 − 1
=

−1

x− 1
+

2

x + 1
.

(b):

−3x2 + 6x− 35

x3 − 2x2 + 3x− 6
=

A

x− 2
+

Bx + C

x2 + 3

=
A(x2 + 3) + (Bx + C)(x− 2)

(x− 2)(x2 + 3)

=
(A + B)x2 + (−2B + C)x + (3A− 2C)

(x− 2)(x2 + 3)
,

czyli A + B = −3, −2B + C = 6 oraz 3A − 2C = −35. Rozwi¡zuj¡c ten
ukªad otrzymujemy A = −5, B = 2 i C = 10, i w ko«cu

−3x2 + 6x− 35

x3 − 2x2 + 3x− 6
=

−5

x− 2
+

2x + 10

x2 + 3
.

Wyznaczaj¡c staªe w rozkªadzie na uªamki proste zako«czyli±my procedur¦
rozkªadu. Jedyny punkt który wymaga u±ci±lenia, »eby otrzyma¢ dowód
Twierdzenia 9.3 to fakt, »e staªe zawsze da si¦ wyznaczy¢, innymi sªowy, »e
powstaªy ukªad n równa« liniowych z n niewiadomymi jest taki, »e zawsze
ma rozwi¡zanie. Zostawimy ten punkt jako zadanie dla zainteresowanego
czytelnika.

Caªkowanie uªamków prostych
Pierwszy rodzaj uªamków prostych daje si¦ ªatwo caªkowa¢. Mamy nast¦pu-
j¡ce wzory:

∫
dx

x− a
= log |x− a|+ c,

∫
dx

(x− a)n
=

−1

n− 1
· 1

(x− a)n−1
+ c, n > 1.
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Uªamek prosty drugiego rodzaju rozªo»ymy na dwa inne:

Bx + C

(x2 + px + q)n
=

B

2
· 2x + p

(x2 + px + q)n
+

D

(x2 + px + q)n
, D = C − 1

2
B p.

(9.3)
Pierwszy z uªamków po prawej stronie caªkujemy przez podstawienie t =
x2 + px + q,

∫
2x + p

(x2 + px + q)n
dx =

∫
dt

tn
=





log(x2 + px + q) + c : n = 1,
−1

(n− 1)(x2 + px + q)n−1
+ c : n > 1.

Zauwa»my jeszcze, »e poniewa» wyra»enie x2 + px + q nie ma pierwiastków
rzeczywistych, to jest zawsze dodatnie, wi¦c warto±¢ bezwzgl¦dna pod lo-
garytmem nie jest potrzebna. Pozostaª jeszcze jeden rodzaj uªamków do
scaªkowania, to znaczy drugi uªamek po prawej stronie (9.3). Wykonamy
proste przeksztaªcenie i podstawienie:

∫
dx

(x2 + px + q)n
=

∫
dx(

(x + p
2
)2 + (q − p2

4
)
)n =

√
a

an

∫
dt

(t2 + 1)n
,

gdzie
t =

x + p
2√

a
, a = q − p2

4
> 0.

Gdy n = 1 mamy ∫
dt

t2 + 1
= arctan t + c,

natomiast dla n > 1 wyprowadzimy wzór rekurencyjny. Niech k > 0, wtedy,
caªkuj¡c przez cz¦±ci mamy

∫
dt

(t2 + 1)k
= (t2 + 1)−k · t′ dt

=

∫
t

(t2 + 1)k
−

∫
(−k)

2t

(t2 + 1)k+1
· t dt

=
t

(t2 + 1)k
+ 2 k

∫
t2

(t2 + 1)k+1
dt

=
t

(t2 + 1)k
+ 2 k

∫ (
t2 + 1

(t2 + 1)k+1
− 1

(t2 + 1)k+1

)
dt

=
t

(t2 + 1)k
+ 2 k

∫
dt

(t2 + 1)k
− 2 k

∫
dt

(t2 + 1)k+1
.
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Mamy wi¦c

2 k

∫
dt

(t2 + 1)k+1
=

t

(t2 + 1)k
+ (2 k − 1)

∫
dt

(t2 + 1)k
,

czyli, dla n > 1

∫
dt

(t2 + 1)n
=

t

2 (n− 1) (t2 + 1)n−1
+

2n− 3

2n− 2

∫
dt

(t2 + 1)n−1
.

Mo»emy teraz obliczy¢ caªki w obu rozwa»anych przez nas przykªadach.
Przykªady: (a):

∫
x3 − 2x2 − 1

x2 − 1
dx =

∫ (
(x− 2) +

2

x + 1
− 1

x− 1

)
dx

=
x2

2
− 2x + 2 log |x + 1| − log |x− 1|+ c.

(b):

∫
x4 − 2x3 − 35

x3 − 2x2 + 3x− 6
dx =

∫ (
x− 5

x− 2
+

2x + 10

x2 + 3

)
dx

=
x2

2
− 5 log |x− 2|+

∫
2x

x2 + 3
dx +

10

3

∫
dx

( x√
3
)2 + 1

=
x2

2
− 5 log |x− 2|+ log(x2 + 3) +

10√
3

∫ 1√
3
dx

( x√
3
)2 + 1

=
x2

2
− 5 log |x− 2|+ log(x2 + 3) +

10√
3

arctan

(
x√
3

)
+ c.
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Rozdziaª 10

Caªka oznaczona

Caªka oznaczona, intuicyjnie, mierzy �wielko±¢ funkcji�, w podobny sposób
jak pole mierzy wielko±¢ obszaru na pªaszczy¹nie. Niech b¦dzie dana funkcja
f , nieujemna na odcinku [a, b] i rozwa»my obszar pod wykresem f . B¦dziemy
chcieli jako± policzy¢ pole tego obszaru. B¦dziemy korzystali z wªasno±ci pola
które s¡ intuicyjnie jasne, na przykªad, »e wi¦kszy obszar ma wi¦ksze pole.
Niech f(x) = x i rozwa»amy obszar nad odcinkiem [0, a]. Obszar ten jest
trójk¡tem o wysoko±ci i podstawie równych a. Pole wynosi wi¦c P = 1

2
a2.

Rozwa»my teraz obszar pod wykresem f(x) = x2, nad tym samym odcinkiem
[0, a]. Zbudujemy wielok¡t wpisany w ten obszar, oraz wielok¡t opisany na
tym obszarze.

ba

Rysunek 10.1: Obszar pod wykresem funkcji.

Pole obszaru musi by¢ liczb¡ pomi¦dzy polami wielok¡ta mniejszego i
wi¦kszego. Niech n ∈ N i podzielmy odcinek [0, a] na n odcinków równej
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dªugo±ci:

[0, a] =
[
0,

a

n

] ∪ [a

n
, 2

a

n

] ∪ · · · ∪ [
(n− 2)

a

n
, (n− 1)

a

n

] ∪ [
(n− 1)

a

n
, a

]
.

Nad ka»dym z odcinków podziaªu [k a
n
, (k +1) a

n
] zbudujemy dwa prostok¡ty,

mniejszy o wysoko±ci f(k a
n

) oraz wi¦kszy prostok¡t o wysoko±ci f( (k+1) a
n

).
Funkcja f jest rosn¡ca, wi¦c istotnie drugi prostok¡t jest wi¦kszy ni» pierwszy.
Niech Ln b¦dzie ª¡cznym polem wszystkich mniejszych prostok¡tów, a Un

ª¡cznym polem wszystkich wi¦kszych.

Ln =
n−1∑

k=0

f

(
k a

n

)
a

n
=

n−1∑

k=0

(
k a

n

)2
a

n
=

n−1∑

k=1

(
k a

n

)2
a

n
,

Un =
n−1∑

k=0

f

(
(k + 1) a

n

)
a

n
=

n−1∑

k=0

(
(k + 1) a

n

)2
a

n
=

n∑

k=1

(
k a

n

)2
a

n
.

Ka»dy z mniejszych prostok¡tów zawiera si¦ w obszarze pod wykresem, a wi¦c
tak»e wielok¡t b¦d¡cy ich sum¡, którego pole jest równe Ln. Z kolei suma
wszystkich wi¦kszych prostok¡tów tworzy wielok¡t o polu Un, zawieraj¡cy
obszar pod wykresem. Je»eli wi¦c oznaczymy przez P pole obszaru pod
wykresem, to musimy mie¢

Ln ≤ P ≤ Un,

0 0a a

Rysunek 10.2: Mniejszy wielok¡t i wi¦kszy wielok¡t.

dla ka»dego n ∈ N. Zauwa»my, »e Ln i Un maj¡ wspóln¡ granic¦, gdy
n →∞. Skorzystamy ze wzoru

12 + 22 + 32 + · · ·+ m2 =
m(m + 1)(2m + 1)

6
,
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który mo»na udowodni¢ indukcyjnie. Mamy wi¦c

Ln =
n−1∑

k=1

(
k a

n

)2
a

n

=
a3

n3

n−1∑

k=1

k2

=
a3

n3

(n− 1) · n · (2n− 1)

6

= a3 2n3 − 3n2 + n

6n3

n→∞−−−→ a3 1

3
.

Podobnie,
Un = Ln + a2 · a

n

n→∞−−−→ a3 1

3
.

Widzimy wi¦c, »e pole obszaru pod wykresem musi by¢ równe P = a3

3
.

Sumy dolne i sumy górne
Niech f b¦dzie funkcj¡ ograniczon¡ na przedziale [a, b], i oznaczmy przez m
i M in�mum i supremum warto±ci f , czyli m ≤ f(x) ≤ M dla x ∈ [a, b].
Niech P b¦dzie dowolnym podziaªem przedziaªu [a, b] na pododcinki, czyli
P = {a = x0 < x1 < · · · < xn−1 < xn = b} (podziaª odcinka na pododcinki
uto»samiamy ze zbiorem punktów tego podziaªu),

[a, b] = [a, x1] ∪ [x1, x2] ∪ · · · ∪ [xn−2, xn−1] ∪ [xn−1, b].

Na ka»dym maªym odcinku [xi, xi+1], dla i = 0, 1, . . . , n − 1, wprowad¹my
oznaczenia

mi = inf{f(x); x ∈ [xi, xi+1]},
Mi = sup{f(x); x ∈ [xi, xi+1]}.

Mamy wi¦c m ≤ mi ≤ Mi ≤ M .
Maj¡c dany podziaª P napiszmy nast¦puj¡ce sumy

L(P, f) =
n−1∑
i=0

mi (xi+1 − xi), U(P, f) =
n−1∑
i=0

Mi (xi+1 − xi).

L(P, f) nazywamy sum¡ doln¡, a U(P, f) sum¡ górn¡ podziaªu P . Za-
uwa»my, »e sumy te zale»¡ od funkcji f , przedziaªu [a, b], oraz podziaªu P
tego przedziaªu. Zauwa»my te» »e, niezale»nie od podziaªu P , mamy

m · [a, b] ≤ L(P, f) ≤ U(P, f) ≤ M · [a, b]. (10.1)

125



xi+1xi

Mi

mi

Rysunek 10.3: mi oraz Mi.

Dla ustalonej funkcji f i przedziaªu [a, b] zbiory wszystkich mo»liwych sum
górnych i sum dolnych s¡ wi¦c ograniczone. Porównuj¡c to z poprzednim
przykªadem w którym obliczali±my pole pod wykresem widzimy, »e je»eli
f jest nieujemna, to pole pod wykresem jest liczb¡ wi¦ksz¡ lub równ¡ od
ka»dej sumy dolnej i mniejsz¡ lub równ¡ od ka»dej sumy górnej. Caªk¦ doln¡
z funkcji f na przedziale [a, b] de�niujemy jako

∫ b

a

f(x) dx = sup{L(P, f); P - podziaª [a, b]},

a caªk¦ górn¡ jako
∫ b

a

f(x) dx = inf{U(P, f); P - podziaª [a, b]}.

Caªki górna i dolna nie zale»¡ wi¦c od podziaªu, a jedynie od funkcji f i
przedziaªu [a, b].
De�nicja 10.1. Je»eli caªka dolna i caªka górna funkcji f s¡ równe, to mó-
wimy, »e funkcja jest caªkowalna na [a, b] w sensie Riemanna, a wspóln¡ war-
to±¢ caªki górnej i dolnej nazywamy caªk¡ Riemanna f na przedziale [a, b] i
oznaczamy ∫ b

a

f(x) dx.

Uwagi: (i) Zauwa»my, (10.1), »e dla dowolnego podziaªu P mamy

L(P, f) =
n−1∑
i=0

mi (xi+1 − xi) ≥ m

n−1∑
i=0

(xi+1 − xi) = m(b− a),
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U(P, f) =
n−1∑
i=0

Mi (xi+1 − xi) ≤ M

n−1∑
i=0

(xi+1 − xi) = M(b− a).

Caªka, je»eli istnieje, speªnia wi¦c

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b− a). (10.2)

(ii) Przypomnijmy, »e de�nicja, któr¡ podali±my wymaga, aby funkcja f byªa
ograniczona, oraz aby a < b. Pó¹niej wprowadzimy odpowiednie oznaczenia,
aby granice caªkowania a i b mogªy by¢ dowolnymi liczbami, oraz opiszemy
w jaki sposób mo»na, czasami, caªkowa¢ funkcje nieograniczone. Takie caªki
z funkcji nieograniczonych b¦dziemy nazywa¢ caªkami niewªa±ciwymi.
(iii) Funkcja mo»e nie by¢ caªkowalna. Niech f b¦dzie dana wzorem

f(x) =

{
1 : x ∈ Q,

0 : x /∈ Q.

Wtedy, dla ka»dego podziaªu P i dla ka»dego i mamy mi = 0 i Mi = 1, a
wi¦c zawsze L(P, f) = 0, U(P, f) = (b− a), czyli

∫ b

a

f(x) dx = 0, i
∫ b

a

f(x) dx = b− a.

(iv) Caªka Riemanna jest ±ci±le zwi¡zana z poj¦ciem pola. Je»eli f jest nie-
ujemna, to caªka jest równa polu pod wykresem, a je»eli f jest niedodatnia,
to caªka jest równa polu nad wykresem, pod osi¡ OX, ze znakiem minus.
(v) Caªk¦ Riemanna b¦dziemy te» nazywa¢ caªk¡ oznaczon¡. W literaturze
mo»emy spotka¢ te» inne konstrukcje caªki oznaczonej, ale my zajmujemy si¦
tylko powy»sz¡ konstrukcj¡. Naszym celem obecnie b¦dzie udowodnienie, »e
funkcje ci¡gªe s¡ caªkowalne w sensie Riemanna. W tym celu udowodnimy
kilka prostych twierdze«.

Twierdzenie 10.2. Caªka dolna jest mniejsza lub równa caªce górnej:
∫ b

a

f(x) dxle

∫ b

a

f(x) dx

Dowód. Mamy pokaza¢, »e ka»da suma dolna jest mniejsza lub równa od
ka»dej sumy górnej. �atwo zauwa»y¢, »e suma dolna jest mniejsza lub równa
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od sumy górnej opartej na tym samym podziale (10.1). Niech wi¦c L(P1, f)
b¦dzie sum¡ doln¡ zwi¡zan¡ z podziaªem P1, a U(P2, f) b¦dzie sum¡ górn¡
zwi¡zan¡ z podziaªem P2. Niech P ∗ b¦dzie wspólnym rozdrobnieniem po-
dziaªów P1 i P2, czyli

P ∗ = P1 ∪ P2.

Oznaczmy punkty poszczególnych podziaªów nast¦puj¡co:P1 = {x1, . . . , xn},
P2 = {y1, . . . , yk} oraz P ∗ = {z1, . . . , zm}. Z de�nicjiP ∗ wynika, »e ka»dy
punkt xi i ka»dy punkt yj s¡ tak»e elementami P ∗. Zauwa»my, »e w zwi¡zku z
tym ka»dy przedziaª [xi, xi+1] podziaªu P1 i ka»dy przedziaª [yj, yj+1] podziaªu
P2 s¡ sum¡ pewnych przedziaªów podziaªu P ∗. Wynika st¡d, »e

L(P1, f) ≤ L(P ∗, f) ≤ U(P ∗, f) ≤ U(P2, f). (10.3)

Dwie skrajne nierówno±ci wynikaj¡ z tego, »e P ∗ jest rozdrobnieniem P1 i P2,
natomiast nierówno±¢ ±rodkowa to obserwacja któr¡ zrobili±my wcze±niej, »e
suma dolna jest mniejsza lub równa sumie górnej, zbudowanej na tym samym
podziale (10.1).

Mamy nast¦puj¡cy wniosek:
Wniosek 10.3. Je»eli dla ka»dego ε > 0 istnieje podziaª P taki, »e

U(P, f)− L(P, f) < ε, (10.4)

to funkcja f jest caªkowalna, oraz dla takiego podziaªu P zachodz¡ oszacowa-
nia

U(P, f)− ε <

∫ b

a

f(x) dx < L(P, f) + ε. (10.5)

Dowód. Z de�nicji caªek dolnej i górnej mamy, dla dowolnego podziaªu P

∫ b

a

f(x) dx−
∫ b

a

f(x) dx ≤ U(P, f)− L(P, f).

Je»eli wi¦c speªniony jest warunek (10.4), to
∫ b

a

f(x) dx−
∫ b

a

f(x) dx < ε.

