
Chapter 5

Inference for numerical data

Chapter 4 introduced a framework for statistical inference based on confidence intervals
and hypotheses. In this chapter, we encounter several new point estimates and scenarios.
In each case, the inference ideas remain the same:

1. Determine which point estimate or test statistic is useful.

2. Identify an appropriate distribution for the point estimate or test statistic.

3. Apply the ideas from Chapter 4 using the distribution from step 2.

Each section in Chapter 5 explores a new situation: the difference of two means (5.1, 5.2);
a single mean or difference of means where we relax the minimum sample size condition
(5.3, 5.4); and the comparison of means across multiple groups (5.5). Chapter 6 will
introduce scenarios that highlight categorical data.

5.1 Paired data

Are textbooks actually cheaper online? Here we compare the price of textbooks at UCLA’s
bookstore and prices at Amazon.com. Seventy-three UCLA courses were randomly sampled
in Spring 2010, representing less than 10% of all UCLA courses.1 A portion of this data
set is shown in Table 5.1.

dept course ucla amazon diff
1 Am Ind C170 27.67 27.95 -0.28
2 Anthro 9 40.59 31.14 9.45
3 Anthro 135T 31.68 32.00 -0.32
4 Anthro 191HB 16.00 11.52 4.48
...

...
...

...
...

...
72 Wom Std M144 23.76 18.72 5.04
73 Wom Std 285 27.70 18.22 9.48

Table 5.1: Six cases of the textbooks data set.

1When a class had multiple books, only the most expensive text was considered.
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Figure 5.2: Histogram of the difference in price for each book sampled.
These data are strongly skewed.

5.1.1 Paired observations and samples

Each textbook has two corresponding prices in the data set: one for the UCLA bookstore
and one for Amazon. Therefore, each textbook price from the UCLA bookstore has a
natural correspondence with a textbook price from Amazon. When two sets of observations
have this special correspondence, they are said to be paired.

Paired data
Two sets of observations are paired if each observation in one set has a special
correspondence or connection with exactly one observation in the other data set.

To analyze paired data, it is often useful to look at the difference in outcomes of each
pair of observations. In the textbook data set, we look at the difference in prices, which is
represented as the diff variable in the textbooks data. Here the differences are taken as

UCLA price−Amazon price

for each book. It is important that we always subtract using a consistent order; here
Amazon prices are always subtracted from UCLA prices. A histogram of these differences
is shown in Figure 5.2. Using differences between paired observations is a common and
useful way to analyze paired data.
⊙

Exercise 5.1 The first difference shown in Table 5.1 is computed as 27.67−27.95 =
−0.28. Verify the differences are calculated correctly for observations 2 and 3.2

5.1.2 Inference for paired data

To analyze a paired data set, we use the exact same tools that we developed in Chapter 4.
Now we apply them to the differences in the paired observations.

2Observation 2: 40.59− 31.14 = 9.45. Observation 3: 31.68− 32.00 = −0.32.
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n
diff

x̄
diff

s
diff

73 12.76 14.26

Table 5.3: Summary statistics for the price differences. There were 73
books, so there are 73 differences.

µ0 = 0 xdiff = 12.76

left tail right tail

Figure 5.4: Sampling distribution for the mean difference in book prices, if
the true average difference is zero.

 Example 5.2 Set up and implement a hypothesis test to determine whether, on
average, there is a difference between Amazon’s price for a book and the UCLA
bookstore’s price.

There are two scenarios: there is no difference or there is some difference in average
prices. The no difference scenario is always the null hypothesis:

H0: µdiff = 0. There is no difference in the average textbook price.

HA: µdiff 6= 0. There is a difference in average prices.

Can the normal model be used to describe the sampling distribution of x̄diff? We
must check that the differences meet the conditions established in Chapter 4. The
observations are based on a simple random sample from less than 10% of all books sold
at the bookstore, so independence is reasonable; there are more than 30 differences;
and the distribution of differences, shown in Figure 5.2, is strongly skewed, but this
amount of skew is reasonable for this sized data set (n = 73). Because all three
conditions are reasonably satisfied, we can conclude the sampling distribution of
x̄diff is nearly normal and our estimate of the standard error will be reasonable.

We compute the standard error associated with x̄diff using the standard deviation
of the differences (s

diff
= 14.26) and the number of differences (n

diff
= 73):

SEx̄diff
=

sdiff√
ndiff

=
14.26√

73
= 1.67

To visualize the p-value, the sampling distribution of x̄diff is drawn as though H0

is true, which is shown in Figure 5.4. The p-value is represented by the two (very)
small tails.

To find the tail areas, we compute the test statistic, which is the Z score of x̄diff

under the null condition that the actual mean difference is 0:

Z =
x̄diff − 0

SExdiff

=
12.76− 0

1.67
= 7.59
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This Z score is so large it isn’t even in the table, which ensures the single tail area will
be 0.0002 or smaller. Since the p-value corresponds to both tails in this case and the
normal distribution is symmetric, the p-value can be estimated as twice the one-tail
area:

p-value = 2× (one tail area) ≈ 2× 0.0002 = 0.0004

Because the p-value is less than 0.05, we reject the null hypothesis. We have found
convincing evidence that Amazon is, on average, cheaper than the UCLA bookstore
for UCLA course textbooks.

⊙

Exercise 5.3 Create a 95% confidence interval for the average price difference
between books at the UCLA bookstore and books on Amazon.3

5.2 Difference of two means

In this section we consider a difference in two population means, µ1−µ2, under the condition
that the data are not paired. The methods are similar in theory but different in the details.
Just as with a single sample, we identify conditions to ensure a point estimate of the
difference x̄1 − x̄2 is nearly normal. Next we introduce a formula for the standard error,
which allows us to apply our general tools from Section 4.5.

We apply these methods to two examples: participants in the 2012 Cherry Blossom
Run and newborn infants. This section is motivated by questions like “Is there convincing
evidence that newborns from mothers who smoke have a different average birth weight than
newborns from mothers who don’t smoke?”

5.2.1 Point estimates and standard errors for differences of means

We would like to estimate the average difference in run times for men and women using the
run10Samp data set, which was a simple random sample of 45 men and 55 women from all
runners in the 2012 Cherry Blossom Run. Table 5.5 presents relevant summary statistics,
and box plots of each sample are shown in Figure 5.6.

men women
x̄ 87.65 102.13
s 12.5 15.2
n 45 55

Table 5.5: Summary statistics for the run time of 100 participants in the
2009 Cherry Blossom Run.

The two samples are independent of one-another, so the data are not paired. Instead
a point estimate of the difference in average 10 mile times for men and women, µw − µm,
can be found using the two sample means:

x̄w − x̄m = 102.13− 87.65 = 14.48

3Conditions have already verified and the standard error computed in Example 5.2. To find the interval,
identify z⋆ (1.96 for 95% confidence) and plug it, the point estimate, and the standard error into the
confidence interval formula:

point estimate ± z⋆SE → 12.76 ± 1.96× 1.67 → (9.49, 16.03)

We are 95% confident that Amazon is, on average, between $9.49 and $16.03 cheaper than the UCLA
bookstore for UCLA course books.
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Figure 5.6: Side-by-side box plots for the sample of 2009 Cherry Blossom
Run participants.

Because we are examining two simple random samples from less than 10% of the popu-
lation, each sample contains at least 30 observations, and neither distribution is strongly
skewed, we can safely conclude the sampling distribution of each sample mean is nearly
normal. Finally, because each sample is independent of the other (e.g. the data are not
paired), we can conclude that the difference in sample means can be modeled using a normal
distribution.4

Conditions for normality of x̄1 − x̄2

If the sample means, x̄1 and x̄2, each meet the criteria for having nearly normal
sampling distributions and the observations in the two samples are independent,
then the difference in sample means, x̄1 − x̄2, will have a sampling distribution
that is nearly normal.

We can quantify the variability in the point estimate, x̄w − x̄m, using the following
formula for its standard error:

SEx̄w−x̄m
=

√

σ2
w

nw

+
σ2
m

nm

We usually estimate this standard error using standard deviation estimates based on the
samples:

SEx̄w−x̄m
=

√

σ2
w

nw

+
σ2
m

nm

≈

√

s2w
nw

+
s2m
nm

=

√

15.22

55
+

12.52

45
= 2.77

Because each sample has at least 30 observations (nw = 55 and nm = 45), this substitution
using the sample standard deviation tends to be very good.

4Probability theory guarantees that the difference of two independent normal random variables is also
normal. Because each sample mean is nearly normal and observations in the samples are independent, we
are assured the difference is also nearly normal.
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Distribution of a difference of sample means
The sample difference of two means, x̄1 − x̄2, is nearly normal with mean µ1 − µ2

and estimated standard error

SEx̄1−x̄2
=

√

s2
1

n1

+
s2
2

n2

(5.4)

when each sample mean is nearly normal and all observations are independent.

5.2.2 Confidence interval for the difference

When the data indicate that the point estimate x̄1 − x̄2 comes from a nearly normal
distribution, we can construct a confidence interval for the difference in two means from
the framework built in Chapter 4. Here a point estimate, x̄w − x̄m = 14.48, is associated
with a normal model with standard error SE = 2.77. Using this information, the general
confidence interval formula may be applied in an attempt to capture the true difference in
means, in this case using a 95% confidence level:

point estimate ± z⋆SE → 14.48 ± 1.96× 2.77 → (9.05, 19.91)

Based on the samples, we are 95% confident that men ran, on average, between 9.05 and
19.91 minutes faster than women in the 2012 Cherry Blossom Run.

⊙

Exercise 5.5 What does 95% confidence mean?5

⊙

Exercise 5.6 We may be interested in a different confidence level. Construct the
99% confidence interval for the population difference in average run times based on
the sample data.6

5.2.3 Hypothesis tests based on a difference in means

A data set called baby smoke represents a random sample of 150 cases of mothers and their
newborns in North Carolina over a year. Four cases from this data set are represented in
Table 5.7. We are particularly interested in two variables: weight and smoke. The weight
variable represents the weights of the newborns and the smoke variable describes which
mothers smoked during pregnancy. We would like to know, is convincing evidence that
newborns from mothers who smoke have a different average birth weight than newborns
from mothers who don’t smoke? We will use the North Carolina sample to try to answer
this question. The smoking group includes 50 cases and the nonsmoking group contains
100 cases, represented in Figure 5.8.

5If we were to collect many such samples and create 95% confidence intervals for each, then about 95%
of these intervals would contain the population difference, µw − µm.

6The only thing that changes is z⋆: we use z⋆ = 2.58 for a 99% confidence level. (If the selection of z⋆

is confusing, see Section 4.2.4 for an explanation.) The 99% confidence interval: 14.48 ± 2.58 × 2.77 →
(7.33, 21.63). We are 99% confident that the true difference in the average run times between men and
women is between 7.33 and 21.63 minutes.
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fAge mAge weeks weight sexBaby smoke
1 NA 13 37 5.00 female nonsmoker
2 NA 14 36 5.88 female nonsmoker
3 19 15 41 8.13 male smoker
...

...
...

...
...

...
150 45 50 36 9.25 female nonsmoker

Table 5.7: Four cases from the baby smoke data set. The value “NA”,
shown for the first two entries of the first variable, indicates that piece of
data is missing.

Newborn weights (lbs) from mothers who smoked

0 2 4 6 8 10

Newborn weights (lbs) from mothers who did not smoke

0 2 4 6 8 10

Figure 5.8: The top panel represents birth weights for infants whose moth-
ers smoked. The bottom panel represents the birth weights for infants
whose mothers who did not smoke. Both distributions exhibit strong skew.
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 Example 5.7 Set up appropriate hypotheses to evaluate whether there is a rela-
tionship between a mother smoking and average birth weight.

The null hypothesis represents the case of no difference between the groups.

H0: There is no difference in average birth weight for newborns from mothers who
did and did not smoke. In statistical notation: µn−µs = 0, where µn represents
non-smoking mothers and µs represents mothers who smoked.

HA: There is some difference in average newborn weights from mothers who did and
did not smoke (µn − µs 6= 0).

