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Rozdzial 1

Analiza matematyczna — FAQ

Analiza matematyczna nie jest zapewne najpopularniejszym przedmiotem
na informatyce. W koticu, jezeli kto§ miatby wielka ochote na analize ma-
tematyczna, to przypuszczalnie studiowalby matematyke, a nie informatyke.
Tymczasem $wiezo upieczeni studenci informatycy, nie mogacy doczekac sie
chwili, w ktorej napisza pierwsze linijki profesjonalnego kodu, musza pochyli¢
sie nad pytaniami typu: czy dana suma nieskonczona jest zbiezna czy nie.
Okazuje sie, ze wérod przedmiotow obowigzkowych na pierwszym roku jest
wtasnie analiza matematycznal!

Chcialbym odpowiedzie¢ na kilka czesto pojawiajacych sie pytan, i prze-
kona¢ paristwa, ze ten wyklad nie znalazt sie w programie przez pomytke. Ze
wrecz przeciwnie, jest to jeden z najwazniejszych wyktadow pierwszych lat,
i ze warto sie do niego przyltozyc¢.

Czesto pojawia sie nastepujaca watpliwosé: po co informatykowi mate-
matyka. Przeciez nawet jezeli kiedy$ pojawi sie potrzeba zastosowania ja-
kiegos wyniku matematycznego, to doczytamy sobie potrzebne rzeczy, albo
skonsultujemy sie ze specjalista. Taki argument to wynik nieporozumienia.
Podstawowy kurs analizy matematycznej to nie jest zadna specjalistyczna
wiedza. Nie nalezy oczekiwaé, ze pojecia i twierdzenia, ktorymi bedziemy
sie zajmowali na tym wykladzie rozwigza nam jakie§ konkretne problemy.
Cala ta analiza matematyczna to jest po prostu jezyk ktorym sie postugu-
jemy, kiedy chcemy sformutowaé czy zrozumieé jakis problem. Jest to jezyk
uniwersalny w naukach technicznych, rowniez w informatyce. W dzisiejszych
czasach, jezeli chce sie by¢ prawdziwym, tworczym profesjonalista, praktycz-
nie w kazdej dziedzinie, trzeba zna¢ angielski. Fachowa literatura jest po
angielsku, Internet jest (upraszczajac troche) po angielsku, a zaden staz za-
graniczny nie okaze si¢ sukcesem bez znajomosci angielskiego. Podobnie jest
z analiza. Trzeba oswoi¢ sie z pojeciami takimi jak zbieznosé, ciaglosé, przy-
blizenie, calka, szereg potegowy i temu podobne. Tego typu pojecia prze-
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wijaja sie wszedzie 1 beda panstwu towarzyszy¢ w przysziej karierze. Wielu
z was pojedzie na staze do osrodkow za granicag, na przyktad do siedziby
firmy Microsoft w Redmond nad brzegiem jeziora Washington. Pamietajmy,
ze kazdy absolwent studiow inzynieryjnych, na przyktad w Stanach Zjedno-
czonych (obejmuje to takze informatykow), ma za soba co najmniej 3 seme-
stry analizy matematycznej. Tacy ludzie beda tworzyli wasze srodowisko, to
z nimi bedziecie robi¢ wspdlne projekty. Nie znajac podstawowego jezyka
nauk technicznych, czyli analizy, byli byscie, jesli mozna tak powiedzie¢,
profesjonalnymi analfabetami. Podkreslmy wiec: podstawowy kurs analizy
matematycznej to nie jest zadna specjalistyczna wiedza, ktéra moze sie przy-
da¢, ale nie musi. To podstawowe pojecia i zwiazki pomiedzy nimi, ktore
stale beda sie przewijac¢, w trakcie studidow, i potem, w zawodowym zyciu co-
dziennym. W trakcie dalszych studiéw beda paristwu oferowane rézne inne
wyklady matematyczne lub z pogranicza matematyki i informatyki. Wiele
z nich bedziecie mogli wybra¢ badz opusci¢. Ale analiza, podobnie jak na
przyktad logika, pelni inng role — jest podstawowa i obowiazkowa.

Czesto pojawia sie nastepujacy problem. Studenci méwia: ,No dobrze,
skoro sie pan upiera, to bedziemy sie uczy¢ analizy. Ale dlaczego tak szcze-
gbolowo pan wszystko uzasadnia i dowodzi. Niektore z pana dowodoéw sg na
caly strone! My wierzymy panu, ze te twierdzenia sa prawdziwe. Zamiast
dowod6éw niech pan wytozy wiecej materialu.” Oto6z jest to w dalszym ciagu
to samo nieporozumienie. Na tym wyktadzie chodzi nam o to, zeby zapo-
znad sie z pojeciami, zaleznoSciami pomiedzy nimi, sposobem w jaki na siebie
wzajemnie wplywajg. Sposob argumentacji jest tak samo wazny, jak same
fakty. Na tym wykladzie pytanie ,co0?” jest réwnie wazne jak ,dlaczego?”.
Zauwazmy tez, ze wiekszos¢ dowodow jest bardzo krotka i jasna. Jezeli do-
wod nie jest natychmiastowy, to zawsze staram sie¢ podkresli¢ jego pomyst.
Najpierw intuicyjnie staramy sie dojs¢ dlaczego dane twierdzenie miatoby
by¢ prawdziwe, a kiedy juz mamy ogoélne pojecie, staramy sie¢ doprecyzowaé
rozumowanie, i catos¢ ,ubra¢ w stowka”. Jezeli wiemy od poczatku o co w
dowodzie chodzi, to catos¢ nie jest ani trudna, ani zawila.

Wielu studentow zglasza nastepujaca uwage: ,, Ten wyktad to zaledwie po-
wtorka tego, co mieliSmy w szkole sredniej. Wiekszos¢ zadan na kolokwiach
i egzaminie jest tak tatwa, ze az wstyd. Chcemy i mozemy wiecej, duzo
wiecej!” To prawda, duza cze$¢ materialu zawiera sie w programie szkoty
sredniej. Ale prosze pamietac¢, to nie jest wyklad nastawiony na wyczyn na-
ukowy. Chcemy uporzadkowaé i utrwali¢ ta podstawows wiedze, jaka jest
analiza. Nie ma wiele nowego materiatu, ale to co jest jest wytozone szczego-
towo, bez omijania spraw ktopotliwych. Na ¢wiczeniach jest tez do zrobienia
duzo zadan. Jak mowiag Amerykanie: ,Co jest podstawa rzetelnej wiedzy?
Repetition, repetition, repetition!” Bez obawy, jezeli szukacie panstwo gle-
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bokiej, rzetelnej wiedzy, to znalezliscie sie we wlasciwym miejscu. Oprocz
analizy czeka was wiele innych wyktadéw, i nie bedziecie si¢ nudzi¢. Jezeli
interesuje was analiza, albo inne przedmioty matematyczne, to w sasiednim
budynku znajdziecie wyktady z kazdej dziedziny matematyki, i na kazdym
poziomie. Wielu studentéw informatyki uczeszcza na wyklady w Instytucie
Matematycznym, i wielu studentéw matematyki przychodzi na zajecia do In-
stytutu Informatyki. To nie przypadek, ze budynki sasiaduja ze soba, i mozna
przechodzi¢ pomiedzy nimi ,sucha stopa”. Nawet biblioteka jest wspolna. Za-
wsze tez jestescie mile widziani na konsultacjach, gdzie mozecie porozmawiac
z wyktadowca, ktory z niejednego juz pieca chleb matematyczny jadt.

Pojawia sie tez nastepujace pytanie: ,Notatki z wyktadu maja 15 roz-
dziatéw, mniej wiecej tyle, ile tygodni bedzie trwatl wyktad. Mamy wiec plan
pracy, i dodatkowo gotowe notatki. Czy mozemy w takim razie nie chodzié
na wyktad? Po co mamy zrywac sie z t6zka na 12, zeby ogladac, jak przepi-
suje pan notatki na tablice? Po co chodzi¢ na ¢wiczenia i oglada¢, jak ktog
rozwigzuje proste zadania?” Otéz nie, zdecydowanie powinniscie panstwo
chodzié¢ na wyktad i na ¢wiczenia. Stuchanie wyktadu to zupelnie co innego
niz czytanie notatek. Nawet nie chodzi o to, ze sa pytania, ze pojawiaja
sic nowe pomysty. 7 do$wiadczenia wiadomo, ze kazdy wyktad jest inny.
Czasem ten sam temat przerabia sie w 15 minut, czasem w godzine. Z calag
pewnoscig wyktad nie polega tylko na przepisywaniu notatek na tablice. Po-
dobnie z ¢wiczeniami. Nie da sie opanowaé tego materiatu nie robiac zadan
samodzielnie. Wydaje mi sie, ze mozna tu zastosowa¢ analogie do nauki je-
zyka obcego. Trzeba ¢wiczy¢, trzeba probowac, i oczywiscie trzeba samemu
chodzi¢ do tablicy i rozwigzywaé zadanie publicznie. Trzeba tez stara¢ sie
by¢ ,na biezaco”. W takim wykladzie jak analiza tatwo jest zgubié sie w
jakim$s momencie i straci¢ watek. Kolejno wprowadzane pojecia beda juz
do korica stale uzywane. Obecno$¢ formalnie nie jest sprawdzana, ale prosze
pamietac, ze nie chodzac na wyktad czy ¢wiczenia mozecie wpedzi¢ si¢ w kto-
poty. Nie jest latwo opanowaé ten materiat tylko czytajac gotowe notatki.
Oprocz egzaminu koncowego w trakcie semestru beda 3 kolokwia, mniej wie-
cej co miesige. Kolokwia powinny da¢ panstwu ,.w czasie rzeczywistym” jasny
obraz tego, jak wam idzie.

Jezeli macie panstwo inne pytania — pytajcie. Mo6j adres to

mpal@math.uni.wroc.pl
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Rozdzial 2

Liczby rzeczywiste 1 zespolone

Liczby rzeczywiste

Nie bedziemy szczegdétowo zajmowaé sie konstrukcja zbioru liczb rzeczywi-
stych. Konstrukcja zbioru liczb rzeczywistych, okreslenie dziatan na liczbach
i pokazanie wszystkich potrzebnych wtasnosci to temat bardzo ciekawy, i
na pewno warto sie nim zainteresowac¢. Ale na tym wykladzie przypomnimy
tylko najwazniejsze fakty, i zaktadamy, ze generalnie liczby rzeczywiste wszy-
scy znaja. Zbior liczb rzeczywistych oznaczamy R, a liczbe rzeczywistg ro-
zumiemy jako rozwiniecie dziesietne (ciggi cyfr dziesietnych), na przyklad
123,357290. ... Rozwiniecie dziesietne zawiera przecinek, jest skoriczone po
lewej stronie i skonczone lub nieskoriczone po prawej stronie. Rozwiniecia
moga mie¢ znak — , wtedy nazywamy je liczbami ujemnymi. Wszyscy
wiemy, jak dodawaé¢, odejmowaé, mnozy¢ i dzieli¢ takie liczby, oraz znamy
wlasnosci tych dziatan, na przyktad tacznosé i rozdzielno$é. Przypomnijmy
wazne fakty:

1. Jezeli pewien uktad cyfr po przecinku powtarza sie okresowo, to ten
uktad cyfr zapisujemy w nawiasie: 0,03212512512--- = 0,032(125).

2. Jezeli od pewnego miejsca po przecinku w rozwinieciu sa same zera, to

nie piszemy ich, i takie rozwiniecie nazywamy skonczonym 3, 234000000 - - -

3,234(0) = 3,234.

3. Mnozenie przez 10 przesuwa przecinek w prawo, a dzielenie przez 10
przesuwa przecinek w lewo.

4. W zasadzie r6ézne rozwiniecia dziesietne oznaczaja rozne liczby. Sa jed-
nak wyjatki, i zdarza sie, ze 2 rézne rozwiniecia dziesietne oznaczaja
tg sama liczbe rzeczywista. Wyjatek taki ma miejsce w sytuacji, gdy



w rozwinieciu od pewnego miejsca sa same 9. Takie rozwiniecie re-
prezentuje ta sama liczbe, co rozwiniecie, gdzie dziewiatki zastapimy
zerami, a pierwsza (od prawej) cyfre mniejsza od 9 powiekszamy o 1.
Na przyktad 0,09999--- = 0,0(9) = 0,1. Mozna to tatwo udowodni¢,
korzystajac z whasnosci dziatan. Niech z = 0,0(9). Mamy wtedy

10-2=0,(9)=0,9+0,009 =0,9+2=9-2=09=2=0,1

Liczby rzeczywiste, ktorych rozwiniecia dziesietne maja po przecinku
same zera nazywamy liczbami caltkowitymi, i oznaczamy Z. Dodatnie liczby
catkowite 1,2,... (bez zera) nazywamy liczbami naturalnymi i oznaczamy

N.

Liczby wymierne

Liczby ktorych rozwiniecia sa skonczone lub okresowe nazywamy liczbami
wymiernymi. Zbiér liczb wymiernych oznaczamy Q. Liczby wymierne mozna
zapisa¢ jako utamki 7, gdzie m,n € Z, oraz n # 0. Jezeli n € N oraz m i
n nie majg wspoélnego dzielnika, to przedstawienie liczby wymiernej x jako
utamka ™ jest jednoznaczne, a taki utamek nazywamy nieskracalnym. Kazda
liczbe wymierna mozna przedstawic¢ jako utamek nieskracalny.

Przyklady: (a) £ =0,1428571428 - -- = 0, (142857). Rozwiniecie dziesigtne
otrzymujemy po prostu stosujac ,dtugie dzielenie”. Dzielac kolejno w pew-
nym momencie widzimy, ze reszta powtarza sie, i zauwazamy w zwigzku z

tym okres.
(b) 0,123 = {25 Jest to ulamek nieskracalny, gdyz licznik i mianownik nie
maja wspolnych dzielnikéw, a mianownik jest dodatni.

(c) 0, (arag - --ax) = “52=5* (k — dziewigtek w mianowniku). Latwo to udo-

wodnié¢, wypisujac i rozwiazujac odpowiednie rownanie na x = 0, (ay - - - ag).

(d) Przeksztalcimy nastepujace rozwiniecie dziesietne na utamek

123 0, (45)
123(45) = 0,12 00(45) =
0,123(45) = 0,123+ 0,000(45) = 7o + =~ o
123 1 45 99-123+45 12222

~ 1000 + 100099 99000 99000

Liczby niewymierne

Liczby rzeczywiste ktore nie sa wymierne, czyli ktorych rozwiniecia dziesietne
sg nieskonczone i nieokresowe nazywamy liczbami niewymiernymi.
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Przyktady: (a) Napiszmy liczbe, w ktorej rozwinieciu dziesietnym coraz
dtuzsze ciagi zer przedzielane sa jedynkami:

x = 0,101001000100001 - --10---010 - - -

Serie zer sa coraz dluzsze, a wiec rozwiniecie nie jest okresowe. Nie jest
tez skoniczone, bo zawiera nieskoriczenie wiele jedynek. x jest wiec liczba
rzeczywista niewymierna.

(b) Innym przyktadem liczby niewymiernej jest v/15. Pokazemy, 7e v/15 nie
jest liczba wymierng. Rozumowanie to jest typowe, i mozna je zaadaptowaé
do wielu przykladow. Zatozmy, ze v/15 jest liczba wymierna, i przedstawmy
ja w postaci utamka nieskracalnego

Y5=" = 15="" o p3.15=md
n

3 dzieli lewg strone ostatniej réwnosci, wiec musi dzieli¢ prawg strone. 3
jest liczba pierwsza, wiec jezeli dzieli iloczyn liczb, to musi dzieli¢ ktorys z
czynnikow (to jest wlasnos¢ liczb pierwszych). W takim razie 3 musi dzieli¢
m, a w takim razie prawa strona, jako szescian, dzieli si¢ przez 27. W takim
razie po lewej stronie réwnosci n® musi sie dzieli¢ przez 3 (bo 15 dzieli sie
tylko przez 3), a wiec znowuz, skoro 3 jest liczba pierwsza, n musi dzieli¢ sie
przez 3. Utamek “* nie jest wigc nieskracalny, co jest sprzeczne z zalozeniem.

Zalozenie, ze v/15 jest liczba wymierng musi wiec by¢ falszywe.

Uwagi: (i) Liczba pierwsza to liczna naturalna, wieksza od 1, ktora nie ma
innych dzielnikéw oprocz 1 1 siebie samej. Liczby pierwsze maja nastepujaca
wlasnosé: jezeli p jest liczba pierwsza i plm - n (p dzieli m - n), to p|m lub
pln.

(ii) Powyzsze rozumowanie stanowi zastosowanie rozktadu liczby na czyn-
niki pierwsze. Kazdg liczbe naturalng mozna roztozy¢ na iloczyn czynnikow,
ktore sg liczbami pierwszymi. Taki rozktad nazywamy rozktadem na czynniki
pierwsze. Rozktad taki jest jednoznaczny. W réwnosci

n .15 =m?
czynniki pierwsze n® i m? wystepuja w kompletach po 3, a czynniki pierwsze
15, czyli 3 1 5 nie maja takich kompletow. Istnienie i jednoznaczno$¢ roz-
ktadu liczb naturalnych na czynniki pierwsze to wtasno$é zbioru N, ktorej
nie bedziemy dowodzi¢, ale o ktorej zawsze warto pamietaé. Jako ¢wiczenie
w ktorym rozktad na czynniki pierwsze moze si¢ przyda¢ przytoczmy jeszcze
nastepujace pytanie: ile zer konicowych ma liczba (1000)! (1000 silnia)?

3



(iii) Pierwiastek wystepujacy w poprzednim przykladzie, podobnie jak loga-
rytm i potegi wystepujace w nastepnym stanowia przyktady funkcji elemen-
tarnych. Zakladamy, ze znamy funkcje elementarne, i nie bedziemy zajmowaé
sie jako$ szczegélnie ich definicjami. W nastepnym rozdziale przypomnimy
jednak krétko najwazniejsze fakty z nimi zwigzane.

(c) log, 3. Bedziemy rozumowacé tak jak w poprzednim przykladzie, czyli nie
wprost. Zalozmy, ze log, 3 jest liczbg wymierna, i niech logy, 3 = ™ bedzie
utamkiem nieskracalnym

I3

m
logy3=— = 2» =3 = 2" =3".

n
Otrzymali$my sprzecznosé, gdyz lewa strona ostatniej rownosci zawiera je-
dynie dwojki jako swoje czynniki pierwsze, a prawa strona jedynie trojki.
Zalozenie, ze log, 3 € Q musi wiec by¢ falszywe.

(d) Suma, roznica, iloczyn i iloraz dwoch liczb wymiernych sa wymierne
(oczywiscie nie mozna dzieli¢ przez zero). Suma, roznica, iloczyn i iloraz
liczby wymiernej i niewymiernej sa niewymierne (chyba ze, w przypadku
mnozenia i dzielenia, liczba wymierna jest rowna 0). Wynik dzialan na dwoch
liczbach niewymiernych moze by¢ roézny, wymierny lub niewymierny, w za-
leznosci od konkretnych wartosci.

Interpretacja geometryczna

O liczbach rzeczywistych mozemy mysle¢ jako o punktach prostej. Na prostej
zaznaczamy miejsce zera i jedynki, a strzatka oznaczamy kierunek wzrostu.
Kierunek wzrostu zwiazany jest ze wzajemnym poltozeniem zera i jedynki.
Tradycyjnie kierunek wzrostu jest zawsze w prawo. Kazdej liczbie rzeczy-
wistej mozna przyporzadkowaé, w sposdb wzajemnie jednoznaczny, punkt
takiej prostej.

Rysunek 2.1: Prosta rzeczywista



Uporzadkowanie zbioru R

Jezeli © — y jest liczba dodatnia, to piszemy x > y (,x jest wieksze od ),
jezeli nieujemna, to piszemy x > y (.« jest wieksze lub rowne y” albo ,x jest
stabo wieksze od y”). Podobnie, jezeli x — y jest liczba ujemna to piszemy
x <y, jezeli niedodatnia, to z < y. Widzimy wiec, ze dla z,y € R mamy
albo x = y, albo x < y albo x > y. W zwiazku z tym moéwimy, ze zbior
R jest uporzadkowany. Na prostej rzeczywiste] x > y jezeli x jest bardziej
na prawo od y. Symbolizuje to strzaltka w prawo: w prawo liczby rosna.
Przypomnijmy kilka faktow:

r<y = x+c<y-+c dlakazdej liczby c,
r<y = x-c<y-c dlakazdej liczby ¢ > 0,
r<y = x-c>y-c dlakazdej liczby ¢ < 0.

Wynika to wprost z definicji. Podobne fakty mozna przytoczy¢ dla stabych
nier6wnosci. Zapamietajmy: mnozenie przez liczbe dodatnig zachowuje nie-
rownosci, a mnozenie przez liczbe ujemng odwraca nierOwnosci. 7 powyz-
szych nieré6wno$ci mozna wyprowadzi¢ nastepujaca:

1 1
O<z<ylubzr<y<0 = -
Y x

Zauwazmy, ze zalozenie, ze i y maja ten sam znak jest wazne. Wprost z
definicji wynika tez oczywisty fakt:

IN

r<y oraz yYy<z = =<2

Jedna z nier6wnosci po lewej moze by¢ staba, a po prawej w dalszym ciggu
otrzymamy nier6wno$¢ ostra.

Symbole

V czytamy ,dla kazdego”, 3 czytamy ,istnieje”, < czytamy ,wtedy i tylko
wtedy”, (+-+) = (-+-) czytamy ,z (- -+ ) wynika (- - - )", € czytamy ,nalezy do”,
C czytamy ,,jest podzbiorem”. Symbol A czytamy ,i”, a symbol V czytamy
Hub”.

Przypomnijmy nastepujace fakty dotyczace zbioru liczb rzeczywistych:
aksjomat Archimedesa, aksjomat cigglosci i dobre uporzadkowanie N.

Aksjomat Archimedesa

Liczby rzeczywiste maja nastepujacg wtasnosé, ktora jest intuicyjnie zupelnie
jasna: dla dowolnych x,y > 0 istnieje liczba naturalna n taka, ze

nr > y.



Uzywajac przytoczonych powyzej symboli aksjomat mozemy zapisa¢ jako
Vz,y>0dne N nx>y.

7 aksjomatu Archimedesa wynika, na przyklad, ze istniejg liczby naturalne
dowolnie duze (wieksze od dowolnej ustalonej liczby rzeczywistej). Ponie-
waz mnozenie przez —1 odwraca nieréwnosci, wiec z aksjomatu wynika tez,
ze istnieja liczby calkowite dowolnie mate (mniejsze od dowolnej ustalonej
liczby rzeczywistej). Zauwazmy, ze z aksjomatu wynika tez, ze istnieja liczby
dodatnie dowolnie mate (dodatnie, ale mniejsze od dowolnej innej dodatniej).
Bedziemy uzywali wszystkich tych faktéw, nie powolujac sie juz bezposrednio
na aksjomat Archimedesa.

Kresy
Mowimy, ze zbior A C R jest:
e ograniczony od gory, jezeli

JeVee Ax <c,

e ograniczony od dotu, jezeli

JdVazeAz>d,

e ograniczony, jezeli jest ograniczony od gory i od dotu jednoczesnie.

State ¢ i d w powyzszych warunkach nazywamy odpowiednio ogranicze-
niem zbioru A od gory i ograniczeniem zbioru A od dotu. Zbiér liczb natu-
ralnych jest ograniczony od dotu (ograniczeniem od dotu jest, na przyktad
liczba 1), ale nie jest ograniczony od gory (z aksjomatu Archimedesa wy-
nika, ze nie da sie znalez¢ ¢, bedacego ograniczeniem N od gory). Jezeli
zbior A C R jest ograniczony od gory, to najmniejsze ograniczenie A od gory
nazywamy kresem goérnym A i oznaczamy

sup A (supremum A).

Jezeli A C R jest ograniczony od dohu, to najwieksze ograniczenie A od dotu
nazywamy kresem dolnym A, i zapisujemy

inf A (infimum A).

Czyli, s = sup A jezeli



e VreAx<s,
eVu<sdxeAx>u.

Pierwszy warunek mowi, ze A jest ograniczony od gory i s jest ograniczeniem
od gory, a drugi warunek mowi, ze zadna liczba mniejsza od s nie jest ograni-
czeniem A od goéry. Oba warunki razem mowia wiec, ze s jest najmniejszym
ograniczeniem od géry zbioru A. Podobnie mozemy podsumowacé definicje
kresu dolnego: k = inf A jezeli

eVrxeAx >k,
eVi>kdazeAx <l

Pojecie kresu gornego sup A i dolnego inf A wprowadziliSmy w przypadku,
gdy zbior A jest ograniczony, odpowiednio od gory lub od dotu. Dodatkowo
ustalmy, ze jezeli zbior A nie jest ograniczony od gory, to bedziemy pisali

sup A = 400,

oraz gdy zbior A nie jest ograniczony od dotu bedziemy pisali
inf A = —o0.

Na przyktad

infN=1 oraz supN = +ooc.

Aksjomat cigglosci

Aksjomat ten moéwi, ze kazdy zbior A C R ograniczony od goéry ma kres
gorny. Réwnowaznie mozna sformutowaé tg wtasnosé dla kreséw dolnych:
kazdy zbior ograniczony od dotu ma kres dolny. Stwierdzenia te wyrazaja
pewng wlasnos¢ ciggtosci zbioru liczb rzeczywistych — liczby rzeczywiste wy-
petniaja caty prosty rzeczywista, bez przerw.

Uwaga: Zbiér moze zawiera¢ swoj kres lub nie Na przyktad
sup{z: x <1} =sup{z: <1} =1,

przy czym pierwszy zbior nie zawiera 1, a drugi zawiera.

Przyktad: Rozwazmy nastepujacy zbior

2 2
A:{u: m,nEN,m<n}.
2mn
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Zauwazmy, ze A nie jest ograniczony od gory. Istotnie, zbior A zawiera
wszystkie liczby postaci mj:;l) m € N, m > 1. Kazda taka liczba jest wicksza
od %, a wiec A zawiera liczby wigksze od dowolnej liczby naturalnej. Nie
moze wiec byé¢ ograniczony od gory. Zauwazmy, ze jest ograniczony od dotu,

i ograniczeniem od dotu jest 1. W tym celu wykorzystamy znang nieréwnos¢é:

2 2
2ab < a? 4+ = m-+n >1 dlam,n>0.
2mn
Przekonamy sie teraz, ze 1 jest najwiekszym ograniczeniem A od dotu. Niech
c > 1. Wtedy ﬁ jest liczba dodatnia, i z aksjomatu Archimedesa wynika,
ze istnieje liczba naturalna m wieksza od ﬁ Niech dodatkowo m > 2, co
zawsze mozemy zalozy¢, ewentualnie powickszajac m. Wtedy

1
2m(m—1)>m>c_1 = 1+m<c.
Mamy wiec
m2—|—(m—1)2:m2+m2—2m—|—1:2m(m—1)+1:1+ 1 e
2m(m — 1) 2m(m — 1) 2m(m — 1) 2m(m — 1)
Zakladajac, ze ¢ > 1 znalezliSmy w zbiorze A element % mniejszy

od c¢. Tak wiec zadne ¢ > 1 nie jest ograniczeniem A od dolu, a wiec 1
jest najwiekszym ograniczeniem A od dotu, czyli inf A = 1. Przy okazji
zauwazmy, ze 1 ¢ A: gdyby 1 € A, to istnialyby m,n € N, n # m, takie, ze
m?+n? = 2mn. Wiemy jednak, ze taka rowno§¢ jest rownowazna (m—n)? =
0, czyli m = n.

Dobre uporzadkowanie N

Zbior liczb naturalnych ma nastepujaca wazna wtasnosé: Kazdy podzbior
N ma element najmniejszy (oczywiscie oprocz podzbioru pustego, ktory nie
ma wogéle zadnego elementu). O wlasnosci tej mowimy czesto, ze zbior
liczb naturalnych jest dobrze uporzgdkowany. Wlasnosé ta mozemy zapisac
symbolami:

VACNdkeAVne A k<n.

Mozemy to wyrazi¢ nastepujaco: niepusty podzbiér N zawiera swoj kres
dolny. Dobre uporzadkowanie zbioru liczb naturalnych jest podstawa tak
zwanego twierdzenia o indukcji matematycznej, ktore omoéwimy podzniej.