Skoro jest to speªnione dla ka»dego ε > 0, i skoro ró»nica caªki górnej i dolnej
jest nieujemna, to musi by¢ równa zeru. Funkcja f jest wi¦c caªkowalna. Z
drugiej strony ∫ b

a

f(x) dx ≥ L(P, f) > U(P, f)− ε,

i podobnie dla drugiej nierówno±ci (10.5).
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Mamy nast¦puj¡ce zasadnicze twierdzenie:

Twierdzenie 10.4. Je»eli funkcja f jest ci¡gªa na [a, b], to jest caªkowalna
w sensie Riemanna na [a, b].

Dowód. Poka»emy najpierw, »e f speªnia nast¦puj¡cy warunek:

∀ ε > 0 ∃ δ > 0 ∀ x, y |x− y| < δ ⇒ |f(x)− f(y)| < ε. (10.6)

Zauwa»my, »e powy»szy warunek jest silniejszy ni» ci¡gªo±¢ funkcji w ka»dym
punkcie. W przypadku ci¡gªo±ci w ka»dym punkcie staª¡ δ dobieramy do
zadanego ε i dla ustalonego x. Natomiast w powy»szym warunku (10.6)
staªa δ zale»y tylko od zadanego ε, i jest dobrana wspólnie dla wszystkich
punktów x dziedziny. Funkcj¦ speªniaj¡c¡ warunek (10.6) nazywamy wi¦c
czasem �jednostajnie ci¡gª¡�. Teraz poka»emy wi¦c, »e funkcja ci¡gªa na
przedziale [a, b] (zawieraj¡cym ko«ce) speªnia (10.6), a wi¦c jest jednostajnie
ci¡gªa.

0 1

Rysunek 10.4: Funkcja ci¡gªa, ale nie jednostajnie ci¡gªa.

�eby podkre±li¢ ró»nic¦ pomi¦dzy ci¡gªo±ci¡ a jednostajn¡ ci¡gªo±ci¡ roz-
wa»my funkcj¦ f(x) = 1

x
na przedziale (0, 1]. Wiemy, »e funkcja ta jest ci¡gªa

na przedziale (0, 1], ale nie jest jednostajnie ci¡gªa, czyli nie speªnia warunku
(10.6). �atwo to zauwa»y¢. We¹my dowolne δ > 0, dowolne n ∈ N, n > 4 i
niech x = δ

n
oraz y = x + δ

2
. Wtedy |x− y| = δ/2 < δ, ale

1

x
− 1

y
=

n

δ
− 1

δ
n

+ δ
2

=
n

δ

(
1− 2

n + 2

)
>

n

2δ
,
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gdy» dla n > 4 mamy 2
n+2

< 1
2
. Widzimy wi¦c, »e niezale»nie od δ ró»nica

|f(x) − f(y)| mo»e by¢ dowolnie du»a, pomimo, »e |x − y| < δ. Widzimy
wi¦c, »e funkcja ci¡gªa w ka»dym punkcie swojej dziedziny mo»e nie by¢
jednostajnie ci¡gªa. Wró¢my do naszej sytuacji, czyli niech funkcja f b¦dzie
ci¡gªa na przedziale [a, b]. Dowód przeprowadzimy nie wprost, czyli zaªó»my,
»e f nie jest jednostajnie ci¡gªa, to znaczy warunek (10.6) nie jest speªniony,
czyli

∃ ε0 > 0 ∀ δ > 0 ∃ x, y ∈ [a, b], |x− y| < δ ∧ |f(x)− f(y)| ≥ ε0.

B¦dziemy stosowali powy»szy warunek dla δ = 1
n
, n = 1, 2, . . . . Dla ka»dego

n otrzymujemy wi¦c par¦ liczb xn, yn ∈ [a, b] speªniaj¡cych |xn − yn| < 1
n
,

oraz |f(xn)−f(yn)| ≥ ε0.Wiemy, »e skoro ci¡g {xn} ⊂ [a, b] to mo»na wybra¢
podci¡g {xnk

} zbie»ny do pewnego x∞ ∈ [a, b]. Zauwa»my, »e wtedy podci¡g
{ynk

} te» musi by¢ zbie»ny do x∞:

xnk
− 1

nk

< ynk
< xnk

+
1

nk

.

W takim razie, z ci¡gªo±ci f mamy f(xnk
) → f(x∞) oraz f(ynk

) → f(x∞).
W takim razie f(xnk

)− f(ynk
) → 0, a wi¦c mamy sprzeczno±¢ z warunkiem

|f(xnk
)− f(ynk

)| ≥ ε0 > 0. Tym samym udowodnili±my, »e f speªnia (10.6).
Caªkowalno±¢ b¦dziemy chcieli pokaza¢ korzystaj¡c z Wniosku 10.3. Niech

wi¦c ε > 0 b¦dzie dowolne, i niech δ > 0 b¦dzie liczb¡ dan¡ przez (10.6), ale
dla ε′ = ε

b−a
. Niech n ∈ N b¦dzie dane wzorem n = [ b−a

δ
] + 1. Podzielmy

przedziaª [a, b] na n równych odcinków punktami podziaªu

P =

{
xi = a + (b− a)

i

n
; i = 0, 1, . . . , n

}
.

Zauwa»my, »e dªugo±¢ ka»dego odcinka podziaªu jest mniejsza ni» δ, (b−a)
n

<

δ, gdy» n > (b−a)
δ

. Je»eli wi¦c x, y ∈ [xi, xi+1], to |x − y| ≤ δ, gdy» i x i y
nale»¡ do tego samego przedzialika podziaªu. Skoro tak, to |f(x)−f(y)| < ε′.
Funkcja f jest ci¡gªa na przedziale [xi, xi+1], a wi¦c jej kresy Mi oraz mi s¡
przyj¦te w jakich± punktach x i y, a wi¦c kresy te» musz¡ speªnia¢ Mi−mi <
ε′ = ε

(b−a)
. Wynika z tego, »e

U(P, f)− L(P, f) =
n−1∑
i=0

Mi(xi+1 − xi)−
n−1∑
i=0

mi(xi+1 − xi) (10.7)

=
b− a

n

n−1∑
i=0

(Mi −mi)

130



<
b− a

n
· ε

b− a
· n

= ε.

Poniewa» ε byªo dowolne, to z Wniosku 10.3 otrzymujemy, »e f jest caªko-
walna.

Uwaga: Powy»szy dowód mo»na troch¦ wzmocni¢, i pokaza¢, »e je»eli f ma
sko«czenie wiele punktów nieci¡gªo±ci w [a, b] to te» jest caªkowalna.

Sumy Riemanna
Zaªó»my, »e mamy funkcj¦ f na przedziale [a, b], podziaª tego przedziaªu
P = {a = x0 < x1 < x2 < · · · < xn = b}, oraz niech w ka»dym przedziale
podziaªu wybrany b¦dzie punkt ti:

ti ∈ [xi, xi+1], i = 0, 1, . . . , n− 1.

Utwórzmy sum¦

R =
n−1∑
i=0

f(ti)(xi+1 − xi). (10.8)

Sum¦ tak¡ nazywamy sum¡ Riemanna. Zale»y ona od konkretnego podziaªu,
i od wyboru punktów ti. Zauwa»my, »e zawsze zachodzi

L(P, f) ≤ R ≤ U(P, f),

je»eli suma Riemanna te» zbudowana jest na podziale P , a funkcja f jest
ograniczona. Wynika to z faktu, »e ti ∈ [xi, xi+1], i = 0, 1, . . . , n− 1, oraz

mi = inf{f(x) : x ∈ [xi, xi+1]} ≤ f(ti) ≤ sup{f(x) : x ∈ [xi, xi+1]} = Mi.

Dla podziaªu P = {a = x0 < x1 < · · · < xn = b} okre±lamy jego ±rednic¦
d(P ):

d(P ) = max{(xi+1 − xi); i = 0, . . . , n− 1}.
Mamy nast¦puj¡ce twierdzenie:
Twierdzenie 10.5. Niech funkcja f b¦dzie ci¡gªa na [a, b], i niech dany
b¦dzie ci¡g podziaªów {Pn} odcinka [a, b] taki, »e ±rednice tych podziaªów d¡»¡
do zera: d(Pn) → 0, gdy n → ∞. Niech Rn b¦dzie ci¡giem sum Riemanna
zwi¡zanych z podziaªami Pn. Innymi sªowy, dla ka»dego podziaªu Pn mamy
niezale»nie wybrane punkty ti ∈ [xi, xi+1], i utworzon¡ sum¦ (10.8). Wtedy

lim
n→∞

Rn =

∫ b

a

f(x) dx.
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Uwaga: To twierdzenie daje swobod¦ w interpretacji caªki jako granicy
sum. Bardzo cz¦sto jako ti wybieramy lewy albo prawy koniec przedziaªu
[xi, xi+1], albo jego ±rodek, nie martwi¡c si¦, gdzie funkcja przyjmuje swoj¡
warto±¢ najmniejsz¡ i najwi¦ksz¡. Ale pami¦tajmy: f musi by¢ ci¡gªa.

Dowód twierdzenia. Podobnie jak w dowodzie twierdzenia 10.4 zauwa»my,
»e funkcja f ci¡gªa na [a, b] speªnia warunek (10.6) (czyli jest jednostajnie
ci¡gªa). We¹my dowolne ε > 0 i niech δ > 0 b¦dzie dane przez (10.6) dla
ε′ = ε

(b−a)
(podobnie jak w dowodzie twierdzenia 10.4). Niech n0 ∈ N b¦dzie

wystarczaj¡co du»e, tak aby

∀ n ≥ n0 d(Pn) < δ.

Wtedy dla n ≥ n0, wykonuj¡c taki sam rachunek jak w (10.7) mamy

U(Pn, f)− L(Pn, f) < ε.

Z (10.5) mamy
∫ b

a

f(x) dx− ε < L(Pn, f) ≤
∫ b

a

f(x) dx,

oraz ∫ b

a

f(x) dx ≤ U(Pn, f) <

∫ b

a

f(x) dx + ε,

czyli
∣∣∣∣L(Pn, f)−

∫ b

a

f(x) dx

∣∣∣∣ < ε,

∣∣∣∣U(Pn, f)−
∫ b

a

f(x) dx

∣∣∣∣ < ε.

Skoro ε byªo dowolne, a powy»sze nierówno±ci zachodz¡ dla wszystkich n ≥
n0, to

lim
n→∞

U(Pn, f) = lim
n→∞

L(Pn, f) =

∫ b

a

f(x) dx.

Z drugiej strony, jak wiemy

L(Pn, f) ≤ Rn ≤ U(Pn, f),

a wi¦c tak»e

lim
n→∞

Rn =

∫ b

a

f(x) dx.
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Przykªad: Nast¦puj¡c¡ granic¦ sprowadzimy do caªki oznaczonej:

lim
n→∞

(
1√

n + 3
+

1√
n + 6

+
1√

n + 9
+ · · ·+ 1√

7 n

)
1√
n

.

Spróbujemy przeksztaªci¢ wyra»enie, »eby sprowadzi¢ je do postaci sumy Rie-
manna jakiej± funkcji, dla jakiego± przedziaªu, jakiego± podziaªu tego prze-
dziaªu, i jakiego± wyboru punktów ti.

(
1√

n + 3
+

1√
n + 6

+
1√

n + 9
+ · · ·+ 1√

7 n

)
1√
n

=

=
2 n∑
i=1

1√
n + 3 i

1√
n

=
2 n∑
i=1

√
n√

n + 3 i

1

n

=
2 n∑
i=1

1√
1 + 3 i

n

1

n

=
1

n

2 n∑
i=1

1√
1 + 3 i

n

Mo»na si¦ ju» wszystkiego domy±le¢: jest to suma Riemanna dla funkcji
f(x) = 1√

1+3 x
, dla przedziaªu [0, 2], podziaªu równomiernego na 2n pod-

przedziaªów równej dªugo±ci 1
n
, i dla punktów ti b¦d¡cych prawymi ko«cami

podprzedziaªów. Skoro zidenty�kowali±my wyrazy naszego ci¡gu jako sumy
Riemanna, a ±rednice podziaªów odpowiadaj¡cych kolejnym wyrazom ci¡gu
d¡»¡ do zera, to ci¡g ten zbiega do caªki oznaczonej

∫ 2

0

dx√
1 + 3 x

.

Na razie nie jeste±my w stanie obliczy¢ tej caªki. Ju» wkrótce, dzi¦ki za-
sadniczemu twierdzeniu rachunku ró»niczkowego i caªkowego policzymy j¡ z
ªatwo±ci¡, oka»e si¦ równa 2

3
(
√

7 − 1). Mamy nast¦puj¡ce twierdzenie (caª-
kowalno±¢ wsz¦dzie oczywi±cie w sensie Riemanna).

Twierdzenie 10.6. (i) Je»eli f i g s¡ caªkowalne na przedziale [a, b] a c jest
staª¡, to funkcje f ± g oraz cf te» s¡ caªkowalne, dla dowolnej staªej c, oraz

∫ b

a

(f(x)± g(x)) dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx
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∫ b

a

c f(x) dx = c

∫ b

a

f(x) dx.

(ii) Je»eli f i g s¡ caªkowalne na [a, b] i dla wszystkich x w tym przedziale
zachodzi f(x) ≤ g(x) to

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx. (10.9)

(iii) Je»eli f jest caªkowalna na [a, b] oraz a < c < b, to f jest te» caªkowalna
na ka»dym z podprzedziaªów [a, c] i [c, b], oraz

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx. (10.10)

Równie» na odwrót: je»eli f jest caªkowalna na przedziaªach [a, c] i [c, b] (a <
c < b), to jest te» caªkowalna na [a, b], i zachodzi (10.10).
(iv) Je»eli f jest caªkowalna na [a, b], to |f | te» jest caªkowalna na [a, b], i

∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣ ≤
∫ b

a

|f(x)| dx.

Uwaga: Cz¦±¢ (ii) mo»na troch¦ wzmocni¢, i udowodni¢, »e je»eli dodat-
kowo f(x) < g(x) poza sko«czon¡ ilo±ci¡ punktów przedziaªu [a, b] (a < b),
to nierówno±¢ (10.9) te» jest ostra. Dowód w zasadzie jest ten sam.

Dowód twierdzenia. (i) Niech dany b¦dzie podziaª P odcinka [a, b]. Wtedy

L(P, f) + L(P, g) ≤ L(P, f + g) ≤ U(P, f + g) ≤ U(P, f) + U(P, g).

A wi¦c

U(P, f + g)− L(P, f + g) ≤ U(P, f)− L(P, f) + U(P, g)− L(P, g). (10.11)

Skoro f i g s¡ caªkowalne, to dla dowolnego ε > 0 istniej¡ podziaªy P1 i P2

takie, »e

U(P1, f)− L(P1, f) < ε/2, U(P2, g)− L(P2, g) < ε/2.

Je»eli P ∗ jest wspólnym rozdrobnieniem podziaªów P1 i P2 to, jak wiemy
(10.3), nierówno±ci zachowuj¡ si¦ dla P ∗, a wi¦c z (10.9)

U(P ∗, f + g)− L(P ∗, f + g) < ε.
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Poniewa» ε > 0 byªo dowolne, to f + g jest caªkowalna (Wniosek 10.3), i
dodatkowo

∫ b

a

(f(x) + g(x)) dx ≤ U(P ∗, f + g)

≤ U(P ∗, f) + U(P ∗, g)

≤
∫ b

a

f(x) dx + ε/2 +

∫ b

a

g(x) dx + ε/2

=

∫ b

a

f(x) dx +

∫ b

a

g(x) dx + ε.

Skoro ε > 0 byªo dowolne, to
∫ b

a

(f(x) + g(x)) dx ≤
∫ b

a

f(x) dx +

∫ b

a

g(x) dx.

Przeciwn¡ nierówno±¢ pokazujemy podobnie, wykorzystuj¡c L(P ∗, f + g). Z
ró»nic¡ funkcji post¦pujemy tak samo.

Niech c > 0. Wtedy, oczywi±cie L(P, cf) = c L(P, f) i U(P, cf) =
c U(P, f). W takim razie

U(P, cf)− L(P, cf) = c (U(P, f)− L(P, f)).

Podobnie, je»eli c < 0 to L(P, cf) = c U(P, f) i U(P, cf) = c L(P, f), i

U(P, cf)− L(P, cf) = c (L(P, f)− U(P, f)) = |c| (U(P, f)− L(P, f)).

W obu przypadkach dla ε > 0 znajdujemy podziaª P taki, »e

U(P, f)− L(P, f) <
ε

|c| ⇒ U(P, cf)− L(P, cf) < ε.

Oczywi±cie, je»eli c = 0 to cf(x) ≡ 0, wi¦c jest caªkowalna, i caªka jest równa
0. W ka»dym przypadku otrzymujemy tez¦.
(ii) Mamy

∫ b

a

g(x) dx−
∫ b

a

f(x) dx =

∫ b

a

(g(x)− f(x)) dx. (10.12)

Funkcja podcaªkowa po prawej stronie jest caªkowalna (punkt (i)) oraz nie-
ujemna. �atwo zauwa»y¢, »e caªka z nieujemnej funkcji te» jest nieujemna -
po prostu ka»da suma dolna jest nieujemna. W takim razie wyra»enie (10.12)
jest ≥ 0, i otrzymujemy

∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx.
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(iii) Niech ε > 0, i niech P b¦dzie podziaªem przedziaªu [a, b], takim, »e

U(P, f)− L(P, f) < ε (10.13)

Dodajmy punkt c do punktów podziaªu P , i otrzymane tak rozdrobnienie
oznaczmy przez P ∗. Poniewa» P ∗ jest rozdrobnieniem P , to (10.13) zachodzi
te» dla P ∗. Niech P1 i P2 b¦d¡ cz¦±ciami podziaªu P ∗ wpadaj¡cymi do [a, c]
i [c, b] odpowiednio. P1 i P2 s¡ wi¦c podziaªami przedziaªów [a, c] i [c, b].
Zauwa»my, »e

L(P ∗, f) = L(P1, f) + L(P2, f), oraz U(P ∗, f) = U(P1, f) + U(P2, f).