Summary statistics are shown for each sample in Table 5.9. Because the data come
from a simple random sample and consist of less than 10% of all such cases, the observations
are independent. Additionally, each group’s sample size is at least 30 and the skew in each
sample distribution is strong (see Figure 5.8). The skew is reasonable for these sample sizes
of 50 and 100. Therefore, each sample mean is associated with a nearly normal distribution.

smoker nonsmoker

mean 6.78 7.18
st. dev. 1.43 1.60
samp. size 50 100

Table 5.9: Summary statistics for the baby smoke data set.

⊙

Exercise 5.8 (a) What is the point estimate of the population difference, µn−µs?
(b) Can we use a normal distribution to model this difference? (c) Compute the
standard error of the point estimate from part (a).7

 Example 5.9 If the null hypothesis from Example 5.7 was true, what would be the
expected value of the point estimate? And the standard deviation associated with
this estimate? Draw a picture to represent the p-value.

If the null hypothesis was true, then we expect to see a difference near 0. The standard
error corresponds to the standard deviation of the point estimate: 0.26. To depict the
p-value, we draw the distribution of the point estimate as though H0 was true and
shade areas representing at least as much evidence against H0 as what was observed.
Both tails are shaded because it is a two-sided test.

7(a) The difference in sample means is an appropriate point estimate: x̄n − x̄s = 0.40. (b) Because
the samples are independent and each sample mean is nearly normal, their difference is also nearly normal.
(c) The standard error of the estimate can be estimated using Equation (5.4):

SE =

√

σ2
n

nn

+
σ2
s

ns

≈

√

s2n

nn

+
s2s

ns

=

√

1.602

100
+

1.432

50
= 0.26

The standard error estimate should be sufficiently accurate since the conditions were reasonably satisfied.
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µn − µs = 0 obs. diff

 Example 5.10 Compute the p-value of the hypothesis test using the figure in Ex-
ample 5.9, and evaluate the hypotheses using a significance level of α = 0.05.

Since the point estimate is nearly normal, we can find the upper tail using the Z score
and normal probability table:

Z =
0.40− 0

0.26
= 1.54 → upper tail = 1− 0.938 = 0.062

Because this is a two-sided test and we want the area of both tails, we double this
single tail to get the p-value: 0.124. This p-value is larger than the significance value,
0.05, so we fail to reject the null hypothesis. There is insufficient evidence to say there
is a difference in average birth weight of newborns from North Carolina mothers who
did smoke during pregnancy and newborns from North Carolina mothers who did not
smoke during pregnancy.

⊙

Exercise 5.11 Does the conclusion to Example 5.10 mean that smoking and aver-
age birth weight are unrelated?8

⊙

Exercise 5.12 If we made a Type 2 Error and there is a difference, what could we
have done differently in data collection to be more likely to detect such a difference?9

5.2.4 Summary for inference of the difference of two means

When considering the difference of two means, there are two common cases: the two
samples are paired or they are independent. (There are instances where the data are neither
paired nor independent.) The paired case was treated in Section 5.1, where the one-sample
methods were applied to the differences from the paired observations. We examined the
second and more complex scenario in this section.

When applying the normal model to the point estimate x̄1 − x̄2 (corresponding to
unpaired data), it is important to verify conditions before applying the inference framework
using the normal model. First, each sample mean must meet the conditions for normality;
these conditions are described in Chapter 4 on page 168. Secondly, the samples must be
collected independently (e.g. not paired data). When these conditions are satisfied, the
general inference tools of Chapter 4 may be applied.

For example, a confidence interval may take the following form:

point estimate ± z⋆SE

8Absolutely not. It is possible that there is some difference but we did not detect it. If this is the case,
we made a Type 2 Error.

9We could have collected more data. If the sample sizes are larger, we tend to have a better shot at
finding a difference if one exists.
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When we compute the confidence interval for µ1 − µ2, the point estimate is the difference
in sample means, the value z⋆ corresponds to the confidence level, and the standard error
is computed from Equation (5.4) on page 217. While the point estimate and standard error
formulas change a little, the framework for a confidence interval stays the same. This is
also true in hypothesis tests for differences of means.

In a hypothesis test, we apply the standard framework and use the specific formulas
for the point estimate and standard error of a difference in two means. The test statistic
represented by the Z score may be computed as

Z =
point estimate− null value

SE

When assessing the difference in two means, the point estimate takes the form x̄1− x̄2, and
the standard error again takes the form of Equation (5.4) on page 217. Finally, the null
value is the difference in sample means under the null hypothesis. Just as in Chapter 4,
the test statistic Z is used to identify the p-value.

5.2.5 Examining the standard error formula

The formula for the standard error of the difference in two means is similar to the formula
for other standard errors. Recall that the standard error of a single mean, x̄1, can be
approximated by

SEx̄1
=

s1√
n1

where s1 and n1 represent the sample standard deviation and sample size.
The standard error of the difference of two sample means can be constructed from the

standard errors of the separate sample means:

SEx̄1−x̄2
=

√

SE2
x̄1

+ SE2
x̄2

=

√

s21
n1

+
s22
n2

(5.13)

This special relationship follows from probability theory.

⊙

Exercise 5.14 Prerequisite: Section 2.4. We can rewrite Equation (5.13) in a
different way:

SE2
x̄1−x̄2

= SE2
x̄1

+ SE2
x̄2

Explain where this formula comes from using the ideas of probability theory.10

5.3 One-sample means with the t distribution

The motivation in Chapter 4 for requiring a large sample was two-fold. First, a large sample
ensures that the sampling distribution of x̄ is nearly normal. We will see in Section 5.3.1
that if the population data are nearly normal, then x̄ is also nearly normal regardless of the

10The standard error squared represents the variance of the estimate. If X and Y are two random vari-
ables with variances σ2

x and σ2
y , then the variance of X−Y is σ2

x+σ2
y . Likewise, the variance corresponding

to x̄1− x̄2 is σ2
x̄1

+σ2
x̄2

. Because σ2
x̄1

and σ2
x̄2

are just another way of writing SE2
x̄1

and SE2
x̄2

, the variance

associated with x̄1 − x̄2 may be written as SE2
x̄1

+ SE2
x̄2

.
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sample size. The second motivation for a large sample was that we get a better estimate
of the standard error when using a large sample. The standard error estimate will not
generally be accurate for smaller sample sizes, and this motivates the introduction of the t
distribution, which we introduce in Section 5.3.2.

We will see that the t distribution is a helpful substitute for the normal distribution
when we model a sample mean x̄ that comes from a small sample. While we emphasize the
use of the t distribution for small samples, this distribution may also be used for means
from large samples.

5.3.1 The normality condition

We use a special case of the Central Limit Theorem to ensure the distribution of the sample
means will be nearly normal, regardless of sample size, provided the data come from a nearly
normal distribution.

Central Limit Theorem for normal data
The sampling distribution of the mean is nearly normal when the sample obser-
vations are independent and come from a nearly normal distribution. This is true
for any sample size.

While this seems like a very helpful special case, there is one small problem. It is
inherently difficult to verify normality in small data sets.

Caution: Checking the normality condition
We should exercise caution when verifying the normality condition for small sam-
ples. It is important to not only examine the data but also think about where
the data come from. For example, ask: would I expect this distribution to be
symmetric, and am I confident that outliers are rare?

You may relax the normality condition as the sample size goes up. If the sample size
is 10 or more, slight skew is not problematic. Once the sample size hits about 30, then
moderate skew is reasonable. Data with strong skew or outliers require a more cautious
analysis.

5.3.2 Introducing the t distribution

The second reason we previously required a large sample size was so that we could accurately
estimate the standard error using the sample data. In the cases where we will use a small
sample to calculate the standard error, it will be useful to rely on a new distribution
for inference calculations: the t distribution. A t distribution, shown as a solid line in
Figure 5.10, has a bell shape. However, its tails are thicker than the normal model’s. This
means observations are more likely to fall beyond two standard deviations from the mean
than under the normal distribution.11 These extra thick tails are exactly the correction we
need to resolve the problem of a poorly estimated standard error.

The t distribution, always centered at zero, has a single parameter: degrees of freedom.
The degrees of freedom (df) describe the precise form of the bell-shaped t distribution.

11The standard deviation of the t distribution is actually a little more than 1. However, it is useful to
always think of the t distribution as having a standard deviation of 1 in all of our applications.
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−4 −2 0 2 4

Figure 5.10: Comparison of a t distribution (solid line) and a normal dis-
tribution (dotted line).

−2 0 2 4 6 8

normal

t, df = 8

t, df = 4

t, df = 2

t, df = 1

Figure 5.11: The larger the degrees of freedom, the more closely the t
distribution resembles the standard normal model.

Several t distributions are shown in Figure 5.11. When there are more degrees of freedom,
the t distribution looks very much like the standard normal distribution.

Degrees of freedom (df)
The degrees of freedom describe the shape of the t distribution. The larger the
degrees of freedom, the more closely the distribution approximates the normal
model.

When the degrees of freedom is about 30 or more, the t distribution is nearly indis-
tinguishable from the normal distribution. In Section 5.3.3, we relate degrees of freedom
to sample size.

We will find it very useful to become familiar with the t distribution, because it plays a
very similar role to the normal distribution during inference for small samples of numerical
data. We use a t table, partially shown in Table 5.12, in place of the normal probability
table for small sample numerical data. A larger table is presented in Appendix B.2 on
page 410.

Each row in the t table represents a t distribution with different degrees of freedom.
The columns correspond to tail probabilities. For instance, if we know we are working
with the t distribution with df = 18, we can examine row 18, which is highlighted in
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one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
...

...
...

...
...

17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
...

...
...

...
...

400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
∞ 1.28 1.64 1.96 2.33 2.58

Table 5.12: An abbreviated look at the t table. Each row represents a
different t distribution. The columns describe the cutoffs for specific tail
areas. The row with df = 18 has been highlighted.

−4 −2 0 2 4

Figure 5.13: The t distribution with 18 degrees of freedom. The area below
-2.10 has been shaded.

Table 5.12. If we want the value in this row that identifies the cutoff for an upper tail of
10%, we can look in the column where one tail is 0.100. This cutoff is 1.33. If we had
wanted the cutoff for the lower 10%, we would use -1.33. Just like the normal distribution,
all t distributions are symmetric.

 Example 5.15 What proportion of the t distribution with 18 degrees of freedom
falls below -2.10?

Just like a normal probability problem, we first draw the picture in Figure 5.13
and shade the area below -2.10. To find this area, we identify the appropriate row:
df = 18. Then we identify the column containing the absolute value of -2.10; it is the
third column. Because we are looking for just one tail, we examine the top line of
the table, which shows that a one tail area for a value in the third row corresponds
to 0.025. About 2.5% of the distribution falls below -2.10. In the next example we
encounter a case where the exact t value is not listed in the table.
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−4 −2 0 2 4 −4 −2 0 2 4

Figure 5.14: Left: The t distribution with 20 degrees of freedom, with
the area above 1.65 shaded. Right: The t distribution with 2 degrees of
freedom, with the area further than 3 units from 0 shaded.

 Example 5.16 A t distribution with 20 degrees of freedom is shown in the left panel
of Figure 5.14. Estimate the proportion of the distribution falling above 1.65.

We identify the row in the t table using the degrees of freedom: df = 20. Then we
look for 1.65; it is not listed. It falls between the first and second columns. Since
these values bound 1.65, their tail areas will bound the tail area corresponding to
1.65. We identify the one tail area of the first and second columns, 0.050 and 0.10,
and we conclude that between 5% and 10% of the distribution is more than 1.65
standard deviations above the mean. If we like, we can identify the precise area using
statistical software: 0.0573.

 Example 5.17 A t distribution with 2 degrees of freedom is shown in the right
panel of Figure 5.14. Estimate the proportion of the distribution falling more than 3
units from the mean (above or below).

As before, first identify the appropriate row: df = 2. Next, find the columns that
capture 3; because 2.92 < 3 < 4.30, we use the second and third columns. Finally,
we find bounds for the tail areas by looking at the two tail values: 0.05 and 0.10. We
use the two tail values because we are looking for two (symmetric) tails.

