Calculus for Computer Scientists

Lecture Notes

Maciej Paluszynski

September 19, 2011



Contents

8

9

Calculus — FAQ

Real and complex numbers
Functions

Sequences

Series

Limit of a function at a point
Continuous functions

The derivative

Integrals

10 Definite integral

11 Applications of integrals

12 Improper integrals

13 Wallis’ and Stirling’s formulas

14 Numerical integration

15 Function sequences and series

23

30

51

66

77

85

111

122

141

151

159

165

169



Chapter 1

Calculus — FAQ

Calculus is probably not the most popular course for computer scientists.
After all, if someone has a particularly great desire to study calculus, he or she
probably studies mathematics, not computer science. And strangely enough
computer science freshmen, eager to write their first lines of professional
software code are forced to study questions like : “does this infinite sum
converge?”. It turns out, that among the mandatory courses on the first
year you find calculus!

I would like to address some frequently arising questions or doubts, and
convince you that this course did not make it to the schedule by a mistake.
Actually, it is one of the most important courses of the first few years, and
its worthy to devote it your attention.

One frequently encounters the following question: why does the computer
scientist need mathematics. Well if a need ever arises to apply a particular
mathematical concept or result, you can always read up the necessary stuff,
or you can consult the specialist. Actually, this line of reasoning is a mis-
understanding. The basic course of calculus is not in any way a specialized
knowledge. You should not expect that notions and theorems we will study
in this course are going to apply to any of your particular projects. All that
calculus stuff is simply a language that we use when we want to formulate
or understand a problem. It is a universal language throughout engineering
sciences, also in computer science. In today’s world, if one wants to be a
true, creative professional, practically in any field one has to command En-
glish. The professional literature, Internet (simplifying a little bit) are all in
English, and any professional foreign stay will not be a success, if you do not
know English. It is similar with calculus. You have to become accustomed
to notions like convergence, continuity, approximation, integral, power series
and the likes. Notions of this type appear everywhere, and will accompany
you throughout your future career. Many of you will leave to gain experience



in foreign countries, for example to the Microsoft headquarters in Redmond
on the shores of lake Washington. Remember that every graduate of a uni-
versity in the engineering field (and that includes computer science) in the
United States has at least 3 semesters of calculus. Those people will form
your environment, with them you will do your projects. Without the knowl-
edge of the basic language of the technical trades you will be, so to speak,
professionally illiterate. Let me stress that: the basic course in calculus is
not a specialized knowledge, which might become useful or it might as well
not. It is the basic notions and the relations among them that will appear
perpetually, throughout your studies, and then in your professional everyday
life. During your further studies you will be offered various other mathemat-
ical or borderline mathematical courses. A lot of them will be optional — you
can take them or opt out. But calculus, as well as, for example, logic, plays
a different role — it is basic, and it is mandatory.

Another problem arises frequently. Students say: “All right, if you insist
that badly we will study calculus. But why do you justify everything in such
a detail, and why do you give us proofs of theorems. Some of your proofs
pour over an entire page! We trust you, if you say that the theorems are
true. Instead of proofs, cover more material.” Well, this is still the same
misunderstanding. In this course our aim is to learn notions, dependencies
between them, the way in which they influence one another. The way of
arguing is just as important as the facts themselves. In this course the
question “what?” is just as important as “why?”. Observe, that most proofs
are really short and clear. If the proof is not immediate I always try to stress
the idea. First, we try intuitively to grasp, why the theorem should hold,
and once we get the general idea, we try to make it precise, and we “dress it
up” with the right words. If we sense from the start what the proof is trying
to accomplish the whole thing is neither hard nor complicated.

Many students make the following comment: “This course is merely a
repetition of what we had in high school. Most problems on the mid-terms
and the final are shamefully easy. We want, and we can, do more!” It is true,
that a lot of the material of this course is in the high school program. But
please remember that this course is not aimed at breaking scientific world
records. We want to systematically develop the basic knowledge, which is
the calculus. There is not much new material, but everything gets laid out
with details, without hiding the troublesome odds and ends. In the problem
sessions we will do a lot of exercises. As the Americans say: “What is
the basis of thorough knowledge? Repetition, repetition, repetition!” But
do not worry, if you are looking for in-depth, quality knowledge you have
found yourself in the right place. Besides calculus a lot of other courses
await you, and you will not get bored. If you are interested in calculus, or

4



other mathematical subjects, then in the building next door you will find
courses in virtually any mathematical field and on virtually any level. Many
computer science students attend courses in the Mathematical Institute, and
many math students come to classes in the Computer Science Institute. It
is not by accident, that these two buildings are adjacent to one another, and
you can go from one to the other “with the dry foot”. Even the library is
common. You are always welcome at the office hours, where you can talk to
your lecturer who, so to speak, has eaten his mathematical oats.

Another question arises: “The lecture notes have 15 chapters, roughly
the same as the number of weeks for the course. Thus we have the work
plan, and additionally the notes. Can we then skip the classes? Why should
we drag ourselves out of bed for a class at noon, just to watch you copy
your notes to the blackboard? Why should we go to the problem sessions to
watch someone solve a simple exercise?” Well, the answer is no, you should
definitely attend both the lecture and the problem sessions. Listening to the
lecture is something completely different than reading the notes. It is not
just the matter of questions or ideas appearing. From experience we know,
that each lecture is different. Sometimes same topic is covered in 15 minutes
some other time the same topic takes an hour. Most certainly a lecture does
not mean simply copying notes to the blackboard. The same goes for the
problem sessions. You cannot master the material without doing exercises on
you own. I think one could use an analogy with studying a foreign language.
You have to practice, you have to try, and of course you have to go to
the blackboard, and solve the problem in public. Also you have to try not
to “fall behind”. In a course like calculus it is easy to get lost and lose
contact at some point. Notions and ideas once introduced are used later
repeatedly. Your attendence is not formally checked, but please remember
that not coming to a lecture or to a problem session you can get yourself into
trouble. It is not easy to master the material by simply reading the notes.
Besides the final exam during the semester we will have 3 mid-term exams,
roughly one a month. The mid-terms should give you a “real time” clear
image of how you are doing.

If you have other questions — please ask. My address is

mpal@math.uni.wroc.pl



Chapter 2

Real and complex numbers

Real numbers

We are not going to go into details of construction of the set of real numbers.
Constructing real numbers, all the arithmetic operations, establishing all
their properties is an interesting subject, and is certainly worthy of interest.
But in this course we will only recall the more important facts, and we will
basically assume that everybody knows the real numbers. The set of real
numbers is denoted by R, and we understand the real number as a decimal
expansion (sequence of decimal digits), for example 123,357290. ... Decimal
expansion contains a decimal point (in this part of the world it is the comma),
it is finite to the left, and finite or infinite to the right. The expansion can
have a sign — , and then it is called a negative number. We all know how
to add, subtract, multiply and divide numbers like that, and we know the
properties of such arithmetic such as connectivity. Let us recall important
facts:

1. If certain sequence of digits repeats itself right of the decimal point,
we say that the expansion is periodic, and we enclose the repeated
sequence between the parenthesis: 0,03212512512--- = 0,032(125).

2. If from certain place right of the decimal point the expansion consists
entirely of zeros, we call such expansion finite, and we omit he trailing
zeros: 3,234000000 - - - = 3,234(0) = 3,234.

3. In principle different decimal expansions mean different real numbers.
There are, however, exceptions and it may happen, that 2 different
expansions denote the same number. Such an exception happens if the
expansion, from certain point (right of the decimal), consists of only
9. Such an expansion represents the same number as the expansion,



in which all repeating 9 are dropped and the last non-9 is increased
by 1. For example 0,09999--- = 0,0(9) = 0,1. This can be easily
proved, using the properties of arithmetic (for example, using the fact
that multiplying a number by 10 means shifting the decimal point of
its expansion right by one place). Let z = 0,0(9). We then have

10-2=0,(9)=0,9+0,00)=09+2=9-2=09=z=0,1

Real numbers, whose expansions have only zeros to the right of the deci-
mal point are called integers, and the set of integers is denoted by Z. Positive
integers 1,2,... (without zero) are called natural numbers, or naturals, and
the set of naturals is denoted by N.