Z dobrego uporzadkowania N mozemy wyciggngé nastepujgce wnioski:



e Kazdy niepusty podzbidr zbioru liczb catkowitych ograniczony od dotu
zawiera element najmniejszy.

e Kazdy niepusty podzbiér zbioru liczb catkowitych ograniczony od gory
zawiera element najwiekszy.

Whioski te mozna prosto udowodnié¢, odpowiednio przeksztalcajac dane pod-

zbiory na podzbiory liczb naturalnych.

Przedzialy

Przedzialy oznaczamy nastepujaco:

(a,b) ={x: a <z <b}, (przedzial otwarty),

la,0] ={z: a <z <b}, (przedzial domkniety),

(a,b] ={z: a <z < b},

[a,0) ={z: a < x < b}.
W przypadku przedziatu (a,b) dopuszczamy a = —oo oraz b = oo, (—00,b)
i (a,00) to tak zwane polproste otwarte, a (—o0, 00) to cala prosta, cate R.
W przypadku (a,b] rowniez dopuszczamy a = —oo, a w przypadku [a,b)

dopuszczamy b = oo. To sa tak zwane polproste domkniete. Domyélnie
rozumiemy, ze a < b, a tylko w przypadku przedzialu domknietego |a, b]
dopuszczamy a = b. Oczywiscie taki przedzial [a, a] sktada sie tylko z jednego
punktu, a.

Wartos$é bezwzgledna

Warto$¢ bezwzgledng liczby rzeczywistej definiujemy nastepujaco

T jezeli z > 0,
2 = {—x jezeli x < 0.
Wartos¢ bezwzgledna ma nastepujace wtasnodci:
L. |z 4+ y| < |z| + |y| (nier6wnos¢ trojkata),
2. |z = lyll < |z —yl,

3. |* — y| reprezentuje odlegtos¢ = od y na prostej rzeczywistej,

4. |x -yl = |z| - |y| oraz |z| = Va2,



5. x| > 0 oraz |z] =0 < x =0,
6. r<yoraz —x <y = |z| <y,
7. |z| = |y| oznacza, ze v = +y,
8. || <y oznacza, 7e —y <z < y.
Dla przyktadu przeprowadzimy dowod nieréwnosci trojkata 1. Rozpatrzymy
osobno dwa przypadki
(a) z iy maja ten sam znak £. Wtedy ich suma ma ten sam znak, a wiec
[z +y| =z +y) = +o+ 2y = [z + [yl
W tym przypadku widzimy, ze nieréwnos¢ trojkata jest rownoscig.
(b) iy maja przeciwne znaki. Mozemy zatozy¢, ze v < 0 < y, w przeciwnym
przypadku zamieniajac miejscami z i y. Jezeli x +y > 0 to
lztyl=z+y<—z+y=|z[+]yl,
a jezeli v +y < 0 to

e +yl=—(r+y)=—2r—-—y< —ax+y=|z|+y|

W tym przypadku, jezeli zadna z liczb z,y nie jest zerem, to nieréwnosc
trojkata jest ostra.

Cze$é caltkowita i ulamkowa

Czes¢ catkowita x to najwieksza liczba catkowita nie wieksza od z. Czesc¢
calkowita x oznaczamy przez [z]. Cze$¢ utamkowa x to {z} = z — [z]. Czes¢
catkowita ma wiec nastepujace wlasnosci

o [z] €Z,

o z]<z<z+lcezyliz—1<]z] <z,

o [z]=xo el

Przyklady: [1,5] =1, [-1,5] = -2, {~1,5} =0,5.
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f(z) = [x] f(@) = A{x}

Rysunek 2.2: Czesé catkowita i cze$¢ utamkowa

Gestosé liczb wymiernych i niewymiernych w R

W kazdym przedziale (a,b) lezy liczba wymierna i niewymierna. Niech (a, b)
bedzie dowolnym przedzialem (pamietamy,ze a < b, wigc przedzial ten nie
jest zbiorem pustym). Udowodnimy, ze w (a,b) musi lezeé¢ liczba wymierna.
Liczbe niewymierna pozostawimy jako ¢wiczenie. ﬁ > (, wiec z aksjomatu
Archimedesa istnieje n € N taka, ze n > - czyli + < (b — a). Rozwazmy
nastepujacy podzbior zbioru liczb catkowitych

A={keZ:k<n-a}.

Zauwazmy, ze A jest niepusty (bo na przyklad [na] € A), oraz ograniczony
od gory (bo kazdy element k € A spetnia k < na). Zbior A ma wiec element
najwiekszy, i niech ky bedzie tym elementem. Wtedy ko + 1 jako liczba
wieksza nie jest juz elementem A, czyli kg + 1 > na. Mozemy to zapisa¢

ko +1
a < .
n

Z drugiej strony zauwazmy, ze takze % < b. Wynika to stad, ze gdyby

kol > b to, biorac pod uwage, ze £ < a mieliby$my




co jest sprzeczne z naszym wyborem liczby n, bo przeciez miato by¢ % <

(b —a). Liczba % jest wiec szukang liczbg wymierng wewnatrz przedzialu
(a,b). Zauwazmy, ze ten argument mozna troche przerobi¢, zeby znalezé
takze liczbe niewymierna wewnatrz przedzialu (a,b). Zostawiamy to jako
¢wiczenie.

Zasada indukcji

Zbior liczb naturalnych ma nastepujaca wtasno$é: Kazdy jego niepusty pod-
zbior posiada element najmniejszy. Z tej wlasnosci wynika nastepujaca za-
sada indukcji. Niech T'(n), n > ng bedzie pewnym ciggiem twierdzen. Cze-
sto w zastosowaniach sg to rownosci badz nierownosci, w ktérych wystepuje
liczba naturalna n. Niech:

1. T'(ng) bedzie prawdziwe (punkt startowy indukcji),

2. ¥V n > ng zachodzi wynikanie (7'(n) — prawdziwe) = (T'(n+ 1) — praw-
dziwe) (krok indukcyjny).

Wtedy wszystkie twierdzenia T'(n), n > ng sa prawdziwe. Zasada indukeji
jest intuicyjnie oczywista, i mozna jg tatwo udowodni¢: Jezeli nie wszystkie
twierdzenia T'(n), n > ng sa prawdziwe, to niech A C N bedzie zbiorem tych
n > ng, dla ktérych T'(n) nie jest prawdziwe. A ma element najmniejszy
ktory oznaczymy przez n. Zauwazmy, ze z warunku 1. wynika, ze n >
no. Mamy wiec T'(n) falszywe (bo n € A), ale T'(7 — 1) prawdziwe, gdyz
n—1¢ A. Ale to przeczy warunkowi 2., gdyz z prawdziwosci T'(n— 1) wynika
prawdziwosé T'(n).

Przyktad: Pokazemy, ze V n € N prawdziwe jest twierdzenie T'(n), ktore
w tym przypadku jest nier6wnoscia 10n < 2" 4 25. Przeprowadzimy krok
indukcyjny, czyli dowod 2. Zalézmy wiec

10n < 2™ + 25,
i sprobujmy, przy wykorzystaniu powyzszego udowodni¢
10(n + 1) < 2"+ 4 25. (2.1)

Mamy wiec
10(n+1) = 10n + 10 < 2™ + 25 + 10. (2.2)

Zeby dokonczyé dowod, i dojéé do prawej strony (2.1) potrzebujemy nieréw-
nos¢ 10 < 2", ktora, niestety, jest prawdziwa tylko dla n > 4. Zalézmy wiec,
ze n > 4, i dokonczmy (2.2):

2" 425 +10 < 2" 4 2" + 25 = 2" 4 25,
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czyli mamy zrobiony krok indukcyjny, dla dowolnego n > 4. Oznacza to, ze
zasade indukcji bedziemy mogli zastosowa¢ tylko do udowodnienia nieréwno-
sci dla n > 4. Co z nier6wnosciami dla n = 1,2, 37 Tych kilka przypadkéw
sprawdzimy recznie, niezaleznie od indukcji. Dodatkowo zostal jeszcze przy-
padek ng = 4, ktory jest punktem startowym dla indukcji n > 4. Musimy
wiec sprawdzi¢ bezposrednio:

n=1: 10 < 2+ 25 prawdziwe,

n=2: 20 < 22+ 25 prawdziwe,

n=3:30 < 23 4 25 prawdziwe, oraz w koncu

n=4: 40 < 2* + 25 = 41 tez prawdziwe.

Skorzystalismy z zasady indukcji, zeby przeprowadzi¢ dowod dla n > 4,
a pozostate przypadki sprawdziliSmy bezposrednio. To jest typowy przy-
ktad: probujac wykona¢ krok indukcyjny znajdujemy ograniczenie na n przy
ktorym krok indukcyjny jest mozliwy. Do tego ograniczenia dopasowujemy
punkt startowy indukcji, a pozostate przypadki sprawdzamy ,recznie”.

Liczby zespolone

Zbior liczb zespolonych C to zbiér symboli a+bi, gdzie a,b € R. W tym zbio-
rze wprowadzamy dziatania arytmetyczne w nastepujacy sposob. Symbole
dodajemy, odejmujemy i mnozymy tak, jakby byty to zwykte liczby rzeczywi-
ste, to znaczy z zachowaniem zasad przemiennosci, tacznosci i rozdzielnosci,
oraz dodatkowo stosujac rownoséé i2 = —1. W przypadku dodawania i odej-
mowania daje nam to wzory:

(a+bi)+ (c+di)=(a+c)+ (b+d)i,
(a+0bi)—(c+di)=(a—c)+ (b—d)i.

Sprawdzmy, co dostaniemy mnozac liczby:

(a+bi)-(c+di)=a-c+a-di+bi-c+bi-di
=a-c+a-di+c-bi+b-di’
=(a-c—=b-d)+(a-d+b-c)i.

Powyzsze wzory latwo jest zapamietac¢: trzeba tylko pamietac, ze wszystkie
dzialania wykonujemy traktujac ¢ jak zwykla liczbe, a w koricu podstawiamy
i = —1. Podobnie mozna wyprowadzi¢ wzor na dzielenie liczb zespolonych (z
wyjatkiem dzielenia przez 0), zostawiamy to jako ¢wiczenie. Liczby rzeczywi-
ste traktujemy jako podzbior liczb zespolonych R C C poprzez identyfikacje
x ~ x4+ 0. Zauwazmy, ze ta identyfikacja zachowuje dzialania: na przyktad

(a+0i)+ (b+0i) = (a+b)+ 0i. Zauwazmy, ze zerem liczb zespolonych
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(to znaczy taka liczba, ktorej dodanie nic nie zmienia) jest liczba rzeczywi-
sta 0 = 0 + 0. Podobnie jedynka liczb zespolonych (to znaczy taka liczba,
pomnozenie przez ktora nic nie zmienia) jest liczba rzeczywista 1 = 1 + 04.
Zbior C ma zalete (dowod tego nie jest prosty): kazdy wielomian o wspot-
czynnikach zespolonych rozktada sie na iloczyn czynnikéw liniowych. Dzieki
temu liczby zespolone stanowig wazne narzedzie i dla matematykow i dla
inzynierow (takze dla informatykow :-)). Czesto przydaja sie nastepujace
pojecia:

o czes¢ rzeczywista liczby (a + bi) to a, zapisujemy to R(a + bi) = a
e czeS¢ urojona liczby (a + bi) to b, piszemy (a+bi) =b
e sprzezenie liczby (a + bi) to liczba a — bi, piszemy a 4+ bi = a — bt

Mamy nastepujace wlasnosci

1. 2)=2 z4+w=zZ+w, Z-Ww=Z-W

2. R(z) = Z;E, J(z) = =,

J

3. z =2z & z € R (liczby rzeczywiste to te liczby zespolone, ktore maja
zerowy, czesé urojongy),

4. 2z =R(2)? + 3(2)? - nieujemna liczba rzeczywista.

Modutl

Modut liczby zespolonej definiujemy jako

|z| = VR(2)? + S(2)2.

Przyklady: | —1+2i| =+/-1)2+22=+/5, |i| = [0+ 1i| = 1.
Modut liczby zespolonej jest odpowiednikiem wartosci bezwzglednej liczby
rzeczywiste]. Mamy nastepujace wlasnosci modutu

e 2| >0i|z|=0&2=0,

o |z| =|—z2[=7],

o [z w|=|z]|w],

o |z +w| <z + |w| (nieréwnosé trojkata),
o |lz| —|wl|| <]z —wl.
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Interpretacja geometryczna

Liczby zespolone, czyli wyrazenia postaci a + bi mozna utozsamia¢ z punk-
tami plaszczyzny R? = {(z,y) : z,y € R}. Przy tej interpretacji dodawanie

Rysunek 2.3: Plaszczyzna liczb zespolonych

jest zgodne z dodawaniem wektoréw, a mnozenie przez liczbe rzeczywista z
mnozeniem przez skalar. Sprzezenie jest odbiciem wzgledem osi poziomej,
a modul oznacza euklidesowa odlegto$é¢ od poczatku uktadu wspotrzednych.
Czesci rzeczywista i urojona liczby zespolonej to po prostu wspolrzedne, po-
zioma i pionowa odpowiadajacego tej liczbie punktu na ptaszczyznie.

Postaé¢ trygonometryczna

Liczbe zespolona a + bi mozna zapisa¢ w tak zwanej postaci trygonome-
trycznej. W tej postaci liczby tatwo mnozy sie, podnosi do potegi, wyciaga
pierwiastki. Niech z =a+bi # 0

: a b .
z=a+bi=Va*+b? (\/a2~|—b2 + \/a2+bQZ) )
Mozna znalezé liczbe ¢ (doktadnie jedng w przedziale [0, 27)) taka, ze
a L b
a? + b2’ e Va2 + b2
Mozemy to podstawi¢ do wzoru na z, i otrzymamy postaé trygonometryczng
liczby zespolonej

CcoSp =

z = |z|(cos ¢ + i sin ).
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Rysunek 2.4: Sprzezenie liczby zespolonej

Uzywajac interpretacji geometrycznej zapis liczby zespolonej a+b¢ w postaci
trygonometrycznej r(cos ¢ +i sin ¢) odpowiada przedstawieniu punktu (a, b)
na plaszczyznie we wspoltrzednych biegunowych (7, ¢).

z =r(cosp + i sinp)

X
v

w = s(cos ) + i sin))

Rysunek 2.5: Postaé¢ trygonometryczna liczby zespolonej
Liczbe ¢ nazywamy argumentem z. Poniewaz funkcje sin i cos sa okre-

sowe o okresie 27, wiec istnieje nieskonczenie wiele argumentow kazdej liczby
z, roznigeych sie dokladnie o catkowita wielokrotnosé 27. Ten sposrod argu-
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mentow, ktory lezy w przedziale [0, 27) (jest doktadnie jeden taki) nazywamy
argumentem gtéownym z.

Przyklad: 2 =1—1 = \/5(% + =L4). Szukamy ¢ € [0, 27), takiej, ze

Sl

1
cosp = —=, Sinp=—

I~
sl-

7

Latwo zauwazy¢, ze ¢ = 4.

Uwagi: (i) Dwie liczby zespolone sa rowne, jezeli ich czedci rzeczywiste i
urojone sg rowne. W przypadku zapisu liczb w postaci trygonometryczne;j
mamy

r1(cos 1 + 7 sin 1) = 13(cos Yo + 1 Sin @y

wtedy gdy r1 = ry oraz @1 — @9 jest caltkowita wielokrotnoscia 2,

(ii) 71(cos @1 +1i sin ) - ro(cos pa +1i sin y) = r172(cos(¢1 + p2) +1i sin(pg +
¢2)) (moduly mnozymy, argumenty dodajemy),

(iii) z = r(cos @ + i sinp) = 2" = r"*(cos(ny) + i sin(ny)),

(iv) pierwiastkiem liczby zespolonej z stopnia n € N nazywamy liczbe zespo-
long w taka, ze w™ = 2. Postugujac sie postacig trygonometryczna pokazemy,
ze kazda liczba zespolona z # 0 ma doktadnie n réznych pierwiastkow stop-
nia n. Niech z = r(cos¢ + i sinp) (przy czym niech ¢ bedzie argumentem
gtownym z) oraz n € N. Wprowadzmy nastepujace liczby

o+ 2km
n

wy, = Yr(cosy + i siney), gdzie ¥y, = k=0,1,...,n—1.
Zauwazmy, ze kazda z liczb wy, jest pierwiastkiem stopnia n z z, oraz wszyst-
kie sa rozne:y, — Uy = %27@ przy czym —1 < % < 1. Jedyna liczbg
catkowita spetniajaca obie nieréwnosci jest zero, a wiec jezeli wy = w; to
k = [. Mamy wiec n roznych pierwiastkow. Wiecej nie moze by¢, gdyz
kazdy pierwiastek stopnia n z liczby z jest pierwiastkiem wielomianu stopnia
n P(w) = w™ — z. Wiemy, ze wielomiany stopnia n maja najwyzej n réznych
pierwiastkow.

Przyktad: Obliczmy nastepujace pierwiastki: /1 — i = v/2(cos i +i sin ),

Z7'I' s T
gdzie qy, = 12T — (THERT) g 1,2, 3.
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Rozdzial 3

Funkcje

Przypomnimy najwazniejsze potrzebne nam pojecia dotyczace funkcji. Niech
A C R bedzie podzbiorem liczb rzeczywistych. Funkcja f okreslong na A o
wartosciach rzeczywistych nazywamy przyporzadkowanie kazdemu punktowi
A jakiej$ liczby rzeczywistej. Funkcja jest o wartosciach zespolonych, jezeli
kazdemu punktowi A przyporzadkowana jest liczba zespolona. Piszemy

f:M—R lub f:M—C.

Zbior A nazywa sie dziedzing funkcji f i czesto oznaczany jest przez Dy.
Zbior

f(Ds) ={y: 3z €Dy f(x) =y}
nazywa sie obrazem f, lub zbiorem wartosci f.

Okreslenie funkcji (czyli przyporzadkowanie wartosci elementom dzie-
dziny) najczesciej ma posta¢ wzoru. Czesto dziedzina rozdzielona jest na
podzbiory, i funkcja zadana jest réznymi wzorami na poszczegblnych cze-
Sciach dziedziny. Tak zdefiniowana funkcje nazywamy funkcja ,sklejong” z
kawatkow. Definiujgc funkcje najczesciej pomijamy dziedzing Dy. Wtedy
domyslnie funkcja jest okreslona na najwickszym zbiorze, na ktérym wzor
definiujacy funkcje ma sens. Taki maksymalny zbiér nazywamy dziedzing
naturalna f.

Przyklady: (a) Funkcja f(z) = 22 ma jako dziedzing naturalng cala prosta
R. Zbiorem wartosci sa wszystkie liczby rzeczywiste nieujemne.
(b) funkja f(z) = I ma jako dziedzing naturalng caly prosta bez zera

{r € R : 2 # 0}. Obrazem f jest rowniez cala prosta bez zera. Zeby
sie o tym przekonaé¢ wystarczy rozwiazac ze wzgledu na x réwnanie



Rozwigzanie istnieje dla kazdego y # 0, czyli dla kazdego takiego y znaj-
dziemy x takie, ze y = f(x).

(¢) f(z) = V1 — a2 Dziedzing naturalng f jest odcinek [—1,1]. Wynika
to z tego, ze zeby moc wyciagna¢ pierwiastek 1 — 22 nie moze by¢ ujemne.
Obrazem f jest odcinek [0,1]. Zeby sie o tym przekonaé¢ rozwiazujemy ze
wzgledu na x rownanie

y=vV1—22 = r==+/1—-1y2
oraz wiemy, ze pierwiastek kwadratowy ma wartosci nieujemne (przypo-

mnimy definicje pierwiastkow dalej w tym rozdziale).

Monotoniczno$é funkcji

f jest rosnaca (lub $cisle rosnaca), jezeli

r<y = f(z)<fly)

Méwimy, ze jest stabo rosngca (lub niemalejaca), jezeli

<y = f(z)<fy).

Podobnie f jest malejaca (Scisle malejaca) jezeli

<y = f(x)>f(y)

oraz stabo malejaca (nierosnaca) jezeli

r<y = f(z)>f(y).

Innymi stowy funkcja rosnaca to taka ktora zachowuje nier6wnosci, a male-
jaca to taka, ktéra odwraca nieréwnos$ci. Mowimy, ze f jest monotoniczna,
jezeli jest albo rosnaca, albo malejaca, i to samo z przymiotnikami ,Scisle” lub
,stabo”. Funkcje mogg by¢ monotoniczne kawatkami. Na przyklad, f(z) = 23
jest $cisle rosnaca, a wiec nier6wnos$ci mozemy podnosié¢ stronami do 3 po-
tegi. Natomiast f(z) = 2? jest tylko kawalkami monotoniczna — malejaca
dla z < 0 i rosnaca dla x > 0. Nieréwno$ci mozemy wiec podnosi¢ stronami
do kwadratu pod warunkiem, ze dotycza liczb o tym samym znaku. Jezeli
obie liczby sa ujemne, to podniesienie nier6wnosci do kwadratu odwréci ja,
natomiast jezeli obie liczby sa dodatnie, to ja zachowa.
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Wykres

Jezeli f jest funkcja o wartodciach rzeczywistych, to wykresem f nazywamy
nastepujacy podzbior ptaszczyzny

{(z,y): z € Dy, y= f(x)} C R~

Zawsze przy badaniu funkcji warto sprobowa¢ naszkicowaé wykres. 7 wy-
kresu mozna odczytaé¢ informacje o funkcji, ktore nie do sie tatwo odczytac
ze wzoru. Wykres nie zastepuje oczywiscie definicji funkcji.

Dzialania na funkcjach

W kazdym punkcie wartosci funkcji sa liczbami, wiec mozna je dodawag,
odejmowaé, mnozy¢ i dzieli¢. W takim razie te same operacje mozemy prze-
prowadzac¢ na funkcjach. Jezeli mamy dwie funkcje, f oraz g, z dziedzinami
Dy i Dg, to mozemy utworzy¢ funkcje
fxg, gdze (f=£g)(x)=f(z)+g(x),
f-g, gdzie (f-g)(x) = f(x)- g(z),
(

z, gdzie <i) (x) = —=.
g 9 9(x)
Dziedzing tak utworzonych funkeji jest cze$¢ wspolna dziedzin Dy i Dy, przy

czym w przypadku dzielenia dodatkowo z dziedziny ilorazu usuwamy punkty,
w ktorych mianownik jest zerem (nie mozna dzieli¢ przez 0).

Zltozenie funkcji i funkcja odwrotna

Jezeli mamy dwie funkcje f i g oraz zbior wartosci funkcji f zawiera sie w
dziedzinie funkcji g, to mozna rozwazaé tak zwane ztozenie funkcji f z g:

(9o f)(x) =g(f(x)), =Dy

Zalozmy, ze mamy funkcje f z dziedzing Dy. Jezeli pewna funkcja g z dzie-
dzina D, réwna zbiorowi wartosci funkcji f spetnia

(gof)(@)==x VexeDy oraz (fog)ly)=y Vye€ Dy,

to funkcje g nazywamy funkcja odwrotna do funkcji f. Funkcje odwrotna
do f oznaczamy f~'. Funkcja f ma funkcje odwrotng jezeli jest réznowar-
tosciowa to znaczy f(x) = f(y) = = = y. Funkcje Scisle monotoniczne sa
roznowartos$ciowe.
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Rysunek 3.1: Wielomiany stopnia 3 i 4.

Przyklad: Funkcja f(x) = z? nie jest réznowartodciowa i nie ma funkcji
odwrotnej. Jezeli natomiast zawezymy dziedzine f do = > 0 to f jest $cisle
rosngca, i ma funkcje odwrotng g(y) = /y okreslong dla y > 0. Podobnie,
jezeli zawezymy dziedzine f do x <0, to f jest funkcja $cisle malejaca i ma
funkcje odwrotna g(y) = —,/y okreslong na y > 0.

Funkcje elementarne

Najczesdciej spotykane funkcje to tak zwane funkcje elementarne. Przypo-
mnijmy krotko najwazniejsze funkcje elementarne.

(a) Wielomiany to funkcje postaci f(x) = ap+ a1z +- - -+a,2". n nazywa sie
stopniem wielomianu (Oczywiscie jezeli a, # 0). Wspolczynniki aq, ..., a,
moga by¢ rzeczywiste lub zespolone. Dziedzing naturalng jest cala prosta
R. Wielomian stopnia m ma nie wiecej niz n pierwiastkow. Wielomian
o wspotczynnikach rzeczywistych stopnia nieparzystego ma co najmniej 1
pierwiastek rzeczywisty, natomiast stopnia parzystego moze wogdble nie mieé
pierwiastkow rzeczywistych. ag nazywa sie wyrazem wolnym, a a,z" wyra-
zem wiodacym. Dla duzych |z| wielomian zachowuje si¢ podobnie do swojego
wyrazu wiodacego a,z".

(b) Funkcje wymierne to funkcje postaci f(x) =
mianami. Dy = {z : Q(z) # 0}.
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Rysunek 3.2: Przyktad funkcji wymiernej.

(¢) Funkcja potegowa f(x) = x®. Funkcje potegowa zdefinujemy dla x > 0,
chociaz jej dziedzina naturalna moze by¢ wieksza, zaleznie do wyktadnika a.
Dla a = n € N mamy zwykta definicje:

2" =x-c-----x N -razy.

Tak otrzymana funkcja potegowa jest $cisle rosnaca na przedziale [0,00) i
przeksztalca go na siebie samego. Jest wobec tego odwracalna, i odwrotna
do niej, z dziedzing [0,00) i obrazem [0,00) jest pierwiastkiem stopnia n:
.

Uwaga: Jezeli wykladnik n jest parzysty, to funkcja 2™ nie jest odwracalna
na zadnym wiekszym zbiorze od [0,00). Naturalng dziedzing pierwiastka
stopnia parzystego jest wiec polprosta [0, 00). Zauwazmy tez, ze pierwiastek
w tym przypadku jest nieujemny. Natomiast jezeli n jest liczba nieparzysta,
to funkcja =™ jest Scidle rosnaca na calej prostej R, a wiec jest odwracalna
na catej prostej. Naturalng dziedzing pierwiastka stopnia nieparzystego jest
wiec cata prosta R.

Jezeli a = %, n € N to definiujemy
T = V.
Dla o =, m,n, € Q definiujemy funkcje potegowa nastepujaco

o = Yo = (Y,

22



«

Rysunek 3.3: Funkcja potegowa f(z) = x*.

Zauwazmy, ze powyzsza definicja nie zalezy od tego, czy najpierw podnie-
siemy x do potegi m, a potem wyciggniemy pierwiastek, czy odwrotnie. Nie
zalezy tez od konkretnej reprezentacji utamka. fLatwo bowiem zauwazy¢, ze
jezeli dodatkowo p € N to

N aPm = /g™,

Jezeli a > 0 nie jest liczbag wymierna, to do definicji korzystamy z pojecia
kresu. Zauwazmy, ze jezeli x > 1 jest ustalone, to z? ro$nie wraz z ¢ (¢ na
razie wymierne). Dla takiego z mozemy zdefiniowa¢

z* =sup{z?: ¢ € Q,q < a}.
Podobnie, jezeli 0 < z < 1 to x? maleje ze wzrostem ¢ i mozemy zdefiniowaé
z*=inf{z?: g€ Q,q < a}.

W koricu jezeli z = 1 to oczywiscie dla dowolnego a definiujemy x® = 1.

Jezeli a < 0 to definiujemy
1

e’

=
a jezeli « = 0 to 2% = 1. Przypomnijmy: dziedzing funkcji potegowej sa
liczby $cisle dodatnie. Funkcja potegowa jest rosnaca dla dodatniego wy-
ktadnika, i malejaca dla ujemnego wyktadnika.

(d) Funkcja wykladnicza f(x) = a*, @ > 0. Dy = R. Przypomnijmy, ze
sama potega byta zdefiniowana przy okazji funkcji potegowej. Roznica funk-
cji wykltadniczej z potegowg polega na tym, ze w przypadku funkcji potegowej
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Rysunek 3.4: Funkcja wyktadnicza f(z) = a”.

podstawa jest zmienna, a wykladnik jest stalym parametrem. Natomiast w
przypadku funkcji wyktadniczej podstawa jest stalym parametrem, a wyktad-
nik sie zmienia. Jezeli podstawa jest wieksza od 1 to funkcja jest rosnaca, a
jezeli podstawa jest mniejsza od 1 to funkcja jest malejaca. Jezeli podstawa
jest rowna 1, to funkcja wyktadnicza jest oczywiscie stala, rowna 1.