⊙

Exercise 5.18 What proportion of the t distribution with 19 degrees of freedom
falls above -1.79 units?12

5.3.3 The t distribution as a solution to the standard error problem

When estimating the mean and standard error from a small sample, the t distribution is a
more accurate tool than the normal model. This is true for both small and large samples.

TIP: When to use the t distribution
Use the t distribution for inference of the sample mean when observations are
independent and nearly normal. You may relax the nearly normal condition as
the sample size increases. For example, the data distribution may be moderately
skewed when the sample size is at least 30.

12We find the shaded area above -1.79 (we leave the picture to you). The small left tail is between 0.025
and 0.05, so the larger upper region must have an area between 0.95 and 0.975.
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To proceed with the t distribution for inference about a single mean, we must check
two conditions.

Independence of observations. We verify this condition just as we did before. We
collect a simple random sample from less than 10% of the population, or if it was an
experiment or random process, we carefully check to the best of our abilities that the
observations were independent.

Observations come from a nearly normal distribution. This second condition is dif-
ficult to verify with small data sets. We often (i) take a look at a plot of the data for
obvious departures from the normal model, and (ii) consider whether any previous
experiences alert us that the data may not be nearly normal.

When examining a sample mean and estimated standard error from a sample of n inde-
pendent and nearly normal observations, we use a t distribution with n − 1 degrees of
freedom (df). For example, if the sample size was 19, then we would use the t distribution
with df = 19 − 1 = 18 degrees of freedom and proceed exactly as we did in Chapter 4,
except that now we use the t table.

5.3.4 One sample t confidence intervals

Dolphins are at the top of the oceanic food chain, which causes dangerous substances such
as mercury to concentrate in their organs and muscles. This is an important problem for
both dolphins and other animals, like humans, who occasionally eat them. For instance,
this is particularly relevant in Japan where school meals have included dolphin at times.

Figure 5.15: A Risso’s dolphin.
—————————–
Photo by Mike Baird (http://www.bairdphotos.com/).

Here we identify a confidence interval for the average mercury content in dolphin
muscle using a sample of 19 Risso’s dolphins from the Taiji area in Japan.13 The data are
summarized in Table 5.16. The minimum and maximum observed values can be used to
evaluate whether or not there are obvious outliers or skew.

13Taiji was featured in the movie The Cove, and it is a significant source of dolphin and whale meat in
Japan. Thousands of dolphins pass through the Taiji area annually, and we will assume these 19 dolphins
represent a simple random sample from those dolphins. Data reference: Endo T and Haraguchi K. 2009.
High mercury levels in hair samples from residents of Taiji, a Japanese whaling town. Marine Pollution
Bulletin 60(5):743-747.
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n x̄ s minimum maximum
19 4.4 2.3 1.7 9.2

Table 5.16: Summary of mercury content in the muscle of 19 Risso’s dol-
phins from the Taiji area. Measurements are in µg/wet g (micrograms of
mercury per wet gram of muscle).

 Example 5.19 Are the independence and normality conditions satisfied for this
data set?

The observations are a simple random sample and consist of less than 10% of the pop-
ulation, therefore independence is reasonable. The summary statistics in Table 5.16
do not suggest any skew or outliers; all observations are within 2.5 standard deviations
of the mean. Based on this evidence, the normality assumption seems reasonable.

In the normal model, we used z⋆ and the standard error to determine the width of
a confidence interval. We revise the confidence interval formula slightly when using the t
distribution:

x̄ ± t⋆dfSE

The sample mean and estimated standard error are computed just as before (x̄ = 4.4 and

t⋆df
Multiplication
factor for
t conf. intervalSE = s/

√
n = 0.528). The value t⋆df is a cutoff we obtain based on the confidence level and

the t distribution with df degrees of freedom. Before determining this cutoff, we will first
need the degrees of freedom.

Degrees of freedom for a single sample
If the sample has n observations and we are examining a single mean, then we use
the t distribution with df = n− 1 degrees of freedom.

In our current example, we should use the t distribution with df = 19−1 = 18 degrees
of freedom. Then identifying t⋆18 is similar to how we found z⋆.

• For a 95% confidence interval, we want to find the cutoff t⋆18 such that 95% of the t
distribution is between -t⋆18 and t⋆18.

• We look in the t table on page 224, find the column with area totaling 0.05 in the
two tails (third column), and then the row with 18 degrees of freedom: t⋆18 = 2.10.

Generally the value of t⋆df is slightly larger than what we would get under the normal model
with z⋆.

Finally, we can substitute all our values into the confidence interval equation to create
the 95% confidence interval for the average mercury content in muscles from Risso’s dolphins
that pass through the Taiji area:

x̄ ± t⋆18SE → 4.4 ± 2.10× 0.528 → (3.29, 5.51)

We are 95% confident the average mercury content of muscles in Risso’s dolphins is between
3.29 and 5.51 µg/wet gram. This is above the Japanese regulation level of 0.4 µg/wet gram.
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Finding a t confidence interval for the mean
Based on a sample of n independent and nearly normal observations, a confidence
interval for the population mean is

x̄ ± t⋆dfSE

where x̄ is the sample mean, t⋆df corresponds to the confidence level and degrees of
freedom, and SE is the standard error as estimated by the sample.

⊙

Exercise 5.20 The FDA’s webpage provides some data on mercury content of
fish.14 Based on a sample of 15 croaker white fish (Pacific), a sample mean and
standard deviation were computed as 0.287 and 0.069 ppm (parts per million), re-
spectively. The 15 observations ranged from 0.18 to 0.41 ppm. We will assume these
observations are independent. Based on the summary statistics of the data, do you
have any objections to the normality condition of the individual observations?15

 Example 5.21 Estimate the standard error of x̄ = 0.287 ppm using the data sum-
maries in Exercise 5.20. If we are to use the t distribution to create a 90% confidence
interval for the actual mean of the mercury content, identify the degrees of freedom
we should use and also find t⋆df .

The standard error: SE = 0.069√
15

= 0.0178. Degrees of freedom: df = n− 1 = 14.

Looking in the column where two tails is 0.100 (for a 90% confidence interval) and
row df = 14, we identify t⋆14 = 1.76.

⊙

Exercise 5.22 Using the results of Exercise 5.20 and Example 5.21, compute a 90%
confidence interval for the average mercury content of croaker white fish (Pacific).16

5.3.5 One sample t tests

An SAT preparation company claims that its students’ scores improve by over 100 points
on average after their course. A consumer group would like to evaluate this claim, and they
collect data on a random sample of 30 students who took the class. Each of these students
took the SAT before and after taking the company’s course, and so we have a difference in
scores for each student. We will examine these differences x1 = 57, x2 = 133, ..., x30 = 140
as a sample to evaluate the company’s claim. (This is paired data, so we analyze the score
differences; for a review of the ideas of paired data, see Section 5.1.) The distribution of the
differences, shown in Figure 5.17, has mean 135.9 and standard deviation 82.2. Do these
data provide convincing evidence to back up the company’s claim?

⊙

Exercise 5.23 Set up hypotheses to evaluate the company’s claim. Use µ
diff

to
represent the true average difference in student scores.17

14http://www.fda.gov/food/foodborneillnesscontaminants/metals/ucm115644.htm
15There are no obvious outliers; all observations are within 2 standard deviations of the mean. If there

is skew, it is not evident. There are no red flags for the normal model based on this (limited) information,
and we do not have reason to believe the mercury content is not nearly normal in this type of fish.

16x̄ ± t⋆
14
SE → 0.287 ± 1.76 × 0.0178 → (0.256, 0.318). We are 90% confident that the average

mercury content of croaker white fish (Pacific) is between 0.256 and 0.318 ppm.
17This is a one-sided test. H0: student scores do not improve by more than 100 after taking the

company’s course. µ
diff

= 100 (we always write the null hypothesis with an equality). HA: students
scores improve by more than 100 points on average after taking the company’s course. µ

diff
> 100.
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Figure 5.17: Sample distribution of improvements in SAT scores after tak-
ing the SAT course. The distribution is approximately symmetric.
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T = 2.39

Figure 5.18: The t distribution with 29 degrees of freedom.

⊙

Exercise 5.24 Are the conditions to use the t distribution method satisfied?18

Just as we did for the normal case, we standardize the sample mean using the Z score
to identify the test statistic. However, we will write T instead of Z, because we have a T

T score
(like Z score)

small sample and are basing our inference on the t distribution:

T =
x̄− null value

SE
=

135.9− 100

82.2/
√
30

= 2.39

If the null hypothesis was true, the test statistic T would follow a t distribution with
df = n − 1 = 29 degrees of freedom. We can draw a picture of this distribution and
mark the observed T , as in Figure 5.18. The shaded right tail represents the p-value: the
probability of observing such strong evidence in favor of the SAT company’s claim, if the
average student improvement is really only 100.

18This is a random sample from less than 10% of the company’s students (assuming they have more
than 300 former students), so the independence condition is reasonable. The normality condition also seems
reasonable based on Figure 5.17. We can use the t distribution method. Note that we could use the normal
distribution. However, since the sample size (n = 30) just meets the threshold for reasonably estimating
the standard error, it is advisable to use the t distribution.
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⊙

Exercise 5.25 Use the t table in Appendix B.2 on page 410 to identify the p-value.
What do you conclude?19

⊙

Exercise 5.26 Because we rejected the null hypothesis, does this mean that taking
the company’s class improves student scores by more than 100 points on average?20

5.4 The t distribution for the difference of two means

It is also useful to be able to compare two means for small samples. For instance, a teacher
might like to test the notion that two versions of an exam were equally difficult. She could
do so by randomly assigning each version to students. If she found that the average scores
on the exams were so different that we cannot write it off as chance, then she may want to
award extra points to students who took the more difficult exam.

In a medical context, we might investigate whether embryonic stem cells can improve
heart pumping capacity in individuals who have suffered a heart attack. We could look for
evidence of greater heart health in the stem cell group against a control group.

In this section we use the t distribution for the difference in sample means. We will
again drop the minimum sample size condition and instead impose a strong condition on
the distribution of the data.

5.4.1 Sampling distributions for the difference in two means

In the example of two exam versions, the teacher would like to evaluate whether there is
convincing evidence that the difference in average scores between the two exams is not due
to chance.

It will be useful to extend the t distribution method from Section 5.3 to apply to a
difference of means:

x̄1 − x̄2 as a point estimate for µ1 − µ2

Our procedure for checking conditions mirrors what we did for large samples in Section 5.2.
First, we verify the small sample conditions (independence and nearly normal data) for each
sample separately, then we verify that the samples are also independent. For instance, if the
teacher believes students in her class are independent, the exam scores are nearly normal,
and the students taking each version of the exam were independent, then we can use the t
distribution for inference on the point estimate x̄1 − x̄2.

The formula for the standard error of x̄1 − x̄2, introduced in Section 5.2, also applies
to small samples:

SEx̄1−x̄2
=

√

SE2
x̄1

+ SE2
x̄2

=

√

s21
n1

+
s22
n2

(5.27)

19We use the row with 29 degrees of freedom. The value T = 2.39 falls between the third and fourth
columns. Because we are looking for a single tail, this corresponds to a p-value between 0.01 and 0.025. The
p-value is guaranteed to be less than 0.05 (the default significance level), so we reject the null hypothesis.
The data provide convincing evidence to support the company’s claim that student scores improve by more
than 100 points following the class.

20This is an observational study, so we cannot make this causal conclusion. For instance, maybe SAT
test takers tend to improve their score over time even if they don’t take a special SAT class, or perhaps
only the most motivated students take such SAT courses.
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Because we will use the t distribution, we will need to identify the appropriate degrees of
freedom. This can be done using computer software. An alternative technique is to use
the smaller of n1 − 1 and n2 − 1, which is the method we will apply in the examples and
exercises.21

Using the t distribution for a difference in means
The t distribution can be used for inference when working with the standardized
difference of two means if (1) each sample meets the conditions for using the t
distribution and (2) the samples are independent. We estimate the standard error
of the difference of two means using Equation (5.27).