Rational numbers

Numbers whose decimal expansions are finite or periodic are called rational
numbers. We denote the set of rational numbers by Q. Rational numbers
can be written as fractions 7, where m,n are integers, and n # 0. If n is a
natural number, and m and n have no common divisor, then the expression
of x as the fraction “* is unique, and we call such fraction irreducible. Each

rational number can be expressed as an irreducible fraction.

Examples: (a) # =0,1428571428 - -- = 0, (142857). The decimal expansion
can be obtained by applying the “long division” procedure. Dividing, at
certain point we observe, that the remainder repeats a past value. At that
point the entire expansion starts repeating a period. It is not hard to observe,
that the period is no longer than the value of the denominator minus 1.

(b) 0,123 = ;2. This is an irreducible fraction, since, as can be easily

checked the numerator and the denominator have no common divisors, and
the denominator is positive.

(c) 0,(arag---ap) = “=5* (k — nines in the denominator). It is easy to

prove, writing out and solving an appropriate equation for z = 0, (a; - - - ay).

(d) Let us convert the following decimal expansion into a fraction

123 0, (45
0,123(45) = 0,123 +0,000(45) = 557 1(200)

_ 123 N 1 45  99-123+45 12222
© 1000 100099 99000 99000




Irrational numbers

Real numbers which are not rational, that is those with decimal expansions
neither finite nor periodic, are called irrational numbers.

Examples: (a) Let us write out an expansion which contains consecutively
longer sequences of zeros, separated by single ones:

x = 0,101001000100001 - --10---010- - -

The series of zeros are progressively longer, and so the expansion is not
periodic. It is not finite either, since ones keep appearing, although more
and more scarcely. x is thus an irrational real number.

(b) Another example of an irrational number is v/15. We will show, that
v/15 is not rational. This will be a typical reasoning, and it can be adapted
to many examples. First of all recall, that a root of arbitrary order can
be extracted from any non-negative real. This is a property of reals, and
we assume it is known. Thus /15 by definition is the unique positive real
number, such that raised to the third power recovers 15. Let us assume it
is rational. This is an example of indirect reasoning. We assume something,
and show that such assumption leads to contradiction. By the rules of logic
this shows, that the initial assumption was false. So, again let us reason
indirectly, and let us assume that /15 is rational. Let us then express it as
an irreducible fraction

V=" = 15="2 o P.15=mb
n

3 divides the left hand side of the last equality, and so it must divide the right
hand side. 3 is a prime number, so if it divides a product of numbers it must
divide one of the factors (it is a property of primes). So 3 must divide m,
and so the right hand side, as a cube, has to be divisible by 27. In that case
on the left hand side n3 has to be divisible by 3 (since 15 can only be divided
by 3), and thus again, since 3 divides n® it must divide n. The fraction m
is thus not irreducible, which contradicts our assumption. The assumption

that v/15 is a rational number has to be false.

Remarks: (i) A prime number is a natural number, greater than 1, which
has no other divisors than 1 and itself. Prime numbers have the following
property: if p is a prime, and p|m - n (p divides m - n), then p|m or p|n.

(ii) The above reasoning in (i) is an application of the decomposition of a
natural number as a product of factors, each of which is prime. Such a decom-
position is called a decomposition into prime factors, and such decomposition



is unique. In the equality
n® .15 = m?

the prime factors of n® and m? come in triples, and the prime factors of 15,
that is 3 and 5 are lone. We have used this to arrive at a contradiction. The
existence and the uniqueness of the prime factor decomposition is a property
of the set N, which we will not prove, but which is worth remembering. As
an exercise in which prime factor decomposition can be useful let us mention
the following question: how many trailing zeros does the number (1000)!
(1000 factorial) have?

(iii) The root appearing in the above example, sa the logarithm and powers
appearing below are examples of elementary functions. We assume that
we know elementary functions, and we will not provide detailed definitions.
In the next chapter we will briefly recall the most important facts about
elementary functions.

(c) log, 3. We will reason in the same way as in the previous example, that is
indirectly. Let us assume that log, 3 is a rational number and let log, 3 = ™
be an irreducible fraction.

13

m
loged=— = 2»=3 = 2"=3"

n
We have arrived at a contradiction, since the left hand side of the above
equality only contains twos as its prime factors, while the right hand side
only contains threes. The assumption that log, 3 is rational must thus be
false.

(d) The sum, difference, product and fraction of rational numbers are all
rational (of course one cannot divide by zero). The sum, difference, product
and fraction of an irrational number by a rational number are irrational
(unless, in the case of product and fraction the rational number is zero). The
result of an arithmetic operation on two irrational numbers depends, can be
rational or irrational, depending on the particular values.

Geometric interpretation

We can think of real numbers as points on a line. On that line we mark places
for zero and one, and we mark with the arrow the positive direction, which
is determined by the relative position of zero and one. Traditionally the
positive direction points to the right. Each real number can then be assigned
a unique point on such line. The line with the real numbers assigned to its
points is called the real axis.



Figure 2.1: The real axis.

The ordering of the set R

If  — y is a positive number we write z > y (“z is greater than y”), if it
is a non negative number we write x > y (“z is greater or equal than y”).
Similarly, if x — y is negative we write © < y, and if non-positive we write
x < y. Therefore, we see that for for any two real numbers x,y we have
either z = y or x < y or x > y. We say that the set R is ordered. O the real
axis x > y if x is more to the right than y — this is symbolized by the arrow
— to the right the numbers grow.

Symbols

V we read “for all”, 3 we read “exists”, < we read ‘if and only if”, (---) =
(«-+) we read “(---) implies (---)”, € we read “belongs to”, C we read “is a
subset of”. The symbol A we read ‘and”, while the symbol V we read “or”.

Let us recall two properties of the set of real numbers: the Archimedean
axiom and the continuity axiom.

Archimedean axiom

The real numbers have the following property, which intuitively is clear: for
any x,y > 0 there exists a natural number n such that

nr > y.
Using the above introduced notation we can write the axiom as follows
Vz,y>0 dneN nz>y.

It follows from the Archimedean axiom that, for example, there are natural
numbers arbitrarily large (larger than any fixed real number). Since multiply-
ing by —1 reverses the inequalities, then it also follows from the axiom that
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there exist integers arbitrarily small (smaller than any fixed real number).
Let us observe, that it also follows from the axiom that there are positive
numbers arbitrarily small (positive, but smaller than arbitrary other fixed
positive number). We will be using all these facts, without directly referring
to the Archimedean axiom.

The extrema
We say that the set A C R is:

e bounded from above, if

dc VeeA x<c,

e bounded from below, if

3d YoeA z>d,

e bounded, if it is bounded from above and from below.

The constants ¢ and d in the above conditions are respectively called the
bound of the set A from above (or the upper bound), and the bound of the
set A from below (the lower bound). The set of natural numbers is bounded
from below (the bound from below is, for example, the number 1), but is not
bounded from above (it follows from the Archimedean axiom that one cannot
find a ¢ which is a bound of N from above). If the set A C R is bounded
from above, then the smallest upper bound of A is called its supremum, and
is denoted
sup A (supremum of A).

If A C R is bounded from below, then the largest lower bound of A is called
its infimum, and is denoted

inf A (infimum of A).
Thus, s = sup A if
eVrecA z<s,
eVu<s JxeA z>u.

The first condition says that A is bounded from above, and s is its upper
bound, while the second condition says that no number smaller than s is an
upper bound of A. Thus, both conditions together say that s is the smallest
upper bound of A. We can similarly summarize the definition of the infimum:
k = inf A if the following two conditions are satisfied simultaneously:
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eVareA x>k,
eViIi>k daxcA z<l.

The notions of supremum and infimum have been introduced in the case of
a set bounded from above and from below respectively. In addition to that,
if A is not bounded from above we will write

sup A = 400,
and if A is not bounded from below we will write
inf A = —o0.

For example
infN=1 and supN = +o0.

Continuity axiom

This axiom states that every set A C R, bounded from above has a supre-
mum. This is a property of the set of real numbers: from all upper limits of
A, bounded from above, one can choose the smallest one. Thinking geomet-
rically, this property says that the real numbers fill out the entire real axis,
with no holes left. This property, the continuity axiom, can be equivalently
formulated in terms of lower bounds: every set bounded from below has an
infimum.