Podstawiaj¡c to do (10.13) otrzymujemy

(U(P1, f)− L(P1, f)) + (U(P2, f)− L(P2, f)) = U(P ∗, f)− L(P ∗, f) < ε.

Ka»da z wielko±ci w nawiasach po lewej stronie jest nieujemna, wi¦c ka»da
z osobna jest < ε. Poniewa» ε > 0 byªo dowolne, wi¦c funkcja f jest caª-
kowalna na przedziaªach [a, c] i [c, b]. Korzystaj¡c z oszacowania z wniosku
10.3 otrzymujemy dodatkowo

∫ b

a

f(x) dx < U(P ∗, f) = U(P1, f) + U(P2, f)

<

∫ c

a

f(x) dx + ε +

∫ b

c

f(x) dx + ε

=

∫ c

a

f(x) dx +

∫ b

c

f(x) dx + 2ε.

Powy»sza nierówno±¢ jest prawdziwa dla dowolnego ε > 0, wi¦c musi zacho-
dzi¢ ∫ b

a

f(x) dx ≤
∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

Nierówno±¢ w drug¡ stron¦ pokazujemy tak samo, wykorzystuj¡c sumy dolne,
i oszacowania z wniosku 10.3. Musi wi¦c zachodzi¢ równo±¢ caªek.
(iv) Niech c = ±1, w zale»no±ci od znaku caªki, a wi¦c

∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣ = c

∫ b

a

f(x) dx =

∫ b

a

c f(x) dx ≤
∫ b

a

|f(x)| dx,

gdy» c f(x) ≤ |c f(x)| = |f(x)|.
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Nast¦pne dwa twierdzenia pokazuj¡ zwi¡zek caªki oznaczonej z caªk¡ nie-
oznaczon¡ i z pochodnymi.

Twierdzenie 10.7. Niech f b¦dzie funkcj¡ caªkowaln¡ na przedziale [a, b].
Dla x ∈ [a, b] okre±lamy

F (x) =

∫ x

a

f(t) dt.

Wtedy F jest ci¡gªa na [a, b] i ró»niczkowalna w ka»dym punkcie x w którym
funkcja podcaªkowa f jest ci¡gªa, oraz w takim punkcie x mamy

F ′(x) = f(x).

Dowód. Skoro f jest caªkowalna to jest domy±lnie ograniczona: |f(x)| ≤ M ,
a wi¦c dla dowolnych x, y ∈ [a, b], x < y zachodzi oszacowanie

|F (y)− F (x)| =
∣∣∣∣
∫ y

x

f(t) dt

∣∣∣∣ ≤
∫ y

x

|f(t)| dt ≤ M(y − x).

Wynika z tego, »e F jest ci¡gªa, a nawet jednostajnie ci¡gªa na [a, b]. Niech
x ∈ (a, b). Niech ε > 0 b¦dzie dowolne, i δ > 0 b¦dzie takie, »e dla |t−x| < δ
mamy

|f(t)− f(x)| < ε.

Zauwa»my, »e skoro f(x) jest staª¡ niezale»n¡ od t, wi¦c mo»emy napisa¢

f(x) =
1

h

∫ x+h

x

f(x) dt,

dla dowolnego h takiego, »e [x, x + h] ⊂ [a, b]. Dla 0 < h < δ mo»emy wi¦c
napisa¢

∣∣∣∣
F (x + h)− F (x)

h
− f(x)

∣∣∣∣ =

∣∣∣∣
1

h

∫ x+h

x

f(t) dt− f(x)

∣∣∣∣

=

∣∣∣∣
1

h

∫ x+h

x

f(t) dt− 1

h

∫ x+h

x

f(x) dt

∣∣∣∣

=

∣∣∣∣
1

h

∫ x+h

x

(
f(t)− f(x)

)
dt

∣∣∣∣

≤ 1

h

∫ x+h

x

|f(t)− f(x)| dt

≤ 1

h
· h · ε

= ε.
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Podobnie, dla −δ < h < 0
∣∣∣∣
F (x + h)− F (x)

h
− f(x)

∣∣∣∣ =

∣∣∣∣
−1

h

∫ x

x+h

f(t) dt− f(x)

∣∣∣∣

=

∣∣∣∣
−1

h

∫ x

x+h

f(t) dt− −1

h

∫ x

x+h

f(x) dt

∣∣∣∣

=
1

|h|

∣∣∣∣
∫ x

x+h

(
f(t)− f(x)

)
dt

∣∣∣∣
≤ ε.

Widzimy wi¦c, »e granica

lim
h→0

F (x + h)− F (x)

h

istnieje, i jest równa f(x).

Z powy»szego twierdzenia wynika natychmiast nast¦puj¡cy wniosek, na
który czekamy ju» od poprzedniego rozdziaªu:

Wniosek 10.8. Funkcja ci¡gªa na przedziale ma na nim funkcj¦ pierwotn¡.

Nast¦puj¡ce twierdzenie jest gªównym narz¦dziem do liczenia caªek ozna-
czonych. Samo twierdzenie jest proste i dosy¢ oczywiste, i jest znane jako
zasadnicze twierdzenie rachunku ró»niczkowego i caªkowego.

Twierdzenie 10.9 (Zasadnicze twierdzenie rachunku ró»niczkowego i caª-
kowego). Je»eli funkcja f jest caªkowalna na przedziale [a, b] (w sensie Rie-
manna), oraz istnieje funkcja pierwotna F , czyli

F ′(x) = f(x) x ∈ (a, b),

(czyli f jest caªkowalna w sensie de�nicji 9.2), to
∫ b

a

f(x) dx = F (b)− F (a) = F (x)|ba .

Zwró¢my uwag¦ na symbol F (x)|ba, oznacza on przyrost funkcji F pomi¦-
dzy a i b, i b¦dziemy go u»ywa¢ w przyszªo±ci.

Dowód. Niech P = {a = x0 < x1 < · · · < xn = b} b¦dzie dowolnym podzia-
ªem przedziaªu [a, b]. Dla ka»dego przedziaªu [xi, xi+1] podziaªu stosujemy
twierdzenie o warto±ci ±redniej, a wi¦c istnieje ti ∈ (xi, xi+1) takie, »e

f(ti) =
F (xi+1)− F (xi)

xi+1 − xi

, i = 0, . . . , n− 1.
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A wi¦c

n−1∑
i=0

f(ti)(xi+1−xi) =
n−1∑
i=0

(
F (xi+1)−F (xi)

)
= F (xn)−F (x0) = F (b)−F (a).

Dla ka»dego podziaªu P prawdziwe s¡ wi¦c nierówno±ci

L(P, f) ≤ F (b)− F (a) ≤ U(P, f).

F (b)−F (a) le»y wi¦c pomi¦dzy caªk¡ doln¡ i caªk¡ górn¡ funkcji f na [a, b].
Skoro funkcja f jest caªkowalna, to F (b)− F (a) musi wi¦c by¢ równe caªce.

Uwaga: W powy»szym twierdzeniu zakªadamy, »e funkcja f jest caªko-
walna w sensie Riemanna, i w sensie istnienia funkcji pierwotnej. Wiemy,
»e funkcje ci¡gªe speªniaj¡ to zaªo»enie. S¡ caªkowalne w sensie Riemanna
(twierdzenie 10.4) oraz maj¡ funkcj¦ pierwotn¡ (wniosek 10.8). Zasadnicze
twierdzenie rachunku ró»niczkowego i caªkowego odnosi si¦ wi¦c gªównie do
funkcji ci¡gªych.

Granice caªkowania
Caªk¦ oznaczon¡ zde�niowali±my na przedziale [a, b], dla a < b. Dolna gra-
nica caªkowania byªa wi¦c mniejsza od górnej. Wygodnie jest rozszerzy¢ t¡
de�nicj¦. Wprowad¹my wi¦c nast¦puj¡ce oznaczenia. Je»eli a < b to

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx,

oraz dla dowolnego c ∫ c

c

f(x) dx = 0.

Przy tak dobranych oznaczeniach wzór (10.10) zachodzi niezale»nie od wza-
jemnych relacji pomi¦dzy liczbami a, b, c

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx. ∀ a, b, c,

je»eli tylko wszystkie caªki istniej¡. Dowód mo»na przeprowadzi¢ rozpatruj¡c
przypadki.
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Caªkowanie przez cz¦±ci
Twierdzenie 10.9 daje nam nast¦puj¡ce wzory na caªki oznaczone. Je»eli
F ′ = f i G′ = g na przedziale [a, b], to

∫ b

a

f(x)G(x) dx = F (x)G(x)|ba −
∫ b

a

F (x)g(x) dx.

Wzór ten zachodzi, je»eli którakolwiek z caªek istnieje (wtedy obie istniej¡).
Przykªad:
∫ e

1

log(x) dx =

∫ e

1

x′ log(x) dx = x log(x)|e1−
∫ e

1

x·1
x

dx = e−x|e1 = e−e+1 = 1.

Caªkowanie przez podstawienie
Je»eli f jest funkcj¡ ró»niczkowaln¡ na [a, b], to

∫ b

a

g(f(x)) f ′(x) dx =

∫ f(b)

f(a)

g(y) dy, (10.14)

przy czym, tak jak poprzednio, wzór ten zachodzi, je»eli którakolwiek z caªek
istnieje � wtedy obie istniej¡.
Przykªad: W nast¦puj¡cej caªce podstawiamy g(x) = sin(x) oraz f(x) = x2

∫ π

0

x sin(x2) dx =
1

2

∫ π

0

sin(x2) 2 · x dx =

=
1

2

∫ π2

02

sin(y) dy = − 1

2
cos(y)|π2

0 =
1− cos(π2)

2
.

Bardzo cz¦sto caªkujemy przez podstawienie w nast¦puj¡cy sposób, stosuj¡c
wzór (10.14) �od tyªu�:

∫ 9

4

√
x√

x− 1
dx =

{
x = (t + 1)2 ⇒ dx = 2(t + 1) dt

}
=

=

∫ √
9−1

√
4−1

t + 1

t
· 2 · (t + 1) dt = 2

∫ 2

1

t2 + 2t + 1

t
dt.

Ostatni¡ caªk¦ ªatwo ju» policzy¢, znajduj¡c funkcj¦ pierwotn¡. Zapis dx =
2(t+1) dt oznacza po prostu dx

dt
= 2(t+1). Zauwa»my, »e powy»szy rachunek

jest caªkowicie uzasadniony, i wynika ze wzoru (10.14). Wystarczy zauwa»y¢,
»e funkcja x = (t + 1)2 jest odwracalna na przedziale [1, 2], i odwrotna do
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niej to funkcja t =
√

x− 1 na przedziale [4, 9]. Czasem, stosuj¡c ten sposób
odstawiania mo»emy wpa±¢ w puªapk¦. Na przykªad

∫ 2

−2

x2 dx =

{
x2 = t ⇒ 2x dx = dt

}
=

∫ 4

4

1

2

√
t dt = 0,

chocia» z drugiej strony wiemy, »e caªka po lewej stronie jest równa 16
3

> 0.
W zadaniach sytuacja mo»e nie by¢ tak oczywista, wi¦c zawsze warto dokªad-
nie sprawdzi¢ rachunki, szczególnie w sytuacji, gdy robimy podstawienie, a
funkcja podstawiana nie jest odwracalna.
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Rozdziaª 11

Zastosowania caªek

Wiele warto±ci �zycznych, �namacalnych�, intuicyjnie zrozumiaªych mo»na
opisa¢ jako granice sum. Tak¡ granic¦ sum mo»na cz¦sto zinterpretowa¢ jako
granic¦ ci¡gu sum Riemanna dla pewnej funkcji, i w takim razie dan¡ wielko±¢
�zyczn¡ zinterpretowa¢ jako caªk¦ oznaczon¡ z jakiej± funkcji. Caªk¦ tak¡
mo»emy nast¦pnie obliczy¢ korzystaj¡c ze znanych sposobów caªkowania.
Omówimy kilka przykªadów.

Dªugo±¢ ªuku
Niech funkcja f , okre±lona na przedziale [a, b] b¦dzie ci¡gªa, ró»niczkowalna,
oraz niech jej pochodna b¦dzie ci¡gªa na (a, b). Obliczymy dªugo±¢ krzywej
na pªaszczy¹nie, b¦d¡cej wykresem funkcji f , czyli krzywej {(x, f(x)); x ∈
[a, b]}. Dªugo±¢ krzywej okre±lamy jako granic¦ dªugo±ci ªamanych, przy-
bli»aj¡cych krzyw¡. Innymi sªowy, wybieramy na krzywej ci¡g w¦zªów, a
nast¦pnie ª¡czymy s¡siednie w¦zªy ze sob¡ odcinkiem. Powstaje ªamana,
której dªugo±¢ obliczamy. Nast¦pnie zag¦szczamy w¦zªy na krzywej i znowu
liczymy dªugo±¢ powstaªej ªamanej. Powstaªy w ten sposób ci¡g ªamanych,
je»eli odlegªo±ci s¡siednich w¦zªów zbiegaj¡ do zera, powinien mie¢ dªugo-
±ci zbie»ne. Granic¦ tych dªugo±ci przyjmujemy za dªugo±¢ krzywej. Krzywa
mo»e nie mie¢ dªugo±ci. W przypadku który rozpatrujemy, to znaczy krzywej
b¦d¡cej wykresem odpowiednio regularnej funkcji dªugo±¢ istnieje, i wyra»a
si¦ przez caªk¦.

W przypadku naszej krzywej ka»da ªamana z w¦zªami na wykresie f nad
przedziaªem [a, b] wi¡»e si¦ z podziaªem P = {a = x0 < x1 < · · · < xn =
b}. Punkty podziaªu s¡ rzutami na o± OX w¦zªów ªamanej. Dªugo±¢ takiej
ªamanej, zwi¡zanej z podziaªem P dana jest wzorem
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Rysunek 11.1: Przybli»enie krzywej ªaman¡.

Ln =
n−1∑
i=0

√
(xi+1 − xi)2 + (f(xi+1 − f(xi))2 =

=
n−1∑
i=0

(xi+1 − xi)

√
1 +

(
f(xi+1)− f(xi)

xi+1 − xi

)2

.

Funkcja f jest ró»niczkowalna w ka»dym przedziale [xi, xi+1], a wi¦c z twier-
dzenia o warto±ci ±redniej w ka»dym takim przedziale istnieje punkt ti taki,
»e

f(xi+1)− f(xi)

xi+1 − xi

= f ′(ti).

Mamy wi¦c

Ln =
n−1∑
i=0

(xi+1 − xi)
√

1 + f ′(ti)2.

Dªugo±¢ ªamanej jest wi¦c sum¡ Riemanna funkcji ci¡gªej
√

1 + f ′(x)2. Za-
g¦szczanie w¦zªów ªamanej daje zag¦szczanie otrzymanych podziaªów, a je-
»eli maksymalna odlegªo±¢ s¡siednich w¦zªów d¡»y do zera, to równie» mak-
symalna odlegªo±¢ ich rzutów (czyli ±rednica zwi¡zanych z nimi podziaªów)
d¡»y do zera. W takim razie, korzystaj¡c z Twierdzenia 10.5 sumy Riemanna
zbiegaj¡ do caªki

L =

∫ b

a

√
1 + f ′(x)2 dx. (11.1)

Caªka L reprezentuje dªugo±¢ wykresu f . Jak wspomnieli±my ju» wcze±niej
krzywa mo»e nie mie¢ dªugo±ci. Wªa±nie uzasadnili±my natomiast, »e wykres
funkcji maj¡cej ci¡gª¡ pochodn¡ ma dªugo±¢, i dªugo±¢ ta dana jest caªk¡
(11.1).
Przykªad: Rozwa»my przykªad tak zwanego cosinusa hiperbolicznego

f(x) = cosh(x) =
ex + e−x

2
, x ∈ [−1, 1].
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Wykresem tej funkcji jest tak zwana �linia ªa«cuchowa�. Gi¦tka, ale nie-
rozci¡gliwa lina (na przykªad ªa«cuch) zaczepiona na ko«cach, i zwisaj¡ca
swobodnie, przyjmie ksztaªt wykresu funkcji cosh(x), oczywi±cie odpowied-
nio rozci¡gni¦tego w poziomie i pionie. Taki ksztaªt uwa»any jest za bardzo
solidny. Na przykªad sªynny ªuk w St. Louis nad rzek¡ Missisipi ma ksztaªt
linii ªa«cuchowej (do góry nogami).

1

Rysunek 11.2: Linia ªa«cuchowa i ªuk w St. Louis.

Dla tej funkcji mamy

f ′(x) =
ex − e−x

2
= sinh(x).

Wiemy te», »e sinh′(x) = cosh(x) oraz »e funkcje hiperboliczne speªniaj¡ tak
zwan¡ � jedynk¦ hiperboliczn¡�

cosh2(x)− sinh2(x) = 1.