5.4.2 Two sample t test

Summary statistics for each exam version are shown in Table 5.19. The teacher would like
to evaluate whether this difference is so large that it provides convincing evidence that
Version B was more difficult (on average) than Version A.

Version n x̄ s min max
A 30 79.4 14 45 100
B 27 74.1 20 32 100

Table 5.19: Summary statistics of scores for each exam version.

⊙

Exercise 5.28 Construct a two-sided hypothesis test to evaluate whether the ob-
served difference in sample means, x̄A − x̄B = 5.3, might be due to chance.22

⊙

Exercise 5.29 To evaluate the hypotheses in Exercise 5.28 using the t distribution,
we must first verify assumptions. (a) Does it seem reasonable that the scores are
independent within each group? (b) What about the normality condition for each
group? (c) Do you think scores from the two groups would be independent of each
other (i.e. the two samples are independent)?23

After verifying the conditions for each sample and confirming the samples are inde-
pendent of each other, we are ready to conduct the test using the t distribution. In this
case, we are estimating the true difference in average test scores using the sample data, so
the point estimate is x̄A − x̄B = 5.3. The standard error of the estimate can be calculated
using Equation (5.27):

SE =

√

s2A
nA

+
s2B
nB

=

√

142

30
+

202

27
= 4.62

21This technique for degrees of freedom is conservative with respect to a Type 1 Error; it is more difficult
to reject the null hypothesis using this df method.

22Because the teacher did not expect one exam to be more difficult prior to examining the test results,
she should use a two-sided hypothesis test. H0: the exams are equally difficult, on average. µA − µB = 0.
HA: one exam was more difficult than the other, on average. µA − µB 6= 0.

23(a) It is probably reasonable to conclude the scores are independent. (b) The summary statistics
suggest the data are roughly symmetric about the mean, and it doesn’t seem unreasonable to suggest the
data might be normal. Note that since these samples are each nearing 30, moderate skew in the data would
be acceptable. (c) It seems reasonable to suppose that the samples are independent since the exams were
handed out randomly.
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−3 −2 −1 0 1 2 3

T = 1.15

Figure 5.20: The t distribution with 26 degrees of freedom. The shaded
right tail represents values with T ≥ 1.15. Because it is a two-sided test,
we also shade the corresponding lower tail.

Finally, we construct the test statistic:

T =
point estimate− null value

SE
=

(79.4− 74.1)− 0

4.62
= 1.15

If we have a computer handy, we can identify the degrees of freedom as 45.97. Otherwise
we use the smaller of n1 − 1 and n2 − 1: df = 26.

⊙

Exercise 5.30 Identify the p-value, shown in Figure 5.20. Use df = 26.24

In Exercise 5.30, we could have used df = 45.97. However, this value is not listed in
the table. In such cases, we use the next lower degrees of freedom (unless the computer
also provides the p-value). For example, we could have used df = 45 but not df = 46.

⊙

Exercise 5.31 Do embryonic stem cells (ESCs) help improve heart function fol-
lowing a heart attack? Table 5.21 contains summary statistics for an experiment to
test ESCs in sheep that had a heart attack. Each of these sheep was randomly as-
signed to the ESC or control group, and the change in their hearts’ pumping capacity
was measured. A positive value generally corresponds to increased pumping capacity,
which suggests a stronger recovery.

(a) Set up hypotheses that will be used to test whether there is convincing evidence
that ESCs actually increase the amount of blood the heart pumps. (b) Check con-
ditions for using the t distribution for inference with the point estimate x̄1 − x̄2. To
assist in this assessment, the data are presented in Figure 5.22.25

24We examine row df = 26 in the t table. Because this value is smaller than the value in the left column,
the p-value is larger than 0.200 (two tails!). Because the p-value is so large, we do not reject the null
hypothesis. That is, the data do not convincingly show that one exam version is more difficult than the
other, and the teacher should not be convinced that she should add points to the Version B exam scores.

25(a) We first setup the hypotheses:

H0: The stem cells do not improve heart pumping function. µesc − µcontrol = 0.

HA: The stem cells do improve heart pumping function. µesc − µcontrol > 0.

(b) Because the sheep were randomly assigned their treatment and, presumably, were kept separate from
one another, the independence assumption is reasonable for each sample as well as for between samples.
The data are very limited, so we can only check for obvious outliers in the raw data in Figure 5.22. Since the
distributions are (very) roughly symmetric, we will assume the normality condition is acceptable. Because
the conditions are satisfied, we can apply the t distribution.
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Figure 5.22: Histograms for both the embryonic stem cell group and the
control group. Higher values are associated with greater improvement. We
don’t see any evidence of skew in these data; however, it is worth noting
that skew would be difficult to detect with such a small sample.
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n x̄ s
ESCs 9 3.50 5.17
control 9 -4.33 2.76

Table 5.21: Summary statistics for the embryonic stem cell data set.

Area representing

p−value

−2 0 2 4

Figure 5.23: Distribution of the sample difference of the test statistic if the
null hypothesis was true. The shaded area, hardly visible in the right tail,
represents the p-value.

 Example 5.32 Use the data from Table 5.21 and df = 8 to evaluate the hypotheses
for the ESC experiment described in Exercise 5.31.

First, we compute the sample difference and the standard error for that point esti-
mate:

x̄esc − x̄control = 7.83

SE =

√

5.172

9
+

2.762

9
= 1.95

The p-value is depicted as the shaded slim right tail in Figure 5.23, and the test
statistic is computed as follows:

T =
7.83− 0

1.95
= 4.02

We use the smaller of n1 − 1 and n2 − 1 (each are the same) for the degrees of
freedom: df = 8. Finally, we look for T = 4.02 in the t table; it falls to the right of
the last column, so the p-value is smaller than 0.005 (one tail!). Because the p-value
is less than 0.005 and therefore also smaller than 0.05, we reject the null hypothesis.
The data provide convincing evidence that embryonic stem cells improve the heart’s
pumping function in sheep that have suffered a heart attack.

5.4.3 Two sample t confidence interval

The results from the previous section provided evidence that ESCs actually help improve
the pumping function of the heart. But how large is this improvement? To answer this
question, we can use a confidence interval.
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⊙

Exercise 5.33 In Exercise 5.31, you found that the point estimate, x̄esc−x̄control =
7.83, has a standard error of 1.95. Using df = 8, create a 99% confidence interval for
the improvement due to ESCs.26

5.4.4 Pooled standard deviation estimate (special topic)

Occasionally, two populations will have standard deviations that are so similar that they
can be treated as identical. For example, historical data or a well-understood biological
mechanism may justify this strong assumption. In such cases, we can make our t distribu-
tion approach slightly more precise by using a pooled standard deviation.

The pooled standard deviation of two groups is a way to use data from both
samples to better estimate the standard deviation and standard error. If s1 and s2 are
the standard deviations of groups 1 and 2 and there are good reasons to believe that the
population standard deviations are equal, then we can obtain an improved estimate of the
group variances by pooling their data:

s2pooled =
s21 × (n1 − 1) + s22 × (n2 − 1)

n1 + n2 − 2

where n1 and n2 are the sample sizes, as before. To use this new statistic, we substitute
s2pooled in place of s21 and s22 in the standard error formula, and we use an updated formula
for the degrees of freedom:

df = n1 + n2 − 2

The benefits of pooling the standard deviation are realized through obtaining a better
estimate of the standard deviation for each group and using a larger degrees of freedom
parameter for the t distribution. Both of these changes may permit a more accurate model
of the sampling distribution of x̄1 − x̄2.

Caution: Pooling standard deviations should be done only after careful
research
A pooled standard deviation is only appropriate when background research indi-
cates the population standard deviations are nearly equal. When the sample size
is large and the condition may be adequately checked with data, the benefits of
pooling the standard deviations greatly diminishes.

26We know the point estimate, 7.83, and the standard error, 1.95. We also verified the conditions for
using the t distribution in Exercise 5.31. Thus, we only need identify t⋆

8
to create a 99% confidence interval:

t⋆
8
= 3.36. The 99% confidence interval for the improvement from ESCs is given by

point estimate ± t⋆8SE → 7.83 ± 3.36× 1.95 → (1.33, 14.43)

That is, we are 99% confident that the true improvement in heart pumping function is somewhere between
1.33% and 14.43%.
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5.5 Comparing many means with ANOVA
(special topic)

Sometimes we want to compare means across many groups. We might initially think to
do pairwise comparisons; for example, if there were three groups, we might be tempted to
compare the first mean with the second, then with the third, and then finally compare the
second and third means for a total of three comparisons. However, this strategy can be
treacherous. If we have many groups and do many comparisons, it is likely that we will
eventually find a difference just by chance, even if there is no difference in the populations.

In this section, we will learn a new method called analysis of variance (ANOVA)
and a new test statistic called F . ANOVA uses a single hypothesis test to check whether
the means across many groups are equal:

H0: The mean outcome is the same across all groups. In statistical notation, µ1 = µ2 =
· · · = µk where µi represents the mean of the outcome for observations in category i.

HA: At least one mean is different.

Generally we must check three conditions on the data before performing ANOVA:

• the observations are independent within and across groups,

• the data within each group are nearly normal, and

• the variability across the groups is about equal.

When these three conditions are met, we may perform an ANOVA to determine whether
the data provide strong evidence against the null hypothesis that all the µi are equal.

 Example 5.34 College departments commonly run multiple lectures of the same
introductory course each semester because of high demand. Consider a statistics
department that runs three lectures of an introductory statistics course. We might
like to determine whether there are statistically significant differences in first exam
scores in these three classes (A, B, and C). Describe appropriate hypotheses to
determine whether there are any differences between the three classes.

The hypotheses may be written in the following form:

H0: The average score is identical in all lectures. Any observed difference is due to
chance. Notationally, we write µA = µB = µC .

HA: The average score varies by class. We would reject the null hypothesis in favor
of the alternative hypothesis if there were larger differences among the class
averages than what we might expect from chance alone.

Strong evidence favoring the alternative hypothesis in ANOVA is described by un-
usually large differences among the group means. We will soon learn that assessing the
variability of the group means relative to the variability among individual observations
within each group is key to ANOVA’s success.

 Example 5.35 Examine Figure 5.24. Compare groups I, II, and III. Can you visu-
ally determine if the differences in the group centers is due to chance or not? Now
compare groups IV, V, and VI. Do these differences appear to be due to chance?
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Figure 5.24: Side-by-side dot plot for the outcomes for six groups.

Any real difference in the means of groups I, II, and III is difficult to discern, because
the data within each group are very volatile relative to any differences in the average
outcome. On the other hand, it appears there are differences in the centers of groups
IV, V, and VI. For instance, group V appears to have a higher mean than that of
the other two groups. Investigating groups IV, V, and VI, we see the differences in
the groups’ centers are noticeable because those differences are large relative to the

variability in the individual observations within each group.

5.5.1 Is batting performance related to player position in MLB?

We would like to discern whether there are real differences between the batting performance
of baseball players according to their position: outfielder (OF), infielder (IF), designated
hitter (DH), and catcher (C). We will use a data set called bat10, which includes batting
records of 327 Major League Baseball (MLB) players from the 2010 season. Six of the 327
cases represented in bat10 are shown in Table 5.25, and descriptions for each variable are
provided in Table 5.26. The measure we will use for the player batting performance (the
outcome variable) is on-base percentage (OBP). The on-base percentage roughly represents
the fraction of the time a player successfully gets on base or hits a home run.

name team position AB H HR RBI AVG OBP
1 I Suzuki SEA OF 680 214 6 43 0.315 0.359
2 D Jeter NYY IF 663 179 10 67 0.270 0.340
3 M Young TEX IF 656 186 21 91 0.284 0.330
...

...
...

...
...

...
...

...
325 B Molina SF C 202 52 3 17 0.257 0.312
326 J Thole NYM C 202 56 3 17 0.277 0.357
327 C Heisey CIN OF 201 51 8 21 0.254 0.324

Table 5.25: Six cases from the bat10 data matrix.