Remark: A set can contain its supremum or infimum or not. Consider, for
example
sup{z: x <1} =sup{z: z <1} =1.

The first set does not contain 1, while the second one does.

Example: Let us consider the following set

2 2
A:{u: m,nGN,m<n}.
2mn

Let us observe, that A is not bounded from above. Indeed, that set A

contains all numbers of the form m;:;l, m € N, m > 1. Each such number
is larger than %, and numbers of that form, with arbitrary m € N include

all natural numbers. Thus A contains elements larger than arbitrary fixed
natural number. It is therefore not bounded from above. On the other hand,
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let us observe, that A is bounded from below, and that 1 is a lower bound.
To this end, let us recall a well known inequality:

2, .2
2ab < a4+ = inzl for m,n > 0.
mn

We will now prove that 1 is the largest lower bound of A. Let ¢ > 1. Then

cil is a positive number, and from the Archimedean axiom it follows, that
1

there exists a natural number m larger that —. Additionally let m > 2,
which we can always assume, increasing m if necessary. Then

1

2 -1 1+ —— :
<M< m(m—1) = +2m(m—1)<c
We thus have
m?*+(m—12 m*+m?—2m+1
2m(m —1) 2m(m — 1) B
2m(m —1) + 1 L+ 1 _
= = -, < C.
2m(m — 1) 2m(m — 1)

Assuming that ¢ > 1 we found in A an element %, smaller that c.

Thus, no ¢ > 1 can be a lower bound of A, and so 1 is the largest lower
bound of A, that is inf A = 1. In addition, let us observe that 1 ¢ A: if
1 € A then there would be m,n € N, n # m, such that m? +n? = 2mn. But
we know that such equality is equivalent to (m —n)? = 0, so m = n, which
is a contradiction.

Intervals

We denote intervals in the following way:

(a,b) ={x: a<x<b}, (open interval),
[a,b] ={z: a <x <b}, (closed interval),
(a,b) ={x: a<x<b}, (left-hand open interval),
[a,b) ={z: a <x <b}, (right-hand open interval).
In the case of intervals (a,b) and (a,b] we allow a = —o0, and in the case

of intervals (a,b) and [a,b) we allow b = co. Such intervals then denote the
appropriate half-axes. We assume by default that a < b, and in case of the
closed interval [a, b] we allow a = b.
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Absolute value

We define the absolute value of a real number in a following way

T . x>0,
2| = ‘
-z = x<0.

The absolute value has the following properties:

—_

=l =,

2. —|z| <z < |z,

3. |z +y| < |z| + |y| (triangle inequality),

4. |z = [yl] <z —yl,

5. |x — y| represents the distance from z to y on the real line,
6. |z -yl =I[z]-yl,

7. x| = Va2,

8. |z >0and |z| =0« x =0,

9. 2<y N —z<y = |z|<y.

As an example let us prove the triangle inequality 3. We consider separately
two cases
(a) z and y have the same sign +. Their sum again has the same sign, so

lz+yl =£(x+y) =Fo+ Ly = |z| + |y

In this case we see, that the triangle inequality is actually an equality.
(b) x and y have opposite signs. We can assume x < 0 < y, if not we simply
rename x and y. If x +y > 0 then

[ty =a4+y<—x+y=lx]+]yl,
while if  + y < 0 then
zt+yl=—(r+y)=—r—-y<—a+y=I[z[+]yl
In this case, if none of x and y is zero, the inequality is actually sharp.
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Integral part and fractional part

The integral part of = is the largest integer not greater that x (clearly, such
greatest integer exists). The integral part of x is denoted by [z]. The frac-
tional part of x is {x} = x—[z]. The integral part has the following properties

o [2] € Z,
e z]<z<z+4+landz—1<[z] <z,
o z|=rzcl

Examples: [1,5] =1, [-1,5] = -2, {—1,5} =0,5.

fa)=l] fl2) = ()
T 01 3 T o T 3

Figure 2.2: The integral part and the fractional part.

The density of the rational and the irrational numbers

Both a rational and an irrational numbers exist in every interval (a,b). Let
(a,b) ba an arbitrary interval (remember that a < b, so the interval is not
an empty set). We will show that there is a rational number in (a,b). The
irrational number is let as an exercise. We have ﬁ > 0, so it follows from
the Archimedean axiom that there exists a number n € N such that n > ﬁ,
that is % < (b—a). Let us consider the set of numbers of the form

[ees)
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We will show now, that one of the numbers from the above set must fall
into our interval (a,b). The idea is clear: numbers from the above set are
uniformly spaced on the real line, with the distance % between adjacent. This
spread this smaller than the size of our interval. Let us now make this idea
precise. Let kg be the largest if the integers k such that

k < na.

The set of integers k satisfying the above condition is clearly bounded from
above, and clearly its supremum is an integer, so such largest k; exists.
Observe, that 2t > g and since 2 < ¢ and 2 < (b — a), then 2t <
a+ (b—a) = b. Therefore 2+ € (a,b), and is of course rational.

Mathematical induction

The set of natural numbers has the following property: each of its non-empty
subsets has a smallest element. From this property we obtain the following
principle of mathematical induction. Let T'(n), n > ny be some sequence of
theorems. In applications often these are equalities or inequalities, with the
natural parameter n. Let:

1. T(ng) be true (the starting point for induction),

2. V' n > ng the following implication is true (T'(n) — true) = (T'(n+1) —
true) (the induction step).

Then all theorems T'(n), n > ng are true. The principle of mathematical
induction is intuitively obvious, and it can be easily proved: If not all of
the theorems T'(n), n > ng are true, then the set A C N of those n > ny,
for which T'(n) is false is non-empty. A has the smallest element, which we
denote n.Observe, that it follows from 1. that we must have n > ngy. So we
have T'(n) false (since n € A), but T'(7 — 1) true, since 7 — 1 ¢ A. This
contradicts 2., since from the fact that 7'(7 — 1) is true it should follow that
T'(n) is also true.

Example: We will show, that for every n € N the following inequality is
true: 10n < 2™ 4 25. This inequality is our theorem T'(n). We first try to
prove the induction step, that is, we prove 2. Let us thus assume

10n < 2™ + 25,
and let us try, assuming the above, to prove

10(n + 1) < 2"+ 4 25. (2.1)
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We thus have
10(n+1) = 10n+ 10 < 2" + 25 + 10. (2.2)

To conclude the proof, and arrive at the right hand side of (2.1) we need the
inequality 10 < 2", which, unfortunately is only true for n > 4. We thus
restrict ourselves to ng = 4, and conclude (2.2):

2" 425 410 < 2" + 2" 4 25 = 2"l 4 95,

that is we have the induction step proved for n > 4. The induction principle
can be only used with the starting point ng = 4. We still have to check
T(4), and additionally T'(1), T(2) and T'(3), which could not be “reached”
by induction. We easily check these particular cases by hand.

n=1: 10 < 24 25 true,

n=2: 20 < 2%+ 25 true,

n=3: 30 < 23+ 25 true, and finally

n=4: 40 < 2* 4+ 25 = 41 also true.

We have used the principle of induction to conduct the proof for n >
4, and we did the remaining cases directly. This is the typical approach:
attempting to make the induction step we identify the conditions (lower
bound) on n under which the induction step can be proved. To this lower
bound we adjust the induction starting point, and we verify the eventual
leftover cases “by hand”.

Complex numbers

The set of complex numbers C is the set of symbols a + b4, where a,b € R.
Such symbols are added, subtracted and multiplied according to the formulas
(a+bi) £ (c+di)=(atc)+ (bt d)i,
(a+bi)-(c+di) = (ac—bd) + (ad + cb) i.

We can also divide by non zero complex numbers:

a+bz: _ (ac+bd)+(—ad+bc)i7 220
c+di 2+ d?