Mo»emy wi¦c obliczy¢ dªugo±¢ wykresu

L =

∫ 1

−1

√
1 + f ′(x)2 dx =

∫ 1

−1

√
1 + sinh2(x) dx =

∫ 1

−1

√
cosh2(x) dx =

=

∫ 1

−1

cosh(x) dx = sinh(x)|1−1 =
e1 − e−1

2
− e−1 − e1

2
= e− 1

e
.
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Obj¦to±¢ bryªy obrotowej wokóª osi OX

Niech b¦dzie dana funkcja f na odcinku [a, b], ci¡gªa i nieujemna. Obra-
caj¡c obszar pod wykresem f wokóª osi OX otrzymujemy tak zwan¡ bryª¦
obrotow¡

obszar pod

wykresem

Rysunek 11.3: Bryªa obrotowa.

Obj¦to±¢ tej bryªy mo»emy przybli»y¢ przy pomocy walców, powstaªych
przez obrót prostok¡tów wokóª osi OX.

Rysunek 11.4: Przybli»anie obj¦to±ci walcami.

Wybierzmy podziaª P = {a = x0 < x1 < · · · < xn = b}. Niech, dla
i = 0, . . . , n− 1

mi = inf{f(x); xi ≤ x ≤ xi+1}, Mi = sup{f(x); xi ≤ x ≤ xi+1}.

Rozwa»my �plasterek� bryªy obrotowej wokóª przedziaªu [xi, xi+1]. Walec o
promieniu mi jest caªkowicie zawarty w tym plasterku, natomiast walec o
promieniu Mi zawiera plasterek w caªo±ci w swoim wn¦trzu. Wynika z tego,
»e obj¦to±¢ takiego plasterka (oznaczmy j¡ przez Vi) musi by¢ liczb¡ zawart¡
pomi¦dzy obj¦to±ciami tych dwóch walców, czyli

(xi+1 − xi) π m2
i ≤ Vi ≤ (xi+1 − xi) π M2

i .

145



Widzimy wi¦c, »e obj¦to±¢ V caªej bryªy obrotowej, skªadaj¡cej si¦ ze wszyst-
kich �plasterków� speªnia

n−1∑
i=0

(xi+1 − xi) π m2
i ≤ V ≤

n−1∑
i=0

(xi+1 − xi) π M2
i .

Sumy po lewej i prawej stronie powy»szej podwójnej nierówno±ci s¡ sumami
doln¡ i górn¡ funkcji π f 2, dla podziaªu P . Poniewa» nierówno±ci te zachodz¡
dla wszystkich podziaªów, a funkcja π f 2 jest caªkowalna (bo jest ci¡gªa), wi¦c
V musi by¢ równe caªce

V = π

∫ b

a

f 2(x) dx.

R

r

Rysunek 11.5: Torus.

Przykªad: Rozwa»my torus o du»ym promieniu R i maªym r (0 < r < R).
Torus taki mo»emy przedstawi¢ jako bryª¦ obrotow¡ powstaª¡ z obrotu koªa

x2 + (y −R)2 ≤ r2 (11.2)

wokóª osi OX. Obszar (11.2) nie jest obszarem pod wykresem funkcji, ale
mo»emy go przedstawi¢ jako ró»nic¦ dwóch takich obszarów, i w ten sposób
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przedstawi¢ torus jako ró»nic¦ dwóch bryª obrotowych, których obj¦to±ci
potra�my obliczy¢ przy pomocy caªek. Wi¦ksz¡ bryª¦ otrzymujemy jako
obrót obszaru pod górnym póªokr¦giem a mniejsz¡ jako obrót obszaru pod
dolnym póªokr¦giem. Górny i dolny póªokr¡g s¡ wykresami funkcji

f1(x) = R +
√

r2 − x2, f2(x) = R−
√

r2 − x2, −r ≤ x ≤ r.

R+
√

r2 − x2 R−
√

r2 − x2

−r r

R

−r r

R

−r r

R

Rysunek 11.6: Obszar (11.2) jako ró»nica dwóch obszarów.

Mamy wi¦c wzór na obj¦to±¢ torusa:

V = π

∫ r

−r

f 2
1 (x) dx− π

∫ r

−r

f 2
2 (x) dx

= π

∫ r

−r

(f 2
1 (x)− f 2

2 (x)) dx

= π

∫ r

−r

(f1(x)− f2(x))(f1(x) + f2(x)) dx

= π

∫ r

−r

2
√

r2 − x2 · 2 ·R dx

= 4Rπ

∫ r

−r

√
r2 − x2 dx.

Ostatni¡ caªk¦ mo»emy obliczy¢ stosuj¡c podstawienie x = sin(t), ale mo»na
te» jej warto±¢ szybko odgadn¡¢. Zauwa»my, »e wykresem funkcji podcaª-
kowej jest górna poªówka okr¦gu o ±rodku w punkcie (0, 0) i promieniu r.
Caªka, jako pole obszaru pod wykresem, to w takim razie poªowa pola koªa
o promieniu r, czyli πr2

2
. Otrzymali±my wi¦c nast¦puj¡cy wzór na obj¦to±¢

torusa:
V = 2 π2 R r2.
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Pole powierzchni bryªy obrotowej wokóª osi OX

Rozwa»my obecnie pole powierzchni bocznej bryªy obrotowej opisanej w po-
przednim punkcie. Zaªó»my, »e funkcja f jest ró»niczkowalna, jej pochodna
jest ci¡gªa na (a, b) i ma sko«czone granice na ko«cach a, b (do obliczenia
obj¦to±ci bryªy obrotowej wystarczyªo, »eby f byªa ci¡gªa). Ponownie roz-
wa»my podziaª P = {a = x0 < · · · < xn = b} odcinka [a, b], i �plasterek�
bryªy obrotowej wokóª przedziaªu [xi, xi+1]. Powierzchni¦ boczn¡ plasterka
przybli»ymy powierzchni¡ boczn¡ sto»ka ±ci¦tego (nie walca), powstaªego
przez obrót obszaru pod sieczn¡ wykresu wokóª osi OX.

xi xi+1 xi xi+1

Rysunek 11.7: Sto»ek przybli»aj¡cy bryª¦ obrotow¡.

Powstaªy sto»ek ±ci¦ty ma promienie podstaw f(xi) i f(xi+1), oraz wy-
soko±¢ xi+1 − xi. Jak wiadomo z geometrii pole powierzchni bocznej takiego
sto»ka ±ci¦tego jest równe dªugo±ci �tworz¡cej� sto»ka razy ±redni obwód.

Je»eli kto± nie pami¦ta tego wzoru, to mo»e sobie taki wzór wyprowadzi¢,
rozcinaj¡c sto»ek, i rozpªaszczaj¡c rozci¦t¡ ±ciank¦ boczn¡. W naszym przy-
padku sto»ka ±ci¦tego nad przedziaªem [xi, xi+1] ±redni obwód czyli obwód w
poªowie wysoko±ci to

2π
f(xi+1) + f(xi)

2
,

a dªugo±¢ �tworz¡cej� to
√

(xi+1 − xi)2 + (f(xi+1)− f(xi))2.

�¡czna powierzchnia boczna wszystkich sto»ków przybli»aj¡cych bryª¦ jest
wi¦c dana wzorem

Sn =
n−1∑
i=0

2π

(
f(xi+1) + f(xi)

2

)
×

× (xi+1 − xi) ·
√

1 +

(
f(xi+1) + f(xi)

xi+1 − xi

)2

. (11.3)
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średni obwód
tworząca

Rysunek 11.8: Tworz¡ca i ±redni obwód sto»ka ±ci¦tego.

Korzystaj¡c z twierdzenia o warto±ci ±redniej powy»sz¡ sum¦ mo»emy zapisa¢
jako

n−1∑
i=0

2π

(
f(xi+1) + f(xi)

2

)
· (xi+1 − xi) ·

√
1 + f ′(ti)2, (11.4)

dla odpowiednich punktów ti ∈ (xi, xi+1). Zauwa»my, »e nie jest to suma Rie-
manna »adnej funkcji. Musimy wi¦c wykona¢ jeszcze jeden krok. Poniewa»
f jest jednostajnie ci¡gªa to dla ka»dego ε > 0

∣∣∣∣
f(xi+1) + f(xi)

2
− f(ti)

∣∣∣∣ < ε

je»eli tylko ±rednica podziaªu P jest odpowiednio maªa. Z naszych zaªo»e«
wynika te», »e f ′ jest ograniczona, a wi¦c sum¦ (11.3), która jest równa (11.4)
mo»na zast¡pi¢ sum¡

n−1∑
i=0

2π f(ti) · (xi+1 − xi) ·
√

1 + f ′(ti)2, (11.5)

z bª¦dem dowolnie maªym, je»eli ±rednica podziaªu P jest odpowiednio mala.
Suma (11.5) jest sum¡ Riemanna funkcji ci¡gªej 2πf(x)

√
1 + f ′(x)2, a wi¦c
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sumy Riemanna d¡»¡ do caªki z tej funkcji, gdy ±rednice podziaªów d¡»¡ do
zera. Pole S powierzchni bocznej powstaªej bryªy obrotowej jest wi¦c równe

S = 2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx.

Przykªad: Obliczymy pole powierzchni torusa, którego obj¦to±¢ obliczy-
li±my w poprzednim punkcie. Wiemy, »e torus mo»na zapisa¢ jako bryª¦
powstaª¡ z obrotu koªa

x2 + (y −R)2 ≤ r2

wokóª osi OX, a w takim razie pole powierzchni bocznej torusa jest równa
sumie sumie pól powierzchni bocznych bryª powstaªych przez obrót górnego
i dolnego póªokr¦gu:

S = 2π

∫ r

−r

f1(x)
√

1 + f ′1(x)2 dx + 2π

∫ r

−r

f2(x)
√

1 + f ′2(x)2 dx,

gdzie, jak poprzednio

f1(x) = R +
√

r2 − x2, f2(x) = R−
√

r2 − x2.

Mamy wi¦c
f ′1(x) =

1

2

1√
r2 − x2

· (−2 x) =
−x√

r2 − x2
,

i podobnie
f ′2(x) =

x√
r2 − x2

.

Obie pochodne ró»ni¡ si¦ wi¦c tylko znakiem, i mamy
√

1 + f ′1(x)2 =
√

1 + f ′2(x)2 =

=

√
1 +

x2

r2 − x2
=

√
r2 − x2 + x2

r2 − x2
=

r√
r2 − x2

.

Ostatecznie wi¦c

S = 2 π

∫ r

−r

(
(R +

√
r2 − x2)

r√
r2 − x2

+ (R−
√

r2 − x2)
r√

r2 − x2

)
dx

= 4 π R r

∫ r

−r

dx√
r2 − x2

= 4 π R

∫ r

−r

dx√
1− (x

r
)2
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= 4 π R r

∫ r

−r

1
r
dx√

1− (x
r
)2

y =
x

r

= 4 π R r

∫ 1

−1

dy√
1− y2

= 4 π R r arcsin y|1−1

= 4 π2 R r.
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Rozdziaª 12

Caªki niewªa±ciwe

Caªk¦ oznaczon¡ zde�niowali±my dla funkcji ograniczonych na sko«czonym
przedziale [a, b]. Teraz de�nicj¦ t¦ rozszerzymy na funkcje niekoniecznie ogra-
niczone i na przedziaªy niesko«czone. Caªki takie nazywamy caªkami niewªa-
±ciwymi. Najpierw rozwa»my przypadek funkcji, która nie jest ograniczona
na przedziale [a, b], ale jest ograniczona, i caªkowalna, na ka»dym podprze-
dziale postaci [c, b], a < c < b. Rozpatrujemy wi¦c przypadek funkcji która
jest zupeªnie �porz¡dna"(ci¡gªa) na przedziale [a, b] z wyj¡tkiem lewego ko«ca
przedziaªu, w którym »adnej regularno±ci nie zakªadamy. Punkt a nawet nie
musi nale»e¢ do dziedziny. Mo»na jednak obliczy¢ caªk¦ na przedziaªach po-
staci [c, b] dla dowolnego c ∈ (a, b] na których funkcja jest ci¡gªa, i zapyta¢
si¦ czy takie caªki s¡ zbie»ne do czego± gdy c → a+. Je»eli istnieje granica

g = lim
c→a+

∫ b

c

f(x) dx, (12.1)

to mówimy, »e funkcja f jest caªkowalna w sensie niewªa±ciwym na przedziale
[a, b], albo »e caªka niewªa±ciwa po [a, b] jest zbie»na. Granic¦ g oznaczamy,
oczywi±cie, przez

∫ b

a

f(x) dx = g = lim
c→a+

∫ b

c

f(x) dx,

i nazywamy caªk¡ niewªa±ciw¡ f po [a, b]. Podobnie zde�niowana jest caªka
niewªa±ciwa gdy funkcja f ma �osobliwo±¢� w prawym ko«cu przedziaªu caª-
kowania (czyli nie jest ograniczona w otoczeniu tego ko«ca, i najcz¦±ciej nie
jest te» w tym punkcie okre±lona). W tym przypadku caªka niewªa±ciwa ist-
nieje (jest zbie»na) je»eli f jest caªkowalna na ka»dym przedziale [a, c], gdzie
a ≤ c < b, oraz istnieje granica

g = lim
c→b−

∫ c

a

f(x) dx. (12.2)
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Uwaga: Je»eli funkcja f jest caªkowalna na [a, b] to oczywi±cie granice (12.1)
i (12.2) istniej¡, i s¡ równe caªce w zwykªym sensie. Caªka niewªa±ciwa jest
wi¦c rozszerzeniem de�nicji caªki zwykªej.

Caªk¦ niewªa±ciw¡ mo»emy te» zde�niowa¢ w sytuacjach, gdy funkcja f
ma �osobliwo±ci� na obu ko«cach przedziaªu caªkowania [a, b], lub w jednym
lub kilku punktach wewn¦trznych przedziaªu. W tym celu najpierw dzielimy
przedziaª caªkowania na podprzedziaªy tak, aby w ka»dym podprzedziale
funkcja f miaªa tylko jedn¡ �osobliwo±¢�, na tylko jednym z dwóch ko«ców.
Na przykªad, je»eli badamy caªkowalno±¢ funkcji f(x) = 1

x
na przedziale

[−1, 1], to rozpatrujemy osobno zbie»no±¢ caªek
∫ 0

−1

dx

x
oraz

∫ 1

0

dx

x
, (12.3)

i je»eli obie powy»sze caªki s¡ zbie»ne, to mówimy, »e caªka niewªa±ciwa
po przedziale [−1, 1] istnieje. Zauwa»my, »e w tym konkretnym przypadku
»adna z powy»szych caªek nie jest zbie»na (przykªad (b)).
Przykªady: (a) Rozpatrzmy f(x) = 1√

x
na przedziale [0, 1]. Funkcja ta jest

ci¡gªa na (0, 1], ale ma �osobliwo±¢� w 0. Sprawdzamy wi¦c

∫ 1

ε

dx√
x

=

∫ 1

ε

x−
1
2 dx =

x
1
2

1
2

∣∣∣∣∣

1

ε

= 2 (1−√ε)
ε→0+−−−→ 2,

czyli caªka niewªa±ciwa jest zbie»na, i
∫ 1

0

dx

x
= 2.

(b) Rozwa»my funkcj¦ f(x) = 1
x
na przedziale [−1, 1]. Funkcja ta ma jedn¡

osobliwo±¢ w punkcie 0 wewn¡trz przedziaªu caªkowania. Musimy sprawdzi¢
zbie»no±¢ ka»dej z caªek niewªa±ciwych (12.3) osobno. Sprawd¹my najpierw
caªk¦ po [0, 1]

∫ 1

ε

dx

x
= log(x)|1ε = 0− log(ε) = log

(1

ε

)
ε→0+−−−→ ∞.

Nie ma potrzeby sprawdzania zbie»no±ci drugiej caªki z (12.3) (te» jest zreszt¡
rozbie»na). Skoro jedna z caªek (12.3) nie jest zbie»na, to caªka po caªym
przedziale [−1, 1] nie istnieje.
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Drugi rodzaj caªek niewªa±ciwych dotyczy niesko«czonego przedziaªu caª-
kowania. Niech funkcja f(x) b¦dzie caªkowalna w ka»dym przedziale [a,M ],
dla pewnego a i ka»dego M > a. Je»eli istnieje granica

g = lim
M→∞

∫ M

a

f(x) dx,

to mówimy, »e f jest caªkowalna w sensie niewªa±ciwym na [a,∞) i piszemy
∫ ∞

a

f(x) dx = g = lim
M→∞

∫ M

a

f(x) dx.

Podobnie de�niujemy caªk¦ niewªa±ciw¡ po przedziale (−∞, b]:
∫ b

−∞
f(x) dx = lim

M→−∞

∫ b

M

f(x) dx,

o ile ka»da z caªek po prawej stronie równo±ci istnieje (w sensie wªa±ciwym),
oraz istnieje granica. W ko«cu caªk¦ na caªej prostej (−∞,∞) de�niujemy
jako sum¦ ∫ ∞

−∞
f(x) dx =

∫ b

−∞
f(x) dx +

∫ ∞

b

f(x) dx,

o ile obie caªki po prawej stronie, niezale»nie od siebie, istniej¡. Zauwa»my,
»e de�nicja ta nie zale»y od punktu b w którym rozdzielamy póªproste.