⊙

Exercise 5.36 The null hypothesis under consideration is the following: µOF =
µIF = µDH = µC. Write the null and corresponding alternative hypotheses in plain
language.27

27H0: The average on-base percentage is equal across the four positions. HA: The average on-base
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variable description

name Player name
team The abbreviated name of the player’s team
position The player’s primary field position (OF, IF, DH, C)
AB Number of opportunities at bat
H Number of hits
HR Number of home runs
RBI Number of runs batted in
AVG Batting average, which is equal to H/AB
OBP On-base percentage, which is roughly equal to the fraction

of times a player gets on base or hits a home run

Table 5.26: Variables and their descriptions for the bat10 data set.

 Example 5.37 The player positions have been divided into four groups: outfield
(OF), infield (IF), designated hitter (DH), and catcher (C). What would be an appro-
priate point estimate of the on-base percentage by outfielders, µOF?

A good estimate of the on-base percentage by outfielders would be the sample average
of OBP for just those players whose position is outfield: x̄OF = 0.334.

Table 5.27 provides summary statistics for each group. A side-by-side box plot for
the on-base percentage is shown in Figure 5.28. Notice that the variability appears to
be approximately constant across groups; nearly constant variance across groups is an
important assumption that must be satisfied before we consider the ANOVA approach.

OF IF DH C

Sample size (ni) 120 154 14 39
Sample mean (x̄i) 0.334 0.332 0.348 0.323
Sample SD (si) 0.029 0.037 0.036 0.045

Table 5.27: Summary statistics of on-base percentage, split by player posi-
tion.

 Example 5.38 The largest difference between the sample means is between the
designated hitter and the catcher positions. Consider again the original hypotheses:

H0: µOF = µIF = µDH = µC

HA: The average on-base percentage (µi) varies across some (or all) groups.

Why might it be inappropriate to run the test by simply estimating whether the
difference of µDH and µC is statistically significant at a 0.05 significance level?

The primary issue here is that we are inspecting the data before picking the groups
that will be compared. It is inappropriate to examine all data by eye (informal
testing) and only afterwards decide which parts to formally test. This is called data
snooping or data fishing. Naturally we would pick the groups with the large
differences for the formal test, leading to an inflation in the Type 1 Error rate. To
understand this better, let’s consider a slightly different problem.

percentage varies across some (or all) groups.
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Figure 5.28: Side-by-side box plot of the on-base percentage for 327 players
across four groups. There is one prominent outlier visible in the infield
group, but with 154 observations in the infield group, this outlier is not a
concern.

Suppose we are to measure the aptitude for students in 20 classes in a large elementary
school at the beginning of the year. In this school, all students are randomly assigned
to classrooms, so any differences we observe between the classes at the start of the
year are completely due to chance. However, with so many groups, we will probably
observe a few groups that look rather different from each other. If we select only
these classes that look so different, we will probably make the wrong conclusion that
the assignment wasn’t random. While we might only formally test differences for a
few pairs of classes, we informally evaluated the other classes by eye before choosing
the most extreme cases for a comparison.

For additional information on the ideas expressed in Example 5.38, we recommend
reading about the prosecutor’s fallacy.28

In the next section we will learn how to use the F statistic and ANOVA to test whether
observed differences in sample means could have happened just by chance even if there was
no difference in the respective population means.

5.5.2 Analysis of variance (ANOVA) and the F test

The method of analysis of variance in this context focuses on answering one question:
is the variability in the sample means so large that it seems unlikely to be from chance
alone? This question is different from earlier testing procedures since we will simultaneously

consider many groups, and evaluate whether their sample means differ more than we would
expect from natural variation. We call this variability the mean square between groups

28See, for example, www.stat.columbia.edu/∼cook/movabletype/archives/2007/05/the prosecutors.html.
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(MSG), and it has an associated degrees of freedom, dfG = k− 1 when there are k groups.
The MSG can be thought of as a scaled variance formula for means. If the null hypothesis
is true, any variation in the sample means is due to chance and shouldn’t be too large.
Details of MSG calculations are provided in the footnote,29 however, we typically use
software for these computations.

The mean square between the groups is, on its own, quite useless in a hypothesis test.
We need a benchmark value for how much variability should be expected among the sample
means if the null hypothesis is true. To this end, we compute a pooled variance estimate,
often abbreviated as the mean square error (MSE), which has an associated degrees of
freedom value dfE = n − k. It is helpful to think of MSE as a measure of the variability
within the groups. Details of the computations of the MSE are provided in the footnote30

for interested readers.
When the null hypothesis is true, any differences among the sample means are only

due to chance, and the MSG and MSE should be about equal. As a test statistic for
ANOVA, we examine the fraction of MSG and MSE:

F =
MSG

MSE
(5.39)

The MSG represents a measure of the between-group variability, and MSE measures the
variability within each of the groups.
⊙

Exercise 5.40 For the baseball data, MSG = 0.00252 and MSE = 0.00127.
Identify the degrees of freedom associated with MSG and MSE and verify the F
statistic is approximately 1.994.31

We can use the F statistic to evaluate the hypotheses in what is called an F test.
A p-value can be computed from the F statistic using an F distribution, which has two
associated parameters: df1 and df2. For the F statistic in ANOVA, df1 = dfG and df2 = dfE .
An F distribution with 3 and 323 degrees of freedom, corresponding to the F statistic for
the baseball hypothesis test, is shown in Figure 5.29.

29Let x̄ represent the mean of outcomes across all groups. Then the mean square between groups is
computed as

MSG =
1

dfG
SSG =

1

k − 1

k
∑

i=1

ni (x̄i − x̄)2

where SSG is called the sum of squares between groups and ni is the sample size of group i.
30Let x̄ represent the mean of outcomes across all groups. Then the sum of squares total (SST ) is

computed as

SST =

n
∑

i=1

(xi − x̄)2

where the sum is over all observations in the data set. Then we compute the sum of squared errors
(SSE) in one of two equivalent ways:

SSE = SST − SSG

= (n1 − 1)s21 + (n2 − 1)s22 + · · ·+ (nk − 1)s2k

where s2i is the sample variance (square of the standard deviation) of the residuals in group i. Then the

MSE is the standardized form of SSE: MSE = 1

dfE
SSE.

31There are k = 4 groups, so dfG = k − 1 = 3. There are n = n1 + n2 + n3 + n4 = 327 total
observations, so dfE = n − k = 323. Then the F statistic is computed as the ratio of MSG and MSE:
F = MSG

MSE
= 0.00252

0.00127
= 1.984 ≈ 1.994. (F = 1.994 was computed by using values for MSG and MSE that

were not rounded.)
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Figure 5.29: An F distribution with df1 = 3 and df2 = 323.

The larger the observed variability in the sample means (MSG) relative to the within-
group observations (MSE), the larger F will be and the stronger the evidence against the
null hypothesis. Because larger values of F represent stronger evidence against the null
hypothesis, we use the upper tail of the distribution to compute a p-value.

The F statistic and the F test
Analysis of variance (ANOVA) is used to test whether the mean outcome differs
across 2 or more groups. ANOVA uses a test statistic F , which represents a
standardized ratio of variability in the sample means relative to the variability
within the groups. If H0 is true and the model assumptions are satisfied, the
statistic F follows an F distribution with parameters df1 = k− 1 and df2 = n− k.
The upper tail of the F distribution is used to represent the p-value.

⊙

Exercise 5.41 The test statistic for the baseball example is F = 1.994. Shade the
area corresponding to the p-value in Figure 5.29. 32

 Example 5.42 The p-value corresponding to the shaded area in the solution of
Exercise 5.41 is equal to about 0.115. Does this provide strong evidence against the
null hypothesis?

The p-value is larger than 0.05, indicating the evidence is not strong enough to reject
the null hypothesis at a significance level of 0.05. That is, the data do not provide
strong evidence that the average on-base percentage varies by player’s primary field
position.

32

0 1 2 3 4 5 6
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5.5.3 Reading an ANOVA table from software

The calculations required to perform an ANOVA by hand are tedious and prone to human
error. For these reasons, it is common to use statistical software to calculate the F statistic
and p-value.

An ANOVA can be summarized in a table very similar to that of a regression summary,
which we will see in Chapters 7 and 8. Table 5.30 shows an ANOVA summary to test
whether the mean of on-base percentage varies by player positions in the MLB. Many of
these values should look familiar; in particular, the F test statistic and p-value can be
retrieved from the last columns.

Df Sum Sq Mean Sq F value Pr(>F)
position 3 0.0076 0.0025 1.9943 0.1147
Residuals 323 0.4080 0.0013

spooled = 0.036 on df = 323

Table 5.30: ANOVA summary for testing whether the average on-base
percentage differs across player positions.

5.5.4 Graphical diagnostics for an ANOVA analysis

There are three conditions we must check for an ANOVA analysis: all observations must
be independent, the data in each group must be nearly normal, and the variance within
each group must be approximately equal.

Independence. If the data are a simple random sample from less than 10% of the pop-
ulation, this condition is satisfied. For processes and experiments, carefully consider
whether the data may be independent (e.g. no pairing). For example, in the MLB
data, the data were not sampled. However, there are not obvious reasons why inde-
pendence would not hold for most or all observations.

Approximately normal. As with one- and two-sample testing for means, the normality
assumption is especially important when the sample size is quite small. The normal
probability plots for each group of the MLB data are shown in Figure 5.31; there
is some deviation from normality for infielders, but this isn’t a substantial concern
since there are about 150 observations in that group and the outliers are not extreme.
Sometimes in ANOVA there are so many groups or so few observations per group that
checking normality for each group isn’t reasonable. See the footnote33 for guidance
on how to handle such instances.

Constant variance. The last assumption is that the variance in the groups is about equal
from one group to the next. This assumption can be checked by examining a side-
by-side box plot of the outcomes across the groups, as in Figure 5.28 on page 239.
In this case, the variability is similar in the four groups but not identical. We see in
Table 5.27 on page 238 that the standard deviation varies a bit from one group to the
next. Whether these differences are from natural variation is unclear, so we should
report this uncertainty with the final results.

33First calculate the residuals of the baseball data, which are calculated by taking the observed values
and subtracting the corresponding group means. For example, an outfielder with OBP of 0.405 would have
a residual of 0.405− x̄OF = 0.071. Then to check the normality condition, create a normal probability plot
using all the residuals simultaneously.
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Figure 5.31: Normal probability plot of OBP for each field position.

Caution: Diagnostics for an ANOVA analysis
Independence is always important to an ANOVA analysis. The normality condition
is very important when the sample sizes for each group are relatively small. The
constant variance condition is especially important when the sample sizes differ
between groups.

5.5.5 Multiple comparisons and controlling Type 1 Error rate

When we reject the null hypothesis in an ANOVA analysis, we might wonder, which of
these groups have different means? To answer this question, we compare the means of each
possible pair of groups. For instance, if there are three groups and there is strong evidence
that there are some differences in the group means, there are three comparisons to make:
group 1 to group 2, group 1 to group 3, and group 2 to group 3. These comparisons can
be accomplished using a two-sample t test, but we use a modified significance level and
a pooled estimate of the standard deviation across groups. Usually this pooled standard
deviation can be found in the ANOVA table, e.g. along the bottom of Table 5.30.
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Class i A B C
ni 58 55 51
x̄i 75.1 72.0 78.9
si 13.9 13.8 13.1

Table 5.32: Summary statistics for the first midterm scores in three different
lectures of the same course.
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Figure 5.33: Side-by-side box plot for the first midterm scores in three
different lectures of the same course.

 Example 5.43 Example 5.34 on page 236 discussed three statistics lectures, all
taught during the same semester. Table 5.32 shows summary statistics for these
three courses, and a side-by-side box plot of the data is shown in Figure 5.33. We
would like to conduct an ANOVA for these data. Do you see any deviations from the
three conditions for ANOVA?

In this case (like many others) it is difficult to check independence in a rigorous way.
Instead, the best we can do is use common sense to consider reasons the assumption
of independence may not hold. For instance, the independence assumption may not
be reasonable if there is a star teaching assistant that only half of the students may
access; such a scenario would divide a class into two subgroups. No such situations
were evident for these particular data, and we believe that independence is acceptable.

The distributions in the side-by-side box plot appear to be roughly symmetric and
show no noticeable outliers.