We treat real numbers as a subset of the complex numbers R C C by identi-
fying x ~ x 4+ 04. Observe, that such identification preserves the arithmetic
operations: for example (a + 04) + (b+ 0i) = (a + b) + 0i. Also, observe
that (i)2 = (0 +14)> = =1+ 0i = —1. With the above identification we
have i2 = —1, and we treat complex numbers as an expansion of the set of
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real numbers. The set C has an advantage: each polynomial with complex
coefficients factors into a product of linear terms. Thanks to this the complex
numbers are an important tool for both mathematicians and engineers (also
for computer scientists:-)). Let us introduce the following notions:

e R(a+ bi) = the real part of (a + bi) = a,
e (a+ bi) = the imaginary part of (a + bi) = b,
e a + bi = the conjugate of (a + bi) = a — bi.

We have the following properties

The modulus

The modulus of a complex number is defined as

2] = VR(2)? + 3(2)

Examples: | —1+2i| = /(=1)2+22 =+/5, |i| = [0+ 1i| = 1.

The modulus of a complex number correspondes to the absolute value of a
real number. If z happens to be real (3z = 0), then |z| is the same number,
regardless of whether we think of it as the absolute value of a real number,
or as the modulus of a complex numbers. Both names “the modulus” and
‘the absolute value” are often used interchangeably. We have the following
properties of the modulus

e 2| >0i|z|=0&2=0,

o |z|=|—2z|=Z], |az| = |a]-]|z| for a € R,
o |z-w| = |z] - fwl,
o |z+w| <|z|+ |w| (the triangle inequality),

|z —wl| > [|z] = fwl].
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The geometric interpretation

The complex numbers, that is the expressions of the form a + b7 can be
identified with points in the plane R* = {(x,y) : =,y € R}. With this geo-

Figure 2.3: Complex plane.

metric interpretation the addition corresponds to vector addition (according
to the parallelogram rule), and multiplication by a real number corresponds
to multiplication by a scalar. The operation of conjugation is a reflection
with respect to the horizontal axis, and the modulus represents the Euclidean
distance from the origin of the coordinate system.

The trigonometric form

A complex number a+ b4 can be written in the so-called trigonometric form.
In this form numbers can be easily multiplied, raised to the power, and roots
can be easily extracted. Let z=a+bi # 0

b
z:a+bi:\/a2+b2( a )

+ )
Va2 +b0 Va2 + b2
We can find a number ¢ € [0, 27), such that

a ) b
—, SN Y = —F/———.
‘/a2+b2 ¥ 1/0/2_i_b2
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Figure 2.4: The conjugation of the complex number.

This can be plugged into the formula for z, and we obtain the so called
trigonometric form of z

z = |z] (cosp + i sinp).

Using the geometric interpretation, writing a complex number a + b in the
trigonometric form r(cos ¢ + i sin ) corresponds to presenting a point (a, b)
on the plane in polar coordinates (r, ¢). The number ¢ is called the argument
of z. Since functions sin and cos are periodic with period 27, so each complex
number z has infinitely many arguments, which differ precisely by an integer
multiple of 2. This one of them, which falls into the interval [0, 27) (there
is precisely one such) is called the principal argument of z.

Example: 2 =1—1 = \/5(\%5 + \_/—% i). We are looking for ¢ € [0, 27), such

that
1

sing = ——.

V2

1
cosp = —,
V2

It is easy to observe, that ¢ = ;IW.

Remarks: (i) Two complex numbers are equal, if both their real and imag-
inary parts are equal. In the case these numbers are written in the trigono-
metric form we have

r(cose +i sing) = s(cosp + i sin)

if r = s and ¢ — 1 is an integer multiple of 2.
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z =r(cosp+ i sinp)

X

ol 1

w = s(cosy + i sineh)

Figure 2.5: The trigonometric form of a complex number.

(ii) The product can be easily expressed in the trigonometric form
r(cosg +i sing) - s(cosy) + i siny) = rs(cos(p + V) + i sin(p + ¥)).
In other words, we multiply the moduli and we add the arguments.
(iii) As an immediate consequence of (ii) we obtain
z=r(cosp+1isinp) = 2" =r"(cos(ny) + i sin(nyp)).
Observe, that the above holds for all n € Z, bot positive and negative.
(iv) A root of a complex number z of order n € N is a number w such, that
w" = z. Using the trigonometric form we will show, that every complex
number z # 0 has exactly n distinct roots of order n. Let
z=r(cosp+1isinyp),

and n € N. Let us introduce the following numbers

wy, = /1 (cosy + i siny),

where ok
T
by, = L2
n
Observe, that each of the numbers wy, is indeed the root of order n of z (this
is immediate from (iii)), and that they are all distinct. By definition we have

k—1
Uy — Yy = —— 2,
n

k=0,1,...,n—1.
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and —1 < % < 1. The only integer satisfying these inequalities is zero, so
if w, = w; we have k = [. We thus have n distinct roots. There can be no
more, since each root of order n of number z is also a root of the polynomial

of order n
P(w) =w" — z.

We know, that polynomials of order n have at most n distinct roots.

Example: We will compute all roots of order 4 of 1 — . By the above

procedure,
V1 —1i=V2(costy, + i singy),

where - L
T2k 7T kw
¢k 4 16+ 27 07 ) 73
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Chapter 3

Functions

Let us recall some basics about functions, that we will use. Let A C R be
a subset of the real numbers. A real valued function f(x) defined on A is a
way of assigning some real number to every element of A. A complex valued
function is, similarly, a way of assigning a complex number to each element
of A. We write

f:M—-R o f:M-—C.

The set A is called the domain of the function f(z) and is often denoted by
Dy. The set
{y: 3z Dy f(x)=y}

is called the range of f(x), or the set of values of f(x). Defining a function
(that is the way of assigning values to elements of the domain) most often
takes the form of a formula. The formula is often split between parts of the
domain. A function so defined is called a function “spliced” from its parts.
Often we do not specify the domain Dy. In such case we assume that the
function is defined on the largest set on which the formula (or formulas)
defining it makes sense. Such maximal set is called the natural domain of
the function f(z). When we refer to a function, we write it together with
its typical argument: f(z). We will be careful not to confuse this with the
value of the function at a particular point x.

The monotonicity

For real valued f(x) we say that f(x) is increasing (or strictly increasing), if

r<y = flz)<[f(y).

We say that it is weakly increasing (or non-decreasing), if

r<y = f(x)<fy)
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Similarly, f(z) is decreasing (strictly decreasing), if

r<y = flz)>f(y)

and weakly decreasing (non-increasing), if

r<y = f(x)>f(y)

In other words and increasing function can be applied to the sides of an in-
equality, and the inequality is preserved, while if the function is decreasing
the inequality is reversed. We say, that f(x) is monotonic, if it is either in-
creasing or decreasing, and the same with adjectives “strictly” and “weakly”.
Functions can be piecewise monotonic. For example, f(z) = z? is strictly
increasing, and thus inequalities can be raised to the third power. On the
other hand f(x) = 22 is only piecewise monotonic — decreasing for x < 0,
and increasing for x > 0. Inequalities can be therefore raised to the second
power (squared), provided they relate nonnegative numbers.

The graph

If f(x) is real valued, then its graph is the following subset of the plane

{(z,y): z € Dy, y= f(x)} C R~

When analyzing a function it is always a good idea to try to sketch its graph.
A graph visualizes properties, which are usually not so easy to deduce from
the formulas. Of course, the sketch of the graph is not a replacement for the
proper definition.

Elementary functions

Functions that are encountered most often are the so-called elementary func-
tions. Let us recall the some of the elementary functions

(a) Polynomials are functions of the form f(z) = ap + a1z + -+ - + a,z"™. n
is called the degree of the polynomial f(z) — provided a, # 0. The coetfi-
cients can be real (then the polynomial is real valued) or complex (then the
polynomial is complex valued). Dy = R. A polynomial of degree n has at
most n roots (points where it is zero). A polynomial with real coefficients
with odd degree has at least 1 root, while that with even degree might have
no roots at all. For values |z| large the polynomial behaves like its leading
term a,z".

(b) Rational functions are functions of the form f(z) = Pg;, where P(z) i

O
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Figure 3.1: Polynomials of degree 3 and 4

Figure 3.2: An example of a rational function
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Figure 3.3: Two power functions, with exponents 0,251 1, 5.