W ko«cu mo»emy poª¡czy¢ oba rodzaje caªek niewªa±ciwych, i caªko-
wa¢ po przedziale niesko«czonym funkcj¦ która ma �osobliwo±ci� w pewnych
punktach. Przedziaª caªkowania dzielimy na podprzedziaªy tak, aby funk-
cja w ka»dym podprzedziale sko«czonym miaªa tylko jedn¡ �osobliwo±¢� na
którym± ko«cu, oraz »eby na niesko«czonych nie miaªa »adnych osobliwo±ci,
i nast¦pnie sprawdzamy zbie»no±¢ ka»dej z caªek niewªa±ciwych osobno. Na
przykªad, istnienie caªki niewªa±ciwej z funkcji f(x) = 1

x2 na caªej prostej
(−∞,∞) oznacza istnienie ka»dej z caªek niewªa±ciwych

∫ −1

−∞

dx

x2
,

∫ 0

−1

dx

x2
,

∫ 1

0

dx

x2
,

∫ ∞

1

dx

x2
.

W tym konkretnym przypadku caªki pierwsza i ostatnia s¡ zbie»ne, ale druga
i trzecia s¡ rozbie»ne, wi¦c caªka niewªa±ciwa

∫ ∞

−∞

dx

x2
nie istnieje.
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π 2π 3π 4π

0

π 2π 3π 4π

Rysunek 12.1: Funkcje sin x
x

i | sin x|
x

.

Przykªady: (a) Funkcje sin(x)
x

i | sin(x)|
x

s¡ ci¡gªe na póªprostej [0,∞) (warto±ci
w 0 ustalamy na 1). Pierwsza jest caªkowalna w sensie niewªa±ciwym na tej
póªprostej, a druga nie jest.

We¹my dowolne M > 0, i rozwa»my
∫ 2πM

0

sin x

x
dx =

∫ 2π[M ]

0

sin x

x
dx +

∫ 2πM

2π[M ]

sin x

x
dx.

Gdy M → ∞ druga caªka po prawej stronie ma granic¦ 0, gdy» dªugo±¢
przedziaªu caªkowania nie przekracza 2π, a warto±¢ funkcji podcaªkowej jest
ograniczona przez 1

2π[M ]
co d¡»y do 0 gdy M →∞. W takim razie mamy

lim
M→∞

∫ 2πM

0

sin x

x
dx = lim

M→∞

∫ 2π[M ]

0

sin x

x
dx, (12.4)

istnienie jednej granicy poci¡ga za sob¡ istnienie drugiej. Zajmiemy si¦ w
takim razie granic¡ po prawej stronie, i poka»emy, »e istnieje. Rozªó»my
caªk¦: ∫ 2π[M ]

0

sin x

x
dx =

[M ]−1∑

k=0

∫ 2π(k+1)

2πk

sin x

x
dx. (12.5)

Przyjrzyjmy si¦ wyrazom szeregu:
∫ 2π(k+1)

2πk

sin x

x
dx =

∫ 2πk+π

2πk

sin x

x
dx +

∫ 2π(k+1)

2πk+π

sin x

x
dx

=

∫ π

0

sin x

x + 2kπ
dx−

∫ π

0

sin x

x + (2k + 1)π
dx,
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gdzie wykorzystali±my fakt, »e sin(x+2kπ) = sin(x) oraz sin(x+(2k+1)π) =
− sin(x). Kontynuuj¡c, mamy

∫ 2π(k+1)

2πk

sin x

x
dx =

∫ π

0

sin x

(
1

x + 2kπ
− 1

x + (2k + 1)π

)
dx

Zauwa»my, »e caªka jest dodatnia, gdy» funkcja podcaªkowa jest dodatnia
wewn¡trz przedziaªu caªkowania. Szereg (12.5) ma wi¦c dodatnie wyrazy, i
jest zbie»ny (czyli jest zbie»na caªka po lewej stronie (12.5)) dokªadnie wtedy,
gdy jest ograniczony. Oszacujmy jeszcze ostatni¡ caªk¦. Dla k > 0 mamy

∫ π

0

sin x

(
1

x + 2kπ
− 1

x + (2k + 1)π

)
dx =

=

∫ π

0

sin x
π

(x + 2kπ) · (x + (2k + 1)π)
dx ≤

≤ π

4π2k2

∫ π

0

sin x dx =
1

2πk2
,

natomiast dla k = 0 oszacujmy brutalnie
∫ 2π

0

sin x

x
dx ≤

∫ 2π

0

∣∣∣∣
sin x

x

∣∣∣∣ dx ≤ 2π.

Mamy wi¦c
∫ 2π[M ]

0

sin x

x
dx ≤ 2π +

[M ]−1∑

k=1

1

2πk2

= 2π +
1

2π

[M ]−1∑

k=1

1

k2

< 2π +
1

2π

∞∑

k=1

1

k2
.

Jak ju» wspomnieli±my lewa strona jest niemalej¡c¡ funkcj¡ M , i jest ogra-
niczona, czyli ma granic¦, gdy M →∞. Granice (12.4) istniej¡ wi¦c, a wi¦c
caªka niewªa±ciwa ∫ ∞

0

sin x

x
dx

jest zbie»na. Mo»na pokaza¢ (ale to wymaga zupeªnie innych narz¦dzi), »e
caªka ta jest równa

√
π
2
. Caªka ta jest wa»na, i pojawia si¦ w zastosowa-

niach. Istnienie jej zawdzi¦czamy temu, »e �pagórki� sinusa wyst¦puj¡ na
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przemian powy»ej i poni»ej osi OX, i ich pola si¦ skracaj¡. Natomiast suma
pól wszystkich �pagórków� wykresu jest niesko«czona. Innymi sªowy, po na-
ªo»eniu warto±ci bezwzgl¦dnej na funkcj¦ podcaªkow¡ caªka niewªa±ciwa nie
istnieje. �eby si¦ o tym przekona¢, we¹my dowolne M > 0, i obliczmy

∫ πM

0

| sin x|
x

dx ≥
∫ π[M ]

0

| sin x|
x

dx

=

[M ]−1∑

k=0

∫ (k+1)π

kπ

| sin x|
x

dx

=

[M ]−1∑

k=0

∫ π

0

sin x

x + kπ
dx

>

[M ]−1∑

k=0

1

kπ + π

∫ π

0

sin x dx

=

[M ]∑

k=1

2

kπ
.

Gdy M →∞ to [M ] →∞ i w takim razie
∫ πM

0

| sin x|
x

dx →∞,

czyli caªka niewªa±ciwa nie jest zbie»na.
(b) Poka»emy, »e caªka z funkcji f(x) = e−x2 na caªej prostej (−∞,∞) jest
zbie»na. Poka»emy najpierw, »e caªka po póªprostej dodatniej istnieje. Niech
M > 0. Poniewa» funkcja podcaªkowa jest dodatnia, to caªka

∫ M

0

e−x2

dx (12.6)

ro±nie wraz z M , wi¦c granica gdy M →∞ istnieje, je»eli caªki te s¡ wspólnie
ograniczone od góry dla wszystkich M .

∫ M

0

e−x2

dx =

∫ 1

0

e−x2

dx +

∫ M

1

e−x2

dx

≤
∫ 1

0

e−x2

dx +

∫ M

1

e− dx

=

∫ 1

0

e−x2

dx− e−x
∣∣M
1
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=

∫ 1

0

e−x2

dx + e−1 − e−M

<

∫ 1

0

e−x2

dx + e−1.

Caªki (12.6) stanowi¡ wi¦c ograniczon¡ i rosn¡c¡ funkcj¦ M , maj¡ wi¦c gra-
nic¦ gdy M → ∞. Rozwa»my teraz drug¡ caªk¦ niewªa±ciw¡. Skorzystamy
z parzysto±ci funkcji podcaªkowej. Niech M > 0.

∫ 0

−M

e−x2

dx = −
∫ 0

M

e−x2

dx =

∫ M

0

e−x2

dx,

czyli, jak przed chwil¡ udowodnili±my, caªki te maj¡ granic¦ gdy M → ∞.
Caªki niewªa±ciwe funkcji e−x2 po przedziaªach (−∞, 0] i [0,∞) istniej¡, a
wi¦c istnieje caªka niewªa±ciwa po caªej prostej. Mo»na pokaza¢, »e

∫ ∞

−∞
e−x2

dx =
√

π,

ale wymaga to dodatkowych narz¦dzi. Funkcja e−x2 to tak zwana funkcja
Gaussa, i jest jedn¡ z wa»niejszych funkcji w matematyce i zastosowaniach.
(c) Niech f(x) = 1

x
, x ≥ 1. Je»eli obrócimy wykres tej funkcji wokóª osi OX,

to otrzymamy niesko«czony �lejek�. Obliczymy obj¦to±¢ tego �lejka�, i pole
jego powierzchni bocznej. Sto»ek jest niesko«czony, i zauwa»my, »e pasuje
dokªadnie do naszych caªek niewªa±ciwych. Jego obj¦to±¢ jest równa granicy
obj¦to±ci lejków uci¦tych, i jego pole powierzchni bocznej jest granic¡ pól
powierzchni bocznych lejków z uci¦t¡ �ko«cówk¡�. Widzimy wi¦c, »e wielko±ci
te wyra»aj¡ si¦ caªkami niewªa±ciwymi, i istnienie tych wielko±ci wi¡»e si¦ z
istnieniem caªek niewªa±ciwych

V = π

∫ ∞

1

1

x2
dx, S = 2π

∫ ∞

1

1

x

√
1 +

(
1

x

′)2

dx.

Policzmy te caªki.

V = lim
M→∞

π

∫ M

1

1

x2
dx = π lim

M→∞
− 1

x

∣∣∣∣
M

1

= π lim
M→∞

(
− 1

M
+ 1

)
= π.

Widzimy wi¦c, »e caªka niewªa±ciwa jest zbie»na, a wi¦c obj¦to±¢ niesko«-
czonego �lejka� jest sko«czona i wynosi π. Obliczmy teraz pole powierzchni
bocznej
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Rysunek 12.2: Niesko«czony �lejek�.

2π

∫ M

1

1

x

√
1 +

(
1

x

′)2

dx = 2π

∫ M

1

1

x

√
1 +

1

x4
dx ≥

≥ 2π

∫ M

1

1

x
dx = 2π log x|M1 = 2π log M

M→∞−−−−→ ∞.

Widzimy wi¦c, »e caªka niewªa±ciwa nie istnieje. Pole powierzchni bocz-
nej�lejka� jest wi¦c niesko«czone. Wbrew pozorom, mogliby±my jednak po-
malowa¢ taki lejek farb¡, pomimo niesko«czonej powierzchni. Wystarczy π
litrów farby nala¢ do ±rodka lejka. Wn¦trze � to chyba jasne � w caªo±ci
si¦ pomaluje.
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Rozdziaª 13

Wzory Wallisa i Stirlinga

Wykorzystamy t¦ okazj¦, »eby udowodni¢ wzór Stirlinga. Wzór ten stosuje
si¦ do przybli»onego obliczania silni, która jest czasem potrzebna w zasto-
sowaniach, na przykªad w statystyce. Silnia tylko pozornie jest ªatwa do
obliczenia. W praktyce liczenie du»ej liczby z de�nicji jest niemo»liwe, za
du»o dziaªa«.

Wzór Wallisa
Najpierw udowodnimy nast¦puj¡cy wzór, znany jako wzór Wallisa.

π = lim
n→∞

1

n

(
2 · 4 · · · · · 2n

1 · 3 · · · · · (2n− 1)

)2

= lim
n→∞

1

n

(
(2n)!!

(2n− 1)!!

)2

.

Wzór Wallisa zastosujemy w dowodzie wzoru Stirlinga. Mamy, dla n ≥ 2

∫ π
2

0

sinn x dx =

∫ π
2

0

sin x sinn−1 x dx

=

∫ π
2

0

(− cos x)′ sinn−1 x dx

= − cos x sinn−1 x
∣∣π

2

0
+

∫ π
2

0

cos x (n− 1) sinn−2 x cos x dx

= (n− 1)

∫ π
2

0

cos2 x sinn−2 x dx

= (n− 1)

∫ π
2

0

(1− sin2 x) sinn−2 x dx

= (n− 1)

∫ π
2

0

sinn−2 x dx− (n− 1)

∫ π
2

0

sinn x dx.
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Wynika st¡d, »e
∫ π

2

0

sinn x dx =
n− 1

n

∫ π
2

0

sinn−2 x dx.

Iteruj¡c to, otrzymujemy
∫ π

2

0

sin2k x dx =
1 · 3 · 5 · · · · · (2k − 1)

2 · 4 · 6 · · · · · (2k)

∫ π
2

0

dx =
(2k − 1)!!

(2k)!!
· π

2
,

∫ π
2

0

sin2k+1 x dx =
2 · 4 · 6 · · · · · (2k)

3 · 5 · 7 · · · · · (2k + 1)

∫ π
2

0

sin x dx =
(2k)!!

(2k + 1)!!
,

czyli

π

2
=

∫ π
2

0
sin2k x dx
(2k−1)!!
(2k)!!

=
(2k)!!

(2k − 1)!!

∫ π
2

0
sin2k x dx

(2k+1)!!
(2k)!!

∫ π
2

0
sin2k+1 x dx

=

=

(
(2k)!!

(2k − 1)!!

)2
1

(2k + 1)

∫ π
2

0
sin2k x dx

∫ π
2

0
sin2k+1 x dx

. (13.1)

Zauwa»my, »e mamy

0 <

∫ π
2

0

sin2k+1 x dx ≤
∫ π

2

0

sin2k x dx ≤
∫ π

2

0

sin2k−1 x dx,

czyli

1 ≤
∫ π

2

0
sin2k x dx

∫ π
2

0
sin2k+1 x dx

≤
∫ π

2

0
sin2k−1 x dx

∫ π
2

0
sin2k+1 x dx

=

=
(2(k − 1))!!

(2k − 1)!!
· (2k + 1)!!

(2k)!!
=

2k + 1

2k
.

Wyra»enia na pocz¡tku i ko«cu powy»szego ci¡gu nierówno±ci d¡»¡ do 1,
wi¦c z twierdzenia o 3 ci¡gach widzimy, »e iloraz caªek w (13.1) te» d¡»y do
1, a wi¦c

π

2
= lim

k→∞
1

(2k + 1)

(
(2k)!!

(2k − 1)!!

)2

=
1

2
lim
k→∞

1

k

(
(2k)!!

(2k − 1)!!

)2

.

Otrzymali±my wi¦c zapowiadany wzór Wallisa. Wzór ten wykorzystamy teraz
do dowodu wzoru Stirlinga.
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Wzór Stirlinga
Wzór Stirlinga to nast¦puj¡cy wzór:

lim
n→∞

n! en

√
2 π n nn

= 1.

Niech
an =

n! en

√
n nn

.

Oczywi±cie an > 0, poka»emy te», »e ci¡g {an} jest malej¡cy. Najpierw
zauwa»my, »e

an

an+1

=
n! en

√
nnn

·
√

n + 1 (n + 1)n+1

(n + 1)! en+1
=

1

e

(
n + 1

n

)n+ 1
2

(13.2)

Chcemy pokaza¢, »e powy»sza wielko±¢ jest wi¦ksza ni» 1. Wstawmy 1
x
za

n, i rozwa»my funkcj¦ b¦d¡c¡ logarytmem z wyra»enia (13.2), pomno»onego
przez e.

f(x) =

(
1

x
+

1

2

)
log(1 + x), x > 0. (13.3)

Poka»emy, »e funkcja f jest zawsze wi¦ksza od 1, czyli funkcja ef(x) jest
zawsze wi¦ksza od e, w szczególno±ci jest wi¦ksza od e w punktach postaci
x = 1

n
, czyli wyra»enie (13.2) jest wi¦ksze od 1 dla ka»dego n = 1, 2, 3, . . . ,

czyli ci¡g {an} jest malej¡cy. Wró¢my wi¦c do funkcji (13.3), i poka»my, »e
f(x) > 1 dla x > 0. Jest to typowe ¢wiczenie na analiz¦ przebiegu funkcji.
Po pierwsze mamy

lim
x→0+

f(x) = lim
x→0+

1

x
log(1 + x) +

1

2
lim

x→0+
log(1 + x) = 1

(pierwsz¡ granic¦ liczyli±my w przeszªo±ci, mo»na pokaza¢ z reguªy de l'Hôpitala,
»e wynosi 1, a druga granica wynosi 0, i wynika z ci¡gªo±ci logarytmu). Ob-
liczymy teraz pochodn¡ i poka»emy, »e f jest rosn¡ca dla x > 0.

f ′(x) = − 1

x2
log(1 + x) +

(
1

x
+

1

2

)
1

1 + x
.

Chcemy pokaza¢, »e dla x > 0 powy»sze wyra»enie jest > 0, czyli

− 1

x2
log(1 + x) +

(
1

x
+

1

2

)
1

1 + x
> 0,

−(1 + x) log(1 + x) + x +
x2

2
> 0.
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Rozpatrzmy pomocnicz¡ funkcj¦

g(x) = −(1 + x) log(1 + x) + x +
x2

2
.

Wtedy g(0) = 0, oraz g′(x) = − log(1 + x)− 1 + 1 + x = x− log(1 + x) > 0,
(ostatnia nierówno±¢ to po prostu ex > 1 + x dla x > 0). Funkcja g jest wi¦c
rosn¡ca, a poniewa» �startuje� z 0, wi¦c jest wi¦ksza od 0 dla x > 0. Mamy
wi¦c f ′(x) > 0 czyli f jest rosn¡ca, a wi¦c

f(x) > lim
t→0+

f(t) = 1.