(e) Logarytm f(z) =log,x, a > 0,a # 1. Dy = R". Logarytm jest funkcja
odwrotna do wyktadniczej, czyli y = log, < a¥ = x. Jezeli podstawa jest
wieksza od 1, to logarytm jest rosnacy, a jezeli podstawa jest mniejsza od 1,
to logarytm jest malejacy.

Mamy nastepujace wlasnosci poteg i logarytmow (w kazdym przypadku mu-
simy pamietaé¢ o ewentualnych ograniczeniach na zakres zmiennych): (z%)? =
2P, (z - y)* = a%y®, 2% = 227, log,(x - y) = log, x + log, y, log,(2*) =

_ log, =
alog, z, log, v = oz 5"

(f) Funkcje trygonometryczne. Na okregu jednostkowym odmierzamy od
punktu (1,0) odlegtos¢ ¢ przeciwnie do ruchu wskazowek zegara jezeli ¢ > 0
i zgodnie z ruchem wskazéwek zegara jezeli o < 0. Daje nam to pewien
punkt na okregu jednostkowym (z,y). Wspolrzedne tego punktu nazywamy
funkcjami cos i sin odpowiednio:

T =cosp, Y =sinep.

Funkcje cos i sin sa okresowe o okresie 27, to znaczy obie spelniaja f(z +
27) = f(x) (bo dlugos¢ calego okregu jednostkowego to 2m). Mamy tez
sin?z + cos?x = 1 (bo promieii okregu jest rowny 1), oraz réwnosci

cos(p + 1) = cospcosth — sin psin,
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sin(z)

Rysunek 3.5: Logarytm f(z) = log, =.

cos(x)

NNy
%

Rysunek 3.6: Funkcje sin(z) i cos(z).

sin(p + 1) = cos @ sin 1y + sin p cos Y.

Funkcja tan z to iloraz sinusa przez cosinus:

tanx =

sin x

L T A kmk=0,41,42,. ...
Ccos & 2

tan jest funkcja okresowa o okresie 7.
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Rozdzial 4
Ciagi

Definicja 4.1. Ciqg rzeczywisty to funkcja a : N — R, a cigg zespolony to
funkcja a: N — C.

W przypadku ciggéw warto$¢ a w n nazywamy n-tym wyrazem ciagu,
a zamiast a(n) czesto piszemy a,. Ciag o wyrazach a, oznaczamy {a,}2>,
lub krocej {a,}. Bedziemy glownie rozwazaé ciagi rzeczywiste, jezeli gdzies
pojawia sie ciagi zespolone, to zwrécimy na to uwage.

n—1

Przyktady: (a) Ciag (postep) geometryczny: a,aq,aq?, ..., a, = ag" !,
(b) ciag staly a, = c,

¢) ciag harmoniczny a, = %,

(
(d) a1 = \/5, Ap41 = V2+an;
(e) ciag Fibonacciego a; = as = 1, apy2 = @y + G-

Zeby zdefiniowaé ciag musimy jednoznacznie opisa¢ w jaki sposob maja
by¢ obliczane wyrazy a,. Mozna to zrobi¢ wzorem ogélnym, jak w przy-
ktadach (a)—(c), lub rekurencyjnie, jak w przyktadach (d) i (e). Definicja
rekurencyjna (czasem nazywana tez indukcyjna) opisuje w jaki sposob na-
stepny wyraz ciggu obliczy¢ znajac poprzednie. Trzeba tez zdefiniowaé wy-
starczajaco wiele wyrazéw poczatkowych. Na przyktad w definicji ciggu Fi-
bonacciego kolejne wyrazy obliczamy z dwoch poprzednich, a wiec jako punkt
wyjsciowy musimy podaé¢ dwa pierwsze wyrazy.

Mowimy, ze ciag jest:

e Scisle rosnacy jezeli a,, < a,+1, $cisSle malejacy jezeli a,, > a1,
e stabo rosnacy jezeli a,, < a,11, stabo malejacy jezeli a, > a1,

e Scisle monotoniczny jezeli jest albo $cisle rosnacy albo §Scisle malejacy,
oraz stabo monotoniczny jezeli jest stabo rosngcy lub stabo malejacy.
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Czasem méwimy po prostu, ze ciag jest rosnacy lub malejacy, jezeli nie jest
wazne, czy chodzi nam Scista, czy staba monotonicznosc.

Ciag harmoniczny z przykltadu (c) jest $cisle malejacy, natomiast ciagi z
przyktadow (d) i (e) Scisle rosnace. Przyktad (c) wynika wprost ze wzoru:
ap > Gp41 to nic innego niz n + 1 > n. Przyklady (d) i (e) mozna sprawdzi¢
indukcyjnie. W przypadku (d) najpierw dowodzimy, ze wszystkie wyrazy
a, $3 mniejsze niz 2, a nastepnie korzystajac z tego dowodzimy, ze ciag jest
rosngcy. Oba dowody mozna przeprowadzi¢ przy pomocy metody indukcji.
Podobnie w przykladzie (e), najpierw indukcyjnie pokazujemy, ze wszystkie
wyrazy sa $cisle dodatnie a,, > 0, a nastepnie wprost ze wzoru rekurencyjnego
pokazujemy, ze cigg jest rosnacy anio = a, + apt1 > apeq. 10 jest typowa
sytuacja — jezeli ciag zdefiniowany jest rekurencyjnie, to jego wtasnosci daja
sie z reguty udowodnié¢ indukcyjnie.

Dzialania na ciagach

Ciagi dodajemy, odejmujemy, mnozymy i dzielimy tak jak funkcje: (a=+b), =
Ay, + bn, (CL ’ b)ﬂ = Gy, - bn, (%)n - Z_:’ bn 7& 0.

Ciagi ograniczone

Moéwimy, ze ciag {a,} jest ograniczony, jezeli

AM VYneN la,| <M,
moéwimy, ze jest ograniczony od gory, jezeli

M VneN a, <M,
oraz mowimy, ze jest ograniczony od dotu, jezeli

M VYneN a,>DM

Przyklady: (a) ciagg harmoniczny a, = + jest ograniczony, od dotu przez 0,
i od gory przez a; = 1. Ogdlniej, cigg malejacy zawsze jest ograniczony od
gory przez swoj pierwszy wyraz, podobnie cigg rosnacy jest ograniczony od
dotu przez swoj pierwszy wyraz,

(b) Ciag Fibonacciego nie jest ograniczony od gory. Mowilismy juz, ze wy-
razy tego ciagu sa dodatnie. Podobnie, indukcyjnie mozna udowodni¢, ze
wyrazy tego ciggu spetiaja a, > n dla n > 6. Z tego wida¢ juz, ze ciag nie
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moze by¢ ograniczony od gory.

(¢) Ciag a, = v/n + 1 —+/n jest ograniczony. Wida¢ od razu, ze wyrazy tego
ciagu sa dodatnie (pierwiastek jest funkcja rosnaca), czyli ciag jest ograni-
czony od dohu przez 0. Pokazemy, ze jest tez ograniczony od gory.

_ e w4 L U SR VAL
b= VT \/_—(\/T vy Y
1

n+1—n

\/W+\/_\/T+2

(d) Postep geometryczny a, = ag"~! jest ograniczony, jezeli |¢| < 1 i nie-
ograniczony, jezeli |¢| > 11 a # 0. Pierwsze stwierdzenie jest oczywiste:
lan| = |ag" ™| = |a|lg|"™* < |a|. Drugie stwierdzenie wymaga pewnego do-
wodu. Mozemy wykorzysta¢ na przyklad nastepujaca wazng nieréwnosc,
ktora mozna udowodni¢ na przyktad indukcyjnie: dla e > 0

(14¢€)" > 1+ ne. (4.1)

Jezeli |q| > 1 to |¢| = (1 + ¢€) dla pewnego € > 0. Mamy wiec
w1 _ lal la|
|an] = la] - |q|" " = H(1+) H(Jrne)
Jezeli |a,| < M, to

1
%(1+ne)§M = ng—(MM—).
q €

7 powyzszego widaé juz, ze ciag a, nie moze by¢ ograniczony.

Zbiezno$é ciggu

Przechodzimy teraz do najwazniejszego dla nas pojecia dotyczacego ciaggodw

Definicja 4.2. Mowimy, zZe cigg {a,} jest zbiezny do liczby g jezeli
Ve>0 IdngeN Vn>ng l|a,—g| <e

Zapisujemy to
lim a, =g b a, —> g.

n—oo
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przedzial |z — g| < e

Rysunek 4.1: Granica ciagu

Definicja odnosi sie do ciggéw i rzeczywistych i zespolonych, w tym dru-
gim przypadku granica tez moze by¢ liczba zespolona, a | - | oznacza modul
liczby zespolonej.

Przyklady: (a) a, = % Mozna latwo udowodnié¢, ze lim,,_,o a, = 0.
(b) an = vVn+1—/n =2 0. Udowodnijmy to.

1 < 1
Vn+l+yn~ 2n

. . L, .. 1
Wystarczy wiec rozwigzaé nierdwnosé Tm <€

la, — 0| =vVn+1—+/n=

1 1 1
— —<ee2/n>-Sn>—

2 \/n € 4 e

Dla zadanego € > 0 istnieje wiec ng = [ﬁ] + 1 spetniajace warunek definicji.

(c) a, = 2"2;_21 Moo, % Podobnie jak w poprzednim przykladzie rozwia-

zemy odpowiednig nier6wnos¢. Tym razem utatwimy sobie rachunki stosujac
oszacowania, zamiast rozwigzania doktadnego

5

n*+2 1|
2 (2n2-1)

n+2 <5
2n2—1 2 —2n

Ostatnie oszacowanie, czyli 2(2n* — 1) > 2n jest prawdziwe dla wszystkich
n € N, imozna je udowodnié¢ rozwigzujac nieré6wnosé¢ kwadratowa. Na koniec
wystarczy wiec rozwigzaé¢ prostg nier6wnosé % < € co daje n > % Niech
wiec, dla zadanego € > 0 bedzie ng = [2] + 1.

(d) Ciag staly a,, = ¢ ma granice lim,,_,, a,, = c.
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Zbieznos¢ ciagébw do podanych granic w powyzszych przyktadach poka-
zaliSmy korzystajac wprost z definicji. W praktyce najczesciej pokazujemy
zbiezno$¢ korzystajac z réznych witasnosci granic. Na przyktad, mamy na-
stepujace podstawowe twierdzenie

Twierdzenie 4.3. Jezeli lim,, o, a, = a, lim,,_,o b, = b to ciggi {(a £ 0),}
i{(a-b),} sq zbieine, oraz

lim (a £b), = lim a, £ lim b, = a + b,
n—o0 n—o0

n—oo
lim (a - b), = lim a, - lim b, =a-b.
n—oo n—oo n—oo

Jezeli dodatkowo b, # 0 dla wszystkich n € N i b # 0 to cigg ilorazow {(§)n}
jest zbiezny, oraz

lim
n—oo

b

W dowodzie twierdzenia wykorzystamy nastepujace obserwacje

(a) Climysoa,  a
n lim, .oub, b

Fakt 4.4. (i) Cigg zbieiny jest ograniczony. Zeby sie o tym przekonaé niech
cigg {an} bedzie zbiezny do a i weimy dowolne € > 0, na przyktad ¢ = 1.
Wtedy istnieje ng € N takie, ze dla wszystkich n > ng zachodzi |a,| — |a| <
la, —a| <1, czyli |a,| < |a| + 1. Niech

M = max{|ai|, |as]|, ..., |any-1], |a| + 1}.

Wtedy ciqg {an} jest ograniczony przez M: ¥ n € N |a,| < M.
(11) Cigg {by,} liczb réznych od zera, zbieiny do granicy b réznej od zera jest
yoddzielony od zera”:

36>0 YneN [|b]>0

[b

Zeby sie o tym przekonad, niech € = 5. Wtedy, z definicji zbieznosci istnieje
1

ny € N takie, ze [b| — |by| < [b—ba| < &, cayli [b,] > |b] = YU =Y. Niech

b
) = min {|b1" |b2|, ey ‘bnofllu |2_|} > 0.

Wtedy ¥ n € N mamy |b,| > §.

Dowadd twierdzenia. Przeprowadzimy dowdd dla iloczynu, pozostate przy-
padki pozostawiajac jako ¢wiczenie. Dla iloczynu nieréwnoscia, ktorg be-
dziemy chcieli rozwigza¢ ze wzgledu na n bedzie

lan, - b, —a-b| <e.

30



Zrobmy tak

la.b, —a-b] =|ab,—a-b,+a-b,—a-b
<lap b, —a-b,|+l|a-b,—a-b
= lan — a| - [bn| + |a| - [bn — b].

Wyrazenie po lewej stronie bedziemy wiec mogli oszacowaé korzystajac z
tego, ze mozemy oszacowal wyrazenie po prawe]j stronie. Wiemy, ze ciag
{bn} jest ograniczony (skoro jest zbiezny), wiec niech |b,| < M. Niech M =

max{M, |a|,1}. Niech ¢ > 0. Ustalmy € = ;% > 0 (mozemy wykona¢

dzielenie, bo wiemy, ze M > 0). Wtedy istnieje ny € N takie, ze |a, —a| < €
dla n > ny oraz istnieje ny € N takie, ze |b, — b] < € dla n > ny. Niech
no = max{ny,ne}. Wtedy |a, — a| < € oraz |b, — b| < € dla n > ng. Mamy
wiec, dla n > ng
|an - b| < [an —al - |bu] + |a] - [bn — b|
<l|an —al M + |b, —b| M
<EM+EM
€ €

:6’

(\]

co konczy dowod O]

Przyktad: Niech
_ont+2 1+ 2
C2n2-1 22— L%

An

L1

Mamy + - 0= 5 =1.1 5 0= % =224 — 0 a wiecc licznik dazy do 1,

a mianownik do 2, a wiec

1+% e 1
a, =

2 — # 2

Granice te obliczyliSmy wczeéniej z definicji, ale teraz mogliSmy to zrobié
znacznie sprawniej.

Granice niewlasciwe

Definicja 4.5. Cigg rzeczywisty {a,} ma granice niewtasciwg +o0o (méwimy,
zZe jest rozbiezny do +00) jezeli

VM dngeN Vn>ny a,> M.
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Ciqg rzeczywisty {a,} ma granice niewlasciwg —oo (jest rozbiezny do —oo)
jezeli
VM dngeN Vn>ny a, <M.

Cigg zespolony {a,} ma granice niewtasciwg oo (jest rozbieiny do 0o) jezeli
VM dngeN Vn>ng lay > M,
(w przypadku ciqgow zespolonych nie rozrézniamy nieskoriczonosci).

n2-3

Przyklad: Ciag a, = 77 Jest rozbiezny do +o0: dla n > 3 mamy
n? —3 %712 n
>2 =
n+1 = 2n 4’

natomiast § > M < n > [4M] + 1. Niech wiec ng = max{3, [4M] + 1},
wtedy dla n > ng mamy |a,| > M.

Twierdzenie o dzialaniach na granicach rozszerza sie na niektore przy-
padki granic niewtasciwych. Na przyktad, niech a, — a, b, — b (ciagi
rzeczywiste). Wtedy

a=+oo, b>0=a,-b, = +00,
a=+c, b<0=a,- b, > —o0.

Warunek Cauchy’ego

Twierdzenie 4.6. Cigg {a,} jest zbiezny wtedy i tylko wtedy, gdy spetnia
tak zwany warunek Cauchy’ego:

Ve>0 dnge N Vmn>ng |a,—a,| <e

Dowadd. Dowdd przeprowadzimy dla ciagéw rzeczywistych. Rozszerzenie go
na ciggi zespolone jest juz prostym ¢wiczeniem. Dowdéd ma dwie czesci:
ze zbieznosci warunek Cauchy’ego (czes¢ ,=”), oraz z warunku Cauchy’ego
zbieznosé (czesé ,,<=").

=  Zakladamy, ze {a,} jest zbiezny do a. Niech ¢ > 0 bedzie dowolne.
Wtedy, z definicji zbieznosci 3 ng € N Vn > ng zachodzi |a, — a| < €/2.
Wezmy m,n > ng, wtedy |a, —al < €/21 |a, — a| < €/2, a wiec

€

€
|am—an|:|am—a+a—an|§|am—a|+|an—al<§+§=e.

Warunek Cauchy’ego jest wiec spelniony.
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< Zalozmy, ze ciag {a,} spelnia warunek Cauchy’ego. Zauwazmy, ze w
takim razie ciag {a,} musi by¢ ograniczony: niech e = 1, a wiec

dng €N Vm,n>ny |a,—a,| <1

Crzyli, biorac n = ngy otrzymujemy dla kazdego m > ng |ay, — an,| < 1 =
|am| < |an,| + 1. Niech

M = max{ay, |az|, ..., |ang-1], |an,| + 1}

Wrtedy, dla kazdego n € N mamy |a,| < M.
Utworzmy dwa pomocnicze ciagi

ar =inf{a, : n >k} < ciag niemalejacy,
Br =sup{a, : n>k} < ciag nierosnacy,

oraz niech

A =sup{ay: k€ N},

B =inf{p : k€ N}. (4.2)

Wszystkie kresy istnieja, gdyz ciag jest ograniczony. W pierwszym kroku
pokazemy, ze A < B. Ta nier6wnos¢ jest prawdziwa dla wszystkich ciagow.
Zalozmy nie wprost, ze A > B, i pokazemy, ze takie zatozenie prowadzi do
sprzecznosci, czyli musi by¢ falszywe. Jezeli A > B to niech 0 < € < A_TB. Z
definicji kresow znajdziemy k; € N takie, ze

ap, > A—e

Skoro ciag {ay } jest niemalejacy, to powyzsza nierownosé zachodzi dla wszyst-
kich £ > k;. Podobnie, musi istnie¢ ko € N takie, ze

Bk2<B+€, = \V/kaz 6k<B+€.

Niech teraz ko = max{ki, k2}. Mamy

A—e<oap <Bp, <B+e =
czyli sprzeczno$¢. Musi wiec zachodzi¢
A<B.
Tak, jak juz wspomnieliSmy, powyzsza nierownos$¢ wynika jedynie z definicji

liczb A1 B i jest prawdziwa dla wszystkich ciaggow, a nie tylko tych spelnia-
jacych warunek Cauchy’ego. Teraz pokazemy, ze dla ciggéw spelniajacych
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warunek Cauchy’ego zachodzi rownosé: A = B. Bedziemy znowu rozumo-
wali nie wprost. Niech A < B, i niech 0 < € < #. Istnieje ng € N takie,
ze dla wszystkich m,n > ng zachodzi |a,, — a,| < €, w szczegdlnosci

Vn>ng |an, —an| < €= apy — €< ap < apn, + €.
Stad wynika, ze

Qp, =1inf{a,: n>np} >ap,—€ = A>a, —¢
Bry =sup{a, : n>np} <a,, +€¢ = B<a, +e
Mamy wiec

B-A
2 Y

B-A<a,, +e—ay,+e=2 = €>

czyli sprzeczno$é. Musimy wiec mie¢ rownos¢ A = B. Niech wiec g = A = B.
7 definicji kreséw mamy

Ve>0 dngeN Vn>ny |g—a,| <e oraz |g—f,] <e

Biorac pod uwage, ze ciag {a,} jest stabo rosnacy a {3,} stabo malejacy
powyzsze nieréwnosci oznaczajg odpowiednio

g—e<a,<g oraz g<f,<g+e

W takim razie, dla wszystkich n > ng skoro a,, < a, < 3, to g —€ < a,, <
an < Bn < g+e, czyli|a, —g| < e. [

Uwaga: Stale A i B zdefiniowane w powyzszym dowodzie maja sens dla
dowolnego ciagu ograniczonego {a,}. Stale te nosza nazwy granicy dolnej i
gornej ciagu {a,}. Wkrotce omowimy doktadniej te pojecia.

Przyklady: (a) Ciag a, = (—1)" nie spelnia warunku Cauchy’ego. Niech
e = 1. Wtedy |a, — ant1| = 2 > € dla wszystkich n.

(b) Ciag a,, = ”T_l spetnia warunek Cauchy’ego. Sprawdzmy to: niech m > n,
wtedy

m—1 n—1 (m—-1)n—(m—-—1)m m—n m 1

| — an| = — = = < = —.
m n m-n m-n  m-n n
Widaé¢ wiec, ze wystarczy wzigé ng = [%] + 1, wtedy jezeli m,n > ng to

1

m’

% < € 1 warunek Cauchy’ego jest spelniony.
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Twierdzenie 4.7. (i) Kazdy cigg monotoniczny ograniczony ma granice
(wlasciwg).
(11) Kazdy cigg monotoniczny nieograniczony ma granice niewtasciwg.

Uwaga: Wystarczy monotonicznos¢ staba, i tylko od pewnego miejsca.

Dowdd. (i) Zatozmy, ze {a,} jest stabo rosnacy i ograniczony, to znaczy
ap < Gpy1 oraz la,| <M dla n=1,2,....
Istnieje wiec kres gorny
g=supf{a,: n=1,2,...}.
7 definicji kresu mamy
VneN a,<g oraz Ve>0dnyeN a, >g—c¢

Skoro {a,} jest stabo rosnacy, to ¥V n > ng mamy a, > a,, > g — €, czyli
g—€e<a, <g=la,—g| <e

(ii) Zalozmy, ze ciag {a,} jest stabo rosnacy i nie jest ograniczony, czyli nie
jest ograniczony od gory (od dotu jest ograniczony przez a;). Niech dana
bedzie liczba M. Skoro ciag {a,} nie jest ograniczony od gory, to istnieje
no € N takie, ze a,, > M. Skoro ciag jest stabo rosnacy, to

Vn>nyg ap>a > M.

Spetniony jest wiec warunek z definicji granicy niewtasciwej +o0o. Przypadek
ciggow stabo malejacych mozna udowodni¢ podobnie. [

Uwaga: Zauwazmy, ze przy okazji udowodnilismy, ze jezeli ciag {a,} jest
rosnacy 1 ograniczony, to

lim a, = sup{a,: n > 1},
n—oo

a jezeli jest malejacy i ograniczony, to

lim a, = inf{a, : n>1}.
n—oo
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Dwumian Newtona

Przypomnijmy nastepujacy wzor, tak zwany wzoér dwumianowy Newtona.
Dla n € N silnia n to iloczyn wszystkich liczb naturalnych £ < n: n! =

1-2-3-...-(n—1)-n. Przyjmujemy tez oznaczenie 0! = 1. Dla0 < k <n
wprowadzamy tak zwany wspoétczynnik dwumianowy Newtona
n n!
=—— kneZ, 0<k<n.
Q) M-k " =r=n

Nastepujacy wzor nazywa sie wzorem dwumianowym Newtona. Mozna go
udowodni¢ na przyklad przy pomocy indukcji. Jest to jeden ze wzoréw, z
ktorego bedziemy stale korzystaé¢, wiec warto go dobrze zapamieta¢. Niech
a,be R, n €N, wtedy

n_ (™) o0n Y 101 Y\ 2in-2 Y nio0
(a+b)—(0)ab+(1)ab +<2>ab + —i—(n)ab
- ") k yn—k
= a” b v,
k:O(k

Ostatnia réwnos¢ to po prostu rozwiniecie symbolu sumowania Y. Symbolu
tego bedziemy stale uzywaé¢. Oznacza on po prostu sume wyrazenia dla
wszystkich wartosci parametru k z opisanego na symbolu zakresu, w tym
wypadku £ =0,1,...,n.

Liczba e

Rozwazmy nastepujacy ciag: a, = (1 + %)” Pokazemy, ze ten ciag jest
rosnacy i ograniczony, a wiec zbiezny. Zauwazmy, ze ani to, ze {a,} jest
rosnacy ani to, ze jest ograniczony nie jest oczywiste: co prawda potega
rosnie, ale podstawa maleje do 1. Na przyktad

3\? 1\*
ay = 2, a9 = (5) = 2,25, as = <§) = 2,370 sy
5\° 6\’
=[(-] =2441... =(=] =2488... .
Qy (4) ) ) as <5> )

Pokazemy teraz, ze ciag {a,} jest rosnacy. Zauwazmy nastepujaca rownosé
dlak=0,1,....n

() () = ()
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m—k+1)-(n—k+2)-...-(n—1)-(n)

1 n-1 n-2 n—(k—1)
kK on n n

- (1_%).<1_%).....(1_’f;1).

Wyrazy ciagu {a,} rozwiniemy teraz korzystajac ze wzoru dwumianowego
Newtona, a nastepnie zastosujemy powyzszg réwnosc.

w= ()G O G OG-
SOIORGIO)

Zauwazmy, ze w takiej postaci w jakiej zapisaliSmy go powyzej, wyraz a,, wraz
ze wzrostem n zawiera coraz wiecej dodatnich sktadnikow, a takze kazdy ze
sktadnikow robi sie coraz wiekszy (z wyjatkiem 2 pierwszych skladnikow,
1+ 1, ktore nie zmieniaja sie). Jezeli wyrazy ciagu zapiszemy wiec w tej po-
staci, to wida¢, ze ciag {a,} jest rosnacy. Dodatkowo zauwazmy, ze mozemy
oszacowac a, od gory

11 1 11 1
an ST+l gttt — <l ldo ot o+ (4.4)

2! 3l 2 22 on—1’
Pierwsza nieréwnos¢ otrzymujemy z postaci (4.3), poprzez pominiecie czyn-
nikéw mniejszych niz 1, natomiast druga nieré6wno$¢ otrzymujemy poprzez
zastapienie czynnikéw wiekszych niz 2 w mianownikach przez 2. Mianowniki
sa wiec mniejsze, czyli utamki wieksze. Pozostaje nam skorzysta¢ ze wzoru
na sume postepu geometrycznego: dla ¢ # 1, oraz [ € N mamy

1—¢
1—q
Ro6wnosé powyzsza mozna udowodni¢ na przyktad indukcyjnie. Jest to jedna

z tych rownosci, ktore trzeba zawsze pamietaé, i bedzie pojawiala sie wielo-
krotnie. Suma z prawej strony naszego oszacowania (4.4) to wlasnie suma

l+q+¢+-+¢ "=

(4.5)
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postepu geometrycznego, z ¢ = %, oraz z jedng dodatkowsa 1 z przodu. Mamy
wiec
1—(3)"

1
1_5

a, <1+ <1+

l| =

PokazaliSmy wigc, ze ciag {a,} jest rosnacy i ograniczony, a wigc zbiezny.
Granice tego ciagu nazywamy e

1 n
e = lim <1+—> .
n—oo n

Wiemy tez z oszacowan, ze 2 < e < 3. e to wazna liczba, ktora bedzie
pojawiata sie na naszym wykladzie stale, gtownie jako podstawa logarytmow
i funkcji wyktadniczej.