Q(x) are polynomials. Dy = {z : Q(x) # 0}.
(c) The power function f(x) = 2. Dy depends on o If @ = ™ and m,n € N,

then 2 = {/zm. 2° =1 for every x, and for m < 0 we let 2™ = L. If ar is
irrational, and z > 0 we define

z* =sup{z?: ¢ € Q, q¢<a}, x> 1,
x*=inf{z?: ¢€Q, ¢ <al, x < 1.

Apart from particular cases of o (for example, @ € N) we have Dy = R* =
{r € R: z > 0}. If @ > 0 then the power function is increasing, while if
a < 0 the function is decreasing. Of course, if & = 0, the the power function
is constant equal to one.

(d) The exponential function f(z) = a*, a > 0. Dy = R. The arithmetic
operation is the same as in the case of the power function, but now it is the
exponent that is variable, while the base is fixed. If @ > 1 then the function
is increasing, while if a < 1 it is decreasing. Of course, if the base a = 1 then
the function is constant, equal to 1.

(e) The logarithm f(z) =log,x, a > 0,a # 1. Dy = RR*. The logarithm
is a function inverse to the exponential, that is y = log, z < a¥ = z. If the

base a > 1 then the logarithm is increasing, while if @ < 1 the logarithm is
decreasing. The case a = 1 is excluded.

The power function, the exponential function and the logarithm are all re-
lated to raising numbers to some powers. We have thus the following prop-
erties (in each case we must remember possible limitations on the range of
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Figure 3.4: Exponential functions with bases greater and smaller than 1.

-4 . . . . . . . .
-05 0051 15 2 25 3 35 4 45

Figure 3.5: Logarithms with bases larger and smaller than 1.
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Figure 3.6: Functions sin(x) and cos(x).

variables): (2%)? = 2*f (z - y)* = 2%*, %" = 2°7° a®" = a® - Y,

log,(z - y) = log, = + log, y, log,(z*) = alog, z, log, v = 125

(f) Trigonometric functions. On the unit circle on the plane we measure,
from the point (1, 0) the distance ¢ (on the circumference), counterclockwise
if ¢ > 0 and clockwise if ¢ < 0. We arrive at some point (z,y) on the
unit circle, depending on ¢. The coordinates of this point are called cos(¢p)
(cosine) and sin(y) (sine) respectively:

T =cosy, Y =sinp.

Functions cos(x) and sin(x) are periodic with period 27, that is both satisfy
f(z+427) = f(z) (since the length of the complete circumference is 27). We
also have sin?z + cos?z = 1 (since the radius of the defining circle is 1, and
the equalities

cos(p + 1) = cos p cos1h — sin @ sin 1,
sin(p + 1) = cos psin ) + sin ¢ cos .

Operations on functions

At each point of the domain the value of the function is a number, so it can be
added, subtracted, multiplied and divided. In that case the same arithmetic
operations can be carried over to the functions. If we have two functions,
f(z) and g(z), with domains Dy and D,, then we can define functions

(f£9)(x), where (f=+g)(z)=f(x)=*g(x),
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(f-9)(x), where (f-g)(z)= f(z)g(z),
()or s (D12

The domain of these functions is the common part of the domains dy and
D,, with, in the case of division the points where the denominator is zero
removed (we cannot divide by zero).

Example: The function tan z is a fraction of the sine by the cosine:

sin x

tanz = a:;«égwm, k=0,41,42,....

cosx’

Composition of functions

If we have functions f(z) and g(x), and the range of f(z) falls into the
domain of g(z) we can define the composition of g(z) with f(z):

(g0 f)(x) = g(f(x)).
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Chapter 4

Sequences

Definition 4.1. A real valued sequence is a function a : N — R, and a
complex valued sequence is a function a : N — C.

In the case of sequences the value of a at n is called the n-th term of
the sequence, and instead a(n) we write a,. The sequence with terms a,
is denoted {a,};>, or, more compactly {a,}. We will be mostly concerned
with real sequences, and will occasionally remark about complex sequences.

Examples: (a) A geometric sequence (traditionally called a geometric pro-
gression): a,aq,aq’, ..., a, = aq" '

(b) A constant sequence a,, = c.

¢) The harmonic sequence a,, = %

(
(d) a1 = V2, tny1 = V2 + ay.
(e) Fibonacci sequence a1 = ag = 1, apyo = ay + Apt.

To define a sequence we must describe the way in which all terms a,, are
to be computed. We can do this with one formula like in examples (a)—(c) or
recursively like in examples (d) and (e). The recursive definition (also called
an inductive definition) describes way in which a consecutive term in the
sequence is computed when all previous terms are already known. Also, one
has to define sufficiently many initial terms. For example, in the definition of
the Fibonacci sequence consecutive terms are computed using two previous
terms, so as a staring point we have to know initial two terms. The rest of
the sequence is then uniquely defined by these two initial terms, in the case
of Fibonacci sequence, they are a; = ay = 1.

We say that the sequence is:

e strictly increasing, if a,, < a,.1, and strictly decreasing, if a,, > a1,
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e weakly increasing if a,, < a,1, and weakly decreasing, if a,, > a,11,

e strictly monotonic if it is either strictly increasing or strictly decreas-
ing, and weakly monotonic if it is either weakly increasing or weakly
decreasing

Sometimes we will just say, that a sequence is increasing or decreasing, if it is
not important whether strictly or weakly. Also, sometimes we refer to weakly
increasing sequences as non-decreasing, and similarly for weakly decreasing.
The above monotonicity notions, clearly, correspond to the monotonicity of
the sequence as a function.

The harmonic sequence from example (c) is strictly decreasing, while
sequences from examples (d) and (e) are strictly increasing. The example (c)
follows directly from the formula: a,, > a,; is nothing else than n + 1 > n.
Examples (d) and (e) can be dealt with using induction. In (d) we first
prove that all terms a,, are smaller than 2, and than, using that, we prove
that the sequence is strictly increasing. Both proofs can be carried out by
induction. Similarly in example (e), the Fibonacci’s sequence, we first prove,
using induction, that all terms are strictly positive a,, > 0. Then directly
from the recursive formula we show that the sequence is increasing: a, o =
Gp + Api1 > apyq. This is a typical situation — if the sequence is defined
inductively, then its properties can be usually established using induction.

Operations on sequences

We add, subtract, multiply and divide sequences as we do functions: (a +

b)p = an + by, (a-0)y = ay, - by, (%)n =&, b, # 0.

Bounded sequences

We say that a sequence is bounded, if

AM VneN la,| <M,
we say that it is bounded from above, if

M VneN a, <M,
and we say that it is bounded from below, if

dM VneN a,> M.

31



Examples: (a) The harmonic sequence a, = % is bounded, from below by

0, and from above by a; = 1. More generally, a decreasing sequence is always
bounded from above by its first term, and similarly an increasing sequence
is always bounded from below by its first term.

(b) The Fibonacci’s sequence is not bounded from above. We have already
mentioned, that its terms are positive. Similarly, inductively we can show
that its elements satisfy a, > n for n > 6. From this we can deduce imme-
diately, that the sequence is not bounded from above.

(c) The sequence a, = v/n+ 1 — /n is bounded. We can see immediately,
that its terms are positive (square root is an increasing function), that is the
sequence is bounded from below by 0. We will show, that it is also bounded
from above.

an:m—f:wn—ﬂ_ﬁ) _m

n+1l—n 1
5

YR T m+

| A

(d) The geometric progression a, = ag™ ! is bounded if |¢| < 1, and un-

bounded if |¢g| > 1 and a # 0. The first statement is immediate: |a,| =
lag"™Y| = la||g|"™' < |a|. The second statement requires a proof. We can,
for example use the following important inequality, which can be proved, for
example, inductively: for e > 0

(I14+¢e)">1+ne. (4.1)
If |¢| > 1 then |g| = (1 + ¢€) for some € > 0. We thus have

|an| = lal - 4] 1Iu(lw >%

lq|

(1+ ne).
If |a,| < M, then
1
H(1+n.s)<]\4 = n§—<MM— )
4] € lal

It is clear from the above estimate, that the sequence a,, cannot be bounded.

Convergent sequences

We now pass to the most important for us notion concerning sequences
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interval |z — g| < e

Figure 4.1: The limit of a sequence.