Pokazali±my wi¦c »e f jest wi¦ksza od 1, a wi¦c wyra»enie (13.2) jest wi¦ksze
od 1 dla wszystkich n ∈ N, a wi¦c ci¡g {an} jest malej¡cy. Ci¡g malej¡cy, o
wyrazach dodatnich musi by¢ zbie»ny, i niech jego granica wynosi g.

g = lim
n→∞

an.

Skoro wyrazy ci¡gu s¡ dodatnie, to automatycznie g ≥ 0. Poka»emy, »e
g > 0. W tym celu poka»emy, »e wszystkie wyrazy an s¡ wi¦ksze ni» pewna
dodatnia liczba. Mamy

log
an

an+1

=
(
n +

1

2

)
log

(
1 +

1

n

)− 1. (13.4)

B¦dziemy potrzebowali nast¦puj¡cej nierówno±ci:

log

(
1 +

1

n

)
≤ 1

2

(
1

n
+

1

n + 1

)
. (13.5)

sieczna wykresu

wykres f(x) = 1
x

n n+ 1

Rysunek 13.1: Oszacowanie (13.5).

Na rysunku 13.1 pole obszaru pod wykresem, od n do n + 1 to caªka
z funkcji 1

x
, po przedziale [n, n + 1], czyli log(n + 1) − log n = log(1 + 1

n
).
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Natomiast pole trapezu, czyli pole obszaru pod sieczn¡ to = 1
2
( 1

n
+ 1

n+1
).

Funkcja 1
x
jest wypukªa: ( 1

x
)′′ = 2

x3 > 0. Wykres le»y wi¦c pod ka»d¡ sieczn¡,
pomi¦dzy punktami przeci¦cia, czyli obszar pod wykresem zawiera si¦ we-
wn¡trz trapezu, czyli pole obszaru pod wykresem jest nie wi¦ksze ni» pole
trapezu, czyli otrzymujemy oszacowanie (13.5). Wstawiaj¡c (13.5) do (13.4)
otrzymujemy

log
an

an+1

≤ 1

2

(
n +

1

2

)(
1

n
+

1

n + 1

)
− 1

=
1

2

(
1 +

n

n + 1
+

1

2 n
+

1

2 n + 2

)
− 1

=
1

4 n
− 1

4 n + 4
.

Dodaj¡c do siebie powy»sze oszacowania dla n = 1, . . . , k − 1 mamy

log
a1

ak

= log
a1

a2

+ log
a2

a3

+ · · ·+ log
ak−1

ak

≤
k−1∑
i=1

1

4

(
1

i
− 1

i + 1

)

=
1

4

(
1− 1

k

)

<
1

4
.

Otrzymujemy wi¦c
a1

ak

< e
1
4 ⇒ ak > a1 e−

1
4 = e

3
4 ,

gdy» a1 = e. Wszystkie wyrazy ci¡gu s¡ wi¦c wi¦ksze ni» e
3
4 , a wi¦c tak»e

g ≥ e
3
4 > 0. Pozostaªo nam jeszcze troche manipulacji.

a2
n =

(n!)2 e2 n

n n2 n
, a2n =

(2 n)! e2 n

√
2 n (2 n)2 n

,

czyli
a2

n

a2n

√
2

=
(n!)2

nn2 n
√

2
·
√

2 n (2 n)2 n

(2 n)!
=

(n!)2 22 n

(2 n)!
√

n
.

Zauwa»my zwi¡zek ze wzorem Wallisa, który mo»emy zapisa¢ tak

1√
n

(2 n)!!

(2 n− 1)!!
→ √

π.
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Zauwa»my te» nast¦puj¡ce zwi¡zki

(2 n)!! = 2 · 4 · · · · · 2 n = 2n n!,

(2 n− 1)!! = 1 · 3 · · · · · (2 n− 1) =
(2 n)!

(2 n)!!
=

(2 n)!

2n n!
.

Skªadaj¡c to razem otrzymujemy

1√
n

(2 n)!!

(2 n− 1)!!
=

1√
n

2n n! 2n n!

(2 n)!
=

(n!)2 22 n

(2 n)!
√

n
=

a2
n

a2n

√
2
.

W ko«cu wi¦c

√
π = lim

n→∞
a2

n

a2n

√
2

=
g2

g
√

2
⇒ g2 −

√
2 π g = 0 ⇒ g =

√
2 π,

gdy» g > 0. Zauwa»my, »e udowodnili±my w ten sposób wzór Stirlinga
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Rozdziaª 14

Caªkowanie numeryczne

Jest kilka typowych algorytmów caªkowania numerycznego. Opiszemy me-
tod¦ trapezów, metod¦ Simpsona i, jako ciekawostk¦, metod¦ Monte Carlo.
Metoda trapezów i metoda Simpsona to podstawowe metody caªkowanie w
przypadku funkcji, o których niewiele wiadomo. Sprawdzaj¡ si¦ dobrze w
sytuacji, gdy caªkowana funkcja ma dobre oszacowanie na drug¡ pochodn¡
(metoda trapezów) lub 4 pochodn¡ (metoda Simpsona).

Metoda trapezów
Chcemy obliczy¢ caªk¦ funkcji f na przedziale [a, b]. Funkcj¦ f przybli»amy
funkcj¡ liniow¡, o tych samych warto±ciach na ko«cach przedziaªu caªko-
wania, i zamiast caªki z f obliczamy caªk¦ z otrzymanej funkcji liniowej.
Oznaczmy x0 = a i x1 = b, oraz y0 = f(x0) i y1 = f(x1). Funkcja liniowa,
która w punktach x0 i x1 przyjmuje warto±ci odpowiednio y0 i y1 dana jest
wzorem

w(x) = y0 +
y1 − y0

x1 − x0

(x− x0), (14.1)

a caªka z niej wynosi ∫ x1

x0

w(x) dx = (x1 − x0)
y0 + y1

2
.

Mamy nast¦puj¡ce oszacowanie bª¦du metody trapezów.
Fakt 14.1. Je»eli funkcja f ma ograniczon¡ drug¡ pochodn¡, czyli speªnia

|f ′′(x)| ≤ M, x ∈ (a, b), (14.2)
to caªka z funkcji f na przedziale [a, b] ró»ni si¦ od caªki z funkcji liniowej
(14.1) o nie wi¦cej ni»

R ≤ M(b− a)3

12
. (14.3)

166



Dowód. Mamy udowodni¢ oszacowanie
∣∣∣∣
∫ b

a

ϕ(x) dx

∣∣∣∣ ≤
M(b− a)3

12
, (14.4)

dla funkcji ϕ(x) = f(x)− w(x). Funkcja ϕ(x) speªnia wi¦c

ϕ(a) = ϕ(b) = 0, |ϕ′′(x)| = |f ′′(x)| ≤ M,

gdy» w′′(x) = 0. Najpierw udowodnimy (14.4) dla szczególnego przypadku
a = −1, b = 1. Ogólny przypadek dowolnych a < b otrzymamy z tego
szczególnego przypadku przez zamian¦ zmiennych. Niech wi¦c a = −1 i
b = 1. Wtedy

∫ 1

−1

ϕ(x) dx =

∫ 1

−1

x′ · ϕ(x) dx

= xϕ(x)|1−1 −
∫ 1

−1

x · ϕ′(x) dx

= 0−
∫ 1

−1

(
x2

2

)′
· ϕ′(x) dx

= −x2

2
· ϕ′(x)

∣∣∣∣
1

−1

+
1

2

∫ 1

−1

x2 · ϕ′′(x) dx

=

(
1

2
ϕ′(−1)− 1

2
ϕ′(1)

)
+

1

2

∫ 1

−1

x2 · ϕ′′(x) dx.

Zauwa»my teraz, z zasadniczego twierdzenia rachunku ró»niczkowego i caª-
kowego, »e

−
(

1

2
ϕ′(1)− 1

2
ϕ′(−1)

)
= −1

2

∫ 1

−1

ϕ′′(x) dx.

Wstawiaj¡c to do poprzedniego rachunku, otrzymujemy
∣∣∣∣
∫ 1

−1

ϕ(x) dx

∣∣∣∣ =
1

2

∣∣∣∣
∫ 1

−1

(x2 − 1) · ϕ′′(x) dx

∣∣∣∣

≤ 1

2

∫ 1

−1

|(x2 − 1) · ϕ′′(x)| dx

≤ M

2

∫ 1

−1

(1− x2) dx

=
M

2

(
x− x3

3

)∣∣∣∣
1

−1
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=
2M

3
.

Zauwa»my, »e otrzymali±my dokªadnie oszacowanie (14.4) w szczególnym
przypadku a = −1 i b = 1. Obecnie rozci¡gniemy to na dowolne a < b.
Niech wi¦c funkcja ϕ speªnia ϕ(a) = ϕ(b) = 0, i |ϕ′′(x)| ≤ M dla x ∈ [a, b].
Zde�niujmy pomocnicz¡ funkcj¦

ψ(x) = ϕ( b−a
2

(x + 1) + a). (14.5)

Wtedy, ψ(−1) = ϕ(a) = 0 i ψ(1) = ϕ(b) = 0, oraz

ψ′′(x) = ( b−a
2

)2ϕ( b−a
2

(x + 1) + a),

czyli
|ψ′′(x)| ≤ M( b−a

2
)2 = M (b−a)2

4
= M ′.

Z udowodnionego ju» oszacowania otrzymujemy, »e
∣∣∣∣
∫ 1

−1

ψ(x) dx

∣∣∣∣ ≤
2M ′

3
=

M(b− a)2

6
.

Z drugiej strony, stosuj¡c zamian¦ zmiennych, mamy
∫ 1

−1

ψ(x) dx =

∫ 1

−1

ϕ( b−a
2

(x + 1) + a) dx

=

{
t = b−a

2
(x + 1) + a

dt = b−a
2

dx

}

=
2

b− a

∫ b

a

ϕ(t) dt.

�¡czymy wszystko razem, i ostatecznie otrzymujemy
∣∣∣∣
∫ b

a

ϕ(x) dx

∣∣∣∣ =
b− a

2

∣∣∣∣
∫ 1

−1

ψ(x) dx

∣∣∣∣ ≤
M(b− a)3

12
,

czyli (14.4). Zauwa»my jeszcze, »e powy»szego oszacowania bª¦du nie da
si¦, ogólnie rzecz bior¡c, poprawi¢. Przykªadem mo»e by¢ a = −1, b = 1,
i f(x) = x2. W tym przypadku caªka dokªadna z funkcji wynosi 2

3
, caªka z

funkcji przybli»aj¡cej liniowej wynosi 2, czyli bª¡d metody trapezów wynosi
4
3
. Z drugiej strony (b− a)3 = 8, f ′′(x) ≡ 2, czyli

M(b− a)3

12
=

16

12
=

4

3
.

168



a = x0 x1 b = x2

Rysunek 14.1: Metoda trapezów, n = 2.

Na rysunku 14.1 widzimy dlaczego metoda nazywa si¦ metod¡ trapezów.
W celu zwi¦kszenia dokªadno±ci przybli»enia caªki dzielimy przedziaª na n
podprzedziaªów jednakowej dªugo±ci a = x0 < x1 < · · · < xn = b, oznaczamy
yi = f(xi), i = 0, 1, . . . , n i stosujemy metod¦ trapezów w ka»dym kolejnym
podprzedziale. Otrzymujemy

S =
n−1∑
i=0

(xi+1 − xi)
yi + yi+1

2
=

b− a

2 n

n−1∑
i=0

(yi + yi+1) =

=
b− a

2 n
(y0 + 2 y1 + 2 y2 + · · ·+ 2 yn−1 + yn).

Je»eli funkcja f speªnia (14.7), to bª¡d przybli»enia w ka»dym podprzedziale
jest nie wi¦kszy ni» M(b−a)3

12n3 , i bª¦dów takich jest n, czyli caªkowity bª¡d
przybli»enia jest nie wi¦kszy ni» M(b−a)3

12n2 .

Metoda Simpsona
Ta metoda jest podobna do poprzedniej, z tym »e caªkowan¡ funkcj¦ f przy-
bli»amy funkcj¡ kwadratow¡, która ma te same warto±ci co f w ko«cach i
w po±rodku przedziaªu [a, b]. Oznaczmy x0 = a, x1 = a+b

2
, x2 = b, oraz

yi = f(xi) dla i = 0, 1, 2. Szukana przez nas funkcja kwadratowa to funkcja
postaci

w(x) = α x2 + β x + γ, (14.6)
speªniaj¡ca w(xi) = yi, i = 0, 1, 2, czyli nast¦puj¡ce 3 warunki

α a2 + β a + γ = y0,

α

(
a + b

2

)2

+ β
a + b

2
+ γ = y1,
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α b2 + β b + γ = y2.

Nie musimy wylicza¢ α, β ani γ, caªk¦ z funkcji w wyrazimy przy pomocy
y0, y1 i y2.
∫ b

a

w(x) dx =

∫ b

a

(α x2 + β x + γ) dx

=

(
α

x3

3
+ β

x2

2
+ γ x

)∣∣∣∣
b

a

= α
b3

3
+ β

b2

2
+ γ b− α

a3

3
− β

a2

2
− γ a

=
α

3
(b3 − a3) +

β

2
(b2 − a2) + γ (b− a)

=
b− a

6
(2αb2 + 2αab + 2αa2 + 3βb + 3βa + 6γ)

=
b− a

6
(αa2 + βa + γ + αb2 + βb + γ + α(b2 + 2ab + a2) + 2β(b + a) + 4γ)

=
b− a

6

(
y0 + y2 + 4 α

(
b + a

2

)2

+ 4 β
b + a

2
+ 4 γ

)

=
b− a

6
(y0 + 4 y1 + y2).

Dla metody Simpsona mamy nast¦puj¡ce oszacowanie bª¦du.
Fakt 14.2. Je»eli funkcja f ma ograniczon¡ czwart¡ pochodn¡, czyli speªnia

|f (4)(x)| ≤ M, x ∈ (a, b), (14.7)

to caªka z funkcji f na przedziale [a, b] ró»ni si¦ od caªki z funkcji kwadratowej
(14.6) o nie wi¦cej ni»

R ≤ M(b− a)5

2880
. (14.8)

Dowód.

W celu zwi¦kszenia dokªadno±ci dzielimy przedziaª caªkowania na 2n pod-
przedziaªów, i w ka»dym podprzedziale przeprowadzamy powy»szy rachunek.
Mamy 2n punktów podziaªu a = x0 < x1 < · · · < x2n = b (wliczaj¡c w to
±rodki n podprzedziaªów), jak zwykle oznaczamy yi = f(xi) i piszemy

S =
b− a

6 n

n−1∑
i=0

(y2i + 4 y2i+1 + y2i+2)

=
b− a

6 n
(y0 + y2n + 2 (y2 + y4 + · · ·+ y2n−2) + 4 (y1 + y3 + · · ·+ y2n−1)).
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a = x0 x1 b = x2

Rysunek 14.2: Metoda Simpsona, n = 2.

Monte Carlo
Maj¡c funkcj¦ nieujemn¡ (i, oczywi±cie, ograniczon¡) f na [a, b] mo»emy
post¦powa¢ nast¦puj¡co. Wyznaczmy ograniczenie f od góry, powiedzmy
f(x) ≤ M . Nast¦pnie generujemy losowo n punktów (xi, yi) w prosto-
k¡cie [a, b] × [0, M ] (�rzucamy� losowo n punktów na prostok¡t). Rozkªad
prawdopodobie«stwa powinien by¢ jednostajny (czyli prawdopodobie«stwo,
»e punkt wpadnie w jaki± obszar powinno by¢ proporcjonalne do pola po-
wierzchni tego obszaru), a wszystkie liczby losowe xi, yi, i = 1, . . . , n powinny
by¢ generowane niezale»nie (niezale»ne zmienne losowe). Nast¦pnie zliczamy
wszystkie przypadki, w których yi < f(xi). To s¡ te losowo rzucone punkty,
które wpadªy w obszar pod wykresem funkcji f , i niech ich b¦dzie m. Wtedy
proporcja m

n
powinna by¢ taka sama, jak proporcja pola pod wykresem do

pola caªego prostok¡ta
m

n
'

∫ b

a
f(x) dx

(b− a) ·M .

Taka metoda liczenia caªki nazywa si¦ metod¡ Monte Carlo. W niektórych
zastosowaniach (na przykªad przy pomiarach wielko±ci elektrycznych) tego
typu metody s¡ stosowane.
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Rozdziaª 15

Ci¡gi i szeregi funkcyjne

Niech fn, n = 1, 2, . . . b¦d¡ funkcjami okre±lonymi na pewnym zbiorze E.
Mówimy, »e tworz¡ one ci¡g funkcyjny na E. Zauwa»my, »e dla dowolnego
ustalonego punktu x ∈ E mamy ci¡g liczbowy {fn(x)}. Ci¡g taki mo»e by¢
zbie»ny lub nie. Je»eli dla ka»dego x ∈ E istnieje granica limn→∞ fn(x), to
mówimy, »e ci¡g funkcyjny {fn} jest zbie»ny punktowo. Podobnie, je»eli dla
ka»dego x ∈ E szereg liczbowy

∑∞
n=1 fn(x) jest zbie»ny, to mówimy, »e szereg

funkcyjny
∑∞

n=1 fn jest zbie»ny punktowo na E.
Naszym celem jest zbadanie mo»liwo±ci zamiany kolejno±ci wykonywania

dziaªa« analitycznych na funkcjach. Na przykªad ró»niczkowanie szeregu
funkcyjnego wyraz za wyrazem (�wej±cie� z pochodn¡ pod znak sumy).
Przykªady: (a) Rozwa»my szereg

∞∑
n=1

n qn.