Twierdzenie 4.8 (o 3 ciagach). Zaldzmy, ze mamy 3 ciggi spetniajgce nie-
rownosct
an < b, < cy, n=123,..., (4.6)

oraz ze skragne ciqgi {a,} oraz {c,} sq zbiezne do wspdlnej granicy

a = lim a, = lim ¢,.
n—0o0 n—0o0

Wtedy cigg {b,} tez jest zbiezny, do tej samej granicy

a = lim b,.
n—o0

Uwaga: Wystarczy, ze ciagi spelniaja nieréwnosci (4.6) od pewnego ng € N.
Dowod twierdzenta. Niech € > 0 i niech ny € N bedzie takie, ze dla n > n;
la, —a| <e = a,>a—c¢,
oraz niech ny € N bedzie takie, ze dla n > ny zachodzi

len, —al <e = ¢, <a+e

Istnienie takich n; i ny wynika ze zbieznosci ciggow {a,} i {c,} do wspodlnej
granicy a. Wtedy, dla n > ng = max{n;,no} mamy

a—e<a,<b,<c,<a+e = |b,—al<e (4.7)

Zauwazmy jeszcze, ze jezeli nieréwnosci (4.6) zachodza tylko od pewnego
miejsca, na przyktad dla n > k, to wystarczy zmodyfikowaé¢ definicje ng:
niech ny = max{ny, ny, k}, i nieréwnosé¢ (4.7) zachodzi. W ten sposéb uza-
sadniliémy uwage ponizej twierdzenia. O]
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Przyklady: (a) Niech a, = /n(v/n+1— /n). Skorzystamy z twierdze-
nia o 3 ciaggach, a w tym celu wykonamy kilka przeksztalcen i oszacowan.
Widzielismy juz wezesniej, jak przeksztatci¢ roznice dwoch pierwiastkow

1 1 1
V(T T = ) = va _ _ |
e T e Y R T R

1< 1+1<1+1 = 1 < <1
\/ - - - <a, < -.
- n = n 1—1—%4—1_ 2

1
3

Nastepnie

Dwa skrajne ciaggi maja wsp6lna granice %, wiec a, —

(b) Niech a > 11 a, = {/a. Wyrazy ciagu sa pierwiastkami coraz wyzszego
rzedu z liczby wiekszej od 1. Zauwazmy od razu, ze taki ciagg musi mie¢
granice, gdyz jest malejacy, i ograniczony od dolu przez 1. Ta obserwacja
nie bedzie nam potrzebna, gdyz skorzystamy z twierdzenia o 3 ciagach. Po
pierwsze, skoro a > 1 to takze a,, > 1 dla wszystkich n. Niech ¢, = a,—1 > 0.
Skorzystamy z nieréwnosci (4.1), i otrzymujemy

a—1
-

a=(1+¢€)">1+ne = 0<e¢, <

Skrajne ciagi zbiegaja do 0, a wiec takze €, — 0 czyli
lim a, = lim {/a = 1.

n—oo n—oo

(¢) Niech a,, = {/n. Podobnie jak w poprzednim przykltadzie zapiszmy a,, =
1+ €,, a wiec €, > 0. Skorzystamy teraz z innej nieré6wnosci prawdziwej dla

e>0in>2
n(n—1) ,

n
1+¢€)" > =——""¢&.
e (5)e ="
Nier6wnos¢ powyzsza mozna udowodni¢ korzystajac ze wzoru dwumianowego
Newtona. Korzystajac z niej, otrzymujemy dla n > 2
nn—1) , 5 2n 2

=(l+e&)" > ———€¢ = < ——= = 0<6< :
n = (1+€,) 5 €, Y P— € 7

Prawy skrajny ciag zbiega do 0. Mozna to pokaza¢ z definicji, a mozna sko-
rzystaé z ogbdlnego twierdzenia o zbieznosci pierwiastkow, ktére udowodnimy
ponizej. Korzystajac z 3 ciaggdw ponownie pokazali$émy, ze €, — 0, a wiec

lim a, = lim {/n=1.

n—o0 n—oo
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Twierdzenie 4.9. Niech a, — a, a, > 0 oraz m € N. Witedy
lim a, = Va.
n—oo

Dowdd. Rozpatrzymy 2 przypadki: a =01ia > 0. Jezeli a = 0 to niech € > 0
bedzie dowolne, i niech € = €™. Z definicji granicy

dngeN Vn>ny 0<a,<é¢ = 0< ta, <ec.

W przypadku a = 0 twierdzenie jest wiec udowodnione. Rozpatrzmy teraz
pozostaly przypadek, czyli niech a > 0. Wykorzystamy nastepujaca réwnos¢,
dlaa, >0, meN

(@—B) (@™ +am 2B+ - +afm 24 BN = o™ — g™,

Nierownosé¢ ta mozna udowodni¢ bezpogrednio (na przyktad indukcyjnie),
albo mozna ja wywnioskowaé¢ ze wzoru na sume postepu geometrycznego
(4.5). Mamy wiec

Van — ¥al =

la, — al la,, — al

()™ + ()™ fa+ -+ (Y™ ~ (g/a)™ "

Wystarczy teraz, podobnie jak w poprzednim przypadku wziaé € = ( §/a)™ e
1 mamy

la, —a| <é = |t/a,— Va|<e.
m
Zauwazmy, ze powyzsze twierdzenie pozwala nam ,wejsS¢ z granicg pod”

dowolng potege wymierna, jezeli tylko a, i a sa takie, ze potege mozna za-
stosowac

[

lim(an)gz(lim an) , pEZ, g€ N.

n—oo n—oo

Przyktad: Niech a; = v/2 i niech ani1 = V2 +a, dlan > 1. RozwazaliSmy
juz ten przyktad, i pokazaliSmy, ze {a,} jest rosnacy i ograniczony, czyli
zbiezny. Wykorzystamy to teraz do znalezienia jego granicy

g = lim a, = lim a,y; = lim v2+4+a, = ,/2+ lim a, = +v/2+g.
n—oo n—oo n—o0

n—o0

Widzimy wiec, ze granica ¢ musi spetnia¢ rownanie kwadratowe g?—g—2 = 0.
Roéwnanie to ma dwa pierwiastki ¢ = —1 1 ¢ = 2. Granica nie moze by¢
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liczba ujemna, bo ciag sktada sie z liczb dodatnich, wiec pozostaje jedyna
mozliwosé: g = 2.

Uwaga: Skorzystaliémy z nastepujacego faktu: jezeli a, — a oraz a, > 0
to a > 0. Fakt ten mozna sformutowaé ogoélniej: jezeli a, — a i b, — b oraz
a, < b, (przynajmniej od pewnego miejsca), to a < b. Pozostawiamy to jako
¢wiczenie.

Podciagi

Definicja 4.10. Podciggiem ciggu {a,} nazywamy cigg postaci {an, }32 1,
gdzie {ny} jest $cisle rosngcym ciggiem liczb naturalnych.

Uwaga: W definicji istotne jest to, zeby ciag indeksow {n;} byt $cisle ro-
snacy. Innymi stowy, aq,as,a6,a17,... moze by¢ podciggiem ciagu {a,},
natomiast a1, aq,as,as, ... nie jest podciggiem. Zauwazmy tez, ze zgodnie
z definicjg sam ciag {a,} jest swoim wlasnym podciagiem, wystarczy wziac
ni = k. Definicja podciggu sprowadza sie do wybrania z danego ciggu jedy-
nie niektorych wyrazow, z zachowaniem ich kolejnosci.

Przyklad: Ciag 1,%,%,1—16,...,#,... jest podciggiem ciagu 1,%,%,%,....

Tutaj a, = + oraz ny = k?, a wiec a,, = 7.

Twierdzenie 4.11. Kazdy podciag ciggu zbieznego tez jest zbiezny, do tej
samej granicy.

Dowdd. Niech bedzie bedzie dany ciag {a,} zbiezny do g, oraz jego podciag
wyznaczony przez ciag indeksow {ng}. Niech ¢ > 0, i niech ny € N bedzie
takie, ze dla n > ng zachodzi |a,, — g| < €. Niech

ko = min{k € N : ng > no}.

Zauwazmy, ze minimum (element najmniejszy) istnieje, gdyz {k € N : n; >
no} jest niepustym podzbiorem liczb naturalnych. Wtedy, jezeli k& > ko to
Ng > Mgy > Mo, 1 |an, — g| < €. ]
Przyklad: Niech m € N bedzie ustalone, oraz

1in 1 n

e () ()"
n m-n

Niech ny = m - k. Jest to Scisle rosnacy ciag liczb naturalnych, oraz

a = (1+ﬁ)n — ((1+ﬁ)mk)m — (<1+ ni}f)"*”/)m
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Jesli wiec b, = (1 + 1)" (ciag zbiezny do e), to ax = %/b,,. Wiemy, ze
b, — e, a wiec

k—o0 m k—oo
b, —— e = bn, —— e,
czyli mamy

: 1
lim a, =em.
n—o0

Uwaga: W ten sposob pokazalismy, ze ciag (1 + £)" jest zbiezny do e* dla

liczb postaci x = %7 m € N. W przysztosci pokazemy, ze jest to prawdg dla

wszystkich liczb z € R.

Ponizsze twierdzenie, ktore jest intuicyjnie zupelnie jasne, jest wazne i
bedziemy z niego w przysztosci wielokrotnie korzystac.

Twierdzenie 4.12 (Bolzano-Weierstrassa). Kazdy cigg ograniczony zawiera
podcigg zbiezny

Dowdd. Niech ciag {a,} bedzie ograniczony. Przypomnijmy konstrukcje z
Twierdzenia 4.6, dotyczacego warunku Cauchy’ego.

ar =inf{a,: n>k}, A=sup{ay: k>1}= klim .
—00

Ciag {a,} a w konsekwencji takze ciag {a,} sa ograniczone, wiec kresy ist-
nieja. Ciag {a,} jest rosnacy, a wiec zbiezny, a jego granica jest jego kres
gorny. Pokazemy teraz, ze istnieje podciag {a,, } zbiezny do A. Pomyst na
znalezienie tego podciagu jest nastepujacy. Z definicji kresu wiemy, ze w do-
wolnie malym otoczeniu kazdego a, istnieja wyrazy ciagu o indeksach > n.
Bedziemy rozpatrywali coraz mniejsze otoczenia kolejnych «,, powiedzmy
[y, iy +€,) 1 2 takich otoczen bedziemy wybierali kolejne elementy konstru-
owanego podciagu. Jezeli nasze €, — 0, to mozna pokaza¢ (na przyktad z
twierdzenia o 3 ciagach), ze tak wybrany podciag jest zbiezny do tej samej
granicy co ciag {a,}, czyli do A. Jest drobny szczegol techniczny, o ktory
trzeba zadbaé. Chodzi o to, ze indeksy kolejnych wyrazéw podciagu musza
Sci$le rosngé. To jest drobny szczegdl techniczny, i poradzimy sobie z nim
nastepujaco. Definicja podciagu bedzie indukcyjna. Niech a,, bedzie ele-
mentem ciagu {a,} odleglym od «; o mniej niz % Wiemy, ze taki element
musi istnie¢, gdyz a; jest kresem dolnym zbioru wyrazow ciagu. Mamy wiec

051§CL7L1<CE1+§.

Zanim przejdziemy do ogo6lnego kroku indukcyjnego wybierzmy jeszcze drugi
wyraz. Nastepnego elementu podciaggu musimy szukaé¢ wsrod a,,’6w o nu-
merach wiekszych niz n;. Wiemy, ze kresem dolnym zbioru tych a,’6w jest
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Qpy11- Niech wiec a,, bedzie elementem ciagu {a,}, n > ny; + 1, odleglym
od ay,+1 0 mniej niz }l. Mamy wiec ny > ny oraz

1

Qnyt1 < Gy < Qpyy1 + 55 92"

Opiszemy teraz ogoélny krok indukcyjnej definicji. Zatozmy, ze skonstruowa-

liSmy poczatek podciagu ay,,, Gn,, - .., Gy, taki, ze ny <ng < --- < ny,, oraz
1
ank+1<ank+1<am¢+1+2k+17 k:1a27"'7m_1'

Kolejny wyraz podciagu, a,,+1, wybieramy sposrod a,’6w o indeksach n >
n., + 1, spetniajacych

1

an +1 < an7rL+1 < ann1+1 + 2m+1

Zauwazmy, ze taki wybor jest zawsze mozliwy, gdyz «,, 41 jest kresem dol-
nym interesujacego nas zbioru a,’6w, znajdziemy wiec elementy dowolnie
blisko. W ten sposob, indukcyjnie, znalezlismy podciag {a,, } spelniajacy:

1
Olnk+1<(lnk+1 <Q{nk+1+ k:1,2,3,....

9k+1’
Po skrajnych stronach nieréwno$ci mamy ciagi zbiezne do A ({av,, 41} jest
podciagiem ciagu {a,} a 2% — 0), wiec z twierdzenia o 3 ciagach otrzymu-
jemy

lim a,, = hm ap = A.
k—o0 k—o0

]

Uwagi: (i) Twierdzenie jest intuicyjnie jasne. Jezeli ciag jest ograniczony, to
jego wyrazy (ktorych jest nieskoriczenie wiele) musza sie gdzies zageszczac.
Powyzszy dowdd stanowi sprecyzowanie tego stwierdzenia.

(ii) Podciag, ktory skonstruowalismy jest zbiezny do stalej A. Podobnie
mogliby$Smy skonstruowaé¢ podciag zbiezny do statej B, w tym celu zamiast
rozwaza¢ ciag infimow {a, } rozwazalibysmy ciag supremow {3, } (oznaczenia
z dowodu Twierdzenia 4.6).

(iii) Przygladajac sie dowodowi dokladnie mozna zauwazy¢, ze na lewo od
kazdej liczby mniejszej od A mamy tylko skonczenie wiele wyrazow ciggu
{a,}. Podobnie na prawo od kazdej liczby wickszej od B. Wynika z tego, ze
Zaden podciag ciagu {a,} nie moze by¢ zbiezny do granicy mniejszej niz A
lub wiekszej niz B. Powolamy sie na ten fakt za moment.
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Definicja 4.13. Liczbe g nazywamy punktem skupienia ciggu {a,} jezeli
istnieje podciqg {ay, } zbieiny do g.

Twierdzenie 4.12 mozemy wiec sformutowac nastepujaco: kazdy cigg ogra-
niczony ma punkt skupienia. Uwagi zamieszczone powyzej mozemy sformu-
lowa¢ nastepujaco: A i B sg punktami skupienia ciggu {a,}, przy czym A
jest najmniejszym punktem skupienia, a B najwiekszym.

Twierdzenie 4.14. g jest punktem skupienia ciggu {a,} wtedy i tylko wtedy,
gdy

Ve>0 VnoeN In>ny |a,—g| <e (4.8)
Innymi stowy, kazde otoczenie punktu g zawiera wyrazy ciggu {a,} o do-
wolnie dalekich indeksach (w szczegdlnosci kazde otoczenie punktu g zawiera
nieskoniczenie wiele wyrazéw ciggu {a,}).

Dowdd. Jezeli g jest punktem skupienia ciggu {a,} to z definicji istnieje
podciag {a,, } zbiezny do a.. Niech wiec € > 0 bedzie dane, a ko bedzie takie,
ze dla k > ko mamy |a,, —a| < e. Jezeli dodatkowo dane jest ng € N,
to niech k& > kg spelia dodatkowo ny > ng. Takie & musi istnie¢, bo ciag
indeksow {ny} jest rozbiezny do 4+o00. Indeks ny jest wymaganym indeksem
w (4.8). Z drugiej strony, niech bedzie spetniony warunek (4.8). Indukcyjnie
skonstruujemy podciag {a,, } zbiezny do g. Niech n; bedzie numerem takiego
elementu ciggu, ktory spetnia
1

‘aTn - g| < 5
Istnienie takiego elementu wynika z (4.8). Dalej, zal6zmy, ze mamy juz
skonstruowany ciag rosnacy indeksow n; < ng < --- < n,, spetniajacy

1
|an, — ¢ <2—k, k=1,2,...,m.

Niech 7,11 bedzie indeksem elementu ciagu {a,} ktory spelnia

1
|anm+1 - g| < om+1’

oraz np,41 > ng. Istnienie takiego elementu wynika z (4.8). W ten sposob
otrzymalismy podciag {a,, } spelniajacy
1

Oglank—gl<§,

k=1,2,....

Korzystajac z twierdzenia o 3 ciagach widzimy, ze podciag {ay,, } jest zbiezny
do g, czyli g istotnie jest punktem skupienia ciagu {a,}. ]
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Przypomnijmy, ze ciag ograniczony posiada punkty skupienia, wsrod kto-
rych jest najwiekszy oraz najmniejszy (komentarz po Definicji 4.13).

Definicja 4.15. Jezeli cigg {a,} jest ograniczony, to najmniejszy jego punkt
skupienia nazywamy granicg dolng, a najwiekszy granicg gorng. Oznaczam
je odpowiednio:

liminfa, granica dolna limsupa, granica gorna.
n—00 n—00

Uwagi: (i) Granica dolna jest mniejsza lub réwna od granicy gornej.

(ii) Ciag ograniczony jest zbiezny wtedy i tylko wtedy gdy jego granice gorna
i dolna sa rowne. Innymi stowy, ciag ograniczony jest zbiezny wtedy i tylko
wtedy, gdy ma doktadnie jeden punkt skupienia.

(iii) State A i B ktore pojawily sie w (4.2) w dowodzie Twierdzenia 4.6 sa
odpowiednio granicami dolna i gorng ciagu {a, }.

(iv) Jezeli ciag {a,} nie jest ograniczony od gory, to piszemy

lim sup a,, = +o0,
n—oo

a jezeli nie jest ograniczony od dotu, to piszemy

liminf a,, = —c0
n—oo

Przyktad: Niech liczba m € N bedzie ustalona, i niech a, = (1 +
Pokazemy, ze

313

)"

lim a, = lim (1 + T) =e".
n

n—o0 n—o0

Najpierw ustalmy 0 < x < 1, i niech b, = (1 + n—}rm)" Zauwazmy, ze mamy
nastepujace oszacowanie

1 " 1 " \"
1+ < | I+ <{1+-),
n+1 n—+ax n

Prawy skrajny ciag dazy do e, lewy skrajny, jak tatwo sie przekonaé tez:

1 \" T \"™ /m+1\ e
( +n+1) ( +n+1) (n+2) € ¢ (4.9)
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Korzystajac z twierdzenia o 3 ciagach mamy wiec, ze b, — e, niezaleznie od
wyboru x. Ustalmy teraz v = 0,...,m — 1, i niech ny = mk + u. Zauwazmy,
ze odpowiadajacy tym indeksom podciag ciagu {a,} zbiega do e™:

m mk+u 1 mk+u
= |1 =1
s (+mk+u> < +k+%)
1 \"\" 1\
= 1 -1
(<+k+%)> (+k:+w%)

1 uk%oo
:b . 1 \ m’
g (+k+l> ¢

m

dla » = . Wszystkie powyzsze podciagi (dla u = 0,...,m — 1) maja wiec
ta samg granice e™. Kazdy element ciagu {a,} nalezy do ktoregos z tych
podciagow, i jest ich skoriczenie wiele. Wynika z tego, ze {a,} jest zbiezny,
i jego granica jest e™. Przekonajmy sie o tym. Niech {n}} bedzie ciagiem
ng = mk+udlau=0,1,...,m— 1. Wiemy, ze kazdy podciag {anu}32,
zbiega do e™, wiec dla dowolnego € > 0 istnieja ky € N takie, ze dla k > kj
zachodzi
|apy —e™| <.

Niech teraz ng = max{mk, mki +1,...,mky" " + (m — 1)}. Jezeli n > ny,
to m to po pierwsze musi naleze¢ do ktorego§ z podciagoéw nf i dodatkowo
musi mie¢ w nim indeks k > k{. a, spelnia wiec |a, — ™| < e. Pokazalismy

wiec, ze
lim (1 + @> =™
n—oo n

Jako prosty wniosek z powyzszego znajdziemy jeszcze jedna granice. Niech
m, k € N.

% n_ m \kn o 1 n—oo myt = m
(1+n) _(<1+—k'n) ) — () 225 (e™)E = e
ke

Dla x = 7, m

==

N mamy wiec

lim (1 + f) =",
n—o00 n

Powyzsza réwnos¢ mozna uogdlni¢, najpierw na dowolne x € R, z > 0, a
nastepnie na dowolne x € R. Zostawiamy to jako ¢wiczenie
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Rozdzial 5

Szeregi

Szeregi to sumy nieskoriczone. Do ich $cistej definicji potrzebne jest pojecie
zbiezno$ci. Suma nieskonczona a; + as + as + ... moze istnie¢ lub nie, to
zalezy od konkretnego ciagu {a, }. Ponizej podana jest $cista definicja. Sumy
nieskoniczone nie sg niczym dziwnym, wystepuja w praktyce, na przyktad
kiedy chcemy obliczyé pola figur. Niech bedzie dany ciag {a,}, i utworzmy
ciagg kolejnych sum

S1=ay, Sp=a;+a, Sz3=a;+a+as, ... S,=ai+a+- -+ ay.

Ciag {s,} nazywamy ciagiem sum czeSciowych ciaggu {a,}. Zauwazmy, ze
jezeli cigg sum cze$ciowych jest zbiezny, to jego granice nawet intuicyjnie
chcieliby$my nazwa¢ suma nieskoriczona a; + as + as + .... Mamy wiec
nastepujaca definicje:

Definicja 5.1. Jezeli cigg {s,} ma granice s to mdwimy, Ze szereg (albo
suma nieskoriczona) ay + ag + as + ... jest zbiezny i Ze jego suma wynosi s.

Piszemy
[e.e]
5 = E .
n=1

Jezeli ciag sum czesciowych {s,} nie jest zbiezny, to mowimy, ze szereg
jest rozbiezny. W takim przypadku wyrazenie Y a, jest tylko symbolem i
nie ma interpretacji liczbowe;j.

Przyklady: (a) Niech a, = (3)". Wtedy

we gt G O =5 (- () e

Szereg > o0 (2)" jest wiec zbiezny, i o0 (3)" = 2 (jest to przyklad tak

n=1
zwanego szeregu geometrycznego). SkorzystaliSmy ze wzoru na sume postepu
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geometrycznego (4.5)

(b) Niech a,, = ﬁ Zauwazmy, 7€ a, = = — #1 Mamy wiec
(1 1)+<1 1)+ +(1 1>+<1 1)
STL: _ — — _ — = “ e - — —_
1 2 2 3 n—1 n n n+1
1 n—,oo
=1- 1.
n+1

Szereg Y 7| m jest wiec zbiezny, i jego suma wynosi 1.

(¢) Szereg > o°  (—1)" jest rozbiezny, bo s, = —1 lub 0, w zaleznosci od
tego, czy n jest parzyste czy nieparzyste, a taki cigg nie jest zbiezny. Suma
nieskoriczona —1 +1 — 141 — ... nie istnieje, i nie ma zadnej interpretacji
numeryczne;.

Dzialania na szeregach

Twierdzenie dzialaniach na granicach przenosi sie na szeregi:

i(anib ZaniZb

n=1 n=1
f’: (c-ap)=c- ian, ¢ - dowolna stala,
n=1 n=1

przy zaltozeniu ze szeregi po prawej stronie sa zbiezne. Twierdzenie o granicy
iloczynu czy ilorazu nie ma tu bezposredniego zastosowania.

Twierdzenie 5.2. Jezeli szereq Y a, jest zbiezny, to lim, . a, = 0.

Dowaod. Szereg jest zbiezny czyli jego ciag sum cze$ciowych s, = a;+---+a,
jest zbiezny. Dlan > 2 a, = s, — S,—1, a wiec

lim a, = lim (s, — s,-1) = lim s, — lim s, = 0.

]

Uwaga: Powyzsze twierdzenie daje tak zwany warunek konieczny zbieznosci
szeregu. Nawet jezeli lima, = 0 to szereg Y -, a, nie musi by¢ zbiezny.
Twierdzenie przydaje sie wiec, zeby pokazaé¢ rozbieznosc.

Przyktad: Niech a, = % Szereg > 7, % jest rozbiezny. Jest to tak zwany
szereg harmoniczny. Zauwazmy, ze wyrazy szeregu sa dodatnie, a wiec ciag
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sum czeSciowych jest rosngcy. Ciag rosnacy jest zbiezny dokladnie wtedy,
kiedy jest ograniczony. Pokazemy wiec, ze ciag sum czesSciowych tego szeregu
nie jest ograniczony. Wystarczy wskaza¢ podciag ciggu {s,} ktory nie jest
ograniczony.

11 1 1 1

11 1
e e e N Sl
52 tst3titetstotgt oty

—1+1+<1+1)+(1+1+1+1)+...
2 \3 "1 56 7 8

1 1 1

"'+<2n—1+1+2n—1+2+"'+2_n>'

W kazdym kolejnym nawiasie mamy 2% — 28-1 = 28=1 gktadnikow, a kazdy

sktadnik jest > 2% Suma kazdego nawiasu jest wiec wieksza od 2F1. ZL = %
S i Y i
Sn —_— —_— —_— —_— —_— —_— —_— . . —_— —_— DY —_—
=2 \4 4 8 8 8"8 on " on on
I I I
-T2 S S,

'
n razy

n

Mamy wigc son > 1 + 2, wskazaliSmy wigc podciag ciggu sum czeSciowych,
ktory nie jest ograniczony (gdyby wszystkie son byly wspoélnie ograniczone,
to z powyzszego oszacowania wynikatoby, ze wszystkie liczby naturalne two-
rzylyby zbior ograniczony).

Twierdzenie 5.3. Szereg > | a,, jest zbiezny wtedy i tylko wtedy, gdy ciqg
sum czeSciowych {s,} spetnia warunek Cauchy’ego:

Ve>0 dngeN Vmn>ng [Sm—sa| <e
Warunek ten mozna przeformutowac:
Ve>0 dngeN Vm>n>ng |ap+ aper+ -+ am| <e.

Dowdd. Twierdzenie wynika natychmiast z Twierdzenia 4.6 dla ciagow. U

Kryteria zbieznoSci

Badanie zbieznosci szeregéw w wiekszosci przypadkow mozna sprowadzi¢ do
zastosowania jednego z kilku nastepujacych kryteriow.

Twierdzenie 5.4 (Kryterium poréwnawcze).
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(i) Jezeli|a,| < by i szeregy | by, jest zbiezny, to szereq Y - ay, tez jest
zbiezny.

(ii) Jezeli 0 < a, < b, i szereg > -, a, jest rozbiezny, to szereg .- by
tez jest rozbiezny.

Dowdd. (i) Skoro > b, jest zbiezny, to ciag jego sum czesciowych spelnia
warunek Cauchy’ego. Z drugiej strony mamy

‘an +ap41+- -+ an—&-k’ < |an’ + ’an—i-l’ Tt ’an—&-k‘
Sbn+bn+1++bn+k: ‘bn+bn+1++bn+k’
Ciag sum czesciowych szeregu > a,, tez spelia wiec warunek Cauchy’ego.

(ii) Szereg > a, ma wyrazy nieujemne, i jest rozbiezny, wiec jego ciag sum
czesciowych jest rosnacy (moze stabo), a skoro nie jest zbiezny, to nie jest
ograniczony. Ciag sum cze$ciowych szeregu » b, ma wyrazy nie mniejsze,
wiec tez nie jest ograniczony, a wiec nie moze by¢ zbiezny. [

Uwaga: Wystarczy, ze oszacowania sa spetnione tylko od pewnego miejsca.

Przyklady: (a) Szereg Y " | 15 jest zbiezny, bo

L1
n?+2n - n2+n  nn+1)

(b) Szereg > 7, n+r1 jest rozbiezny, bo

1 1 1
>

n+1 " n+n 2n’

a szereg » % jest rozbiezny. Zauwazmy, ze w tym przyktadzie oszacowanie
1 1 . . .

747 < 5 hic nie daje.
Twierdzenie 5.5 (Kryterium o zageszczaniu). Niech cigg {a,} bedzie do-
datni i malejgey, a1 > ay > -+ > 0. Wowczas szereg y -, an, jest zbiezny
wtedy i tylko wtedy, gdy szereg Y - 2" agn jest zbiezny.

Powyzsze kryterium nie rozstrzyga w sposob bezposredni, czy dany sze-
reg jest zbiezny, czy nie, ale pozwala sprowadzi¢ badanie zbieznosci jednego
szeregu do badania zbieznosci innego szeregu.
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Dowdd. Oznaczmy przez {s,} ciag sum czeSciowych szeregu »_ a,, a przez
{8/} ciag sum czesciowych szeregu > 2"agn. Poniewaz wyrazy obu szeregow
sa nieujemne, to oba ciggi sum czesciowych sa niemalejace. Pokazemy, uzy-
wajac odpowiednich szacowan, ze ciagi te sg rownoczesnie ograniczone lub
nieograniczone. Mamy

Sp=a1 +as+as+---+ an,
s;:2-a2—|—4-a4+8-a8—|—...2”-a2n
=2(ag+2-as+4-ag+---+2"" - agm).

Zauwazmy wiec, ze

CL2+2'CL4+4'CL8+"'+2”_1-a2n

3~

N | —

§a1+a2+a3+a4—i—~-+a2n,1+a2n

Son

Do sumy po lewej stronie dodali$émy a; > 0, a kazdy sktadnik sumy 2F~1 - aqx
zastapiliSmy nie mniejszym wyrazeniem age-1,1 + -+ 4+ agr, kK = 1,...,n.
Jezeli ciag {s,} jest ograniczony to ograniczony jest tez ciag {s, }.