Definition 4.2. We say that the sequence {a,} is convergent to a number
g9, of
Ve>0 dngeN Vn>ny |a,—g|<e.

We write this
lim a, =g or a, — g.

n—0o0

The definition can be applied both to the real and complex valued se-
quences, in the latter case the limit might also be a complex number, and
| -+ | would then denote the modulus of a complex number.

Examples: (a) a, = % We can easily prove, that lim,, ,., a,, = 0. To do so,
le us see, that

1 1 1
n>ng=\-|4+1 = n>- = —<e.
€ € n

The absolute value in the last inequality can be dropped, since the terms of
the sequence are all positive.

() an = vVn+1—+/n == 0. Let us prove that.

1 1
< .
Vn+l+yn = 2yn

It is thus enough to solve the inequality ﬁﬁ < €

la, =0l =vVn+1—+n=

For given ¢ > 0 there thus exists ng = [ﬁ] + 1 satisfying the condition in
the definition.
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2 n—00 .. . . .
(c) ap = ~7% == L Similarly as in the previous example we will solve
2 n2-1 2

an appropriate inequality. As in the previous example, we will aid ourselves
in the calculations by using estimates, instead finding an exact solution.

n*+2 1| 5 P
2n2—1 2| 2(2n2—1) ~ 2n

The last estimate, that is 2(2n? — 1) > 2n, is true for all n € N, and it can
be proved by solving a quadratic inequality. Finally, it is enough to solve a
simple inequality % < €, which gives us n > 2% Let then, for a given ¢ > 0
be ng = [2] 4+ 1. This ng satisfies the condition in the definition.

(d) The constant sequence a, = ¢ has limit lim,,_,, a,, = c.

To prove the convergence of sequences to the given limits in the above
examples we used the definition directly. In practice we usually establish
the convergence using various properties of limits. For example, we have the
following basic theorem

Theorem 4.3. If lim, ,,a, = a and lim,_ . b, = b then the sequences
{la£b)n} i{(a-b),} converge, and

lim (a £b), = lim a, £ lim b, = a %+ b,
n—o0 n—0o0

n—0o0
lim (a-b), = lim a, - lim b, =a-0.

If additionally b, # 0 for alln € N and b # 0 then the sequence of fractions
{(%),} converges, and

¥ (a) lim, . a, a
im (=) =—7+-—+7=-.
n—oo \b/pn  lim,_, b, b

In the proof we will use the following observations

Fact 4.4. (i) A convergent sequence is bounded. To see that let sequence
{a,} converge to a and let us take arbitrary e > 0, for example e = 1. Then,
by the definition, there exists ny € N such that for all n > ny we have
la,| — la| < |a, —a| < 1, from which we get |a,| < |a| + 1. Let

M = max{|a|, |as], ..., |an,_1|, |a| + 1}.

Then the sequence {ay,} is bounded by M: ¥V ne N |a,| <M.
(ii) A sequence {b,} of numbers different than zero, convergent to a limit b
different than zero is “bounded away from zero”:

36>0 VneN |b]>6.
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To see that, let € = @ Then, from the definition of convergence, there exists
no € N such, that |b| — |b,| < |b—b,| < @7 thus |b,| > |b| — I%I |b| et

b
6:H1in{|b1|,|b2| |bn0 1‘ | |} > 0.

Then ¥ n € N we have |b,| > 9.

Proof of the theorem. We will carry out the proof for the product, and we
leave the other cases as exercises. For the product, the inequality we will be
trying to solve for n will be

lay, + b, —a-b| <e.
Let au do the following

la.b, —a-b] =|ab,—a-b,+a-b,—a-b
<lan b, —a-b,|+l|a-b,—a-b
= |an —af - [ba] +fal - [bn —b].

The expression on the left hand side can be estimated using the fact, that
we can estimate the expressions on the right hand side. We know, that the
sequence {b,} is bounded (since it is convergent), so let M be the bound
by < M. Let M = max{M,|a|,1}, and € > 0 be arbitrary. Let us fix
€ = ;%= > 0 (we can divide, since we know, that M > 0). Then there exists
ny € N such that |a, — a| < € for n > n; and there exists ny € N such that
|b, — b < € for n > ny. Finally, let ng = max{ni,n2}. Then |a, —a| < € and
|b, — b| < € for n > ng. We thus have, for n > ny

lay by —a-b| < la, —al - |ba| + |a] - |bn — b

<|an—a|M+|b — b M
EM+eM
+

l\:)lmm
[\')Im+

I
M

which finishes the proof O

Example: Let




Wehave%—>0:> L —l-l—>0:>%:2~n—12—>Osothenumerat0r

n? ~ n n

converges to 1, and the denominator to 2, so

2
an: _—

We have found this limit earlier, using just the definition, but now we did it
much easier.

Improper limits

Definition 4.5. A real valued sequence {a,} has an improper limit +oo (we
say that it diverges to +00) if

VM dngeN Vn>nyg a,>M.
The real valued sequence {a,} has an improper limit —oo (diverges to —oo)
if

VM dngeN Vn>ny a, <M.

A complex valued sequence {a,} has improper limit oo (diverges to o) if
VM dngeN Vn>ng |a,| > M,

(In the case of complex valued sequences we do not distinguish infinities).

. _ n%-3 7. .
Example: The sequence a, = 5 diverges to +o0: for n > 3 we have
n?—3 _3n® n
>2 =
n+1l = 2n 4

while & > M & n > [4M] + 1. Let then ng = max{3, [4M] + 1}, then for
n > ng we have |a,| > M.
The theorem about arithmetic operations on limits extends to some cases

of improper limits. For example, let a,, — a, b, — b (real valued sequences).
Then

a=+oo, b>0=a,-b, > +o0,
a=+oc, b<0=a,-b, > —o0.
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The Cauchy’s condition

Theorem 4.6. The sequence {a,} is convergent < (if and only if ) it satisfies
the so-called Cauchy’s condition:

Ve>0 dngeN Vmn>ng |a,—a,l <e

Proof. We will prove the theorem for real valued sequences. Extension to
the case of complex valued sequences is then an easy exercise. The proof
has two parts: the Cauchy’s condition from convergence(the “=" part), and
from the Cauchy’s condition the convergence(the “<” part).

= We assume that {a,} is convergent to a. Let ¢ > 0 be arbitrary. Them
from the definition of convergence there exists an ng € IN such that for all
n > ng we have |a, —a| < €/2. Let both m,n > ng, then |a,, —a| < €/2 and
la, — a] < €/2, and so

€ €
|am—an|:]am—a+a—an|§]am—a|+|an—a|<§+§:e.

The Cauchy’s condition is thus satisfied.

< Let us assume that the sequence {a,} satisfies the Cauchy’s condition.
Observe, that in that case the sequence {a,} has to be bounded: let € = 1,
SO

dng e N Vm,n>ny |a,—a,] <Ll

So, taking n = ny we obtain, for every m > ng |a, — any| < 1 = |an| <
|an,| + 1. The terms of the sequence {a,}, from the ny-th on, all sit in the
interval (—|an,| — 1, |an, + 1). Finally, let

M = max{ay, |as|, ..., |ang-1], |an,| + 1}

Then, for every n € N we have |a,| < M.
Let us define the following two auxillary sequences

ap = inf{a, : n >k} a non-decreasing sequence,

Br = supla, : n >k} a non-increasing sequence,

and let

A =sup{ay : k€ N},

B =inf{B: keN}. (4.2)

The observation that {ax} is non-decreasing and {fx} is non-increasing is
obvious, the terms are the infimum and supremum of a set, that is getting
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smaller with increasing k. The original sequence {a,} is bounded, so all the
extrema exist. In the first step we will prove, that A < B. This inequality is
true for all bounded sequences, not only those satisfying the Cauchy’s con-
dition. It simply reflects the definition of auxillary sequences: by definition
we always have ap < ;. Let us carry out this proof in detail. We will argue
indirectly, so let us assume that A > B, and then show that this leads to a
contradiction. If A > B then let 0 < € < %. From the definition of the
extrema we can find k; € N such that

ag, > A—e.