Ten szereg jest zbie»ny dla |q| < 1 (mo»na zastosowa¢ na przykªad kryterium
d'Alemberta), ale jaka jest jego suma? Napiszmy

f(x) =
∞∑

n=0

xn =
1

1− x
, dla x ∈ (−1, 1).

Pochodn¡ funkcji f ªatwo policzy¢: f ′(x) = 1
(1−x)2

. Gdyby±my mogli ró»nicz-
kowa¢ szereg funkcyjny

∑∞
n=0 xn wyraz za wyrazem, to

1

(1− x)2
= f ′(x) =

∞∑
n=0

(xn)′ =
∞∑

n=1

nxn−1 =
1

x

∞∑
n=1

nxn.

Otrzymaliby±my wi¦c
∞∑

n=1

n qn =
q

(1− q)2
, dla |q| < 1.
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(b) Przypu±¢my, »e szukamy funkcji f dla której

f ′(x) = α f(x). (15.1)

Spróbujmy znale¹¢ f w postaci szeregu pot¦gowego f(x) =
∑∞

n=0 anx
n. Gdy-

by±my mogli szereg ró»niczkowa¢ wyraz za wyrazem to, podstawiaj¡c wynik
do równania (15.1)

f ′(x) =
( ∞∑

n=0

anx
n
)′

=
∞∑

n=1

n an xn−1 =
∞∑

n=0

(n + 1) an+1 xn =
∞∑

n=0

α an xn.

Wida¢, »e wystarczy znale¹¢ takie wspóªczynniki an, aby speªnione byªo rów-
nanie

(n + 1) an+1 = α an, dla n = 0, 1, . . . .

Jest to równanie rekurencyjne, które ªatwo mo»na rozwi¡za¢:

an+1 = α
an

n + 1
⇒ an = αn a0

n!
.

Otrzymaliby±my wi¦c rozwi¡zanie

f(x) =
∞∑

n=0

a0
αn

n!
xn = a0 eα x. (15.2)

Zauwa»my, »e chocia» nie wiemy na razie, czy powy»sze rozumowanie jest
prawidªowe, to znaczy czy w powy»szej sytuacji istotnie szereg pot¦gowy
mo»na ró»niczkowa¢ wyraz za wyrazem, to funkcja dana w (15.2) rzeczywi±cie
speªnia równanie (15.1)
(c) Niech ci¡g funkcyjny b¦dzie dany wzorem

fn(x) =
sin(nx)√

n
.

Zauwa»my, »e dla ka»dego ustalonego x ∈ R ci¡g zbiega fn(x) → 0, gdy
n →∞. Wyrazy ci¡gu s¡ funkcjami ró»niczkowalnymi, i f ′n(x) =

√
n cos nx.

Ci¡g funkcji pochodnych nie zbiega wi¦c do pochodnej granicy ci¡gu, bo,
na przykªad f ′n(0) =

√
n 9 0. Widzimy wi¦c, »e w tym wypadku granica

pochodnych nie jest pochodn¡ granicy.
(d) Rozwa»my ci¡g funkcyjny

fn(x) = nx (1− x2)n, dla 0 ≤ x ≤ 1.
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Ci¡g ten ma granic¦ w ka»dym punkcie, i t¡ granic¡ jest funkcja f(x) stale
równa 0:

fn(0) = 0, lim
n→∞

fn(x) = 0 dla x ∈ (0, 1].

Z drugiej strony
∫ 1

0

fn(x) dx = n

∫ 1

0

x (1− x2)n dx

= − n

2

∫ 0

1

tn dt

=
n

2

∫ 1

0

tn dt

=
n

2

tn+1

n + 1

∣∣∣∣
1

0

=
n

2 n + 2
→ 1

2
,

chocia»
∫ 1

0
0 dx = 0. W tym wypadku caªka z granicy nie jest równa granicy

caªek.
Przykªady (a) i (b) pokazuj¡, »e zamiana kolejno±ci operacji analitycz-

nych, na przykªad ró»niczkowanie szeregu funkcyjnego wyraz za wyrazem,
mo»e by¢ przydatna, natomiast przykªady (c) i (d) pokazuj¡, »e sprawa jest
delikatna, i czasem taka zamiana nie jest mo»liwa. Teraz zbadamy to za-
gadnienie dokªadniej, i, na przykªad, poka»emy, »e szeregi pot¦gowe mo»na
ró»niczkowa¢ wyraz za wyrazem.

De�nicja 15.1. Ci¡g funkcyjny {fn} jest zbie»ny jednostajnie do funkcji f
na zbiorze E, je»eli

∀ ε > o ∃ n0 ∈ N ∀ n ≥ n0 ∀ x ∈ E |fn(x)− f(x)| < ε,

(czyli nie tylko ci¡g jest zbie»ny w ka»dym punkcie, ale n0 mo»na wybra¢
niezale»nie od x ∈ E). Podobnie, szereg funkcyjny

∑∞
n=1 fnjest zbie»ny jed-

nostajnie na E, je»eli ci¡g sum cz¦±ciowych

sn(x) =
n∑

i=1

fi(x)

jest zbie»ny jednostajnie.

Warto chwile zastanowi¢ si¦ nad t¡ de�nicj¡. Zbie»no±¢ ci¡gu jedno-
stajna na zbiorze E oznacza, »e ci¡g jest zbie»ny w ka»dym punkcie, oraz,
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dodatkowo, »e pr¦dko±¢ zbie»no±ci jest równomierna we wszystkich punktach.
Maj¡c dane ε > 0 mo»emy dobra¢ n0 ∈ N, które b¦dzie dobre we wszystkich
punktach x ∈ E.

Twierdzenie 15.2. Ci¡g funkcyjny {fn} jest zbie»ny jednostajnie na zbiorze
E wtedy i tylko wtedy, gdy speªnia jednostajnie warunek Cauchy'ego, czyli
gdy

∀ ε > o ∃ n0 ∈ N ∀ m,n ≥ n0 ∀x ∈ E |fn(x)− fm(x)| < ε.

Dowód. Je»eli fn zbiega jednostajnie do f , to dla ε > 0 mo»na znale¹¢ n0 ∈ N
takie, »e ∀ m, n ≥ n0 ∀ x ∈ E

|fn(x)− f(x)| < ε

2
, |fm(x)− f(x)| < ε

2
.

Wtedy

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |fm(x)− f(x)| < ε

2
+

ε

2
= ε,

a wi¦c widzimy, »e ze zbie»no±ci jednostajnej wynika jednostajny warunek
Cauchy'ego. Teraz w drug¡ stron¦. Je»eli speªniony jest jednostajny warunek
Cauchy'ego, to jest te» speªniony warunek Cauchy'ego w ka»dym punkcie
x ∈ E. W takim razie w ka»dym punkcie istnieje granica f(x):

f(x) = lim
n→∞

fn(x), ∀ x ∈ E.

Niech teraz ε > 0 a n0 ∈ N b¦dzie takie, »e dla m,n ≥ n0 i x ∈ E

|fn(x)− fm(x)| < ε.

Gdy m →∞ to ci¡g liczbowy po lewej stronie jest zbie»ny do |fn(x)− f(x)|,
a wi¦c tak»e

|fn(x)− f(x)| < ε.

Poniewa» powy»sze jest speªnione dla wszystkich n ≥ n0 i x ∈ E, a ε > 0
byªo dowolne, to fn → f jednostajnie.

Twierdzenie 15.3. Granica jednostajnie zbie»nego ci¡gu funkcji ci¡gªych
jest ci¡gªa.

Dowód. Niech fn → f jednostajnie na zbiorze E, oraz niech wszystkie funkcje
fn b¦d¡ ci¡gªe. Niech x ∈ E, i niech ε > 0 b¦dzie dane. Wtedy istnieje
n0 ∈ N takie, »e

∀ n ≥ n0 ∀ y ∈ E |fn(y)− f(y)| < ε

3
.
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Funkcja fn0 jest ci¡gªa, wi¦c istnieje δ > 0 takie, »e

∀ y ∈ E |y − x| < δ ⇒ |fn0(y)− fn0(x)| < ε

3
.

Wtedy

|f(y)− f(x)| ≤ |f(y)− fn0(y)|+
+ |fn0(y)− fn0(x)|+ |fn0(x)− f(x)| < ε

3
+

ε

3
+

ε

3
= ε.

Funkcja graniczna f jest wi¦c ci¡gªa w punkcie x.

Przykªad: Niech fn(x) = xn na [0, 1]. Ka»da z funkcji fn jest ci¡gªa na
przedziale [0, 1]. Jak ªatwo zauwa»y¢

lim
n→∞

fn(x) =

{
1 : x = 1

0 : x < 1.

Granica ci¡gu jest wi¦c funkcj¡ nieci¡gª¡ (w punkcie 1), a w takim razie fn

nie mo»e by¢ zbie»ny jednostajnie.

Twierdzenie 15.4. Niech {fn} b¦dzie ci¡giem funkcji caªkowalnych na [a, b]
w sensie Riemanna i niech fn → f jednostajnie na [a, b]. Wtedy f te» jest
caªkowalna w sensie Riemanna oraz

∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx. (15.3)

Dowód. Niech ε > 0 b¦dzie dane. Z jednostajnej zbie»no±ci ci¡gu {fn} wy-
nika, »e istnieje n0 ∈ N takie, »e

∀ n ≥ n0 ∀ x ∈ [a, b] |fn(x)− f(x)| < ε′ =
ε

2 (b− a)
.

Wynika stad, »e

∀ n ≥ n0 ∀ x ∈ [a, b] fn(x)− ε

2 (b− a)
< f(x) < fn(x) +

ε

2 (b− a)
,

a wi¦c, w szczególno±ci f jest funkcj¡ ograniczon¡. We¹my podziaª P odcinka
[a, b], wtedy

U(P, f) ≤ U

(
P, fn +

ε

2 (b− a)

)
,
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a wi¦c
∫ b

a

f(x) dx ≤
∫ b

a

(
fn(x) +

ε

2 (b− a)

)
dx =

∫ b

a

fn(x) dx +
ε

2
.

Podobnie,

L(P, f) ≥ L

(
P, fn − ε

2 (b− a)

)
⇒

∫ b

a

fn(x) dx ≥
∫ b

a

fn(x) dx− ε

2
.

Mamy wi¦c

0 ≤
∫ b

a

f(x) dx−
∫ b

a

fn(x) dx ≤ ε

2
+

ε

2
= ε.

Poniewa» ε byªo dowolne, wi¦c caªki dolna i górna musz¡ by¢ równe, a wi¦c
funkcja f jest caªkowalna w sensie Riemanna. Pozostaªa jeszcze do pokazania
równo±¢ (15.3). Niech, znowu, ε > 0 b¦dzie dowolne, i niech n0 ∈ N b¦dzie
takie, »e

∀ n ≥ n0 ∀ x ∈ [a, b] |fn(x)− f(x)| < ε

(b− a)
.

Wtedy
∣∣∣∣
∫ b

a

f(x) dx−
∫ b

a

fn(x) dx

∣∣∣∣ =

=

∣∣∣∣
∫ b

a

(
f(x)− fn(x)

)
dx

∣∣∣∣ ≤
∫ b

a

|f(x)− fn(x)| dx ≤ ε.

Poniewa» powy»sze oszacowanie zachodzi dla dowolnego n ≥ n0 wi¦c otrzy-
mujemy (15.3).

Uwaga: Powy»sze twierdzenie udowodnili±my dla caªek wªa±ciwych. Dla
caªek niewªa±ciwych niekoniecznie jest prawdziwe. Na przykªad, niech

fn(x) =

{
1
n

cos
(

x
n

)
: |x| ≤ n π

2

0 : |x| > n π
2

Wida¢, »e fn → 0 jednostajnie na caªej prostej R, ale
∫ ∞

−∞
fn(x) dx =

∫ nπ
2

−nπ
2

1

n
cos

(
x

n

)
dx =

{x

n
= t

}
=

∫ π
2

−π
2

cos t dt = sin t|
π
2

−π
2

= 2.

Widzimy wi¦c, »e ∫ ∞

−∞
fn(x) dx 9

∫ ∞

−∞
0 · dx = 0.

W przypadku caªek niewªa±ciwych, »eby przechodzi¢ do granicy pod znakiem
caªki trzeba wi¦c zaªo»y¢ co± wi¦cej ni» tylko zbie»no±¢ jednostajn¡ ci¡gu.
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Wniosek 15.5. Je»eli funkcje fn s¡ caªkowalne w sensie Riemanna na [a, b]
i

f(x) =
∞∑

n=1

fn(x) jednostajnie na [a, b],

to ∫ b

a

f(x) dx =

∫ b

a

∞∑
n=1

fn(x) dx =
∞∑

n=1

∫ b

a

fn(x) dx.

Nast¦puj¡ce twierdzenie podaje warunki pod jakimi mo»na �wej±¢� z ró»-
niczkowaniem pod znak granicy.

Twierdzenie 15.6. Niech {fn} b¦dzie ci¡giem funkcji ró»niczkowalnych na
przedziale [a, b], takim, »e ci¡g pochodnych {f ′n} jest zbie»ny jednostajnie na
[a, b]. Je»eli sam ci¡g {fn} jest zbie»ny chocia» w jednym punkcie, to jest
zbie»ny jednostajnie do pewnej funkcji f , ró»niczkowalnej na [a, b], oraz

f ′(x) = lim
n→∞

f ′n(x).

Dowód. Niech ci¡g {fn} b¦dzie zbie»ny w punkcie x ∈ [a, b]. Istnienie takiego
punktu jest w zaªo»eniach. Niech ε > 0 i niech n0 ∈ N b¦dzie takie, »e dla
wszystkich m,n ≥ n0 zachodzi

|fn(x)− fm(x)| < ε

2
,

oraz
|f ′n(y)− f ′m(y)| < ε

2 (b− a)
, y ∈ [a, b].

Skorzystali±my z obu zaªo»e«, zbie»no±ci w jednym punkcie ci¡gu {fn} oraz
zbie»no±ci jednostajnej ci¡gu pochodnych. Nast¦pnie ustalmy pewne m,n ≥
n0, i do funkcji Φ(y) = fn(y) − fm(y) zastosujmy twierdzenie o warto±ci
±redniej (oczywi±cie Φ jest ró»niczkowalna).

|Φ(y)| = |Φ(y)− Φ(x) + Φ(x)|
≤ |Φ(y)− Φ(x)|+ |Φ(x)|
< |Φ′(θ)| · |y − x|+ |Φ(x)| (dla pewnego θ pomi¦dzy y i x)
<

ε

2 (b− a)
|y − x|+ ε

2
(15.4)

≤ ε

2
+

ε

2
= ε.
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Poniewa» powy»sze oszacowanie jest prawdziwe dla wszystkich m,n ≥ n0

i dla wszystkich y ∈ [a, b], to ci¡g {fn} speªnia jednostajny warunek Cau-
chy'ego, a wi¦c, zgodnie z Twierdzeniem 15.2, jest jednostajnie zbie»ny do
pewnej funkcji f . Funkcja f , jako granica jednostajnie zbie»nego ci¡gu funk-
cji ci¡gªych jest te» ci¡gªa. Poka»emy, »e jest tak»e ró»niczkowalna i jej
pochodna jest granic¡ ci¡gu {f ′n}. Ustalmy punkt x ∈ [a, b] i niech funkcje
ϕ oraz ϕn b¦d¡ dane wzorami

ϕ(y) =

{
f(y)−f(x)

y−x
: y 6= x,

A = limn→∞ f ′n(x) : y = x,
ϕn(y) =

{
fn(y)−fn(x)

y−x
: y 6= x,

f ′n(x) : y = x.