7 drugiej strony zauwazmy, ze

Son+l_1 = Q1 + Qg+ QA3 + Q4 + -+ + Qon+1_1
<a+2-as+4-as+---+2"-agm

/
=ai + s,

Nieréwnosé¢ uzyskalismy zastepujac sumy aogr +age 1 +- - - +age1_q (2% sktad-
nikéw sumy) przez nie mniejsze wyrazenie 2% - ag, k = 1,...,n. Jezeli
ciag {s),} jest ograniczony, to z powyzszej nieréwnosci wynika, ze podciag
{sgn+1_1} ciggu {s,} tez jest ograniczony. Ciag {s,} jest niemalejacy, i za-
wiera podcigg ograniczony, a wiec caty musi by¢ ograniczony. Uzasadnijmy
ta obserwacje: ]

Przyklad: Rozpatrzymy teraz szeregi postaci Y -, n—lp Jezeli p < 0 to ciag
{nip nie jest zbiezny do 0, a wiec szereg nie moze by¢ zbiezny. Jezeli p > 0

to cigg {# jest dodatni i malejacy, a wiec spelnia zalozenia kryterium o
zageszezaniu. Zamiast szeregu » n%, rozwazmy wiec szereg o wyrazach

U S S S A TR
(2r)p 7 2me o 2ne(e-1)  \ 2071 ) 7

o1




Szereg > (=)™ jest szeregiem geometrycznym. Jezeli p —1 > 0 to iloraz
szeregu 2,% < 11 szereg jest zbiezny, natomiast jezeli p — 1 < 1, to iloraz

2p—1,1 > 1, i szereg nie jest zbiezny. Mamy wiec

Z % . { zblez'n?/ Jez'el.l p > 1, (5.1)
— rozbiezny jezeli p < 1.

Zauwazmy, ze przypadek p = 1 zrobiliSmy juz wczesniej. Szeregi tej postaci
sg bardzo przydatne. Jezeli wyrazy jakiego$§ badanego szeregu mozna w
jakikolwiek sposob oszacowaé przez funkcje potegowa n, to powstaly szereg
mozemy porownaé z szeregami (5.1), ktorych zbieznosé jest rozstrzygnieta w
zaleznosci od p.

Twierdzenie 5.6 (kryterium d’Alemberta). Niech {a,} bedzie ciggiem o
wyrazach roznych od 0. Wtedy

An+1
an

(1) jezeli limsup,,_, . | <1 to szereg Y a, jest zbiezny,

an

(it) jezeli iminf, oo [*25] > 1 to szereg D an jest rozbieiny (obejmuge to
tez praypadek granicy niewtasciwes lim,, o0 <2 = +00).

Dowdd. (i) Zauwazmy, ze skoro granica gorna ciggu [**| jest mniejsza od
1, to istnieja 0 < ¢ < 1 oraz ny € N takie, ze dla n > ng

an+1
- < C,
a'!L
w szczegolnodei dla k£ > 0
an0+k an0+k—1 a/no—i-l
| o] = : co || lan (5.2)
ano—l—k—l an0+k—2 a'n,o

A k __ |a”0| 'Cn0+k.
cno

lloczyn pojawiajacy sie w (5.2) nazywa sie czasem iloczynem teleskopowym,
gdyz wysuwamy badz chowamy potrzebna ilos¢ czynnikow. Ciag {a,} spelia
wiec (dla n > ng) nieré6wnoscé

|an|§M-cn, 0<e<l,

cho

czyli jest zbiezny z kryterium poréwnawczego.

(ii) Zauwazmy, Ze skoro granica dolna ciagu [*] jest wigksza od 1 (a takze
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jezeli ciag ten ma granice niewtasciwa +00), to istnieja ¢ > 11 ny € N takie,
ze dla n > ng
an—l—l

Qn

Podobnie jak w poprzednim przypadku, dla £ > 0 mamy

Gng+k Ano+k—1 Ono+1

' |an0| > |an0’ 'Ck > |an0|7

|an0+k| =

Ano+k—1 Ano+k—2 no

czyli ciag {a,} nie jest zbiezny do 0. Szereg ) a, musi wiec by¢ rozbiezny.
O]

Kryterium d’Alemberta pozostawia wiele przypadkéw nierozstrzygnie-
tych. Na przyklad dla szeregow postaci » n% mamy

n? n \*
= lim ——— = ( lim =1.
n—00 (n + 1)7’ ntooo 1, + 1

Ten rodzaj szeregdéw nie jest objety ani przez (i) ani przez (ii) przypadek
kryterium d’Alemberta. Istotnie, jak wiemy szeregi tego rodzaju moga by¢
zbiezne lub rozbiezne, w zaleznosci od parametru p.

Twierdzenie 5.7 (kryterium Cauchy’ego). Niech dany bedzie cigg {an} i
niech

g = limsup {/|a,|, granica wtasciwa lub niewtasciwa.
n—oo

Wtedy
(i) jezeli g < 1 to szereq Y a, jest zbiezny,

(i1) jezeli g > 1 to szereg > ay, jest rozbiezny (obejmuje to takze przypadek
granicy gornej niewtasciwej g = 400).

Dowdd. (i) Podobnie jak w przypadku kryterium d’Alemberta, istnieja 0 <
c < 11ing € N takie, ze dla n > ng

Vian <c¢ = Jau| <,

czyli z kryterium poréwnawczego szereg > a,, jest zbiezny.

(i) Jezeli g > 1, to istieje podciag {a,,} taki, ze |a,, | > 1. Ciag {a,} nie
moze wiec by¢ zbiezny do 0, a wiec szereg Y a, nie jest zbiezny, ]
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Uwagi: (i) Podobnie jak w przypadku kryterium d’Alemberta kryterium
Cauchy’ego pozostawia nierozstrzygniety przypadek g = 1. W takim przy-
padku dla r6znych szeregdw moze by¢ roznie.

(ii) Oba kryteria maja zastosowanie dla szeregéw o wyrazach zespolonych.
Wartos¢ bezwzgledna jest wtedy modutem liczby zespolonej.

Przyklad: Szereg >~ +. Mamy a, = =, a wiec

n=0 n!"
Ap+1 TL' o 1 n—o0 0
an, | (n+1)! n+l '

Korzystajac z kryterium d’Alemberta otrzymujemy, ze szereg > % jest zbiezny.

Udowodnimy teraz, ze
oo

Z% —e. (5.3)

n=0
Przypomnijmy, ze liczba e jest granica

1 n
e = lim (1 + —) .
n—oo n

Dowodzac istnienia tej granicy pokazaliSmy w (4.4), ze

1 1 n<1 1 1 1 1—
_'_E <1+ +i+§+“‘+m—8m

gdzie {s,} jest ciagiem sum czesciowych szeregu > °° L. Przechodzac do

n=0 n!"
granicy po n po obu stronach nieréwnosci otrzymujemy

1
e<) — (5.4)
n=0

Z drugiej strony, ustalmy k& € N i niech n > k. Wtedy z rozwiniecia (4.3)
(ucinajgc rozwiniecie po k-tym wyrazie) mamy

Y s G I ()
n 21 n 3! n n
+1 1_1 1_k’—1

Przechodzac do granicy wzgledem n po obu stronach nier6wnosci (k pozo-
stawiajac ustalone) otrzymujemy

UL L
e>1+ +§+§+"'+E—Sk,
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dla kazdego k € N. Teraz przechodzac do granicy po k (lewa strona jest
stala) otrzymujemy

=1
62257
n=0

co razem z (5.4) daje (5.3).

Szeregi zbiezne absolutnie

Definicja 5.8. Jezeli szereg Y |ay| jest zbiezny, to mowimy, Ze szereg > ay,
jest zbiezny absolutnie. Jezeli szereq > a, jest zbiezny, ale nie jest zbieiny
absolutnie (to znaczy szereg Y |a,| nie jest zbieiny), to mdéwimy, Ze szereg
> ap, jest zbiezny warunkowo.

Uwagi: (i) Jezeli szereg jest zbiezny absolutnie to jest tez zbiezny w zwyklym
sensie. Wynika to z warunku Cauchy’ego:

s s o ] < |+ ol 4 ],

Jezeli > |a,| jest zbiezny, to spelnia warunek Cauchy’ego, a wiec Y a, tez
spetnia warunek Cauchy’ego, czyli tez jest zbiezny. Zbieznosé absolutna jest
to wiec szczegbdlny rodzaj zbieznosci.

(ii) Jezeli wyrazy szeregu > a, nie zmieniaja znaku, to zbieznos¢ absolutna
wynika ze zbieznosci zwyktlej, i oba rodzaje zbieznosci sa rownowazne. Zbiez-
nos$¢ absolutna jest wiec istotna dla szeregéw ktorych wyrazy zmieniaja znak.

(iii) Zauwazmy, ze wszystkie kryteria zbieznosci poznane omawiane dotych-
czas dotycza zbieznosci absolutnej. Zadne z tych kryteriow nie umozliwia
stwierdzenia zbieznoéci warunkowe;j.

(iv) Zabieznosé absolutna jest wazna — tylko dla szeregéw zbieznych abso-
lutnie zbieznos$¢ i suma nie zaleza od kolejnosci sumowania i rozstawienia
nawiasow.

Szeregi naprzemienne

Moéwimy, ze szereg » . a, jest naprzemienny jezeli jego wyrazy na przemian
zmieniaja znak, to znaczy a, = (—1)"-b, i b, > 0 lub b, < 0 dla wszystkich
n.
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Twierdzenie 5.9 (kryterium Leibniza). Jezeli cigg {a,} jest malejgcy (stabo)
i lim, o a, = 0, to szereq naprzemienny

[e.9]

Z(_1>n+1an

n=1
jest zbiezny.

Dowod. Niech s, = a; — ay + a3 — aq + -+ - + £a, bedzie ciagiem sum cze-
Sciowych. Zauwazmy, ze podciag o numerach parzystych so, jest rosnacy:

So(n+1) = S2n + A2n41 — A2n42 = Son,
a podciag o numerach nieparzystych ss,.1 malejacy:
52(n+1)+1 = S2n+1 — 02n+2 T A2p43 = Son+1 — (a2n+2 - a2n+3) < Sonq1-
Zauwazmy, ze podciag so, (ktory jest rosnacy) jest ograniczony od gory:
Sop = A1 — G2 + A3 — A4 + -+ — A2y
=a; — (a2 —az) — (as —as) — -+ — (@2n—1 — G2n) < a1,
a podciag sont1 (ktory jest malejacy) jest ograniczony od dotu
Sop41 = A1 — Q2 + A3 — Qg + =+ — Q2p + A2py1
= (CLl — (1,2) -+ (a3 — a4) + -+ (CLG_l — CLQn) + A2n+1 Z 0.
Oba podciagi sg wiec zbiezne. Niech s = lim,,_, S2,. Wtedy
lim sop1 = lim (S9, + agp41) = lHm so, + lim ag,; = s+ 0=s.
n—oo n—oo n—oo n—oo
Oba podciagi maja wiec wspolna granice. Ciag {s,} rozklada si¢ wiec na 2
podciagi, wyrazy o numerach parzystych i wyrazy o numerach nieparzystych.
Kazdy element ciagu {s,} nalezy do jednego z dwoch podciagow, i oba pod-
ciagi maja wspolng granice s. Wynika z tego, ze caly ciag {s,} jest zbiezny
do s. Zapiszmy to rozumowanie. Niech € > 0. Z tego, ze lim, o Sop, = s

wynika, ze
dkkeN VE>k |82k—8|<€,

a z tego, ze lim,, o, So, 11 = S Mamy
dkyeN VE>k ‘82k+1—8|<6.

Niech ng = max{2ky, 2ks + 1}. Wtedy, jezeli n > ng to n = 2k, k > k; lub
n =2k +1, k > ko, w zaleznosci od parzystosci n. W obu przypadkach

|sp — 5| <e.
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Uwaga: Zauwazmy, ze z dowodu wynika tez oszacowanie wartosci sumy. Dla
dowolnych k,l € N

o0
Sgp < Z(—l)nHan < Sokt1-
n=1

Suma jest wieksza od kazdej parzystej sumy czesciowej, a mniejsza od kazdej
nieparzystej. Odnosi sie to do szeregdéw naprzemiennych ktorych wyrazy
parzyste sa < 0 a nieparzyste > 0.

_1)71+1

Przyklad: Szereg S1°° 1"

n
przysztosci przekonamy sie, ze

0 —1)nt1
3 ET
n

n=1

jest zbiezny, ale nie absolutnie. W niedalekiej

Szeregi potegowe

Definicja 5.10. Szeregiem polegowym nazywamy szereg postaci y -, a,x™,

gdzie cigg wspotczynnikow {a,} oraz liczba x mogq byé rzeczywiste lub zespo-
lone.

Uwagi: (i) Szereg potegowy, dla ustalonego ciagu {a,} moze by¢ zbiezny
lub nie, w zalezno$ci od liczby z. Zawsze jest zbiezny dla x = 0.

(ii) W tych punktach z, w ktorych szereg potegowy jest zbiezny definiuje on
funkcje:

flz) = Zan "

Funkcje, bedace sumami zbieznych szeregéw potegowych sg bardzo wazne.
Zobaczymy, ze praktycznie kazda funkcja ma ta posta¢, w szczegdlnosci
wszystkie funkcje elementarne mozna zapisa¢ w ten sposob (moéwi sie cza-
sem, ze mozna je ,rozwinaé¢ w szereg potegowy”).

(iii) Oczywiscie, kazdy szereg liczbowy mozna zapisa¢ w postaci szeregu po-
tegowego, z odpowiednio dobranymi wspotczynnikami. Okreslenie  szereg
potegowy” odnosi sie wiec do sposobu zapisu szeregu liczbowego.

(iv) W dalszym ciagu skoncentrujemy sie na szeregach o wyrazach rzeczywi-
stych.

Twierdzenie 5.11. Szereg potegowy » ., a,x™ jest albo zbiezny absolutnie
dla kazdego x € R, albo istnieje liczba R > 0 taka, zZe

(i) dla x € (—R, R) szereg jest zbieiny absolutnie,
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(it) dla x ¢ [—R, R] szereg jest rozbiezny.

Zbior tych x dla ktérych szereg potegowy > . a,x" jest zbiezny ma wiec
postaé przedziatu, zawierajgeego jeden lub oba korice albo bez koricow (moze
to byé cata prosta R). Zbior ten nazywamy ,przedziatem zbieznosci szeregu”.
Liczbe R nazywamy ,promieniem zbieznosci” (w przypadku gdy przedziatem
zbieznosci jest (—oo,00), to mdwimy, Ze promien zbieznodci jest nieskori-
czony).

Uwaga: Na konicach przedziatlu zbieznosci moze by¢ réznie. Na przyktad,
szereg »_ x™ ma przedzial zbieznosci (—1,1), szereg Z%x” ma przedziat
zbieznosci [—1, 1), natomiast szereg » -5x" przedzial zbieznosei [—1, 1].

Dowdd twierdzenia. Jezeli dla o € R szereg ) a,xj jest zbiezny, to ciag
{anz{} jest zbiezny do 0, a wiec w szczegolnosci jest ograniczony:

dM VneN |azg] < M.

||

Jezeli || < |zo| to niech ¢ = o] < 1. Mamy wtedy
la,a™| = anxox—g = |an xy] - Tzl <M -q".

Szereg geometryczny o wyrazach ¢" jest zbiezny, gdyz 0 < g < 1. Z kryterium
poréwnawczego szereg > a,x" jest wiec zbiezny absolutnie. Niech

A= {|:Jc| : Zan x" jest zbiezny, x € R} )

n=0

Jezeli A nie jest ograniczony, to szereg jest zbiezny absolutnie dla kazdego
x € R. Dla kazdego = € R znajdziemy bowiem z, takie, ze |zo| > |z| oraz
szereg > a,x{ jest zbiezny. Jezeli A jest ograniczony, to niech

R =sup A.

Tak zdefiniowane R spelnia warunki twierdzenia. Jezeli bowiem |z| < R, to
znajdziemy xo takie, ze |xo| > |x|, 1 szereg Y a,x{ jest zbiezny. W takim
razie szereg » | a,x" jest zbiezny absolutnie. Z drugiej strony, jezeli |z| > R to
szereg > a,x™ nie moze by¢ zbiezny: w przeciwnym przypadku mieliby$my
|z| € A, czyli |z| < R. O
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Przyklady: (a) Szereg > >~ % ma promieni zbieznosci R = 1, co mozna
sprawdzié¢ z kryterium d’Alemberta. W punkcie z = 1 jest rozbiezny (jest to
wtedy szereg harmoniczny), a w punkcie © = —1 jest zbiezny, co wynika z

kryterium Leibniza.

n . . . L, . . , . .,
(b) Szereg >~ , £ ma promien zbieznoéci nieskoriczony, co mozna sprawdzié
z kryterium d’Alemberta:

Ccn+1 1

niezaleznie od .

(¢) Szereg > - n"z™ ma promien zbieznosci R = 0:

(n+ 1)nHtgntl
n™ax"

dla kazdego x # 0.
Stosujac znane kryteria zbieznosci szeregdw otrzymujemy réozne wzory na
promien zbieznosci.

1 " n o0
:\x|-(n+1)<1—|——> 2% oo,
n

Twierdzenie 5.12. Rozwazmy szereg potegowy > a,x" i niech

g = limsup {/|ay|.

n—oo

Jezeli g = 0 to promien zbieznosci szerequ jest nieskoriczony, jezeli g = +00
to R=0, ajezeli 0 < g < o0 to

R=-.
9

Dowdd. Zastosujmy kryterium Cauchy’ego do szeregu > a,z".

lim sup v/ |a, z"| = limsup |z|{/|a,| = |z| - limsup {/|a,| = |z| - g
n—oo n—oo n—oo

Jezeli g = 0 to szereg jest zbiezny (absolutnie) dla kazdego x € R, czyli

promien zbieznosci jest nieskonczony. Jezeli g = 400 to szereg jest rozbiezny

dla kazdego = # 0, czyli R = 0. W koricu, jezeli 0 < g < 00 to szereg jest

zbiezny (absolutnie) dla |z| < % i rozbiezny dla |z| > %, czyli R = %7. O

Uwaga: Stosujac kryterium d’Alemberta w podobny sposéb otrzymaliby$my
nastepujace twierdzenie: jezeli

Ap+1
Gp,

g = lim
n—o0
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istnieje (wlasciwa lub niewlasciwa), to R = é (przy czym rozumiemy, ze
R =0 dla g = 400 i R nieskoriczony dla g = 0).

Przyktad: Rozwazmy szereg ZZOZO %x" Stosujac powyzsza uwage liczymy:
Qp, 1 ntl ! " ! 1 " n—00
e B O o) I (U o N RS D
an, (n+ 1) nn n! nn n

A wiec R = % Przy okazji, porownujac to z Twierdzeniem 5.12 mozemy

wywnioskowac, ze
nm n
limsup ¢ - = limsup — =e.

Pokazemy teraz, ze ciag {,”/’ZL—?} jest rosnacy, a skoro tak, to jego granica
gorna jest tez granica (¢wiczenie), i mamy nastepujacy wniosek, ktory warto

zapamietac
) n

lim

n—oo

=e.
Vn!

Sprawdzmy, ze ciag ten istotnie jest rosnacy. WprowadZmy oznaczenie ¢, =
(1—1—%)”. Wiemy, ze 2 =c1 < ca < c3 < --- < e, a wiec

2

1n2 1 n2 1 n n
(n—|—2) :<n—|— ) :<1+5) :cz>cl-02-...-cn_1:n— (5.5)

nn n n!’

Ostatnig réwno$¢ mozemy udowodni¢ indukcyjnie: dla n = 2 mamy ¢; =
22 . L L, . . . . .
< = 2, czyli r6wnos¢ jest prawdziwa. Nastepnie wykonajmy krok induk-

cyjny:
n n 1 n
Cl-+- Cn,1-cn:n—~cn:n— 1+_
n! n! n
0" (n+1\" (n+1)"  (n+1)"H
"~ nl n ool (n4 1)

Mamy wiec udowodniong nier6wnosé¢ (5.5). Wynika z niej natychmiast na-
stepujace nieréwnosci:

(n i 1)712 1 (n T 1)712 nn(n-i—l)
—_— — = >
nn(n+1) n! (nl)n (n!>n+1 ’

Teraz wystarczy wyciagnaé stronami pierwiastki stopnia n(n + 1), i otrzy-
mujemy
e \/Z
(n+1)! n!’
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Rozdzial 6

Granica funkcji

Niech f bedzie funkcja zmiennej rzeczywistej o wartosciach rzeczywistych,
to znaczy f: Dy — R, Dy C R, dziedzina f. Niech D_f bedzie ,uzupetnie-
niem” D¢, czyli zbiorem tych wszystkich punktow z, dla ktoérych istnieje ciag
{z,} C Dy, x, # x, zbiezny do z. Na przyklad, dziedzina naturalna funkcji
f(x) = L jest zbior Dy = {x : © # 0}. Wtedy D; = R. Pojecie granicy
funkcji w punkcie bedziemy chcieli wprowadzi¢ dla punktow z D_f, czyli ta-
kich, ktore naleza do dziedziny f (ale nie sa izolowane), albo nie naleza, ale
sa na ,samym brzegu” dziedziny.

Definicja 6.1. Mowimy, ze funkcja f ma w punkcie xg € D_f granice g, jezeli
Ve>0 30>0 Vel 0<|r—x0 <d=|f(x)—yg| <e

W takiej sytuacji piszemy
lim f(x)=g.

T—T0
Mowimy, ze funkcja f ma w punkcie xy € D_f granice niewta$ciwg 0o (—oo)
jezeli
VMeR 30>0 VzeDDy 0<|z—zo| <= flz)>M (f(x)<M).
Piszemy wtedy
lim f(x) = to0.
Tr—xT0
Definicje granicy funkcji w punkcie mozna natychmiast przettumaczy¢ na
jezyk zbieznosci ciggoéw liczbowych:

Twierdzenie 6.2. Niech vy € D;. Wtedy lim, ., f(x) = g wtedy i tylko
wtedy, gdy dla kazdego ciggu {x,} C Dy, x, # X0, limy, 00 T, = ¢ 2achodzi

lim f(z,) =g.

n—oo
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Podobnie, lim, ., f(z) = too wtedy i tylko wtedy, gdy dla kaZdego ciggu
{xn} C D¢, x # o, limy, 00 T, = T 2achodzi

lim f(x,) = +o0.

n—oo

Dowdd. Niech f ma w punkcie x( granice g

g = lim f(z).
Tr—TQ
Niech {z,} bedzie dowolnym ciagiem z Dy, zbieznym do x¢, ,, # xo. Poka-
zemy, ze ciag {f(x,)} zbiega do g. Niech € > 0. Z definicji granicy wynika,
ze istnieje 0 > 0 takie, ze jezeli x € Dy, x # x to

|z — x| <d=|f(x) —g| <e (6.1)

Skoro x,, — xo to (0 pelni role € z definicji granicy ciagu) istnieje ng € N
takie, ze V n > ng mamy |z, — x| < 9, czyli, korzystajac z (6.1)

|f(xn) _g| <€

W ten sposob pokazalismy, ze lim,, o f(z,) = g.

Teraz dowod w druga strone. Niech f(x,) — ¢ dla kazdego ciagu z,, —
xo, spelniajacego =, # xo i {x,} C Dy. Pokazemy, ze f ma w z( granice
g. Dowdd przeprowadzimy nie wprost. Zalézmy, ze f nie ma granicy g w
X, czyli ze nie zachodzi warunek z definicji granicy funkcji w punkcie, czyli,
innymi stowy zal6zmy, ze

de>0 VIi>0 JxeDy 0<|x—zo] < A |f(x)—g| > €o.

Korzystajac z powyzszego zdefiniujemy ciag {z,} ktory da nam sprzecznosé.
Ciag {z,} definiujemy nastepujaco. Dla n € N niech § = 1, a z, niech
bedzie tym elementem Dy, ktory spetnia 0 < |z —zo| < £ A [f(z) — g > €.
Zauwazmy, ze tak powstaly ciag {z,} spetnia {z,} C Dy, x,, # x¢, T, — o,
ale f(z,) - g. OtrzymaliSmy wiec sprzecznosé.

Przypadek granic niewtasciwych pozostawiamy jako ¢wiczenie dla czytel-

nika. O

Korzystajac z powyzszego twierdzenia, i twierdzen o zbieznosci i granicach
ciaggdbw mamy nastepujacy wniosek.

Wniosek 6.3. (i) Jezeli a = lim, ., f(z) i b= lim, ., g(z) to

lim (f £ g)(x) =a=+b, lim (f - g)(z) =a - b,

T—rT0 T—rT0
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a jezeli dodatkowo b # 0 to

: f _a
Jim (g) () =3

(it) Jezeli w pewnym otoczeniu xy mamy

g(x) < f(x) < h(z),

oraz
li = lim h(x) =
Jim o(w) = Jim h(x) = .
to takze
lim f(x)=a.
T—T0

(1i1) 7 granicq funkcji w punkcie mozemy ,wchodzié pod pierwiastki”, czyli

Ji, /707 = o/ ),

0 ile odpowiednie pierwiastki sq okreslone (f >0 dla k parzystego).

Przyktady: (a) Obliczymy granice

Skorzystamy z Twierdzenia 6.2, czyli ciagowej charakteryzacji granic. Wezmy
dowolny ciag x, — 2, x, # 2 oraz x,, # 1. Wstawmy wyrazy ciggu do funkcji

i rozwazmy powstaly ciag
3T, — D

R
xo —1

Licznik dazy do 3 -2 — 5 = 1 a mianownik do 23 — 1 = 7. Caly ciag dazy
wiec do % Pokazalismy wiec, ze

390—5_1

:ltgréx3—1_7'

(b) Obliczymy lim,_,osinz. Skorzystamy z nastepujacego oszacowania:

0<sinz <z dla 0<z2 < —. (6.2)

b |
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(cosz sinx)

J

h=sinz

Rysunek 6.1: Oszacowanie sin .

Wynika to z Rysunku 6.1. Na rysunku zaznaczone sa dwie figury: sektor
kota, wyciety katem o mierze tukowej (w radianach) z, oraz trojkat zawarty
w tym sektorze, o wysokosci h = sinx oraz podstawie 1. Poniewaz koto
ma promien 1, wiec pole sektora wycietego z tego kota katem centralnym z
wynosi 3. Pole trojkata wynosi oczywiscie Si%, a skoro trojkat jest w calosci
zawarty wewnatrz sektora, to jego pole musi by¢ mniejsze. To jest dokladnie
nieréwnosé (6.2). Rozwazmy teraz x < 0. Dla —5 <z <0, wstawiajac do
(6.1) —x w miejsce x, i mnozac stronami przez —1 otrzymujemy:

z <sinzx <0.
(Pamietamy, ze sin(—z) = —sin(z).) Nieréownosé¢ (6.2) mozemy potaczy¢ z
powyzsza w jedna:
0 <|sinz| < |z, dla |z| < g

Korzystajac z 3 funkcji otrzymujemy

lim sinz = 0.
x—0

(¢) W przypadku cosx mozemy skorzysta¢ z tego, co pokazali$my dla sin .
W otoczeniu zera cos z jest dodatni, a wiec

limcosz = lim V1 —sin?z = \/1 — (limsinx)2 =1.
x—0 x—0

z—0
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(d) Korzystajac z tozsamosci trygonometrycznych mozemy znalez¢ granice
w innych punktach

lim sinz = lim sin(z + )
r—x0 x—0

= lintl)(sin T COS Xy + COS T sin xp)
r—

=cosxg - limsinx +sinzy - lim cosz
x—0 x—0
= sin xg,
oraz

lim cosx = lim cos(z + xp)
r—x0 x—0

= lim(cos x cos zy — sin z sin )
x—0

=coszg - limcosz —sinzg - limsinx
x—0 z—0
= COS Z.

W rachunkach wykorzystali$my nastepujacy fakt:

li =li )
25, @) = e 20)
Ta réwnosé jest oczywista, i wynika natychmiast z definicji granicy. Punkt
xo dla funkcji f jest tym samym, czym punkt O dla funkcji f przesunietej ,,w
lewo” o xg.

Rysunek 6.2: Funkcja sin% w otoczeniu 0.