Since the sequence {ay} is non-decreasing, then the above inequality holds
for all £ > ky. Similarly there has to exist ks € N such that

Bk2<B+€7 = VkaQ Bk<B+€

Now let kg = max{k;, k2}, so we have

A—€<Oék0§ﬁk0<B+€ =

that is the contradiction. We have arrived at a contradiction, indeed, we
must have

A< B.

As we have already mentioned, the above inequality is a consequence of the
definition of A and B, and is true for all bounded sequences {a,}, not just
those satisfying the Cauchy’s condition. We will now show, that for sequences
satisfying the Cauchy’s condition actually the equality holds: A = B. We
will again argue indirectly. Let A < B, and let 0 < € < BT_A. There exists
no € N such that for all m,n > ng we have |a,, — a,| < €, in particular

Vn>ng |ap, —an] < €= ap, —€<a, < ap, +e€
From this it follows that

an, =inf{a, : n>npt >a,, —€ = A>a, —¢€
Bny =sup{a, : n>no} <an,+¢ = B<a, +e

We thus have

B-—A<a,,+te—ay,,+e=2 = ¢e>
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that is, the contradiction. We therefore must have A = B. Finally, let
g = A = B. From the definition of the extrema

Ve>0 dngeN Vn>ngy g—€e<a, and f(,<g+e.

In the above we have used the fact that g = A = B is both the infimum of all
By.s and the supremum of all ay’s, and that both sequences are appropriately
monotonic ({ay} non-decreasing and {f;} non-increasing). Since for all n
we obviously have «,, < a, < f3,, thus, for n > ng

g—€e< o, <a, <B,<g+e = |a,—g|<e

This clearly finishes the proof O

Remark: The constants A and B defined in the above proof have sense for
any bounded sequence {a,}. They are called the lower limit and the upper
limit of the sequence {a,}. Soon we will discuss these issues in more detail.

Examples: (a) The sequence a,, = (—1)" does not satisfy the Cauchy’s
condition. Let ¢ = 1, then |a, — a,41| = 2 > € for all n. Clearly an ngy from
the Cauchy’s condition cannot exist.

(b) The sequence a,, = ”T_l does satisfy the Cauchy’s condition. Let us verify
that: let m > n, then
m—1 n—-1 (m-1)n—(n-1)m m-n mo

1
| — an| = = = < =—.
m n m-n m-n  m-n n

Clearly then, it is enough to take ng = [2] 4 1, then for m,n > ng we have

L % < € and the Cauchy’s condition is satisfied.

m?

Theorem 4.7. (1) A monotonic bounded sequence has a limit (proper).
(i) A monotonic unbounded sequence has an improper limit.

Remark: Weak monotonicity and only from a certain point on is suffi-
cient. Also, in (ii) we mean unbounded from above, if it is increasing, and
unbounded from below, if it is decreasing. Clearly, a monotonic sequence
is automatically bounded on one end: increasing bounded from below, and
decreasing bounded from above.

Proof. (i) Suppose that {a,} is weakly increasing, and bounded, that is
ap < apyp and a,| <M for n=12,....
It thus has a supremum

g=sup{a,: n=1,2,...}.
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From the definition of supremum we have
VneN a,<g and Ve>03dnyseN a, >g—c¢

Since {a,} is weakly increasing, then for all n > ng we have a,, > a,, > g—c¢,
that isg—e<a, <g=la, —g| <e.

(ii) Let us suppose that the sequence {a,} is wekly increasing, and not
bounded from above. Let a number m be given. Since the sequence {a,}
is not bounded from above, then there exists nog € N such, that a,, > M.
Since the sequence is weakly increasing, we have

Vn>ng ap>ay > M.

The condition in the definition of an improper limit +o00 is therefore satisfied.
The case of decreasing sequences can be proved in the same way. O

Remark: Observe, that at the same time we have proved, that if the se-
quence {a,} is increasing and bounded, then

lim a, = sup{a,: n > 1},
n—oo

and if it is decreasing and bounded, then

. . Y
nh_}rrolo a, = inf{a, : n > 1}

Binomial expansion

Let us recall the following formula, the so-called binomial expansion. For
n € N the factorial of n is the product of all natural numbers k£ < n:
nl=1-2-3-...-(n—1)-n. We also write 0! = 1. For 0 < k < n let us
introduce the so-called binomial coefficient
n n!
=——— kneZ 0<Ek<n.

(k> Hn—gp s A=r=l
The following formula is called the binomial expansion. It can be proved, for
example, by induction. It is one of the formulas that we will constantly use,
so it is worthy to learn it well. Let a,b € R, n € N, then

- (v (o () (o
=S (Z) b
k=0
The last equality is simply an expansion of the summation symbol . We
will often use this symbol. It simply means the sum of the expression for all

values of the parameter k in the given range, in this case £k = 0,1,...,n.
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The number e

Let us consider the following sequence: a, = (1 + %)” We will show, that
this sequence is increasing nd bounded, and thus convergent. Let us observe
right away, that neither the fact that {a,} is increasing nor that it is bounded
is obvious: even though the power increases, but the base decreases to 1. For

example,
3\’ 1\*
ay = 2, a9 = (5) = 2,25, as = (g) = 2,370 ey

5\* 6\°
a4:(1> =2.441 ..., a5:(5) —=2488... .

We will now show, that the sequence {a,} is increasing. Let us observe
the following equality for £ =0,1,....,n

() () = ()

n—k+1)-(n—k+2)-...-(n—1)-(n)
N kKln-n-...-n-n
~1n-1 n-2 n—(k—1)
kK on n n

- (1_%)(1_%).....(1_’“;1).

We will now expand the terms of {a,} using the binomial expansion, and
then use the above formula.

NOIORGIORBIORS
W6 =06

Observe, that written in the above form the term of a,, with increase of n,
contains more components, and each of the components is becoming greater
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(with the exception of the first two terms, 1 + 1, which are left unchanged).
Therefore, having written the terms of {a,} in the above form we more easily
see, that this sequence is increasing. In addition observe that we can estimate
a, from above

P WIS TR SFISRRE N R S

"= 2! 3l n! 2 22 2n—1

The first inequality is obtained from (4.3) by omitting factors which are less

than 1, while the second inequality is obtained by replacing the factors larger

that 2 in the denominators by 2. The denominators therefore become smaller,

and the fractions larger. What remains to do, is to use the formula for the
sum of the geometric progression: for ¢ # 1 and [ € N we have

(4.4)

!

1+q+f+”.+¢4:%_%. (4.5)
The above equality can be proved, for example, by induction. It is one
of those formulas, that we have to constantly remember, and which will
constantly keep appearing. The sum on the right hand side of the estimate
(4.4) is precisely the sum of a geometric progression, with ¢ = %, and with
an extra 1 at front. We thus have

1-G)"
1 —

N | =

an, <1+ <1+ = 3.

N[ =
o] =

We have shown that the sequence {a,} is increasing and bounded, and thus
convergent. The limit of this sequence is called e.

: \"
e = lim <1—|——> .
n—oo n

We also know from our estimates, that 2 < e < 3. e is an important number
and it will be constantly present throughout our lecture, mostly as the base
for logarithms and exponential functions.

Theorem 4.8 (The 3 sequence theorem). Suppose we have 8 sequences sat-
1sfying inequalities

a, < b, <cy,, n=123,..., (4.6)
and the “outside” sequences {a,} and {c,} converge to a common limit

a = lim a, = lim ¢,.
n—o0 n—oo

Then the sequence {b,} also converges to the same, common limit

a = lim b,.
n—oo
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Remark: It is sufficient that the sequences satisfy the inequalities (4.6) from
certain ng € N onwards.

