CALCULUS

PROBLEMS LIST 2

8.10.2010

- (1) Find the natural powers of the number i, that is write out the complex numbers of the form \mathbf{i}^n for all natural n.
- (2) For given complex numbers $z = a + b \mathbf{i}$ and $w = c + d \mathbf{i}$ express $\Re(z + w)$, $\Im(z + w)$ $(w), \Re(zw), \Im(zw), \text{ in terms of } a, b, c, d.$
- (3) Prove the following properties of the complex conjugation:

 - (b) $\overline{z+w} = \overline{z} + \overline{w}$,
 - (c) $(zw) = \overline{z}\overline{w}$,
 - (d) $\Re(z) = (z + \overline{z})/2$, $\Im(z) = (z \overline{z})/2$ **i**.
- (4) Find the moduli of the complex numbers $z = -2 3\mathbf{i}$ and $z = 1 \mathbf{i}$.
- (5) Prove that arbitrary numbers $z, w \in \mathbb{C}$ have the properties:
 - (a) $|z| \ge 0$ and |z| = 0 if and only if z = 0,
 - (b) |zw| = |z||w|,
 - (c) $|z-w| \ge ||z|-|w||$.
- (6) Describe geometrically (sketch on the plane) the set $\{z \in \mathbb{C} : |z-1-\mathbf{i}|=1\}$.
- (7) Sketch on the plane the sets of numbers $z \in \mathbb{C}$ satisfying given inequalities:
 - (b) $|z+3\mathbf{i}| < 1$, (c) $|z+4-2\mathbf{i}| \le 3$. (a) |z| < 2,
- (8) Find the trigonometric form of the following complex numbers:
 - (a) -6 + 6 i,

(e) $\sqrt[6]{-27}$.

- (b) 2i,
- (c) 1 + i,
- (d) $2\sqrt{2} + i$.

- (9) Compute:
- (a) $\frac{1+\mathbf{i}}{1-\mathbf{i}}$, (b) $\frac{2\mathbf{i}}{1+\mathbf{i}}$, (c) $\frac{4-3\mathbf{i}}{4+3\mathbf{i}}$. (10) Prove that for $z = r(\cos\varphi + \mathbf{i}\sin\varphi)$ and $z = s(\cos\psi + \mathbf{i}\sin\psi)$ we have

$$z \cdot w = r \cdot s \left(\cos(\varphi + \psi) + \mathbf{i} \sin(\varphi + \psi)\right).$$

Conclude, that for any number $k \in \mathbf{Z}$ the formula holds:

$$z^k = r^k (\cos(k\varphi) + \mathbf{i} \sin(k\varphi)).$$

(11) Prove that for $z \in \mathbb{C}$, $z \neq 0$ there exists $w \in \mathbb{C}$, its inverse, that is such that $z \cdot w = 1$.

Hint: Write and then solve an appropriate system of equations.

- (12) Determine all values of the roots:
 - (a) $\sqrt[4]{1}$,
 - (c) $\sqrt[4]{1+i}$, (b) $\sqrt[3]{-1}$,
 - (d) $\sqrt[3]{2-2i}$, (h) $\sqrt[3]{\mathbf{i}}$.
 - Show their positions on the plane.
- (13) Prove that $|z+w|^2 + |z-w|^2 = 2|z|^2 + 2|w|^2$.

(f) $\sqrt{3+4i}$.

(14) Let $a, b, c \in \mathbf{C}$ be arbitrary, $a \neq 0$ and let $d \in \mathbf{C}$ be one of the roots $\sqrt{b^2 - 4ac}$. Prove that the roots of the equation $az^2 + bz + c = 0$ have the form

(g) $\sqrt[3]{1}$,

$$z = \frac{-b \pm d}{2a}.$$

1