65



(e) Zauwazmy, ze granica

lim sin —
x—0 €x
nie istnieje. Wezmy dwa ciagi,
1 1
Ty = —— oraz = ————.
/2 4 2nm Y 3m/2+ 2nm

Oba ciagi sa zbiezne do 0. Gdyby granica funkcji istniata, to po naltozeniu tej
funkcji na kazdy z ciagdéw oba zbiegalyby do tej granicy. Zauwazmy jednak,
ze

sinx—ln = sin (g + 2mr) = sin (g) =1,
1 . 3T .37
smy—n = sin (7 + 2n7r) = sin (7) = -1,

a wiec
lim f(xz,) =1 oraz lim f(y,) = —1.
n—oo

n—o0
Po nalozeniu funkcji oba ciagi zbiegaja do réznych granic. Sytuacje wyjasnia
Rysunek 6.2.

(f) Niech a > 1. Pokazemy, ze

lim a® = 1.
x—0

Niech € > 012 > 0. Mamy wiec a® > 1. Niech ny € N bedzie takie, ze
/a —1 < e dla n > ng. Korzystamy z tego, ze wiemy, ze a — 1. Niech
do = nio Wtedy, jezeli

1
0<x<dy = 1l<a"<avw = 0<ad”"—1< WYa—1<e

Niech teraz x < 0. Wiemy, ze

a 3

i niech n; € N bedzie takie, ze dla n > n; zachodzi 0 < 1— {/1/a < e. Niech
0 = nil, wtedy jezeli —6; <z <0 to

_1 1 1
a m<a*<l = "i/j<a"”<1 = 0<1—a’”<1—"i/j<e.
a a

Ostatecznie niech 6 = min{dp, d; }, wtedy 0 < |z| < ¢ pociaga |1 — a”| < e.
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(g) Niech a > 1, wtedy

lim a® = a™°.
T—T0

Mamy

lim ¢ = lim a®*™° = lim a® - a® = a® - lim a* = a*°.
r—x0 z—0 z—0 z—0

(cosz sinx)
_ sinx
\ }_ cos T

hi =sinz

e

0 cosT 1

r=1

Rysunek 6.3: Dalsze oszacowanie funkgji sin(x).

(h) Ponownie odwotajmy sie do definicji funkcji sin(z), i porownajmy pole

sektora kota jednostkowego, wycietego katem $rodkowym z, oraz pole du-

zego trojkata (Rysunek 6.3). Pole sektora to 7, natomiast duzy trojkat ma

sin(x) - tan(z)

wysokosé con(z) L podstawe 1, czyli pole rowne —=. Dla 0 < x < 7 mamy
wiec

x sin(x)

2 = 2cos(z)’
a wiec, taczac to z (6.2) otrzymujemy podwdjne oszacowanie

.
cos(z) < sin(r) <1 (6.3)
x

Rozwazajac parzystosé funkeji, otrzymujemy (6.3) takze dla |z| < 7. Skrajne
funkcje maja granice 1 w zerze, wiec takze

lim S _ (6.4)

x—0 x

Jest to jedna z waznych granic, ktéra bedzie sie jeszcze pojawia¢ na tym
wyktadzie.

67



Granice jednostronne

Jezeli w definicji granicy ograniczymy sie tylko do x > z (lub z < xo)i
warunek jest spetniony, to méwimy, ze funkcja ma w punkcie xy granice pra-
wostronng (lewostronna). Na przyktad dla granic wlasciwych (skoriczonych)
warunek na istnienie granicy prawostronnej jest nastepujacy

Ve>0 30>0 VzelDy O<z—x0<0=|f(x)—g|<e
Dla granicy lewostronnej warunek wyglada nastepujaco

Ve>0 36>0 VoeeDy O<zg—z<i=|f(r)—ygl<e
Granice prawostronna i lewostronng oznaczamy odpowiednio

lim+ f(x), oraz lim f(z).

T T—T(
Dla granic niewlasciwych warunki te trzeba zmodyfikowaé¢ w zwykty sposob.

Wniosek 6.4. (i) g = lim, .+ f(x) jezeli dla dowolnego ciggu {z,} C Dy,
Ty > xo (lub x, < x0) i T, = o mamy f(x,) — g. Sytuacja jest catkowicie
analogiczna do Twierdzenia 6.2.

(i1) Funkcja f ma w punkcie xo granice g (wladciwg lub niewtadciwg) wtedy i
tylko wtedy, gdy ma w xy obie granice jednostronne, i sq sobie rowne. Wynika
to wprost z definicyi.

(111) Twierdzenia dotyczqce dziatan na granicachodnoszq sie takze do granic
jednostronnych, na przyktad

lim+(f +g)(x) = lim flz)+ lim g(x).

CE*}{L‘O {L‘*)IEO xﬁxo

Przyklady: (a) f(z) = [z]. Jezeli zy € Z to, jak tatwo sprawdzié

lim f(x) = zo, oraz lim f(x)=z9— 1.

W punktach zp € Z f ma wiec rézne granice jednostronne, czyli zwyklej
(obustronnej) granicy nie ma. W pozostalych punktach f ma granice obu-
stronna.

(b) f(z) = 2. Dziedzina Dy ={x:z # 0}, a wigc 0 € D;. Mamy
lim f(x) =400  oraz lim f(z) = 0.

z—07F z—0~

Pierwsza granica wynika stad, ze funkcja 2Y jest rosnaca i nieograniczona.
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Rysunek 6.4: Granice jednostronne funkcji [z].

Rysunek 6.5: Granice w zerze funkcji 2.

Granice w nieskonczonosci

Jezeli dziedzina funkcji to umozliwia, to mozemy rozwaza¢ granice funkcji
w 400 i —oo. Granice te mogg by¢ wlasciwe (skoriczone), lub niewlasciwe
(nieskoriczone).

Definicja 6.5. Mdowimy, ze funkcja f ma w +oo (—o0) granice g, jezeli
Ve>03MVzeDy z>M=|f(x)—g|<e (x<M=|f(x)—g| <e).

Piszemy wtedy
g= lim f(x).

r—+oo
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Podobnie definiujemy granice niewlasciwe. Na przyklad, lim, . f(z) =
+o00 jezeli

VM 3IK VuzelDy r>K = f(z) > M.

Whiosek 6.6. Powyzszq definicje réwniez mozna wyrazi¢ przy pomocy cig-
gow. Na przyklad, lim,_, o, f(x) = +oo wtedy i tylko wtedy gdy dla kazdego
ciggu {x,} 2z dziedziny funkeji f, rozbieznego do +o0o cigg {f(x,)} tez jest
rozbiezny do +o00.

Przyklady: (a) Znajdziemy granice w +oo funkcji f(z) = <. Oczywiscie
funkcja ta ma granice 0 w —oo. Natomiast gdy x — +o00 zaréwno licznik jak
i mianownik daza do 4+o00. Najpierw rozwazmy ciag

Poniewaz {/n — 1, wiec

W takim razie

e e" n
dng e N Vn>ng —>2 = — > 2"
v n

n

Ciag 2" jest rozbiezny do +00, mamy wiec granice niewtasciwg

n

lim — = +o0.
n—,oo M

Mamy tez nastepujace oszacowania. Oznaczmy na chwile € = z — [z], wiec

0<e<1, wiec
er e[z]—i—e e[x} 1 e[x}-‘rl

i > = — .
x  fx]+e " [z]+1  elx]+1
Niech x,, = +00 i niech M > 0. Wtedy

dng e N Vn>ng

oraz
dn,eN Vn>n Ty >N = [x,] > no.

Czyli dla n > ny mamy

>

e 1 elmltt 1
S
T, ey +1 e
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Udowodnilismy wiec, ze
x

lim - +00. (6.5)

r—+o0 I
Mozna to rozumieé¢ nastepujaco. Gdy z ro$nie do oo to funkcja wyktadnicza
e’ rodnie szybciej niz x. Zauwazmy, ze powyzsze rozumowanie mozna tatwo
zmodyfikowaé, i pokazaé, ze funkcja wykladnicza ro$nie szybciej niz dowolny
wielomian.

(b) Rozwazmy granice

1 x
lim (1+—) . (6.6)
T—>+00 x

Granice odpowiedniego ciggu (gdy = = n) znamy, to jest z definicji liczba
e. Teraz w chcieliby$smy zaadaptowaé¢ rozumowanie z przykladu (a), i osza-
cowa¢ wartosci funkcji w punktach x przez wartosci w pewnych punktach
naturalnych n. Potrzebne nam beda rézne oszacowania, ale rozumowanie
jest proste. Niech € > 0, ciag z,, — oo, i oznaczmy k, = [z,]. Zauwazmy, ze
k, — o0 i spelniaja one

kn <, <k,+1

1 - 1 < 1
kn+1 "z, — k,’

(wystarczy, ze z,, > 1), wiec dalej

1
A - kn

k, T kn+1
1 n 1 n 1 n
1 <|(1+— < |1+ —
(o) (o2 < ()
1 k7L+1 1 1 Tn 1 kn 1
1+ —<(1+—) <[(1+— 1+ —

Wiemy, ze ciagi

1\" 1 T \"" n+1
1+ - -l 1+ — oraz 1+ .
n n n+1 n-+ 2
sa zbiezne do e, a wiec istnieje ;1 € N takie, ze dla n > ny
1\" 1 1 \"" n+1
1+ — 14— ) <ete oraz 1+ . > e—e.
n n n+1 n—+ 2

Niech ng € N bedzie takie, ze dla n > ng mamy z,, > ny czyli k, = [z,] > n;.
Wtedy
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< |1+ ! o 1 <
e — € R —
k, +1 1+ =

czyli

Podobnie mozemy udowodnié¢, ze granica tej funkcji w —oo tez wynosi e.
Dowo6d bedzie podobny, z wykorzystaniem znanej nam granicy ciagu

1\" 1
lim (1——) =—.
n—o0 n e
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Rozdzial 7

Funkcje ciggle

Definicja 7.1. Mowimy, ze funkcja f jest ciggta w punkcie x swojej dzie-
dziny, jezels

f(@) = lim £(»)

Mowimy, ze funkcja jest cigglta na zbiorze A C Dy jezeli jest ciggla w kazdym
punkcie x € A. Jezeli funkcja jest ciggla w kazdym punkcie swojej dziedziny,
to mowimy po prostu, ze jest ciggla.

Moéwiac kolokwialnie funkcja ciggla to taka, ,pod ktéra mozna wejs¢” z
granica. Intuicyjne znaczenie jest takie, ze wykres f jest linig ciagly.
Uwaga: Przypominajac definicje granicy funkcji w punkcie otrzymujemy
nastepujacy warunek na ciaglosé funkcji w punkcie x

Ve>0 36>0 VyeDy ly—z| <d=|f(y) — f(z)| <e

Stosujac jezyk ciagow, czyli Twierdzenie 6.2 otrzymujemy nastepujace sfor-
multowanie ciggtosci funkcji w punkcie z

V{z,} C Dy z,—=z = f(z,) — f(x).

Podobnie jak w przypadku granicy funkcji w punkcie mamy wiec dwa po-
wyzsze rownowazne sformulowania ciggtosci funkcji w punkcie. Pierwsze
sformutowanie tradycyjnie nazywa sie ,definicja Cauchy’ego", a drugie sfor-
mutowanie ,definicja Heinegociagloscei.

Whiosek 7.2. Wszystkie funkcje elementarne, czyli wielomiany, funkcje wy-
mierne, trygonometryczne, funkcje potegowa i wyktadnicza sq ciggle.

Twierdzenie 7.3. Suma, rdznica, iloczyn, iloraz oraz ztozenie funkcji cig-
gtych sq ciggte w kazdym punkcie, w ktdrym operacja jest wykonalna.
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Dowdd. Pokazemy tylko przypadek zlozenia. Pozostale dzialania na funk-
cjach ciagglych sa natychmiastowa konsekwencja twierdzenia o dziataniach
na granicach funkcji. Niech ztozenie g o f bedzie wykonalne, czyli niech
wartosci funkeji f wpadaja do dziedziny funkcji g, oraz niech f i g bedg cia-
gte. Niech z,, = z, x,,x € Dy. Wtedy f(z,) = f(x) (ciaglos¢ f w x) oraz
9(f (xn)) = g(f(x)) (ciaglos¢ g w f(x)). Mamy wigc (go f)(zn) = (g0 f)(2),
czyli ztozenie jest ciagle. [l

Przyktad: Rozwazmy funkcje f(x) = z* dla x > 0 oraz f(0) = 1. Poka-
zemy, ze [ jest ciaglta w 0, czyli

lim 2* = 1.
z—07t

Oznacza to, ze f w 0 zachowuje sie jak funkcja wyktadnicza. Wykorzystamy
nastepujaca znang nam granice (6.5)

T

lim — = oc.
r—00 I
Jak tatwo zauwazy¢, stosujac zamiane zmiennych y = e* otrzymujemy z

powyzszego nastepujacg granice

.
v log(y)

= OQ.

7 powyzszej granicy, przechodzac do odwrotnoéci, otrzymujemy nastepujaca

lo
lim ) =0.
y—00 Y
W koficu ponownie zamieniajac zmienne xr = i, i zauwazajac, ze wtedy

y — +oo & x — 07 otrzymujemy granice

lim zlogx = 0.
z—0t

Ostatnia granica wynika z poprzedniej, gdyz z,, — oo & % — 0%, Wrocmy
do funkeji f, i zastosujmy czesto stosowany ,chlyt":

f(l') — % = elog(xz) _ exlog(:p).
Wykorzystujac cigglosé funkcji wyktadniczej otrzymujemy

lim 2% = lim e%!98% = iMoo+ wloge — 0 — 1
z—0t z—07F
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W podobny sposéb bedziemy mogli pokazaé ciagloéé funkeji f w pozosta-
lych punktach dziedziny, kiedy udowodnimy ciaglosé¢ funkcji log(x). To z
kolei bedzie konsekwencja twierdzenia o cigglosci funkcji odwrotnej, ktore
udowodnimy wkrotce.

Uwaga: Funkcja moze by¢ nieciggta z r6znych powodoéw. Na przyktad, moze
istnie¢ granica funkcji w punkcie

g = lim f(y),

Yy—x

ale g # f(x). Z taka sytuacja mamy na przyktad do czynienia w przypadku
flz) =[—|z|]. Jezeli 0 < |z| <1 to —1 < —|z| < 0 a wiec f(x) = —1, czyli

lim f(y) = ~1.

Z drugiej strony f(0) = 0. Tego typu nieciaglo§¢ nazywamy nieciagloscig
usuwalng. Wystarczy zmieni¢ wartos¢ funkeji w punkcie  na wartos$¢ granicy
w tym punkcie, i tak zmieniona w jednym punkcie funkcja jest juz w tym
punkcie ciagla.

Inny rodzaj nieciaglosci to tak zwana nieciggto$é skokowa. Jezeli istnieja
granice jednostronne funkcji w punkcie, ale sa rézne, to méwimy, ze funkcja

ma niecigglosé skokowa. Przyktadem moze by¢ funkcja f(z) = [z], ktora ma
nieciggtosci skokowe w punktach bedacych liczbami catkowitymi.

lim f(z)=k—1, lim f(z) =k, keZ.
x—kt

rz—k~

—

@ x
Rysunek 7.1: Nieciaglosé¢ usuwalna i nieciagtos¢ skokowa.

Funkcja

N
m:{ sing 1220

ma nieciaglosé jeszcze innego rodzaju. Nie istnieja nawet granice jedno-
stronne funkcji f w zerze.

)



Wilasnosci funkcji ciagglych

Funkcje ciggle maja wiele waznych wtasnosci, z ktorych najwazniejsze teraz
udowodnimy. Funkcja ciagta na odcinku skoriczonym |[a, b] jest ograniczona
i osigga swoje warto$ci najwicksza i najmniejsza, oraz przyjmuje wszystkie
wartosci posrednie pomiedzy najmniejsza i najwieksza.

Twierdzenie 7.4. Funkcja f ciggla na przedziale [a,b] (skoriczonym i za-
wierajgcym korice) jest ograniczona.

Dowdd. Udowodnimy, ze f jest ograniczona od gory. Dowdd tego, ze jest
tez ograniczona od dotu pozostawiamy czytelnikowi. Mozna przerobi¢ do-
wod ograniczonosci od gory, albo zauwazyé, ze funkcja —f jest ograniczona
od gory dokladnie wtedy, gdy funkcja f jest ograniczona od dotu. Dowo6d
ograniczonosci od gory przeprowadzimy metoda nie wprost. Zalézmy wiec,
ze f nie jest ograniczona od gory. Istnieje zatem ciag punktow {x,} C [a, b],
dla ktoérych
flx,) >n, n=12,....

Ciag ten konstruujemy wykorzystujac, kolejno, ze f nie jest ograniczona od
gory przez 1, przez 2, i przez kolejne n € N. Ciag {z,} jest ograniczony
(bo zawiera sie w skoniczonym odcinku [a, b]), a zatem mozna wybraé¢ z niego
podciag {x,, } zbiezny do jakiejs liczby z € [a, b] (Twierdzenie 4.12):

T, — Too-

Z definicji ciaglosci mamy f(x,,) — f(z), cO jest sprzecznoscia, bo ciag
{f(xy,)} nie jest ograniczony, i nie moze wiec w ogole byé zbiezny. O

Uwaga: Istotne jest, ze przedzial [a,b] jest skonczony, i ze zawiera konce.
Bez tych zatozen funkcja moze nie by¢ ograniczona. Na przyktad, funkcja
f(x) = x jest ciagta na [0,00), a f(x) = % jest ciagla na (0, 1), a zadna z nich

x
nie jest ograniczona. Uwaga ta odnosi sie tez do nastepnego twierdzenia.

Twierdzenie 7.5. Funkcja f ciagla na przedziale |a,b] (skoriczonym i za-
wierajgcym kotice) przyjmuje swoje wartosci najwiekszq i najmniejszq.

Dowdd. Pokazemy tylko, ze f przyjmuje wartosé¢ najwieksza. Niech

M =sup{y : y = f(z), x € [a,b]}.

Wiemy, ze zbior wartosci funkcji f jest ograniczony, wiec powyzszy kres
gorny istnieje (jest skoriczony). 7 definicji kresu wynika, ze istnieje ciag
{z,} C a,b] taki, ze f(x,) - M. Ciag {x,} jest ograniczony, wiec mozna z
niego wybra¢ podciag {z,, } zbiezny do jakiejs liczby - € [a,b] (ponownie
Twierdzenie 4.12). Mamy wicc f(z,,) = f(To), czyli f(2e) = M. O
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Twierdzenie 7.6 (Wtasno$¢ Darboux). Funkcja f cigglta na przedziale [a, b]
przygmuje wszystkie wartosci pomiedzy swojg wartosciq najmniejszq m i naj-
wiekszq M. Innymi stowy, zbiorem wartosci funkcji cigglej na przedziale [a, b]
jest przedziat [m, M.

Dowdd. Wiemy, ze funkcja f przyjmuje swoje wartosci ekstremalne, czyli
istnieja liczby ¢,d € |a,b] takie, ze f(¢) = m i f(d) = M. Rozpatrzmy
przypadek gdy ¢ < d. W przypadku, gdy ¢ = d f jest stala, a w przypadku
nieréwno$ci przeciwnej mozemy rozwazaé¢ — f zamiast f, albo zmodyfikowa¢
ten dowod. Niech wiec ¢ < d. Zalozmy, ze yg € (m, M), czyli yo jest wartoscia
posrednia, pomiedzy wartoscia najmniejsza i najwieksza. Rozwazmy zbior

{t €le,d]: f(z) <y dlaz € ct]}.

Wiemy, ze zbior ten jest niepusty, gdyz zawiera przynajmniej ¢ (f(c) =m <
Yo), oraz jest ograniczony, gdyz rozwazamy tylko ¢t € [c,d]. Kres gorny tego
zbioru wiec istnieje (jest skonczony), i oznaczmy go przez xo:

zo = sup{t € [¢,d] : f(z) < yo dla x € [c, t]}.
Pokazemy, ze musi zachodzié¢

f(xo) = Yo, (7.1)

czyli istotnie 7o jest wartoscig funkeji f. Udowodnimy (7.1) poprzez wy-
kluczenie pozostalych mozliwosci. Zatdézmy najpierw, ze f(zo) < yo. Wtedy,
skoro f jest ciggla, to istnieje § > 0 takie, ze f(z) < yo dlax € (zo—0, xo+0).
Widzimy wiec, ze f(x) < yo na przedziale [c, o + §), co przeczy definicji x.
Mamy wiec sprzeczno$é, a wiec nie moze by¢ f(xg) < yo. Zalozmy wiec, ze
f(zo) > yo. Tym razem, z ciaglosci f w xy mamy, ze f(z) > yo na pew-
nym przedziale (xg — d, 29 + J), dla pewnego § > 0. Natomiast z definicji xg
wynika, ze f(x) < yo dla x < ¢, a wiec znowu mamy sprzecznos¢. Jedyna
mozliwoscia pozostaje (7.1). O

Uwaga: Powyzsze twierdzenie moze byé wykorzystane do przyblizonego
znajdowania pierwiastkow rownan. Jezeli wiemy, ze funkcja f jest ciagta,
i f(a)- f(b) <0, to f ma pierwiastek w przedziale (a,b):

f(x)=0 dla pewnego x € (a,b).

Algorytm przyblizonego znajdowania tego pierwiastka, tak zwana metoda
~przez polowienie”, jest rekurencyjny. Niech ¢ = aT*b Albo f(c) = 0, i
wtedy pierwiastek jest znaleziony, albo f(c) # 0 a wiec musi by¢ f(a) -
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f(e) < 0 1ub f(c) - f(b) < 0. Innymi stowy, pierwiastek musi byé¢ albo
w lewej potowcee przedziatu [a,b], albo w prawej. Trafiamy wiec do punktu
wyjscia (to znaczy wiemy, ze pierwiastek jest w przedziale), ale 7z przedziatem
o polowe krotszym. Na przyklad, zeby obliczyé numerycznie v/2 mozemy,
szuka¢ pierwiastka rownania

flz)=2*-2=0.

Mamy f(1)- f(2) = —2 < 0, a funkcja f jest ciagla, wiec istnieje pierwiastek
w przedziale (1,2) (niewielka niespodzianka). FLatwo zauwazy¢, ze metoda
polowienia osiggamy 3 dodatkowe cyfry dziesietne przyblizenia na kazde 10
iteracji. Kazda iteracja sprowadza sie (w tym przykladzie) do 1 mnozenia,
czyli algorytm jest bardzo efektywny — 3 cyfry dziesietne doktadnosci na 10
mnozen.

Twierdzenie 7.7. Jezeli funkcja f jest ciggla na przedziale |a,b] i rézno-
wartosciowa, to funkcja g, odwrotna do f, jest ciggta na zbiorze wartosci
f, czyli na przedziale [m, M|, gdzie state m i M oznaczajg, podobnie jak w
poprzednim twierdzeniu warto$é najmniejszq i najwickszq funkcji f na |a, b].

Dowdd. Obrazem (zbiorem wartosci) f, zgodnie z Twierdzeniem 7.6,jest prze-
dzial [m, M], i jest wiec on dziedzing funkcji odwrotnej g. Jezelim <y < M
to g jest okreslona w punkcie y. Niech y, = yiy, € [m, M]dlan=1,2,....
Skoro y,, i y naleza do zbioru wartosci f, to istnieja xz,x, € |a,b] takie, ze
f(zn) =yni f(z) =y. Ciag {x,} jest ograniczony. Niech jego granica dolna
bedzie oznaczona przez 2, a granica gérna przez z”. Niech podciagi {z, } i
{zny} odpowiednio zbiegaja do 2’ 1 2". Z ciaglodci f wynika, ze

n o1 1 _
fla') = lim f(ay) = lm gy =y,
i podobnie
"o o1 T _
fa") = I f(zyy) = Im g, =y.
Mamy wiec f(2') = f(2”) = y = f(x). Skoro f jest réznowartosciowa, to

x =12’ = 2”. Granica gorna i dolna ciggu {z,} sa wiec rowne z, a wiec ciag
jest zbiezny do . Mamy wiec

9(yn) = &0 = x = g(y),
czyli g jest ciaglta w . O

Whiosek 7.8. Funkcja log,(x) jest ciggta na (0,00), jako funkcja odwrotna
do funkcji ciggtej a® (a >0, a #1).

Uwaga: Funkcja ciagta, roznowartosciowa na odcinku [a, b] musi by¢ $cisle
monotoniczna. Dowod tego prostego faktu pozostawiamy jako ¢wiczenie.
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Rysunek 7.2: Funkcja sin(z) i arcsin(z).

Funkcje cyklometryczne

Funkeje sin(z) i cos(x) nie sg réznowartosciowe a wiec nie sa odwracalne.
Mozna jednak rozwazac¢ te funkcje na mniejszej dziedzinie, na ktorej sg roz-
nowartosciowe. Funkcja sin(x) z dziedzing ograniczong do [—7, 5] jest funk-
cja $cisle rosnaca od —1 do 1, a wiec jest réoznowartosciowa i odwracalna.

7 1

Rysunek 7.3: Funkcja cos(z) i arccos(z).

Funkcja odwrotna, okreslona na [—1,1] nazywa sie¢ arcsin(x), i zgodnie
7 powyzszym twierdzeniem, jest ciagla. Podobnie cos(x), z dziedzina ogra-
niczona do przedziatu [0, 7] jest funkcja $cisle malejaca od 1 do —1, a wiec
odwracalna. Funkcja odwrotna, okreglona na przedziale [—1,1] nazywa sie
arccos(z), i rowniez jest ciagla.

Funkcja tan(x) jest okresowa, o okresie , i sklada sie z ,galezi”. Z dzie-
dzing ograniczong do (—7, §) jest funkcja Scisle rosngca, odwracalng. Funk-
cja odwrotna, okreslona na catej prostej R nazywa sie arctan(z) i rowniez
jest ciagta.

79



SF

Rysunek 7.4: Galaz funkeji tan(z) i funkcja arctan(z).
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Rozdzial 8
Pochodna

Pochodna funkcji to chwilowa predkosé jej zmian.

Definicja 8.1. Pochodnqg funkcji f w punkcie T nazywamy granice

o F@h) — f(@)

h—0 h

: (8.1)

o ile ta granica istnieje. Jezeli istnieje, to mowimy, ze f jest rozniczkowalna
w punkcie x (albo Ze ,ma pochodng” w punkcie x). Pochodng funkcji f w
punkcie x oznaczamy

' Gf prim”)  lub % (»df po dz”).

Uwagi: (i) Pochodna funkcji f tez jest funkcja, ktorej dziedzina jest zbior
punktow, w ktorych f jest rozniczkowalna. Obliczanie pochodnej nazywa sie
,rozniczkowaniem” funkcji.

(ii) Toraz
fl@+h)— f(z)

h
wystepujacy w granicy (8.1) nazywamy ,jilorazem réznicowym”. Tloraz rozni-
cowy, czyli przyrost funkcji podzielony przez przyrost argumentu wyznacza
srednig predkosé¢ wzrostu funkeji f na przedziale [z, x + h| (jezeli h > 0, w
przeciwnym wypadku na przedziale [x + h, z]). Stad interpretacja pochodnej
jako chwilowej predkosci zmian funkcji.

(iii) Pochodna ma tez interpretacje geometryczna. Iloraz roznicowy (8.1)
to tangens kata nachylenia ¢ siecznej wykresu, poprowadzonej przez punkty
(x, f(x)) 1 (x+ h, f(x+ h)). Gdy h — 0 sieczna staje sie styczng, wiec w
interpretacji geometrycznej pochodna to tangens kata nachylenia stycznej do
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wykresu w punkcie (z, f(x)). Istnienie pochodnej oznacza po prostu istnienie
stycznej do wykresu, rozumianej jako granica siecznych.

(iv) Granice (8.1) mozna oczywiscie zapisa¢ jako

lim fly) — f(x)7
Yy—x y—x

uzywajac zmiennej y =  + h.

T z+h

Rysunek 8.1: Tloraz réznicowy i sieczna wykresu.

(v) Pochodna moze nie istnie¢. Na przyklad, dla funkcji f(x) = |2| mamy

lim f0+n) — f(0) = lim M = lim ﬁ =1,
h—0+ h h—0t+ h h—0t+ h
lim fO+7) = f(0) = lim M = lim _—h =—1
h—0~ h—0~ h—0— h

llorazy réznicowe maja rézne granice jednostronne w zerze, a wiec f nie jest
rozniczkowalna w 0. Interpretacja geometryczna nier6zniczkowalnosci w 0
jest szczegolnie sugestywna: wykres f ma w punkcie (0,0) ,dziubek”, i nie
ma styczne;j.