The box plots show approximately equal variability, which can be verified in Ta-
ble 5.32, supporting the constant variance assumption.

⊙

Exercise 5.44 An ANOVA was conducted for the midterm data, and summary
results are shown in Table 5.34. What should we conclude?34

34The p-value of the test is 0.0330, less than the default significance level of 0.05. Therefore, we reject
the null hypothesis and conclude that the difference in the average midterm scores are not due to chance.
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Df Sum Sq Mean Sq F value Pr(>F)
lecture 2 1290.11 645.06 3.48 0.0330
Residuals 161 29810.13 185.16

spooled = 13.61 on df = 161

Table 5.34: ANOVA summary table for the midterm data.

There is strong evidence that the different means in each of the three classes is not
simply due to chance. We might wonder, which of the classes are actually different? As
discussed in earlier chapters, a two-sample t test could be used to test for differences in each
possible pair of groups. However, one pitfall was discussed in Example 5.38 on page 238:
when we run so many tests, the Type 1 Error rate increases. This issue is resolved by using
a modified significance level.

Multiple comparisons and the Bonferroni correction for α
The scenario of testing many pairs of groups is called multiple comparisons.
The Bonferroni correction suggests that a more stringent significance level is
more appropriate for these tests:

α∗ = α/K

where K is the number of comparisons being considered (formally or informally).

If there are k groups, then usually all possible pairs are compared and K = k(k−1)
2 .

 Example 5.45 In Exercise 5.44, you found strong evidence of differences in the
average midterm grades between the three lectures. Complete the three possible
pairwise comparisons using the Bonferroni correction and report any differences.

We use a modified significance level of α∗ = 0.05/3 = 0.0167. Additionally, we use
the pooled estimate of the standard deviation: spooled = 13.61 on df = 161, which is
provided in the ANOVA summary table.

Lecture A versus Lecture B: The estimated difference and standard error are, respec-
tively,

x̄A − x̄B = 75.1− 72 = 3.1 SE =

√

13.612

58
+

13.612

55
= 2.56

(See Section 5.4.4 on page 235 for additional details.) This results in a T score of 1.21
on df = 161 (we use the df associated with spooled). Statistical software was used to
precisely identify the two-tailed p-value since the modified significance of 0.0167 is
not found in the t table. The p-value (0.228) is larger than α∗ = 0.0167, so there is
not strong evidence of a difference in the means of lectures A and B.

Lecture A versus Lecture C: The estimated difference and standard error are 3.8 and
2.61, respectively. This results in a T score of 1.46 on df = 161 and a two-tailed
p-value of 0.1462. This p-value is larger than α∗, so there is not strong evidence of a
difference in the means of lectures A and C.

Lecture B versus Lecture C: The estimated difference and standard error are 6.9 and
2.65, respectively. This results in a T score of 2.60 on df = 161 and a two-tailed
p-value of 0.0102. This p-value is smaller than α∗. Here we find strong evidence of a
difference in the means of lectures B and C.
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Wemight summarize the findings of the analysis from Example 5.45 using the following
notation:

µA
?
= µB µA

?
= µC µB 6= µC

The midterm mean in lecture A is not statistically distinguishable from those of lectures
B or C. However, there is strong evidence that lectures B and C are different. In the first
two pairwise comparisons, we did not have sufficient evidence to reject the null hypothesis.
Recall that failing to reject H0 does not imply H0 is true.

Caution: Sometimes an ANOVA will reject the null but no groups will
have statistically significant differences
It is possible to reject the null hypothesis using ANOVA and then to not subse-
quently identify differences in the pairwise comparisons. However, this does not

invalidate the ANOVA conclusion. It only means we have not been able to success-
fully identify which groups differ in their means.

The ANOVA procedure examines the big picture: it considers all groups simultane-
ously to decipher whether there is evidence that some difference exists. Even if the test
indicates that there is strong evidence of differences in group means, identifying with high
confidence a specific difference as statistically significant is more difficult.

Consider the following analogy: we observe a Wall Street firm that makes large quanti-
ties of money based on predicting mergers. Mergers are generally difficult to predict, and if
the prediction success rate is extremely high, that may be considered sufficiently strong ev-
idence to warrant investigation by the Securities and Exchange Commission (SEC). While
the SEC may be quite certain that there is insider trading taking place at the firm, the
evidence against any single trader may not be very strong. It is only when the SEC consid-
ers all the data that they identify the pattern. This is effectively the strategy of ANOVA:
stand back and consider all the groups simultaneously.
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5.6 Exercises

5.6.1 Paired data

5.1 Global warming, Part I. Is there strong evidence of global warming? Let’s consider a small
scale example, comparing how temperatures have changed in the US from 1968 to 2008. The daily
high temperature reading on January 1 was collected in 1968 and 2008 for 51 randomly selected
locations in the continental US. Then the difference between the two readings (temperature in 2008
- temperature in 1968) was calculated for each of the 51 different locations. The average of these 51
values was 1.1 degrees with a standard deviation of 4.9 degrees. We are interested in determining
whether these data provide strong evidence of temperature warming in the continental US.

(a) Is there a relationship between the observations collected in 1968 and 2008? Or are the
observations in the two groups independent? Explain.

(b) Write hypotheses for this research in symbols and in words.

(c) Check the conditions required to complete this test.

(d) Calculate the test statistic and find the p-value.

(e) What do you conclude? Interpret your conclusion in context.

(f) What type of error might we have made? Explain in context what the error means.

(g) Based on the results of this hypothesis test, would you expect a confidence interval for the
average difference between the temperature measurements from 1968 and 2008 to include 0?
Explain your reasoning.

5.2 High School and Beyond, Part I. The National Center of Education Statistics conducted
a survey of high school seniors, collecting test data on reading, writing, and several other subjects.
Here we examine a simple random sample of 200 students from this survey. Side-by-side box plots
of reading and writing scores as well as a histogram of the differences in scores are shown below.
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(a) Is there a clear difference in the average reading and writing scores?

(b) Are the reading and writing scores of each student independent of each other?

(c) Create hypotheses appropriate for the following research question: is there an evident difference
in the average scores of students in the reading and writing exam?

(d) Check the conditions required to complete this test.

(e) The average observed difference in scores is x̄read−write = −0.545, and the standard deviation
of the differences is 8.887 points. Do these data provide convincing evidence of a difference
between the average scores on the two exams?

(f) What type of error might we have made? Explain what the error means in the context of the
application.

(g) Based on the results of this hypothesis test, would you expect a confidence interval for the
average difference between the reading and writing scores to include 0? Explain your reasoning.
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5.3 Global warming, Part II. We considered the differences between the temperature readings
in January 1 of 1968 and 2008 at 51 locations in the continental US in Exercise 5.1. The mean
and standard deviation of the reported differences are 1.1 degrees and 4.9 degrees.

(a) Calculate a 90% confidence interval for the average difference between the temperature mea-
surements between 1968 and 2008.

(b) Interpret this interval in context.

(c) Does the confidence interval provide convincing evidence that the temperature was higher in
2008 than in 1968 in the continental US? Explain.

5.4 High school and beyond, Part II. We considered the differences between the reading and
writing scores of a random sample of 200 students who took the High School and Beyond Survey
in Exercise 5.3. The mean and standard deviation of the differences are x̄read−write = −0.545 and
8.887 points.

(a) Calculate a 95% confidence interval for the average difference between the reading and writing
scores of all students.

(b) Interpret this interval in context.

(c) Does the confidence interval provide convincing evidence that there is a real difference in the
average scores? Explain.

5.5 Gifted children. Researchers collected a simple random sample of 36 children who had
been identified as gifted in a large city. The following histograms show the distributions of the IQ
scores of mothers and fathers of these children. Also provided are some sample statistics.35
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Mean 118.2 114.8 3.4
SD 6.5 3.5 7.5
n 36 36 36

(a) Are the IQs of mothers and the IQs of fathers in this data set related? Explain.

(b) Conduct a hypothesis test to evaluate if the scores are equal on average. Make sure to clearly
state your hypotheses, check the relevant conditions, and state your conclusion in the context
of the data.

5.6 Paired or not? In each of the following scenarios, determine if the data are paired.

(a) We would like to know if Intel’s stock and Southwest Airlines’ stock have similar rates of
return. To find out, we take a random sample of 50 days for Intel’s stock and another random
sample of 50 days for Southwest’s stock.

(b) We randomly sample 50 items from Target stores and note the price for each. Then we visit
Walmart and collect the price for each of those same 50 items.

(c) A school board would like to determine whether there is a difference in average SAT scores
for students at one high school versus another high school in the district. To check, they take
a simple random sample of 100 students from each high school.

35F.A. Graybill and H.K. Iyer. Regression Analysis: Concepts and Applications. Duxbury Press, 1994,
pp. 511–516.
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5.6.2 Difference of two means

5.7 Math scores of 13 year olds, Part I. The National Assessment of Educational Progress
tested a simple random sample of 1,000 thirteen year old students in both 2004 and 2008 (two
separate simple random samples). The average and standard deviation in 2004 were 257 and 39,
respectively. In 2008, the average and standard deviation were 260 and 38, respectively. Calculate
a 90% confidence interval for the change in average scores from 2004 to 2008, and interpret this
interval in the context of the application. (Reminder: check conditions.)36

5.8 Work hours and education, Part I. The General Social Survey collects data on demo-
graphics, education, and work, among many other characteristics of US residents. The histograms
below display the distributions of hours worked per week for two education groups: those with
and without a college degree.37 Suppose we want to estimate the average difference between the
number of hours worked per week by all Americans with a college degree and those without a
college degree. Summary information for each group is shown in the tables.
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(a) What is the parameter of interest, and what is the point estimate?

(b) Are conditions satisfied for estimating this difference using a confidence interval?

(c) Create a 95% confidence interval for the difference in number of hours worked between the
two groups, and interpret the interval in context.

(d) Can you think of any real world justification for your results? (Note: There isn’t a single
correct answer to this question.)

5.9 Math scores of 13 year olds, Part II. Exercise 5.7 provides data on the average math
scores from tests conducted by the National Assessment of Educational Progress in 2004 and 2008.
Two separate simple random samples, each of size 1,000, were taken in each of these years. The
average and standard deviation in 2004 were 257 and 39, respectively. In 2008, the average and
standard deviation were 260 and 38, respectively.

(a) Do these data provide strong evidence that the average math score for 13 year old students
has changed from 2004 to 2008? Use a 10% significance level.

(b) It is possible that your conclusion in part (a) is incorrect. What type of error is possible for
this conclusion? Explain.

(c) Based on your hypothesis test, would you expect a 90% confidence interval to contain the null
value? Explain.

36National Center for Education Statistics, NAEP Data Explorer.
37National Opinion Research Center, General Social Survey, 2010.
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5.10 Work hours and education, Part II. The General Social Survey described in Exercise 5.8
included random samples from two groups: US residents with a college degree and US residents
without a college degree. For the 505 sampled US residents with a college degree, the average
number of hours worked each week was 41.8 hours with a standard deviation of 15.1 hours. For
those 667 without a degree, the mean was 39.4 hours with a standard deviation of 15.1 hours.
Conduct a hypothesis test to check for a difference in the average number of hours worked for the
two groups.

5.11 Does the Paleo diet work? The Paleo diet allows only for foods that humans typically
consumed over the last 2.5 million years, excluding those agriculture-type foods that arose during
the last 10,000 years or so. Researchers randomly divided 500 volunteers into two equal-sized
groups. One group spent 6 months on the Paleo diet. The other group received a pamphlet about
controlling portion sizes. Randomized treatment assignment was performed, and at the beginning
of the study, the average difference in weights between the two groups was about 0. After the
study, the Paleo group had lost on average 7 pounds with a standard deviation of 20 pounds while
the control group had lost on average 5 pounds with a standard deviation of 12 pounds.

(a) The 95% confidence interval for the difference between the two population parameters (Paleo
- control) is given as (-0.891, 4.891). Interpret this interval in the context of the data.

(b) Based on this confidence interval, do the data provide convincing evidence that the Paleo diet
is more effective for weight loss than the pamphlet (control)? Explain your reasoning.