Proof of the theorem. Let € > 0 and let n; € N be such, that for n > n,
la, —al <€ = a,>a—c¢,

and let ny € N be such, that for n > ns
e, —al <e = ¢, <a+e

The existence of such n; and ny is a consequence of the convergence of the
sequences {a,} and {c,} to the common limit a. Then, for n > ng =
max{ny, ny} we have

a—€e<a, <b,<cp,<a+e = |b,—a|<e (4.7)

Let us also observe, that if the inequalities hold only from certain point,
say for n > k,then it is enough to modify the definition of ny: let ny =
max{ni, ne, k}, and the inequality (4.7) holds. This way we have justified
the note below the statement of the theorem. O

Examples: (a) Let a,, = \/n (v/n+ 1—+/n). We will employ the 3 sequence
theorem, and to do so we need to do some computations. We have seen
earlier how to transform a difference of two square roots

1 1 1
Vikl+vn o ey fiilgn

VAT - Vi) = Vi

Then

1 1 1
1<q/1+—-<1+- == —<q,<

1
n n 1+%+1_ 5

The two outside sequences share a common limit %, and so a, — %

(b) Let @ > 1 and a,, = {/a. The terms of the sequence are roots of increasing
degree of a number greater that 1. Let us observe at once, that such sequence
must converge, since it is decreasing, and bounded from below by 1. We do
not actually need to use this observation, since we will use the 3 sequence
theorem. First of all, since @ > 1 we must have a, > 1 for all n. Let

€n = a, — 1 > 0. We will use the inequality (4.1), and obtain

a—1
-

a=(1+¢€)">1+ne, = 0<e¢, <
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The outside sequences both converge to 0, so also ¢, — 0 that is

lim a, = lim /a = 1.

n—o0 n—o0

(c) Let a,, = {/n. Similarly as in the previous example let us write a,, = 1+€p,
and thus ¢, > 0. We will now use another simple inequality, which is true
forx >0 and n > 2

(1+z)" > <Z>x2 = @ z?.

The above inequality can be proved using the binomial expansion (this is also
one way of proving (4.1)). Using the above inequality for z = ¢, we obtain,
for n > 2

-1 2 2
n—(1+€n)">%ei = €i<ﬁ = 0O<e, < T
n{n — n —

The rightmost sequence converges to 0, which can be easily shown using
the definition, or applying the theorem about limits of roots which we will
present next. We can thus apply the 3 sequence theorem and conclude that
€, — 0, so

lim a, = lim {/n = 1.

n—oo n—oo

Theorem 4.9. Let a, — a, a, > 0 and m € N. Then
lim ¥/a, = Va.
n—oo

Proof. We will consider 2 cases: a =0 and a > 0. If a = 0 (this is a slightly
simpler case) let € > 0 be arbitrary, and let € = ¢™. From the definition of
the limit

dngeN Vn>ny, 0<a,<é = 0< %a, <e.

In the case a = 0 the theorem is thus proved. Let us consider the remaining
case of a > 0. We will use the following formula, for o, 5 > 0, m € N

(a=B) (@™ ' +a™ 2B+ +af" 4 ) =™ — B

This equality can be proved directly (for example inductively), or it can be
deduced from the formula for the sum of the geometric progression (4.5). We
thus have
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/i — /al =

la,, — al la, — al

(a1 + (a2 fat -+ (™) = (ya)" "

It is sufficient now, as in the precious case, to take € = ( §/a)™ 'e and then
we have
la, —a| <é = |¥/a,— ¥a| <e
O

Observe, that the above theorem allows us to “enter with the limit under”
an arbitrary rational power, provided a,, and a are such, that the power can
be applied.

Example: Let a; = V2 and let api1 = V2 + a, for n > 1. We have already
considered this sequence, and we have shown that {a,} is increasing and
bounded, and thus convergent. We will now use this to find the limit.

g= lim a, = lim a,.1 = lim v2+a, = \/Q—f- lim a, = \/2—|—g.
n—oo n—oo n—oo n—oo

The limit g (which we know from previous considerations exists) must there-

fore satisfy the quadratic equation g> — g — 2 = 0. This equation has two

roots ¢ = —1 and g = 2. The limit cannot be negative, since the sequence

has positive terms, so the only possibility is g = 2.

Remark: We have used the following fact: if a, — a and a, > 0 then
a > 0. This fact can be formulated more generally: if a, — a and b, — b
and a, < b, (at least from some point on), then a < b. We leave this fact as
an exercise.

Subsequences

Definition 4.10. A subsequence of the sequence {a,} is the sequence of the
Jorm {a,, }32, where {ny} is strictly increasing sequence of natural numbers.

Remark: In the definition it is important that the sequence of indices {n;}
be strictly increasing. In other words, ai,as,ag,ay7,... could be a subse-
quence of the sequence {a,}, but a1, as,as, ... or aj,as, as, ... are not subse-
quences. Let us observe, that according to the definition the entire sequence
{a,} is its own subsequence, it is enough to take ny = k. The definition of

45



the subsequence reduces to extracting from the original sequence only certain
terms, but respecting their order.

Example: The sequence 1, %, %, %7 cee #, ... 18 a subsequence of the har-
monic sequence 1,1, 3, 1,.... Here a, = + and ny = k2, s0 a,, = 75.

Theorem 4.11. FEvery subsequence of a convergent sequence is also conver-
gent, to the same limat.

Proof. Let {a,} be a sequence, converging to a limit g. Suppose we have a
subsequence of this sequence, with indices {n,}. Let € > 0, and let np € N
be such, that for n > ny we have |a, — g| < e. That we have from the the
fact that a,, — ¢g. Next, let

ko = min{k € N : nj, > ng}.

So, if kK > ko then ny > ng, > ng (the sequence ny increases), and so
|an, — g| < €. This finishes the proof. O

l n
an:<1+i) :
n

Let n; = k. Tt is a strictly increasing sequence, and

1\" 1 In %
an=(1+—|] = 1+ — ,
In In
so, if b, = (1 + )" (the sequence defining the number €), then ay = \/by,.
We know, that b, — e, and thus

k—o0 k—o0
b, 22 6 = by 225 Ve,

k

Example: Let [ € N and

and so we have
: 1
lim a, = et =+/e.
n—oo
Theorem 4.12 (Bolzano-Weierstrass). Fach bounded sequence contains a
convergent subsequence.

Proof. Let the sequence {a,} be bounded. Let us recall the construction
from Theorem 4.6, which was about the Cauchy’s condition.

ar =inf{a,: n>k}, A=sup{ap: k>1}= klim Q.
—00
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We know, that the infima and supremum exist, since the sequence {a,} is
bounded by assumption. This was already remarked in the proof of Theorem
4.6. We also know, that A is the supremum of the set of values of sequence
{ax}, and also its limit, since this sequence is increasing, possibly weakly.
We will now show, that there exists a subsequence {a,, } converging to A.
The construction of this subsequence is as follows. Let a,, be the element
of the sequence {a,} which is closer to a; than . We know such element

2
exists, from the definition of the infimum. We thus have

a1 < ap, <041—|—§.
From now on the construction of the subsequence will be inductive. We will
choose the next element in the subsequence from among a,’s with indices
larger than ny, so let a,, be the element of the sequence {a,}, n > ny + 1,
which lies closer to a;,, 11 than i. We thus have ny > n; and

Q41 S Gy < Upy41 + =

22"
Let us now describe the step of the inductive definition. Suppose we have
already constructed the a piece of the subsequence a,,,an,,...,a,, such,
that ny <ng <--- <n,,, and
1
04m+1§anl+1 <anl+1+ﬁa l:1727"'7m_1'

This is precisely what we have done for m = 2. Let the next index n,, 1 be
such that, firstly, n,,.1 > n,, + 1 (the indices have to increase strictly)) and,

secondly,
1

U1 S Gnpiy < Oyt + 5
Let us notice, that such choice is always possible, by the definition of the
sequence {ay} as the sequence of infima. In this way, we have inductively
defined a subsequence {ay,, } satisfying
1

Oy 141 <y, < Q41+ oF k=23,....
On the outside of the above chain of inequalities we have sequences converging
to A ({an, ,+1} is a subsequence of the sequence {,,} and 5 — 0), so
applying the 3 sequence theorem we get

lim a,, = lim ap = A.
k—o0 k—o0
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Remark: The theorem is intuitively clear. If the sequence is bounded, then
its terms (of which there are infinitely many) have to accumulate somewhere.
The above proof makes this intuitive statement precise.

Definition 4.13. A number « is called an accumulation point of the sequence
{an} if there exists a subsequence {a,,} converging to c.

Theorem 4.14. « is an accumulation point of the sequence {a,} if, and only
if

Ve>0 VnoeN dIn>ng l|a,—g| <e (4.8)
In other words, any neighborhood of the point a contains terms of the se-

quence {a,} with arbitr