(vi) Pochodna funkcji f definiujemy w punktach ,wewnetrznych” dziedziny,
to znaczy w takich punktach x, ktére naleza do dziedziny f wraz z pewnym
otoczeniem (x — 0, + 0).

Twierdzenie 8.2. Jezeli [ jest rozniczkowalna w punkcie x to jest takze
ciggta w x.
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Rysunek 8.2: Wykres f(x) = |z| i nierézniczkowalny ,dziobek”.

Dowdd. Zauwazmy, ze

lim f(y) — f(z) = Lm(f(y) — f(z))

(T
le—m < y—x (y )>
= f'(z) - 0
=0.

]
Twierdzenie 8.3. Jezeli f i g sq rézniczkowalne w punkcie x, to takze f+g,

f—g, f-g i (jezeli dodatkowo g(x) # 0) % sq rdzniczkowalne w punkcie
oraz mamy wzory

o (fEg)(x)=f(x)£g(x),

o (f-9)(x)=f'(v)g(x)+ f(x)d'(x) (tak zwana reguta Leibniza),

! "(x)g(x)—f(z)g' (x ..
. (%) (z) = & )9(9)2(;)( @) liezeli g(x) #0).
Dowadd. Pokazemy iloczyn i iloraz, natomiast sume i roéznice pozostawiamy
czytelnikowi. Zacznijmy od iloczynu. W liczniku odejmujemy i dodajemy

wyrazenie f(z)g(x + h)

oo L@t g+ b) = f(a)g(a)
h—0 h N
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flz+h)gle+h) - flx)gle+h) + fle)g(e +h) - flx)g(z)

= lim

h—0 h
o (@t h) = flx))glz+h) | (g(z+h)—g(x))f(x)
- kﬂ%( h * h )
= ['(x)g(x) + f(ﬂf)g’(l“)-

Przypomnijmy, ze g musi by¢ ciagla w x, a wiec g(x+h) — g(z) gdy h — 0.
Rozwazmy teraz pochodng ilorazu. Jezeli g(z) # 0 to g musi by¢ rézna od
zera w pewnym otoczeniu x (bo jest ciagta w z), a wiec iloraz 5 istnieje nie
tylko w z ale tez w pewnym jego otoczeniu.
x+h T
g g fe et h)g(@) = @)l +h)
h—0 h h—0 hg(:L‘ + h) (:L")
f(z+h)g(x)—f(z)g(x)— (f(w) (z+h)—f(z)g(x))

pr— 1‘
ho0 g(z + h) ()
iy o LRI L g(a) — f(a) - limy, o L0
9*(x)
_ f()g(x) — f(x)g'(x)
9*(x)
O
Przyktlady: (a) Funkcja stata f(z) =
jN . C—C
Flor=im = =0
Pochodna funkcji statej jest rowna 0.
(b) f(x) = x. Mamy
oy o THh—ax o h
L i A

(c) f(z) = 2", dla n € N. Pochodna jest rowna f'(z) = nz""'. Mozemy
to udowodni¢ postugujac sie (b) (to przypadek n = 1), reguta Leibniza i
indukcja. Mozemy tez zastosowaé¢ wzor dwumianowy Newtona.

(d) Wielmian stopnia n: f(z) = a,2™ + -+ + a1 + ag. Pochodna f'(z) =
na® ! + -+ + ay, czyli jest wielomianem stopnia n — 1.
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(e) f(z) =sinz. Mamy
sin(z + h) — sin(x)

/ T
fi(w) = lim
. 2 sin(3h) cos(z + 5 h)
= lim
h—0 h
in(3h 1
= lim sm1(2 ) - lim cos(z + = h)
h—0 §h h—0 2
= COS .

SkorzystaliSmy z tozsamosci trygonometrycznej
sin(a + b) — sin(a — b) = 2 sinb cosa,
dlaa:x—i-%hib:%h.

(f) f(x) = cosz. Podobnie jak w (e) z tym, ze dla funkcji cos skorzystamy z
tozsamosci

cos(a + b) — cos(a — b) = —2 sina sinb.
Liczymy wiec
;o\ .. cos(z+ h) —cos(x)
fiz) = Jim h
. —2sin(3h) sin(z + 1 h)
= lim
h—0 h
in(h 1
= — lim Sml(Q ) - limsin(z + = h)
h—0 ih h—0 2
= —sinz.

(g) f(z) =logx. Korzystajac z wlasnosci logarytmu mamy:

X log(x + h) — log(x)

/ 1
f(x)_flllgo h
i 11 x+h
T hon 8 x
. z+h "
= limlog | —— .
h—0 xT

Jak wiemy logarytm jest funkcja ciagla, wiec z granicg mozemy ,wejs¢” pod
logarytm. Rozwazmy wyrazenie pod logarytmem.

SONCOR (T
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Wiemy, ze z granica mozna ,wejs¢” pod dowolna potege (w tym przypadku
pod ()%) Zauwazmy, ze gdy h — 0% to § — 400, a gdy h — 0~ to
7 — —oo (przypomnijmy, ze x > 0). Zamieniajac ¥ na ¢ otrzymujemy

1\* 1\’
lim (1—1—;) = lim (1+—>
h—0+ ¥ t—+o00 t
. 1\" 1\
lim | 1+ = lim 1+ - = e.
h—0— 5 t——o00 t

Obie powyzsze granice rozwazaliSmy wczesniej (6.6). Poniewaz granice jed-

nostronne sg rowne, wiec
s
1 h
lim { 1+ — = e.
h—0 E

Skladajac kawalki rozumowania otrzymujemy

>

€,

>

1 1 1
f(z) =logez = —loge = —.
x x

Twierdzenie 8.4 (Rozniczkowanie funkcji odwrotnej). Niech funkcja f okre-
slona na przedziale [a,b] bedzie ciggla i réznowartoSciowa, oraz réziniczko-
walna w punkcie x € (a,b), przy czym f'(z) # 0. Niech g bedzie funkcjq
odwrotng do f. Wtedy g jest rézniczkowalna w punkcie y = f(x), i zachodzi
w20r:

Dowdd. Oznaczmy k = f(x + h) — f(x) (k jest zwiazane z h). Poniewaz
f(z) =y, wieccy+k = f(x+h), azatem g(y+k) = x+h gdyz g jest funkcja
odwrotna do f. Dla k — 0 mamy wiec h — 0, bo g jest ciggla. Zauwazmy
jeszcze, ze gy + k) — g(y) = f(z) + h — f(x) = h, i mamy:

gy +k)—g(y)

J(y) = lim .
= F@ T h) — ()
1
o TG = ()
h—0 h
B 1
(=)
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Wnhiosek 8.5. Dia funkcji f(x) = logz funkcjg odwrotng jest g(y) = ev.
Ustalmy y = log x czyli x = €Y, i otrzymujemy
1

5O = () = s =

= — =Y
Tog' (2) x = éev.

HI»—!|H

Mamy wiec (e”) = e”.

Ekstrema funkcji

Méwimy, ze w punkcie x funkcja f ma maksimum (czasem podkreslamy:
lokalne maksimum), jezeli

fly) < flz),
dla y € Dy z pewnego otoczenia x. Podobnie, méwimy, ze ma w  minimum
(lokalne minimum), jezeli

fy) > f(=),
dla y € Dy z pewnego otoczenia x. Ogoélnie, méwimy ze f ma w punkcie x
ekstremum, jezeli ma w tym punkcie maksimum lub minimum.

Tmax Tmin

Rysunek 8.3: Lokalne maksimum i minimum.

Twierdzenie 8.6. Jezeli f'(x) > 0 to w pewnym otoczeniu punktu x mamy

fly) > f(x) diay>x oraz f(y) < f(z) dlay<z. (8.2)

Podobnie, jezeli f'(x) < 0 to w pewnym otoczeniu punktu x

fly) < f(z) dlay >z oraz f(y)> f(x) dlay<zx. (8.3)

Dowdd. Wystarczy rozwazy¢ znak ilorazu réznicowego. Jezeli f'(z) > 0, to
w pewnym otoczeniu punktu x musi zachodzi¢:

fly) — f(z)

y—T
Licznik i mianownik maja ten sam znak, i otrzymujemy (8.2). Podobnie w
przypadku f'(x) < 0, licznik i mianownik ilorazu ro6znicowego musza mie¢
przeciwne znaki, a wiec otrzymujemy (8.3). O

> 0.
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Otrzymujemy natychmiast nastepujacy bardzo uzyteczny wniosek:

Whniosek 8.7. Jezeli [ jest rozniczkowalna w punkcie x i ma w tym punkcie
ekstremum, to f'(z) = 0. O

Uwagi: (i) Punkt w ktorym pochodna funkeji przyjmuje wartosé zero na-
zywa sie punktem krytycznym funkcji.

(ii) Jezeli f ma w punkcie x ekstremum, to f'(x) = 0, ale nie na odwrot. Na
przyktad, funkcja f(z) = 2 spelia f’(0) = 0, ale nie ma w 0 ekstremum.
Innymi stowy, w punkcie krytycznym funkcja moze mieé ekstremum, ale nie
musi.

(iii) Powyzszy wniosek moze stuzy¢ do szukania warto$ci najwiekszej czy
najmniejszej funkcji. Warto$¢ najwieksza i najmniejsza jest przyjeta albo
w punkcie, gdzie funkcja nie jest rozniczkowalna (na przyklad na koricach
przedziatu na ktérym badamy funkeje), albo w punkcie krytycznym.

(iv) Twierdzenie 8.6 i Wniosek 8.7 sa oczywiste geometrycznie. Na przy-
ktad, jezeli funkcja ma w punkcie ekstremum, to styczna do wykresu w tym
punkcie (jezeli istnieje) musi by¢ pozioma.

Twierdzenie 8.8 (Rolle’a). Niech f(z) bedzie ciggla na przedziale [a,b], i
rézniczkowalna w (a,b). Zatézmy, ze f(a) = f(b). Wiedy istnieje ¢ € (a,b)
takie, ze f'(c) = 0.

Dowdd. f(x) przyjmuje swoje wartosci najmniejsza i najwieksza. Jezeli obie
sa przyjete na koncach przedzialu [a,b], to znaczy, ze funkcja jest stala,
i f/(x) = 0 na calym przedziale (a,b). W przeciwnym wypadku jedno z
ekstremow musi byé przyjete w punkcie wewnetrznym przedziatu ¢ € (a,b),
a w takim razie w tym punkcie musi by¢ f'(c¢) = 0. O

Nastepujace twierdzenie jest wazne i z punktu widzenia teorii, i z punktu
widzenia zastosowan.

Twierdzenie 8.9 (O wartosci $redniej). Jezeli f jest ciggla na [a,b], i réz-
niczkowalna na (a,b), to istnieje punkt c € (a,b) taki, Ze

f(b) = f(a)

(]

Dowaod. Zauwazmy, ze funkcja

o) = 1) - (f(0)+ (o - 0 L)
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spelnia zalozenia twierdzenia Rolle’a: g(a) = ¢g(b) = 0. Po prostu od funkcji
f odjelismy funkcje liniowa o tych samych warto$ciach punktach a i b. Z
Twierdzenia 8.8 istnieje wiec punkt ¢ € (a,b) taki, ze ¢'(c) = 0. Ale

f(b) = f(a)

b—a

g'(x) = f'(z) -
co konczy dowod. ]

Z twierdzenia o wartosci sredniej natychmiast otrzymujemy nastepujacy
wniosek.

Whniosek 8.10. Jezeli na jakims przedziale (a,b) mamy:
o >0 to funkcja f jest rosngca na (a,b),
o ' <0 to funkcja f jest malejgca na (a,b),
e ' =0 to funkcja f jest stata na (a,b),
Dowdd. Niech x,y € (a,b) i © < y. Z twierdzenia o wartosci $redniej

fly) — f(z)

RS0, ce (o) C(ab)

Jezeli f' > 0 na calym przedziale (a,b) to takze iloraz po lewej stronie row-
nosci, a wiec i licznik muszg by¢ > 0. Podobnie w pozostatych dwoch przy-
padkach. Zauwazmy, ze jezeli f’ jest stale $ci§le dodatnia, lub §cisle ujemna,
to funkcja jest $cisle rosnaca, lub $cisle malejaca na (a,b). ]

Uwagi: (i) Zauwazmy, ze we wniosku zakladamy, ze odpowiednia nier6w-
nos$¢ zachodzi na odcinku. To jest wazne zalozenie, bo na przyktad funkcja %
ma pochodna stale Scisle ujemng na catej swojej dziedzinie, a nie jest male-
jaca. Jest malejaca na kazdym z odcinkow (—o0,0) i (0, 00), ale nie na calej
swojej dziedzinie.

(ii) Wprost z definicji pochodnej wynika nastepujaca obserwacja: jezeli pew-
nym otoczeniu x funkcja f jest rosngca, to ilorazy réznicowe w tym punkcie
sa dodatnie, a wiec f'(x) > 0. Podobnie jezeli f jest w jakim$ otoczeniu
punktu x malejaca, to ilorazy réznicowe w tym punkcie sa ujemne, a wiec
f'(x) < 0. Widzimy wiec, ze monotoniczno$¢ funkcji jest Scisle zwiazana ze
znakiem pochodnej. przypomnijmy tez zwiazane z tym Twierdzenie 8.6.

Nastepujace twierdzenie jest podstawowym narzedziem do praktycznego
liczenia pochodnych.
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Twierdzenie 8.11 (Reguta tanicuchowa). Niech funkcje f i g bedq réznicz-
kowalne. Zatozmy, zZe ztozenie g o f bedzie okreslone, to znaczy wartosci f
wpadajq do dziedziny g. Wtedy ztozenie go f tez jest funkcjq rozniczkowalng
i zachodzi nastepujgcy wzor na jej pochodng:

(go f)(z) =g'(f(x)) ['(x). (8.4)

Dowdd. Ustalmy punkt x i zal6zmy, ze funkcja f jest rozniczkowalna w z, a g
rozniczkowalna w f(x). Rozpatrzmy najpierw przypadek f'(z) # 0. Zgodnie
z Twierdzeniem 8.6 dla h # 0 wystarczajaco malego mamy f(z+ h) # f(z).
Zapiszmy nastepujacy iloraz réznicowy

g(fz+n) —g(f(z)) _ g(fle+h) —g(f(z)) flz+h)—flz)

h flz+h)— f(x) h
Oczywiscie, gdy h — 0 to f(z + h) — f(x) (f jest ciagla w x), czyli

g(f(x +h)) = g(f(x))

lim —

h—0 h
g W —g(f@) S+ h) = f(@)
y—f(x) Y — f(x) h—0 h

=g'(f(z)) - f'(x).
Teraz rozpatrzmy przypadek f'(x) = 0. Ustalmy e > 0. Iloraz réznicowy

9(y) — g(f(x))
y—fx)

ma granice (rowna ¢'(f(z))) edy y — f(z), a wiec jest w pewnym otoczeniu
f(x) ograniczony:

y # f(x)

< M.

Ja>03IMVy 0<|y— f(z)|<a = ‘g(y;:jf(gx))

7 drugiej strony f jest ciagta w x, a wiec
301 >0Vh |h| < = |f(z+h)— f(2)] <o
W koricu, skoro f'(z) =0, to

flz+h) - f(x)
h

<€
M.

J0o >0Vh 0<|h|<d = ’

Niech § = min{dy,d2} i 0 < |h| < 0. Jezeli f(z+ h) = f(x) to

g(f(z +h)) = g(f(x))

=0.
h
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W przeciwnym przypadku
'g(f(ﬂf +h) —g(f()) ’ _

h
9@+ h) —g(f(@)| |flz+h) - [fz) €
" f@+h) - f(x) H h M
Poniewaz € bylo dowolne, to pokazalismy, ze
B)) —
(90 /(@) = lim 9(f (= + )]i 9 @) _
czyli, skoro takze f'(x) = 0, pokazaliémy (8.4). O

Whiosek 8.12. Niech f(x) = x% gdzie a jest dowolng potegq rzeczywistq.
Mamy wtedy
g a—1

=acx

% = ealoga: = (xa)/ — ealogac(a lng)l = 9.
X

Wzor ten udowodnilismy wczesniej w przypadku gdy a € N.

Nastepujace twierdzenie to tak zwana reguta de I’'Hopitala. Jest to bardzo
proste twierdzenie, jednak zaskakujaco przydatne. Bedziemy je stosowac wie-
lokrotnie. Pozwala ono w wielu przypadkach obliczy¢ granice (jezeli istnieja)

postaci

lim M

y=z g(y)
gdzie obie funkcje f i g maja granice rowne 0. Wyrazenie takie nazywamy
wyrazeniem nieoznaczonym typu (9) — latwo sie domysle¢ dlaczego.

Wyrazajac sie Scislej, zaldézmy, ze funkcje f i g sa ciagte w pewnym oto-

czeniu punktu z, oraz f(x) = g(z) = 0. Zalozmy, ze obie funkcje sg roz-
niczkowalne w pewnym otoczeniu x, poza, by¢ moze, samym punktem x.
Zaktadamy takze, ze w pewnym otoczeniu punktu x okreslone sa ilorazy

f(y) ora f'(y)

9(y) 9 (y)

Y

)

(to znaczy w jakim$ otoczeniu x, z wyjatkiem samego punktu z, zachodzi
gy) # 01 ¢ (y) # 0). W tak opisanej sytuacji prawdziwe jest nastepujace
twierdzenie.

Twierdzenie 8.13 (Reguta de 'Hopitala). Zaldzmy, ze istnieje granica (wla-
Sciwa lub niewtasciwa)

i @)

im

v=z g'(y)
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Wiedy istnieje takze granica
i (y)7
v g(y)

i obie te granice sq sobie rowne
/
@ _ o, I'W

lim —=% .
v g(y) v g'(y)

(8.5)

Reguta de I'Hopitala jest rowniez prawdziwa dla granic jednostronnych.
Dowo6d przeprowadzimy wtasnie dla granic prawostronnych. Zauwazmy, ze
przypadek granic lewostronnych i obustronnych juz z tej wersji wynika.

Dowdd. Udowodnimy wersje twierdzenia dla granic prawostronnych. Punkt
x jest wiec ustalony, i wszystkie zatozenia opisane powyzej sa spelnione dla
y > x, a wszystkie granice sg prawostronne dla y — ™. Niech h > 0 bedzie
ustalone, i rozwazmy przedzial [x, x + h]. Pokazemy, ze istnieje ¢ € (z,z+h)
takie, ze

flath)  fla+h)—flx) [

= = : (8.6)

gle+h) gle+h)—glx) g
Zauwazmy, ze w przypadku gdy ¢g(y) = y powyzsza rownosé to jest po prostu
twierdzenie o wartosci $redniej. Ogo6lny przypadek nie wynika z twierdzenia
o wartosci sredniej, ale mozna go udowodni¢ dokladnie tak, jak dowodzili$émy
tego twierdzenia. Wprowadzimy odpowiednig funkcje pomocniczg, i skorzy-
stamy z twierdzenia Rolle’a. WprowadZmy nastepujaca funkcje na przedziale
[z, x + hl:

flz+h)
glx+h)

Mamy ®(x) = ®(x+ h) = 0 czyli z twierdzenia Rolle’a istnieje ¢ € (z,z + h)
takie, ze ®’'(c) = 0. To oznacza

d(y) = fly) — g(y)

czyli doktadnie (8.6) Zauwazmy tez, ze gdy h — 07 to ¢ — ™. Jezeli istnieje

granica
i @)
y—az+ g'(y)

, (8.7)

to granica
/
lim fie)

h—o+ ¢'(c)’
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tez musi istniec¢ i jest rowna granicy (8.7). Mamy wiec

fy) _ o fleth) o fe) e )
P gly) s gla T h) e g(e) vk g(y)

)
o ile granica po prawej stronie istnieje. O]

Uwagi: (i) Zwroéémy uwage, ze rownosé (8.5) zachodzi o ile granica po prawej
stronie istnieje. Moze sie zdarzy¢, ze granica po lewej stronie istnieje, chociaz
ta po prawej stronie (8.5) nie istnieje. Na przyktad rozwazmy funkcje

fay=2sin(2),  g) =

T

(niech f(0) = 0). Obie funkcje sa ciagle i rozniczkowalne na calej prostej,
utamek 5 jest wyrazeniem nieoznaczonym typu 8 W zerze, istnieje granica

chociaz granica wyrazenia

f'(y) _ 2wsin(5) —a?cos (5) - 5

7 ) = 1 = 2xsin (i) — oS (%)

nie istnieje.

(ii) Regute de I'Hopitala mozna iterowa¢. Na przyklad rozwazmy granice
sin(z) —x
limg S8) ~ 7
x—0 1‘3
Roézniczkujac licznik i mianownik znowu otrzymujemy wyrazenie nieozna-

—1 PR . . . . . . .

czone typu ¥ w zerze, COS?EQ . Rozniczkujac licznik i mianownik ponownie
X

t . 7sjn(x) . . . . t Q M 1.

otrzymujemy —=-=' wcigz wyrazenie nieoznaczone typu g w zerze. Mogli-

by$my rozniczkowa¢ ponownie, ale akurat ta granice znamy, (6.4), wynosi

ona —%. Wracamy wiec, stosujac regute de I’'Hopitala dwukrotnie.

. —sin(z) . cos(z)—1 . osin(z) -2 1
L T A

(iii) Regute de ’'Hopitala mozna tez stosowa¢ do granic w nieskoriczonoSci.
Rozwazmy na przyktad granice

lim /(@)

T—+400 g(x) ’

93



gdzie f(z) = 01 g(x) = 0 gdy = — +o00. Wprowadzmy oznaczenia

w01 =1(7) oz ) =o(;)

wtedy ¢(t) = 01 ¢(t) = 0 gdy t — 07, oraz

0-r() (R) e e0-s(3) (2)

Otrzymujemy wiec

o't) _ f( (=%)  f(3)
Pt)  g@3)(=%) 9G

Wynika z tego, ze granice

sa identyczne, istnienie jednej jest rownowazne istnieniu drugiej i jezeli ist-
nieja to sa sobie rowne. Oczywiscie identyczne sa réwniez granice

czyli mamy

_ o S o) e f(®)
A= v T e T AT e T )

(iv) Mozna tez udowodni¢ (z grubsza w podobny sposob) wersje reguty de
I’'Hopitala dla wyrazen nieoznaczonych postaci 22: jezeli lim,_,, f(y) = o0
oraz lim, ,, g(y) = foo to zachodzi reguta de 'Hopitala, to znaczy mamy
rownosé (8.5) (o ile granica po prawej stronie istnieje, wtasciwa lub niewta-
$ciwa). Podobnie jak w przypadku Twierdzenia 8.13 udowodnimy wersje dla
granic prawostronnych, z ktérej wynikaja pozostale wersje, rowniez dla gra-
nic w 00, analogicznie jak w tamtym przypadku. Zrébmy wiec nastepujace
zalozenia: niech f, f’, g, ¢’ oraz ilorazy 5 i g—,, beda okreslone w jakim$
otoczeniu prawostronnym punktu x i niech

lim g(y) = +o00 (8.8)
y—axt
(nie musimy nawet zakltadaé¢ lim, .+ f(y) = £o00). Zaléozmy, ze istnieje
granica (wlasciwa)
!/
lim S W)
y=at g'(y)



Ustalmy € > 0 i niech § > 0 bedzie taka, ze dlaz <y <x+46

Wybierzmy i ustalmy yo € (x,z + 6), i rozwazmy dowolne y € (z,yy). Po-
dobnie jak w dowodzie reguly de I’'Hopitala 8.13 mozemy pokazad, ze istnieje
¢ € (y,yo), oczywiscie zalezne od y, takie, ze

Fy) = fyo) _ f'(o)

9y) —9(w) ()’

< €. (8.9)

'y
J'(y)

czyli, biorac pod uwage (8.9)

f) = f(wo)

o) —gwo) | T°

Dzielimy licznik i mianownik utamka przez g(y), mozemy to zapisa¢ w postaci

fy)  flyo)
oz—e<gy) o) <a—+e€
1 — 9(yo)
a(v)

Dzielenie przez g(y) jest dopuszczalne, gdyz ze wzgledu na (8.8) jezeli tylko
J jest wystarczajaco mala, to g(y) # 0 w (z,x + §). Z tego samego wzgledu
mianownik dazy do 1 gdy y — 27, a wiec w szczegolnosel, gdy y jest wy-
starczajaco blisko x, to mianownik jest dodatni. Niech wiec y < x +n < yo,
wtedy powyzsze nier6wnosci mozemy zapisaé

o (19w ) fw) (o 9w)Y | fw)
(=) <1 g(y))+ 9(y) <g(y) <late (1 g(y))Jr g(y)

Wezmy dowolny ciag {y,}, taki, ze y, — x i y, > x. Od pewnego miejsca
Yn < T + 7, wiec mozemy zastosowaé powyzsze nieréwnosci. Otrzymujemy

wiec
o — e < liminf I (Yn) < lim sup M <a+e
n—o0 g(yn) n—00 g(yn>
e bylo dowolne, wiec widzimy, ze musi istnie¢ granica, i

i W) _
n—00 g(Yn)

Ciag {yn} byl dowolny, wiec
f(y) i W)

= X = .
y—at g(y) y—at g'(y)
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W ten sposob udowodnilismy regute de I’'Hopitala w przypadku granicy o
wlasciwej (skorniczonej). Mozna ja tez udowodni¢ dla granicy a niewlasciwej.

). Jest to wyrazenie postaci 5, wiec mamy

log(14+x 0
T 0’

Przyktlady: (a) lim, o
log(1 1
hmw — ljm 2= — 1

x—0 X z—0

(b) lim, ,o+ zlogx. Jest to wyrazenie postaci 0 - 0o, ale przenoszac x do
mianownika otrzymujemy wyrazenie postaci . Mamy wigc

1
log =
lim rlogz = lim —— = lim %5 = — lim z =0.
z—07F z—0t p z—07t = z—07t

1
T

(¢) lim, o+ (cosx)z.
w zwykly sposoéb

Jest to wyrazenie postaci 1°°. Przeksztatcamy je wiec

log cos x

logcosz __ -

(cos x)% = ex

W wyktadniku jest wyrazenie typu %, wiec obliczmy granice w wyktadniku

1 .
log cos x (—sinx) 1
lim ——— = lim <=< =0 = lim (cosz)r = =1.
z—0+ x z—0+ 1 z—0+
log x

(d) limg 400 & Jest to wyrazenie postaci 32 w 00, wigc mamy

lim = lim —% = lim — =0.
T——+00 \/E atoo 2 L T—+00 /T

Logarytm ro$nie do oo wolniej niz pierwiastek.

Pochodne funkcji cyklometrycznych

(a) f(z) = arcsin(z). f jest okreslona na przedziale [—1, 1] i jest funkcja od-
wrotng do funkcji sin(z) zawezonej do przedziatu [—7, 7]. Niech z € (—1,1)
i x = sin(y) dla pewnego y € (—3,%). Z Twierdzenia 8.4 wiemy, ze f jest
rozniczkowalna w x i

o) = S 1

sin’(y)  cos(y)  cosarcsin(x)’

96



Wyrazenie to mozna uprosci¢. Dla y € (=3, %) cos(y) > 0, a wiec cos(y) =

/1 —sin®(y). Mamy wicc
1 1

fiw) = cos arcsin(x) - V1—22

(b) f(z) = arccos(z). Jest to funkcja okreslona na przedziale [—1,1], od-
wrotna do funkcji cos(z) zawezonej do przedziatu [0, w]. Niech x € (—1,1), i
x = cos(y) dla pewnego y € (0, 7).

foy- L oL _ -

~ cos'(y) —sin(y) sinarccos(z)’

Podobnie jak poprzednio, sin(z) jest dodatni na (0, 7), wiec sin(y) = /1 — cos?(y),
czyli

Pla)= =
 sinarccos(r) 1 — 22

(c¢) f(z) = arctan(z). Funkcja f jest okreslona na calej prostej R, i jest

funkcjg odwrotng do funkcji tan(z) zawezonej do przedziatu (-7, 5). Niech

r = tan(y) dla pewnego y € (-7, 5). Mamy
1 1
fl(x) = —— = —— = cos*(y).
tan’(y) ]
7 drugiej strony
N cos?(y) 1 1 1
cos(y) = I N S
cos?(y) +sin“(y) 1+ CZ;((?/)))Q 1 +tan*(y) 14 22
Ostatecznie wiec
1
o) —
fiz) = 1+ 22

Pochodne wyzszych rzedéw

Jezeli pochodna [’ sama jest rozniczkowalna, to jej pochodna, jest tak zwang
druga pochodng funkcji f

(f") (@) = f"(2) = fP(a).