(c) Without explicitly performing the hypothesis test, do you think that if the Paleo group had
lost 8 instead of 7 pounds on average, and everything else was the same, the results would
then indicate a significant difference between the treatment and control groups? Explain your
reasoning.

5.12 Weight gain during pregnancy. In 2004, the state of North Carolina released to the
public a large data set containing information on births recorded in this state. This data set
has been of interest to medical researchers who are studying the relationship between habits and
practices of expectant mothers and the birth of their children. The following histograms show the
distributions of weight gain during pregnancy by 867 younger moms (less than 35 years old) and
133 mature moms (35 years old and over) who have been randomly sampled from this large data
set. The average weight gain of younger moms is 30.56 pounds, with a standard deviation of 14.35
pounds, and the average weight gain of mature moms is 28.79 pounds, with a standard deviation
of 13.48 pounds. Calculate a 95% confidence interval for the difference between the average weight
gain of younger and mature moms. Also comment on whether or not this interval provides strong
evidence that there is a significant difference between the two population means.
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5.13 Body fat in women and men. The third National Health and Nutrition Examination
Survey collected body fat percentage (BF) data from 13,601 subjects whose ages are 20 to 80. A
summary table for these data is given below. Note that BF is given as mean ± standard error.
Construct a 95% confidence interval for the difference in average body fat percentages between
men and women, and explain the meaning of this interval.38

Gender n BF (%)

Men 6,580 23.9 ± 0.07
Women 7,021 35.0 ± 0.09

5.14 Child care hours, Part I. The China Health and Nutrition Survey aims to examine the
effects of the health, nutrition, and family planning policies and programs implemented by national
and local governments. One of the variables collected on the survey is the number of hours parents
spend taking care of children in their household under age 6 (feeding, bathing, dressing, holding, or
watching them). In 2006, 487 females and 312 males were surveyed for this question. On average,
females reported spending 31 hours with a standard deviation of 31 hours, and males reported
spending 16 hours with a standard deviation of 21 hours. Calculate a 95% confidence interval
for the difference between the average number of hours Chinese males and females spend taking
care of their children under age 6. Also comment on whether this interval suggests a significant
difference between the two population parameters. You may assume that conditions for inference
are satisfied.39

5.6.3 One-sample means with the t distribution

5.15 Identify the critical t. An independent random sample is selected from an approximately
normal population with unknown standard deviation. Find the degrees of freedom and the critical
t value (t⋆) for the given sample size and confidence level.

(a) n = 6, CL = 90%

(b) n = 21, CL = 98%

(c) n = 29, CL = 95%

(d) n = 12, CL = 99%

5.16 Working backwards, Part I. A 90% confidence interval for a population mean is (65,77).
The population distribution is approximately normal and the population standard deviation is un-
known. This confidence interval is based on a simple random sample of 25 observations. Calculate
the sample mean, the margin of error, and the sample standard deviation.

5.17 Working backwards, Part II. A 95% confidence interval for a population mean, µ, is
given as (18.985, 21.015). This confidence interval is based on a simple random sample of 36
observations. Calculate the sample mean and standard deviation. Assume that all conditions
necessary for inference are satisfied. Use the t distribution in any calculations.

5.18 Find the p-value. An independent random sample is selected from an approximately
normal population with an unknown standard deviation. Find the p-value for the given set of
hypotheses and T test statistic. Also determine if the null hypothesis would be rejected at α = 0.05.

(a) HA : µ > µ0, n = 11, T = 1.91

(b) HA : µ < µ0, n = 17, T = −3.45

(c) HA : µ 6= µ0, n = 7, T = 0.83

(d) HA : µ > µ0, n = 28, T = 2.13

38A Romero-Corral et al. “Accuracy of body mass index in diagnosing obesity in the adult general
population”. In: International Journal of Obesity 32.6 (2008), pp. 959–966.

39UNC Carolina Population Center, China Health and Nutrition Survey, 2006.
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5.19 Sleep habits of New Yorkers. New York is known as “the city that never sleeps”.
A random sample of 25 New Yorkers were asked how much sleep they get per night. Statistical
summaries of these data are shown below. Do these data provide strong evidence that New Yorkers
sleep less than 8 hours a night on average?

n x̄ s min max

25 7.73 0.77 6.17 9.78

(a) Write the hypotheses in symbols and in words.

(b) Check conditions, then calculate the test statistic, T , and the associated degrees of freedom.

(c) Find and interpret the p-value in this context. Drawing a picture may be helpful.

(d) What is the conclusion of the hypothesis test?

(e) If you were to construct a 90% confidence interval that corresponded to this hypothesis test,
would you expect 8 hours to be in the interval?

5.20 Fuel efficiency of Prius. Fueleconomy.gov, the official US government source for fuel
economy information, allows users to share gas mileage information on their vehicles. The his-
togram below shows the distribution of gas mileage in miles per gallon (MPG) from 14 users who
drive a 2012 Toyota Prius. The sample mean is 53.3 MPG and the standard deviation is 5.2 MPG.
Note that these data are user estimates and since the source data cannot be verified, the accuracy
of these estimates are not guaranteed.40
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(a) We would like to use these data to evaluate the average gas mileage of all 2012 Prius drivers.
Do you think this is reasonable? Why or why not?

(b) The EPA claims that a 2012 Prius gets 50 MPG (city and highway mileage combined). Do
these data provide strong evidence against this estimate for drivers who participate on fuele-
conomy.gov? Note any assumptions you must make as you proceed with the test.

(c) Calculate a 95% confidence interval for the average gas mileage of a 2012 Prius by drivers who
participate on fueleconomy.gov.

5.21 Find the mean. You are given the following hypotheses:

H0 : µ = 60

HA : µ < 60

We know that the sample standard deviation is 8 and the sample size is 20. For what sample
mean would the p-value be equal to 0.05? Assume that all conditions necessary for inference are
satisfied.

5.22 t⋆ vs. z⋆. For a given confidence level, t⋆df is larger than z⋆. Explain how t∗df being slightly
larger than z∗ affects the width of the confidence interval.

40Fuelecomy.gov, Shared MPG Estimates: Toyota Prius 2012.
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5.6.4 The t distribution for the difference of two means

5.23 Cleveland vs. Sacramento. Average income varies from one region of the country to
another, and it often reflects both lifestyles and regional living expenses. Suppose a new graduate
is considering a job in two locations, Cleveland, OH and Sacramento, CA, and he wants to see
whether the average income in one of these cities is higher than the other. He would like to conduct
a t test based on two small samples from the 2000 Census, but he first must consider whether the
conditions are met to implement the test. Below are histograms for each city. Should he move
forward with the t test? Explain your reasoning.
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Cleveland, OH

Total personal income

0 45000 90000 135000 180000
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Sacramento, CA

Cleveland, OH

Mean $ 35,749
SD $ 39,421
n 21

Sacramento, CA

Mean $ 35,500
SD $ 41,512
n 17

5.24 Oscar winners. The first Oscar awards for best actor and best actress were given out in
1929. The histograms below show the age distribution for all of the best actor and best actress
winners from 1929 to 2012. Summary statistics for these distributions are also provided. Is a t test
appropriate for evaluating whether the difference in the average ages of best actors and actresses
might be due to chance? Explain your reasoning.41
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Best Actress

Mean 35.6
SD 11.3
n 84

Best Actor

Mean 44.7
SD 8.9
n 84

41Oscar winners from 1929 – 2012, data up to 2009 from the Journal of Statistics Education data archive
and more current data from wikipedia.org.
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5.25 Friday the 13th, Part I. In the early 1990’s, researchers in the UK collected data on
traffic flow, number of shoppers, and traffic accident related emergency room admissions on Friday
the 13th and the previous Friday, Friday the 6th. The histograms below show the distribution of
number of cars passing by a specific intersection on Friday the 6th and Friday the 13th for many
such date pairs. Also given are some sample statistics, where the difference is the number of cars
on the 6th minus the number of cars on the 13th.42
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(a) Are there any underlying structures in these data that should be considered in an analysis?
Explain.

(b) What are the hypotheses for evaluating whether the number of people out on Friday the 6th

is different than the number out on Friday the 13th?

(c) Check conditions to carry out the hypothesis test from part (b).

(d) Calculate the test statistic and the p-value.

(e) What is the conclusion of the hypothesis test?

(f) Interpret the p-value in this context.

(g) What type of error might have been made in the conclusion of your test? Explain.

5.26 Diamonds, Part I. Prices of diamonds are determined by what is known as the 4 Cs: cut,
clarity, color, and carat weight. The prices of diamonds go up as the carat weight increases, but
the increase is not smooth. For example, the difference between the size of a 0.99 carat diamond
and a 1 carat diamond is undetectable to the naked human eye, but the price of a 1 carat diamond
tends to be much higher than the price of a 0.99 diamond. In this question we use two random
samples of diamonds, 0.99 carats and 1 carat, each sample of size 23, and compare the average
prices of the diamonds. In order to be able to compare equivalent units, we first divide the price
for each diamond by 100 times its weight in carats. That is, for a 0.99 carat diamond, we divide
the price by 99. For a 1 carat diamond, we divide the price by 100. The distributions and some
sample statistics are shown below.43

Conduct a hypothesis test to evaluate if there is a differ-
ence between the average standardized prices of 0.99 and
1 carat diamonds. Make sure to state your hypotheses
clearly, check relevant conditions, and interpret your re-
sults in context of the data.

0.99 carats 1 carat

Mean $ 44.51 $ 56.81
SD $ 13.32 $ 16.13
n 23 23
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42T.J. Scanlon et al. “Is Friday the 13th Bad For Your Health?” In: BMJ 307 (1993), pp. 1584–1586.
43H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009.
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5.27 Friday the 13th, Part II. The Friday the 13th study reported in Exercise 5.25 also
provides data on traffic accident related emergency room admissions. The distributions of these
counts from Friday the 6th and Friday the 13th are shown below for six such paired dates along
with summary statistics. You may assume that conditions for inference are met.
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(a) Conduct a hypothesis test to evaluate if there is a difference between the average numbers of
traffic accident related emergency room admissions between Friday the 6th and Friday the 13th.

(b) Calculate a 95% confidence interval for the difference between the average numbers of traffic
accident related emergency room admissions between Friday the 6th and Friday the 13th.

(c) The conclusion of the original study states, “Friday 13th is unlucky for some. The risk of
hospital admission as a result of a transport accident may be increased by as much as 52%.
Staying at home is recommended.” Do you agree with this statement? Explain your reasoning.

5.28 Diamonds, Part II. In Exercise 5.26, we discussed diamond prices (standardized by
weight) for diamonds with weights 0.99 carats and 1 carat. See the table for summary statistics,
and then construct a 95% confidence interval for the average difference between the standardized
prices of 0.99 and 1 carat diamonds. You may assume the conditions for inference are met.

0.99 carats 1 carat

Mean $ 44.51 $ 56.81
SD $ 13.32 $ 16.13
n 23 23
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5.29 Chicken diet and weight, Part I. Chicken farming is a multi-billion dollar industry,
and any methods that increase the growth rate of young chicks can reduce consumer costs while
increasing company profits, possibly by millions of dollars. An experiment was conducted to
measure and compare the effectiveness of various feed supplements on the growth rate of chickens.
Newly hatched chicks were randomly allocated into six groups, and each group was given a different
feed supplement. Below are some summary statistics from this data set along with box plots
showing the distribution of weights by feed type.44
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Mean SD n
casein 323.58 64.43 12
horsebean 160.20 38.63 10
linseed 218.75 52.24 12
meatmeal 276.91 64.90 11
soybean 246.43 54.13 14
sunflower 328.92 48.84 12

(a) Describe the distributions of weights of chickens that were fed linseed and horsebean.

(b) Do these data provide strong evidence that the average weights of chickens that were fed
linseed and horsebean are different? Use a 5% significance level.

(c) What type of error might we have committed? Explain.

(d) Would your conclusion change if we used α = 0.01?