Zauwa»my, »e w ka»dym punkcie y ∈ [a, b] mamy ϕn(y) → ϕ(y). Zauwa»my
te», »e z de�nicji wynika natychmiast, »e funkcje ϕn s¡ ci¡gªe w ka»dym punk-
cie, a funkcja ϕ jest ci¡gªa w ka»dym punkcie ró»nym od x. Teraz b¦dziemy
chcieli pokaza¢ ci¡gªo±¢ funkcji ϕ w punkcie x. Ci¡gªo±¢ w x oznaczaªaby do-
kªadnie, »e f jest ró»niczkowalna w punkcie x, i jej pochodna w tym punkcie
jest granic¡ pochodnych funkcji fn. Naszym celem obecnie b¦dzie pokaza-
nie, »e zbie»no±¢ ϕn → ϕ jest jednostajna na [a, b], z czego wynika¢ b¦dzie
ci¡gªo±¢ ϕ (przypomnijmy, »e funkcje ϕn s¡ ci¡gªe). Niech m, n ∈ N b¦d¡
dowolne, y 6= x i obliczmy

ϕn(y)− ϕm(y) =

(
fn(y)− fm(y)

)− (
fn(x)− fm(x)

)

(y − x)

=

(
f ′n(θ)− f ′m(θ)

)
(y − x)

(y − x)
,

gdzie w liczniku zastosowali±my twierdzenie o warto±ci ±redniej dla funkcji
Φ = fn − fm, a θ jest punktem po±rednim pomi¦dzy y i x. Zgodnie z (15.4)
mamy wi¦c

|ϕn(y)− ϕm(y)| = |f ′n(θ)− f ′m(θ)| < ε,

je»eli tylko n0 ∈ N jest wystarczaj¡co du»e, i m,n ≥ n0, a y 6= x. Widzimy
wi¦c, »e ci¡g {ϕn} speªnia jednostajny warunek Cauchy'ego na zbiorze E =
[a, b] \ {x}, a wi¦c jest na tym zbiorze jednostajnie zbie»ny. Równie» w
punkcie x ci¡g jest zbie»ny:

ϕn(x) = f ′n(x) → A = ϕ(x). (15.5)

Oczywi±cie skoro ci¡g {ϕn} jest zbie»ny jednostajnie na [a, b] \ {x} i dodat-
kowo zbie»ny w punkcie x, to jest jednostajnie zbie»ny na caªym przedziale
[a, b]. Wynika to wprost z obserwacji, »e je»eli ci¡g jest zbie»ny jednostajnie
na zbiorze E1 i jednostajnie na zbiorze E2, to jest te» zbie»ny jednostajnie

179



na sumie zbiorów E1 ∪ E2. Odcinek [a, b] jest sum¡ zbiorów [a, b] \ {x} oraz
zbioru jednopunktowego {x}. Zbie»no±¢ jednostajn¡ na pierwszym zbiorze
wªa±nie pokazali±my, a na zbiorze jednopunktowym zbie»no±¢ jednostajna
oznacza dokªadnie zbie»no±¢ w tym punkcie, czyli (15.6).

Tak jak wspomnieli±my ju» wcze±niej, skoro ci¡g funkcji ci¡gªych {ϕn}
jest zbie»ny jednostajnie do funkcji {ϕ}, to granica te» jest funkcj¡ ci¡gª¡, w
szczególno±ci ci¡gª¡ w punkcie x. Oznacza to, »e

lim
n→∞

f ′n(x) = A = ϕ(x) = lim
y→x

ϕ(y) = lim
y→x

f(y)− f(x)

y − x
= f ′(x).

Punkt x ∈ [a, b] byª dowolny, a wi¦c pokazali±my, »e w ka»dym punkcie
x ∈ [a, b] zachodzi

f ′(x) = lim
n→∞

f ′n(x).

Wprost z powy»szego twierdzenia wynika nast¦puj¡cy wniosek

Wniosek 15.7. Niech ci¡g {fn} b¦dzie zbie»ny do f jednostajnie na prze-
dziale [a, b], i niech F ′

n = fn, czyli niech Fn b¦d¡ funkcjami pierwotnymi
funkcji fn. Zaªó»my dodatkowo, »e dla jakiego± x ∈ [a, b] ci¡g Fn(x) jest
zbie»ny. Wtedy ci¡g funkcji pierwotnych {Fn} jest zbie»ny jednostajnie do
pewnej funkcji F , i funkcja F jest funkcj¡ pierwotn¡ funkcji f :

F ′(x) = f(x), x ∈ (a, b).

Mo»na to sformuªowa¢ w j¦zyku caªek nieoznaczonych. Niech fn → f jedno-
stajnie na [a, b], i niech ci¡g

∫
fn(x) dx (15.6)

b¦dzie zbie»ny w jakim± punkcie przedziaªu [a, b]. Wtedy ci¡g (15.6) jest
zbie»ny w ka»dym punkcie przedziaªu [a, b] (nawet jednostajnie na [a, b]), oraz

lim
n→∞

∫
fn(x) dx =

∫
lim

n→∞
f(x) dx.

Zwró¢my jeszcze uwag¦, »e zaªo»enie, »e ci¡g (15.6) jest zbie»ny przynaj-
mniej w jednym punkcie przedziaªu [a, b] jest istotne, i tak naprawd¦ spro-
wadza si¦ do wyboru staªych caªkowania dla ci¡gu caªek nieoznaczonych.

Nast¦puj¡ce twierdzenie jest bardzo wygodnym w praktyce kryterium
zbie»no±ci jednostajnej.
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Twierdzenie 15.8 (Kryterium Weierstrassa). Je»eli |fn(x)| ≤ an dla n =
1, 2, . . . i x ∈ E, oraz szereg

∑∞
n=1 an jest zbie»ny, to szereg funkcyjny

∞∑
n=1

fn(x)

jest zbie»ny jednostajnie na zbiorze E.

Dowód. Ci¡g sum cz¦±ciowych sn =
∑n

k=1 ak jest zbie»ny, czyli speªnia wa-
runek Cauchy'ego:

∀ ε > 0 ∃ n0 ∈ N ∀ m > n ≥ n0 |sm − sn| =
m∑

k=n+1

ak < ε.

Mamy, dla ka»dego x ∈ E
∣∣∣∣∣

n∑

k=1

fk(x)−
m∑

k=1

fk(x)

∣∣∣∣∣ =

∣∣∣∣∣
m∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
m∑

k=n+1

|fk(x)| ≤
m∑

k=n+1

ak < ε.

Ci¡g sum cz¦±ciowych szeregu
∑∞

k=1 fk(x) speªnia wi¦c jednostajny warunek
Cauchy'ego, jest wi¦c jednostajnie zbie»ny.

Szeregi pot¦gowe
Udowodnione powy»ej twierdzenia zastosujemy do szeregów pot¦gowych, które
stanowi¡ typowy przykªad szeregów funkcyjnych. Wiemy, »e szereg funkcyjny
postaci

∞∑
n=0

an(x− x0)
n (15.7)

jest zbie»ny wewn¡trz przedziaªu zbie»no±ci (x0 − R, x0 + R) (nie wiadomo
w ogólnym przypadku jak jest na ko«cach x0 ±R), je»eli R > 0, gdzie

R =
1

lim
n→∞

n
√
|an|

,

przy czym R = ∞ je»eli limn→∞ n
√
|an| = 0, a je»eli limn→∞ n

√
|an| = +∞ to

R = 0, i szereg (15.7) jest zbie»ny tylko dla x = x0. Szereg taki de�niuje
wi¦c funkcj¦, której dziedzin¡ jest przedziaª zbie»no±ci szeregu:

f(x) =
∞∑

n=0

an(x− x0)
n (15.8)
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Twierdzenie 15.9. 1. Szereg pot¦gowy (15.8) jest zbie»ny jednostajnie na
ka»dym przedziale domkni¦tym (zwieraj¡cym swoje ko«ce) [x0−r, x0+r]
zawartym wewn¡trz przedziaªu zbie»no±ci, to znaczy r < R:

[x0 − r, x0 + r] ⊂ (x0 −R, x0 + R).

2. Szereg pochodnych
∞∑

n=1

n an (x− x0)
n−1 =

∞∑
n=0

(n + 1) an+1(x− x0)
n (15.9)

ma ten sam promie« zbie»no±ci R co szereg wyj±ciowy (15.8), a wi¦c jest
te» zbie»ny jednostajnie w ka»dym przedziale domkni¦tym [x0−r, x0+r]
dla r < R.

3. Szereg pot¦gowy mo»na wi¦c ró»niczkowa¢ i caªkowa¢ wyraz za wyrazem
wewn¡trz przedziaªu zbie»no±ci (x0 −R, x0 + R).

Dowód. Niech
sn(x) =

n∑

k=0

ak(x− x0)
k

b¦dzie ci¡giem sum cz¦±ciowych. Wtedy dla x ∈ [x0 − r, x0 + r] mamy

|ak(x− x0)
k| = |ak| |x− x0|k ≤ |ak| rk. (15.10)

Zauwa»my, »e szereg
∞∑

n=0

|an| rn

jest zbie»ny, wynika to z kryterium Cauchy'ego zbie»no±ci:

lim
n→∞

n
√
|an| rn = r · lim

n→∞
n
√
|an| = r

R
< 1.

W takim razie, zgodnie z (15.10) i kryterium Weierstrassa szereg pot¦gowy
(15.8) jest zbie»ny jednostajnie na przedziale [x0− r, x0 + r]. Udowodnili±my
wi¦c cz¦±¢ 1. twierdzenia.
2. Mamy

n
√
|an+1|(n + 1) = n

√
|an+1| n

√
n + 1. (15.11)

Nietrudno pokaza¢, »e granica górna (sko«czona lub niesko«czona) ci¡gu
(15.11) jest taka sama, jak granica górna ci¡gu limn→∞ n

√
|an|, a wi¦c promie«

zbie»no±ci szeregu pochodnych (15.9) jest taki sam, jak promie« zbie»no±ci
R szeregu (15.8). Szereg pochodnych jest wi¦c równie» zbie»ny jednostajnie
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na ka»dym przedziale [x0 − r, x0 + r], dla r < R.
3. Ró»niczkowanie i caªkowanie wyraz za wyrazem szeregu pot¦gowego w
ka»dym punkcie wewn¡trz przedziaªu zbie»no±ci wynika z Twierdze« 15.4 i
15.6, z faktu, »e dla ka»dego punktu x1 ∈ (x0 − R, x0 + R) mo»emy znale¹¢
r < R takie, »e x1 ∈ [x0 − r, x0 + r], oraz z udowodnionych ju» cz¦±ci 1. i
2.

Z powy»szego twierdzenia mamy nast¦puj¡cy wniosek
Wniosek 15.10. Szereg pot¦gowy

∑∞
n=0 an (x− x0)

n, którego promie« zbie»-
no±ci R > 0 okre±la na przedziale (x0−R, x0+R) funkcj¦ niesko«czenie wiele
razy ró»niczkowaln¡

f(x) =
∞∑

n=0

an (x− x0)
n, (15.12)

dla której
f (n)(x0) = n! an.

Dowód. Ró»niczkowalno±¢ jednokrotna wynika z poprzedniego twierdzenia,
a ró»niczkowalno±¢ niesko«czenie wiele razy przez indukcj¦, gdy» szereg po-
chodnych jest ka»dorazowo równie» szeregiem pot¦gowym, o tym samym pro-
mieniu zbie»no±ci. Ró»niczkuj¡c n-razy szereg (15.12) wyraz za wyrazem
otrzymujemy, dla x ∈ (x0 −R, x0 + r)

f (n)(x) =
∞∑

k=n

k (k − 1) · · · · · (k − n + 1) ak (x− x0)
k−n.

Wstawiaj¡c x = x0 otrzymujemy
f (n)(x0) = n (n− 1) · · · · · 1 an = n! an.

Wniosek 15.11. Szereg Taylora funkcji danej szeregiem (15.12) to ten sam
szereg.

Przykªad: Rozwiniemy w szereg Taylora funkcj¦ f(x) = 1
1−x

wokóª punktu
x0 = 1

2
. Mo»na to zrobi¢ prosto

1

1− x
=

1
1
2
− (1− 1

2
)

= 2
1

1− 2(x− 1
2
)

=
∞∑

n=0

2n+1

(
x− 1

2

)n

.

Wiemy, »e szereg pot¦gowy po prawej jest zbie»ny dla |x− 1
2
| < 1

2
, jego suma

jest równa 1
1−x

. W takim razie, zgodnie z powy»szym wnioskiem, szereg po
prawej jest szeregiem Taylora funkcji po lewej. Nie musieli±my liczy¢ ani
jednej pochodnej.
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Wniosek 15.12. Je»eli dwa szeregi pot¦gowe o promieniach zbie»no±ci wi¦k-
szych od zera

∞∑
n=0

an (x− x0)
n i

∞∑
n=0

bn (x− x0)
n

s¡ sobie równe w jakim± przedziale (x0 − ε, x0 + ε), to musz¡ by¢ identyczne:

an ≡ bn n = 0, 1, . . . .

Przykªady: (a) Niech f(x) = arctan(x). Rozwiniemy funkcj¦ f w szereg
MacLaurina (x0 = 0).

arctan(x) =

∫
dx

1 + x2

=

∫ ∞∑
n=0

(−x2
)n

dx

=
∞∑

n=0

(−1)n

∫
x2n dx

=
∞∑

n=0

(−1)n x2n+1

2 n + 1

= x− x3

3
+

x5

5
− . . . .

Powy»sze wynika z faktu, »e szereg pot¦gowy
∑∞

n=0(−x2)n mo»na caªkowa¢
wyraz za wyrazem. Wybieraj¡c dla caªek wyrazów staªe caªkowania równe 0
(tak jak w powy»szych obliczeniach), scaªkowany szereg jest zbie»ny, na przy-
kªad w punkcie x0 = 0 do funkcji arctan(x). Jako wniosek mamy nast¦puj¡cy
wzór na pochodne

arctan(n)(x) =

{
(−1)

n−1
2 (n− 1)! : n - nieparzyste
0 : n - parzyste.

(b) Podobnie znajdziemy rozwini¦cie w szereg MacLaurina funkcji f(x) =
log(1 + x).

log(1 + x) =

∫
dx

1 + x

=

∫ ∞∑
n=0

(−x)n dx
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=
∞∑

n=0

(−1)n

∫
xn dx

=
∞∑

n=0

(−1)n xn+1

n + 1

= x− x3

3
+

x5

5
− . . .

(c) Szereg Taylora mo»e by¢ zbie»ny, ale do innej funkcji. Niech, na przykªad

f(x) =

{
e−

1
x2 : x 6= 0

0 : x = 0.

Rysunek 15.1: Funkcja z przykªadu (c).

Funkcja f jest ró»niczkowalna w ka»dym punkcie. W ka»dym punkcie
ró»nym od 0 wynika to wprost ze wzoru na f , natomiast w 0 wymaga to
sprawdzenia. Obliczymy granic¦ ilorazu ró»nicowego w 0, oddzielnie granice
prawo- i lewostronn¡.

lim
x→0+

e−
1

x2 − 0

x
= lim

y→+∞
e−y2

1
y

= lim
y→+∞

y

ey2 = lim
y→+∞

1

2 y ey2 = 0.

Podobnie obliczamy granic¦ lewostronn¡, gdy x → 0−. Pochodna f ′(0) ist-
nieje wi¦c, i jest równa 0. Poza zerem, ze wzoru mamy

f ′(x) =
2

x3
e−

1
x2 , x 6= 0.
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Podobnie jak pierwsz¡ pochodn¡, korzystaj¡c z reguªy de l'Hôpitala spraw-
dzamy, »e f ′′(0) = 0. Nietrudno zauwa»y¢, »e pochodna dowolnego rz¦du
f (n)(x), x 6= 0 jest sum¡ skªadników postaci 1

xk e−
1

x2 , wi¦c indukcyjnie mo»na
pokaza¢, »e f (n)(0) istnieje dla dowolnego n ∈ N, i jest równa 0. Funkcja f
jest wi¦c ró»niczkowalna niesko«czenie wiele razy, a jej szereg Taylora w 0
jest szeregiem zerowym

0 + 0 · x + 0 · x2 + · · · = 0.

Z drugiej strony f(x) 6= 0 dla x 6= 0, czyli funkcja nie jest nigdzie, oprócz 0,
równa swojemu szeregowi Taylora.
(d) Znajdziemy wzór na sum¦ szeregu

∑∞
n=1 n2xn. Przedziaªem zbie»no±ci

tego szeregu, jak si¦ ªatwo przekona¢ jest przedziaª (−1, 1). Mamy
∞∑

n=1

n2 xn =
∞∑

n=1

(n + 2) (n + 1) xn −
∞∑

n=1

3 nxn −
∞∑

n=1

2 xn

=
∞∑

n=1

(
xn+2

)′′
− 3

∞∑
n=1

(n + 1) xn +
∞∑

n=1

xn

=
∞∑

n=1

(
xn+2

)′′
− 3

∞∑
n=1

(
xn+1

)′
+

∞∑
n=1

xn

=

( ∞∑
n=1

xn+2

)′′

− 3

( ∞∑
n=1

xn+1

)′

+
∞∑

n=1

xn

=

( ∞∑
n=3

xn

)′′

− 3

( ∞∑
n=2

xn

)′

+
∞∑

n=1

xn

=

(
x3

∞∑
n=0

xn

)′′

− 3

(
x2

∞∑
n=0

xn

)′

+ x

∞∑
n=0

xn

=

(
x3

1− x

)′′
− 3

(
x2

1− x

)′
+

x

1− x

=
2 x3 − 6 x2 + 6 x

(1− x)3
− 6 x− 3 x2

(1− x)2
+

x

1− x

=
2 x3 − 5 x2 + 5 x

(1− x)3
.

Sprawdzanie jednostajnej zbie»no±ci
Wypiszmy proste fakty, które w wi¦kszo±ci wypadków pozwalaj¡ nam roz-
strzygn¡¢ czy zbie»no±¢ ci¡gu funkcji jest jednostajna. Niech fn(x) → f(x)
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w ka»dym punkcie x ∈ E.
(a) Je±li |fn(x)− f(x)| ≤ αn dla ka»dego x ∈ E i αn → 0, to fn → f jedno-
stajnie na E.
(b) Je»eli istnieje ci¡g {xn} ⊂ E taki, »e |fn(xn)− f(xn)| nie jest zbie»ny do
0, to fn nie jest zbie»ny jednostajnie do f na E.
(c) Je»eli E = E1 ∪ E2 oraz fn → f jednostajnie na E1 oraz jednostajnie
na E2, to fn → f jednostajnie na E. W praktyce oznacza to, »e zbie»no±¢
jednostajn¡ mo»na sprawdza¢ przedziaªami.
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