5.30 Fuel efficiency of manual and automatic cars, Part I. Each year the US Environ-
mental Protection Agency (EPA) releases fuel economy data on cars manufactured in that year.
Below are summary statistics on fuel efficiency (in miles/gallon) from random samples of cars with
manual and automatic transmissions manufactured in 2012. Do these data provide strong evidence
of a difference between the average fuel efficiency of cars with manual and automatic transmissions
in terms of their average city mileage? Assume that conditions for inference are satisfied.45

City MPG

Automatic Manual
Mean 16.12 19.85
SD 3.58 4.51
n 26 26

City MPG

automatic manual

15

25

35

5.31 Chicken diet and weight, Part II. Casein is a common weight gain supplement for
humans. Does it have an effect on chickens? Using data provided in Exercise 5.29, test the
hypothesis that the average weight of chickens that were fed casein is different than the average
weight of chickens that were fed soybean. If your hypothesis test yields a statistically significant
result, discuss whether or not the higher average weight of chickens can be attributed to the casein
diet. Assume that conditions for inference are satisfied.

44Chicken Weights by Feed Type, from the datasets package in R..
45U.S. Department of Energy, Fuel Economy Data, 2012 Datafile.
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5.32 Fuel efficiency of manual and automatic cars, Part II. The table provides summary
statistics on highway fuel economy of cars manufactured in 2012 (from Exercise 5.30). Use these
statistics to calculate a 98% confidence interval for the difference between average highway mileage
of manual and automatic cars, and interpret this interval in the context of the data. Assume the
conditions for inference are satisfied.46

Hwy MPG

Automatic Manual
Mean 22.92 27.88
SD 5.29 5.01
n 26 26

Hwy MPG

automatic manual

15

25

35

5.33 Gaming and distracted eating, Part I. A group of researchers are interested in the
possible effects of distracting stimuli during eating, such as an increase or decrease in the amount
of food consumption. To test this hypothesis, they monitored food intake for a group of 44 patients
who were randomized into two equal groups. The treatment group ate lunch while playing solitaire,
and the control group ate lunch without any added distractions. Patients in the treatment group
ate 52.1 grams of biscuits, with a standard deviation of 45.1 grams, and patients in the control
group ate 27.1 grams of biscuits, with a standard deviation of 26.4 grams. Do these data provide
convincing evidence that the average food intake (measured in amount of biscuits consumed)
is different for the patients in the treatment group? Assume that conditions for inference are
satisfied.47

5.34 Gaming and distracted eating, Part II. The researchers from Exercise 5.33 also in-
vestigated the effects of being distracted by a game on how much people eat. The 22 patients in
the treatment group who ate their lunch while playing solitaire were asked to do a serial-order
recall of the food lunch items they ate. The average number of items recalled by the patients in
this group was 4.9, with a standard deviation of 1.8. The average number of items recalled by the
patients in the control group (no distraction) was 6.1, with a standard deviation of 1.8. Do these
data provide strong evidence that the average number of food items recalled by the patients in the
treatment and control groups are different?

5.35 Prison isolation experiment, Part I. Subjects from Central Prison in Raleigh, NC,
volunteered for an experiment involving an “isolation” experience. The goal of the experiment
was to find a treatment that reduces subjects’ psychopathic deviant T scores. This score measures
a person’s need for control or their rebellion against control, and it is part of a commonly used
mental health test called the Minnesota Multiphasic Personality Inventory (MMPI) test. The
experiment had three treatment groups:

(1) Four hours of sensory restriction plus a 15 minute “therapeutic” tape advising that professional
help is available.

(2) Four hours of sensory restriction plus a 15 minute “emotionally neutral” tape on training
hunting dogs.

(3) Four hours of sensory restriction but no taped message.

Forty-two subjects were randomly assigned to these treatment groups, and an MMPI test was
administered before and after the treatment. Distributions of the differences between pre and

46U.S. Department of Energy, Fuel Economy Data, 2012 Datafile.
47R.E. Oldham-Cooper et al. “Playing a computer game during lunch affects fullness, memory for lunch,

and later snack intake”. In: The American Journal of Clinical Nutrition 93.2 (2011), p. 308.
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post treatment scores (pre - post) are shown below, along with some sample statistics. Use this
information to independently test the effectiveness of each treatment. Make sure to clearly state
your hypotheses, check conditions, and interpret results in the context of the data.48
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5.36 True or false, Part I. Determine if the following statements are true or false, and explain
your reasoning for statements you identify as false.

(a) When comparing means of two samples where n1 = 20 and n2 = 40, we can use the normal
model for the difference in means since n2 ≥ 30.

(b) As the degrees of freedom increases, the T distribution approaches normality.

(c) We use a pooled standard error for calculating the standard error of the difference between
means when sample sizes of groups are equal to each other.

5.6.5 Comparing many means with ANOVA

5.37 Chicken diet and weight, Part III. In Exercises 5.29 and 5.31 we compared the effects
of two types of feed at a time. A better analysis would first consider all feed types at once: casein,
horsebean, linseed, meat meal, soybean, and sunflower. The ANOVA output below can be used
to test for differences between the average weights of chicks on different diets.

Df Sum Sq Mean Sq F value Pr(>F)

feed 5 231,129.16 46,225.83 15.36 0.0000
Residuals 65 195,556.02 3,008.55

Conduct a hypothesis test to determine if these data provide convincing evidence that the average
weight of chicks varies across some (or all) groups. Make sure to check relevant conditions. Figures
and summary statistics are shown below.
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48Prison isolation experiment.
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5.38 Student performance across discussion sections. A professor who teaches a large
introductory statistics class (197 students) with eight discussion sections would like to test if
student performance differs by discussion section, where each discussion section has a different
teaching assistant. The summary table below shows the average final exam score for each discussion
section as well as the standard deviation of scores and the number of students in each section.

Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Sec 6 Sec 7 Sec 8

ni 33 19 10 29 33 10 32 31
x̄i 92.94 91.11 91.80 92.45 89.30 88.30 90.12 93.35
si 4.21 5.58 3.43 5.92 9.32 7.27 6.93 4.57

The ANOVA output below can be used to test for differences between the average scores from the
different discussion sections.

Df Sum Sq Mean Sq F value Pr(>F)

section 7 525.01 75.00 1.87 0.0767
Residuals 189 7584.11 40.13

Conduct a hypothesis test to determine if these data provide convincing evidence that the average
score varies across some (or all) groups. Check conditions and describe any assumptions you must
make to proceed with the test.

5.39 Coffee, depression, and physical activity. Caffeine is the world’s most widely used
stimulant, with approximately 80% consumed in the form of coffee. Participants in a study inves-
tigating the relationship between coffee consumption and exercise were asked to report the number
of hours they spent per week on moderate (e.g., brisk walking) and vigorous (e.g., strenuous sports
and jogging) exercise. Based on these data the researchers estimated the total hours of metabolic
equivalent tasks (MET) per week, a value always greater than 0. The table below gives summary
statistics of MET for women in this study based on the amount of coffee consumed.49

Caffeinated coffee consumption

≤ 1 cup/week 2-6 cups/week 1 cup/day 2-3 cups/day ≥ 4 cups/day Total

Mean 18.7 19.6 19.3 18.9 17.5
SD 21.1 25.5 22.5 22.0 22.0
n 12,215 6,617 17,234 12,290 2,383 50,739

(a) Write the hypotheses for evaluating if the average physical activity level varies among the
different levels of coffee consumption.

(b) Check conditions and describe any assumptions you must make to proceed with the test.

(c) Below is part of the output associated with this test. Fill in the empty cells.

Df Sum Sq Mean Sq F value Pr(>F)

coffee XXXXX XXXXX XXXXX XXXXX 0.0003

Residuals XXXXX 25,564,819 XXXXX

Total XXXXX 25,575,327

(d) What is the conclusion of the test?

49M. Lucas et al. “Coffee, caffeine, and risk of depression among women”. In: Archives of internal

medicine 171.17 (2011), p. 1571.



260 CHAPTER 5. INFERENCE FOR NUMERICAL DATA

5.40 Work hours and education, Part III. In Exercises 5.8 and 5.10 you worked with data
from the General Social Survey in order to compare the average number of hours worked per week
by US residents with and without a college degree. However, this analysis didn’t take advantage of
the original data which contained more accurate information on educational attainment (less than
high school, high school, junior college, Bachelor’s, and graduate school). Using ANOVA, we can
consider educational attainment levels for all 1,172 respondents at once instead of re-categorizing
them into two groups. Below are the distributions of hours worked by educational attainment and
relevant summary statistics that will be helpful in carrying out this analysis.

Educational attainment

Less than HS HS Jr Coll Bachelor’s Graduate Total

Mean 38.67 39.6 41.39 42.55 40.85 40.45
SD 15.81 14.97 18.1 13.62 15.51 15.17
n 121 546 97 253 155 1,172
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(a) Write hypotheses for evaluating whether the average number of hours worked varies across the
five groups.

(b) Check conditions and describe any assumptions you must make to proceed with the test.

(c) Below is part of the output associated with this test. Fill in the empty cells.

Df Sum Sq Mean Sq F value Pr(>F)

degree XXXXX XXXXX 501.54 XXXXX 0.0682

Residuals XXXXX 267,382 XXXXX

Total XXXXX XXXXX

(d) What is the conclusion of the test?
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5.41 GPA and major. Undergraduate students taking an introductory statistics course at
Duke University conducted a survey about GPA and major. The side-by-side box plots show the
distribution of GPA among three groups of majors. Also provided is the ANOVA output.
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3.3
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3.9

Df Sum Sq Mean Sq F value Pr(>F)

major 2 0.03 0.02 0.21 0.8068
Residuals 195 15.77 0.08

(a) Write the hypotheses for testing for a difference between average GPA across majors.

(b) What is the conclusion of the hypothesis test?

(c) How many students answered these questions on the survey, i.e. what is the sample size?

5.42 Child care hours, Part II. Exercise 5.14 introduces the China Health and Nutrition
Survey which, among other things, collects information on number of hours Chinese parents spend
taking care of their children under age 6. The side by side box plots below show the distribution of
this variable by educational attainment of the parent. Also provided below is the ANOVA output
for comparing average hours across educational attainment categories.
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Df Sum Sq Mean Sq F value Pr(>F)

education 4 4142.09 1035.52 1.26 0.2846
Residuals 794 653047.83 822.48

(a) Write the hypotheses for testing for a difference between the average number of hours spent
on child care across educational attainment levels.

(b) What is the conclusion of the hypothesis test?
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5.43 True or false, Part II. Determine if the following statements are true or false in ANOVA,
and explain your reasoning for statements you identify as false.

(a) As the number of groups increases, the modified significance level for pairwise tests increases
as well.

(b) As the total sample size increases, the degrees of freedom for the residuals increases as well.

(c) The constant variance condition can be somewhat relaxed when the sample sizes are relatively
consistent across groups.

(d) The independence assumption can be relaxed when the total sample size is large.

5.44 True or false, Part III. Determine if the following statements are true or false, and
explain your reasoning for statements you identify as false.

If the null hypothesis that the means of four groups are all the same is rejected using ANOVA
at a 5% significance level, then ...

(a) we can then conclude that all the means are different from one another.

(b) the standardized variability between groups is higher than the standardized variability within
groups.

(c) the pairwise analysis will identify at least one pair of means that are significantly different.

(d) the appropriate α to be used in pairwise comparisons is 0.05 / 4 = 0.0125 since there are four
groups.

5.45 Prison isolation experiment, Part II. Exercise 5.35 introduced an experiment that was
conducted with the goal of identifying a treatment that reduces subjects’ psychopathic deviant T
scores, where this score measures a person’s need for control or his rebellion against control. In
Exercise 5.35 you evaluated the success of each treatment individually. An alternative analysis
involves comparing the success of treatments. The relevant ANOVA output is given below.

Df Sum Sq Mean Sq F value Pr(>F)

treatment 2 639.48 319.74 3.33 0.0461
Residuals 39 3740.43 95.91

spooled = 9.793 on df = 39

(a) What are the hypotheses?

(b) What is the conclusion of the test? Use a 5% significance level.

(c) If in part (b) you determined that the test is significant, conduct pairwise tests to determine
which groups are different from each other. If you did not reject the null hypothesis in part (b),
recheck your solution.