Podobnie mozemy obliczyé¢ pochodne dowolnego rzedu f™ (jezeli funkcja f
jest rézniczkowalna odpowiednig ilogé razy). Piszemy f© = f.
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Przyktady: (a)

sin(™ (z) = { (—1)%1 cos(x) n — nieparzyste,

(—1)2 sin(x) n - parzyste.

(b)

x> x>0,
f(x):{ 0 z<0.

Funkcja f jest rézniczkowalna w kazdym punkcie x # 01 f/'(z) = 322 dla
x> 0oraz f'(z) =0dlax <0. Jest tez rozniczkowalna w zerze, i f'(0) = 0:

-0 3 -0 0
i 2970 i T o L0 O
z—0t xT z—0t X z—0~ X z—0— T
f jest wiec rozniczkowalna w kazdym punkcie, i
322 x>0,
fx) =
0 z<0.
3 31 3
2 21 2
1 11 1
-1 1 -1 1 -1 1

Rysunek 8.4: Funkcje f, f'i f” z przyktadu (b).

Obliczamy teraz pochodng f'. Dla z > 0 f"(z) = 6z, adlaz < 0
f"(x) =0. W zerze f’ tez jest rozniczkowalna, i f”(0) = 0:

/ . 2 / _
lim M = lim 3i =0, lim M = lim — =0.
z—0t x z—0t I z—0~ x z—0- X

f jest wiec rozniczkowalna 2-krotnie w kazdym punkcie, i

f"(x) _ { 6r x>0,

0 z<O0.
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Zauwazmy, ze f” nie jest rozniczkowalna w zerze:

" _ 0 6 " _ O 0
fim 2@ =0y 8 g gy W20 0y
z—0t T z—0t T z—0~ T z—0— T
f jest wiec 2-krotnie r6zniczkowalna w kazdym punkcie, ale nie jest 3-krotnie

rozniczkowalna w zerze.

Uwaga: Wszystkie funkcje elementarne sa rozniczkowalne nieskonczenie
wiele razy w kazdym punkcie swojej dziedziny.

Badanie przebiegu funkcji

Omoéwimy teraz procedure badania przebiegu funkcji. Badanie przebiegu
funkcji to typowe zadanie w zastosowaniach.

Uwaga: Procedura badania zmiennosci funkeji odnosi sie do funkeji odpo-
wiednio regularnych. Istnieja funkcje, ktorych wykresu nie da sie naszkico-

waé, na przyktad
1 z€Q,
flz) =
0 z¢Q.

Funkcje, ktore badamy najczesciej sa przynajmniej przedziatlami ciggte.
Przystepujac do zbadania przebiegu funkcji postepujemy nastepujaco.
Kolejnosé poszczegolnych operacji w zasadzie nie ma znaczenia.

(1) Ustalamy dziedzine funkcji, jezeli nie jest podana jawnie. Ustalamy
punkty ciggtosci, nieciagtosci, rézniczkowalnosci i nier6zniczkowalnosci. 7 re-
guty funkcja badana jest przedzialami ciaglta i przedziatami rézniczkowalna,
wiec ustalamy te przedzialy.

(2) Sprawdzamy parzysto$¢ i okresowos¢ funkcji. Jezeli f jest parzysta to
znaczy f(—z) = f(x) lub nieparzysta, to znaczy f(—x) = —f(z), to wy-
starczy zbadaé jej przebieg dla x > 0 a nastepnie wyniki odpowiednio prze-
nie$¢ na x < 0. Jezeli funkcja jest okresowa, to znaczy istnieje T' takie, ze
flz+T)= f(x), to wystarczy zbada¢ funkcje na dowolnym przedziale dtu-
gosci jednego okresu.

(3) Ustalamy pierwiastki funkcji, czyli punkty = w ktorych
f(z) =0,

oraz ustalamy przedzialy na ktorych funkcja zachowuje znak.

(4)Ustalamy przedzialy monotonicznosci i wyznaczamy ekstrema lokalne.
Badamy znak pochodnej. Mozna z tego wyciggnaé¢ wnioski na temat eks-
tremow. Czasem pomocne jest nastepujace twierdzenie
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Twierdzenie 8.14. Jezeli w pewnym punkcie x f'(x) =01 f"(x) #0 to f
ma w x ekstremum. Jezeli f"(x) < 0 to jest to maksimum, a jezeli f"(z) >0
to jest to minimum.

Dowdd. Jezeli f"(x) > 0 to stosujac Twierdzenie 8.6 do f’, pamietajac, ze
f'(x) = 0 otrzymujemy, ze f’ jest ujemna na lewo od z (czyli f maleje)
i dodatnia na prawo od = (czyli f rosnie). W takim razie w z funkcja f
ma minimum. Podobnie w przypadku f”(x) < 0: wtedy w x funkcja f ma
maksimum. O

Nalezy pamietaé, ze ekstrema moga znajdowac si¢ w punktach, w ktérych
funkcja nie jest rozniczkowalna.

(5) Jezeli funkcja f ma druga pochodna i na jakims przedziale f”(x) > 0, to
mowimy, ze jest na tym przedziale wypukta. Jezeli na jakims$ przedziale
f"(zr) < 0 to mowimy, ze jest na tym przedziale wklesta. Jezeli w ja-
kim$ punkcie funkcja zmienia sie z wypuklej na wklesta, albo na odwrot,
to taki punkt nazywamy punktem przegiecia. Taki punkt jest punktem eks-
tremalnym pochodnej. Znajdujemy punkty przegiecia funkcji, i okreslamy
przedziaty wypuktosci/wklestosci. Wypuktosé i wklestos¢é maja interpretacje
geometryczna. Na odcinku na ktérym funkcja jest wypukta styczne do wy-
kresu lezg pod wykresem, a sieczne nad wykresem. Jesli funkcja jest wklesta
to odwrotnie, styczne leza nad wykresem a sieczne pod.

(6) Znajdujemy ewentualne asymptoty. Asymptoty moga by¢ réznego ro-
dzaju.

(a) Jezeli w jakim$ punkcie @ mamy lim, .+ f(z) = £o0, to prosta pionowa
o réwnaniu r = a nazywamy asymptota pionowa funkcji.

(b) Jezeli istnieje granica lim, 1., f(x) = A, to prosta pozioma o réwnaniu
y = A nazywamy asymptota pozioma funkcji w +oo (lub w —o0).

(c) Jezeli isnieje stata m taka, ze istnieje granica lim, ,1(f(x) —mz) = ¢,
to prosta o réwnaniu y = mx + ¢ nazywamy asymptota ukosna funkcji w
+00 (lub w —00). Asymptota pozioma to szczegélny przypadek asymptoty
ukos$nej, dla ktérej m = 0. Jezeli funkcja f ma w 400 albo —oo asymptote
ukos$ng , to stala m jest rowna kazdej z granic

lim m, lim (f(z+1)— f(z)), lm f'(z),

r—too X r—+o0 r—+o0

(ostatnia granica moze nie istnie¢, nawet jezeli asymptota ukosna istnieje).
Nalezy jednak pamietac, ze istnienie ktorejkolwiek z tych granic nie gwaran-
tuje jeszcze istnienia asymptoty ukosnej. Zeby istniala asymptota ukosna
musi jeszcze istnie¢ granica

Igrfoo(f(a:) —mx) = c.
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Przyklady: (a) f(x) = % ma asymptote pionowg x = 1 oraz asymptoty

z—1
poziome y = 1 w obu nieskoriczonosciach (Rys. 8.5).

asymptota pozioma

..................................................

asymptota pionowa
z=1

Rysunek 8.5: Asymptoty funkcji f(z) = —*.

(b) f(x) = 22220743 Fynkeja ma asymptote pionowa z = 0. Bedziemy

272
szukali asymptot ukosnych.

fl) 2*—=22°+3 1 1 3 .h40 1

x 213 2 x 23 2’
1 =222 +3 x  ad—22%2+3 -2
f)—ga= Tt T :
2 2x 2 2x
—2$2+3 3 z—+o00
S N DI S N
222 +2x2

f ma wiec asymptote ukosng y = %x — 1 w obu nieskoniczonosciach (Rys.
8.6).

(c) Zbadajmy przebieg zmiennosci funkcji

e = 22

Naturalna dziedzina funkcji jest Dy = R\ {—1}, funkcja jest ciagta w kaz-
dym punkcie dziedziny i jest rozniczkowalna w kazdym punkcie z # 0. Prze-
dzialy ciaglosci to (—oo, —1) i (—1,+00), a przedzialy rézniczkowalnosci to
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20 4
16
12 1 asymptota pionowa
z=0
x/
8..
41 z = v/6 - minimum
\ asymptota ukosna
— z=2
—41 Y 2

Rysunek 8.6: Asymptoty funkeji z przyktadu (b).

(—o0,—1), (—1,0) oraz (0,+00). Funkcja nie jest ani okresowa ani parzy-
sta ani nieparzysta. Jedynym pierwiastkiem jest pierwiastek licznika, czyli
x = 0. f jest dodatnia dla x > —1, x # 0 i ujemna dla x < —1. Obliczmy
pochodna

B 2§x_%(1+x)—2x%

f'w) = (x4 1)2

B 225 21—!—1’_1
(x4 1)2 3

213 2
= _(Z-1).
3(a:+1)2(3: )

Pierwszy czynnik jest zawsze dodatni, wiec znak pochodnej zalezy tylko od
znaku (2 —1). Po latwych rachunkach otrzymujemy, ze pochodna jest do-
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datnia na przedziale (0,2) i ujemna na przedziatach (—oo, —1), (—1,0) oraz
(2, 4+00). Funkcja f rosnie na przedziale (0, 2), a maleje na pozostalych prze-
dziatach. Widzimy wiec, ze ma minimum w zerze (jest to punkt nier6znicz-
kowalnosci), i maksimum w 2. Widzimy , ze funkcja ma asymptote pionowa
x = —1, oraz pozioma w +oo y = 0. Rozstrzygniemy teraz wypuktos¢. W
tym celu policzymy druga pochodng.

z = 2 - maksimum

asymptota pionowa

r=-—1 \

\ asymptota pozioma
y=0 ;

z = 0 - minimum

Rysunek 8.7: Wykres funkcji z przyktadu (c).

—%x’%(x—i—l)—‘—lx’% %x’%(:c—l—l)2—2x§2(x+1)

CEnY: EEs)L
A S (@4 1) - Sas (e 1) +4ad
1

222 —8x—1
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Wyrazenie %x_3 jest zawsze dodatnie, a mianownik jest < O dla x < —1i

> 0dla x> —1. Z kolei licznik jest > 0 dla x ¢ (2~ 55,2+ 55) i < 0 dla
x € (2— \‘/—5,2%— \%) Zauwazmy jeszcze, ze —1 < 2 — \/ii < 0, a wiec funkcja
f(x) jest:

e wklesta na (—oo,—1), (2 — \%,O) oraz (0,2 + J5),

e wypukla na (—1,2 — \%) oraz (2 + \%7 +00),

e ma punkty przegiecia w 2 £ \%

Wiemy juz wszystko co chcieliémy, i mozemy naszkicowaé¢ wykres funkcji
(Rys. 8.7).

Dowodzenie nieréwnosci

Metody badanie funkcji mozna zastosowaé do dowodzenia nieréwnosci.

Przyktady: (a) Udowdnimy nieréwnosé¢ (1+x)? > 1+ px dla x > —1. Nie-
rownoéé taka udowodnilismy wezesniej dla wyktadnika p naturalnego. Obec-
nie udowodnimy jg dla dowolnego p > 1. Rozwazmy funkcje

flx) =142 —1—pz, z>-1.
Mamy
flla)=pl+a)™ —p.
Dlax>01+xz>1orazp—12>0 wiec (1+2)?"t > 1 czyli f/(x) > 0. Dla
r<01+x<1leczyli(1+2)P!<1,awiec f'(x) <0. Funkcja f maleje dla
x < 01 rosnie dla x > 0, a wiec ma w zerze swoja warto$¢ najmniejsza
f(z) = f(0) = 0.
Funkcja jest wiec zawsze > 0, czyli

(I1+x)P >1+pu.

(b) Dla > 0 mamy x — %3 < sin(z) < x. Prawa czeS$¢ nierownosci jest
jasna, i byta pokazana. Pokazemy lewa czes¢. Niech

3

f(x) =sin(x) — z + 5

Mamy f'(z) = cos(z) — 1+ %, f(0) =0, f"(z) = —sin(z) +x. f'(x) >0
dla z > 0, czyli f’ rosnie dla x > 0, a skoro f'(0) =0, to f'(z) > 0dlax > 0.
Sama funkcja wiec rosnie dla x > 0, a wiec

f(z)> f(0)=0, dlax>0.
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Wzér Taylora

Twierdzenie o warto$ci §redniej mozna zapisa¢ w postaci
f() = f(a)+ (b—a)f'(c), dla pewnego ¢ € (a,b).
Niech h = b — a, wtedy wzor przyjmuje postac
fla+h)=f(a)+hf(a+06h), dla pewnego 6 € (0, 1).

Twierdzenie o wartosci $redniej zapisane w tej postaci stanowi szczegdlny
przypadek nastepujacego twierdzenia.

Twierdzenie 8.15 (Wzor Taylora). Niech funkcja f bedzie rézniczkowalna
n-razy w przedziale (a — 6,a + 6), dla pewnego 6 > 0. Wtedy, dla dowolnego
h, |h| < ¢ istnieje 0 € (0,1) takie, ze

hn—l

o @+ Ry

Flat h) = f(@)+ & (@) + o fa) ot

-1

3

?r|?
] =

f®(a) + Ry,

iy
=)

gdzie

n

f@:fiﬂmm+em.
n!

Dowdd. Mamy dane h. Oznaczmy b = a+ h, i utwoérzmy nastepujace funkcje
pomocnicze

(b—=) (b—a)" ! s
pla) =fb) = flz) = =7 f @) = = W—D!ﬂ ()
o (b— )t &
=50 -3 O,
p(a) n

® spelnia zalozenia twierdzenia Rolle’a na przedziale o koricach a,b ([a, b
lub [b, a] w zaleznosci od znaku h).

B(o) = pla) ~ AU (b= a)" =0, () = ¢) -0 =0

Istnieje wiec punkt ¢ wewnatrz przedzialu o koncach a, b, taki, ze

P'(c) = 0.
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Punkt ¢ mozemy zapisaé jako a + 60 (b — a) = a + 6 h dla pewnego 6 € (0,1).
Mamy wiec

(at0h) =g (atbh) — (b@_(cg)n n(h—0h)" 1 (=1)=0.  (8.10)

Musimy policzy¢ pochodng ¢’ (z):

) = —1'(w) - (k_ b2 o @))/
) - k_ (L5 e >
w5 O ey S5 D ey
= —f/(z) + ['(x) <b(_ fﬂf)f) f0(x)
_ (b(; f)(l’;” ™) ()

Wstawiajac to do (8.10) otrzymujemy

_(h=fp) (_ne_h)l(;l) f™(a+6h)+ »(a) —n(h—0h)"" =0,

czyli

o(a) = (b ;!“)n f™(a+6h)= % f™(a+6h).

Pozostaje zauwazy¢, ze p(a) jest doktadnie reszta R,:

n-1l,p
F6) =3 % F9@) + pla)
k=0
h h? prt hn
= f(a) + ﬂf’( )+ Ef”(a) +. 4+ O " Y(a) + Hf(")(a+9h).

]
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Rysunek 8.8: Wielomiany Taylora stopnia n funkcji sin(z).

Uwagi: (i) R, to tak zwana reszta. Wzor Taylora to wzor na przyblizenie
funkcji f wielomianem, w otoczeniu punktu a, przy czym R, jest bledem
tego przyblizenia.

(ii) Dokladnosé przyblizenia zalezy od wielkosci R,, w otoczeniu punktu a
(R, zalezy od h). Im wiecej pochodnych funkcja f ma w otoczeniu a (czyli
im f jest ,gladsza” w otoczeniu a) tym doktadno$¢ przyblizenia jest lepsza.

(iii) Reszte R, we wzorze Taylora mozna zapisa¢ w wielu réznych postaciach
Posta¢ podana w powyzszym twierdzeniu to tak zwana reszta w postaci La-
grange’a. Rozne postaci tej samej reszty przydaja sie, gdyz w konkretnych
przypadkach rézne postaci moga dac sie latwiej szacowac.

(iv) Zauwazmy, ze jezeli sup{|f™ (x)|;z € (a — 6,a + §),n € N} istnieje, to
dla dowolnego h, |h| < § mamy R, — 0 gdy n — oo, czyli

0 k
(a+ h) Z k— (8.11)
k=

Jest to tak zwany szereg Taylora funkcji f w punkcie a. Pamietajmy, ze
szereg Taylora funkcji f nie musi by¢ zbiezny, a nawet jezeli jest zbiezny, to

moze sie zdarzy¢, ze
flath)#Y 7 fP(a).
k=0
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Za kazdym razem musimy sprawdzi¢ zbiezno$¢ reszt IR, do zera. Dopiero
ta zbiezno$¢ gwarantuje zbieznos¢ szeregu Taylora i wzor (8.11). Jezeli a =
0 to otrzymujemy szczegolny przypadek szeregu Taylora, tak zwany szereg

Maclaurina
o0

f) =" 2 r0)

n=0
Przyklady: (a) f(z) = sin(z), a = 0. Wiemy, ze

F™(0) = { (—1)"2"  n — nieparzyste
0 n — parzyste.

Wiemy takze, ze |f™ ()| < 1 dla wszystkich x,n. Mamy wiec R, — 0 i
otrzymujemy rozwiniecie funkeji sin(z) w szereg Maclaurina

. o0 w1 " o0 . x2n+1
sin(e) = Z (=1) —!:Z(—U @2n+ 1)
7'1:0 n=0
n-niepar
. 1’3 .1‘5 $7
I T

n 1:2 ZL‘S

e :Z—!:1+x+§+§+....

(c) f(z) =log(l+ z), a = 0. Obliczmy pochodne

! _ 1 1" — (_ 1
" _ 1 4 ) = (— . —1

Mamy wiec

Musimy oszacowaé reszte

B (-1
nl (L= R

|R,| <

SRS
7 N\
—_
=
=
N———
3
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czyli dla |h| < 3 mamy

Al
<1=|R, 0.
T S =

Mamy wiec, dla |z| <1

e z" 2 23 2t
n=1

Uwaga: Uzywajac dokladniejszych oszacowan mozna pokazaé, ze powyzszy
wzor jest prawdziwy dla x € (—1,1].

Przyblizone obliczanie wartosci funkcji

Wykorzystamy wzor Taylora do obliczent przyblizonych
medskip
(a) Obliczymy przyblizona wartosé liczby e

o1 ¢ 3
e:ZH+m:>e: o i blad SH'
k=0

Przy okazji: e nie jest liczba wymierna. Zatozmy, ze e jest liczbg wymierna,
ie=" dlam,n € N. Wtedy

m_gprelyli L @
n 21 3! n! " (n+1)!
m 1 1 e’
(n 2! n!) S
ef

Zauwazmy, ze lewa strona jest liczbg catkowity, czyli tez musi by¢ cal-

n+1
kowita. To jest niemozliwe, bo 1 < €’ < 3, czyli musieliby$émy mie¢

1 - e? - 3
n+1 n4+1 n+1

Jedyna mozliwos¢ to przypadek n = 1, czyli e musialoby by¢ liczba naturalna,
a tatwo sprawdzi¢, ze nie jest.

(b) Obliczymy przyblizona wartosé¢ v/9. Niech f(z) = r3. Zauwazmy, ze
f(9) = f(8+1),a f(8) = 2. Policzmy kilka pochodnych

Wl
s
I
—~
8
~—
I
—~
I
—_
N~—

fa) =gt



125 _s 1258 _u
" _ - 2Y. -3 (4) —(—1=Z2Z2Z2 4%
Latwo sie domysle¢, ze
125 3n—4 3n—1
M(g) = (=)™ =22
£ ) = (S
W takim razie
2-5...(3n—14 n—1 2-5...3n—14
f(n)(S) _ (_l)n—i-l ( n ) 8—3T _ (_1)n+1 ( n ) 9
3n 3n 8n
Wstawiajac to do wzoru Taylora, z n = 3 otrzymujemy
"
8
Vo=f@B8+1) :f(8)+f’(8)+—f2( ) 1 R,
1 2
=24+ —=——"""——+R
"o T23 3
- 1 1 n
T 12 288 Y
Mozemy oszacowac btad przyblizenia
2.5 1 10 1 10
| Rs| < 5 < 160 of — 169950
313-3-3(84-0)s 16285  162-256
10 10
= 0,00025.

= 11472 S 10000 _ 4000
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Rozdzial 9
Calki

Funkcja pierwotna

Definicja 9.1. Funkcje F nazywamy funkcjq pierwotng funkcjyi f, jezeli F
jest rozniczkowalna i F'(x) = f(x) dla kazdego x € Dy.

Uwagi: (i) Funkcja f moze nie mieé¢ funkcji pierwotnej. Jezeli ma funkcje
pierwotng, to ma ich nieskoniczenie wiele:

F(z) = f(x) = (F(z)+¢) = F(z) = f(2).
Jezeli F' jest funkcja pierwotng funkcji f, to F'4c takze jest funkcja pierwotng

f, dla dowolnej stalej c.

(ii) Jezeli F' i G sa funkcjami pierwotnymi tej samej funkcji f, to (F —
G)(z) = F'(z) — G'(z) = 0, dla kazdego * € D;. Na kazdym przedziale
zawartym w dziedzinie funkcji f funkcje pierwotne F' i G roznig sie wiec o
jakas stata. Stala ta moze by¢ r6zna na réznych przedziatach.

Calka nieoznaczona

Definicja 9.2. Jezeli funkcja f ma funkcje pierwotng, to mowimy, Ze jest
catkowalna. Dowolng funkcje pierwotng funkcji catkowalney f nazywamy jej
catkqg nieoznaczong, 1 oznaczamy

/ f(z) da.

Okreslenie ,catka nieoznaczona” odnosi sie wiec do calej rodziny funkcji,
ktore na poszczegolnych przedziatach Dy roéznia si¢ o stata. Czesto podkre-
Slamy to, dodajac do otrzymanego wzoru na funkcje pierwotna stala c. W
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oznaczeniu calki [ ...dx stanowi kompletny symbol, ktory zawsze powinien
wystepowaé razem. dx podkresla zmienng, wzgledem ktorej catka jest funk-
cja pierwotna. W przypadku, jezeli funkcja ,podcatkowa” zawiera utamek,
to czton dx czesto dopisujemy do licznika, na przyktad

1
/—dxz d_x
x x

Przyklady:
Odx = c,
adr = ax + ¢, dla dowolnej stalej a,

1
x“dx:a—_i_lx““—i-c a#—1, >0,

cosxdr =sinz + ¢,

— e — S~

(e) sinxdr = —cosx + ¢,
dx
) / cos?x tans +c,

(stala ¢ moze by¢ rézna na roznych przedziatach),

d
(9) /_x =log|z|+ ¢, (podobna uwaga odnosnie stalej),
T

(h) /exdxze””—l-c.

Dowod kazdego z powyzszych wzorow sprowadza sie do obliczenia pochodnej
prawej strony, i poréwnania z funkcja podcatkowa. Zwro¢my uwage na state
¢ dopisane po prawej stronie. Nie sa one bardzo wazne (wiadomo, ze dodanie
stalej nie zmienia pochodnej), ale dobrze jest o nich pamietaé¢. Podkreslmy, ze
jezeli dziedzina funkcji podcatkowej sktada sie z wiecej niz jednego przedziatu,
to zapis +c we wzorze na catke nieoznaczong rozumiemy jako stala, ktora
moze by¢ rézna na réznych przedziatach.

Ze wzoréw na pochodne wynikajg nastepujace wzory na catki nieozna-
czone:

@ U= [ f@yde [ g
(b) /af(x) dx =a /f(x) dr, a - dowolna stala
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©  [rw f@g(o)— [ @)y (@) do

(tak zwany wzor na catkowanie przez czesci)
@ [ep@r@ds= [gu)dy preycaym g = fa),
(tak zwany wzor na catkowanie przez podstawienie).

Przyktady: (a) Calka z wielomianu jest wielomianem, stopnia o jeden wiek-

szego:

/(anm” +ap_ 12" b+ ag) dr =

an n-1 a
= gt g Dl p gt
n+1 n 2

(b) Skorzystamy ze wzoru na catkowanie przez czesci:

/log:cd:c = /(a:)’loga:da:

=xlogx — /x(logm)’dm

1
:xlogx—/x-—dw
x

—xlogx—/l-dx

=uzxlogx —x +ec.
Sprawdzamy: (z logz —x +¢) =logx + x - i —1=loguz.
(c) skorzystamy ze wzoru na catkowanie przez podstawienie:

1 1
/1f:p2d /1+ 5 - 2vdx  niech f(x )=1+2"

=2 /7

—§/y@ flx)=y

—_11 ]
0 +c

1
2510g|1—|—x2|+c

113



=logV1+2x2+ec.

Zauwazmy, ze (log|z|)’ = 1. Dla x > 0 wzor ten juz znamy, a dla z < 0

mamy |z| = —z, wiec

1 -1

(og o) = (0g(~2)) = =+ (=)' = = = 1.

W tym przyktadzie 1 + 22 > 0, wiec wartoé¢ bezwzgledna nic nie zmienia.
Sprawdi@y nasza catke: (logv1+ 22) = \/1;2 3 \/liaﬂ 2x = 157, a wige
zgadza sie.

(d) Jeszcze raz wzor na catkowanie przez podstawienie

/tanxdmz/smmdx
CcoS T
:_/—sinxdx
cos T
[ @i f@
=— | — f(z)dx T) = coszx
f(x)

1
:—/—dy Y = CcosT
Y

= —log|y|+ ¢
= —log|cosz| + c.

(e) Nastepujacg calke otrzymujemy natychmiast, jezeli pamietamy wzory na
rozniczkowanie funkcji cyklometrycznych:

1 .
/— dx = arcsin(x) + ¢, lz] < 1.
V1—2?
Jezeli nie pamietamy odpowiednich wzoréw to mozemy zastosowaé wzér na
catkowanie przez podstawienie:

1 1 / _
| == | =i 2= 5w

:/\/%m?(t) cos(t)dt, f(t) =sin(t), te€(—Z,T)
1
:/cos(t) cos(t) dt

- [1a
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Rysunek 9.1: Wykres funkcji f(z) = — log | cos z|.

=t+c
SkorzystaliSmy z tego, ze dlat € (—3, Z) mamy cos(t) > 0a wiec /1 — sin®(t) =
cos(t). Skoro x = sin(t), to t = arcsin(x), i otrzymujemy ten sam wzor.

(f) Calke z funkcji sin®(z) policzyny na dwa sposoby. Mozemy skorzystaé z
tozsamosci trygonometryczne;j

1-— 2
cos(2r) = 1 — 2sin’*(z) = sin®(z) = w.
Mamy wtedy
1
/sin2(x) dx = 5 /(1 — cos(2x)) dx
1 sin(2x)
T sin(2z)
2 4

Mozemy tez skorzysta¢ ze wzoru na catkowanie przez czesci. Catkujac przez
czesci nie otrzymamy catki tatwiejszej do policzenia, ale otrzymamy réwna-
nie, ktoére nastepnie rozwiazemy.

/ sin?(z) dz = / sin(z) - sin(z) da
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_ / sin(z) - (— cos(x))' da
= —sin(z) cos(x) + [ (sin(z))’ cos(z) dx
= —sin(z) cos(x) + [ cos(z) - cos(x) dx

= —sin(z) cos(z) + [ cos®(z)dx

—— — —

= —sin(z) cos(z) + [ (1 —sin®(z)) dzx

= —sin(z) cos(x) + x — /sin2(a:) dr.

To, co otrzymalismy jest réwnaniem na nasza szukang catke. Przenoszac
calke z prawej strony na lewg i dzielagc przez 2 otrzymujemy

. 9 _ —sin(x) cos(z) +
/sm (x)de = 5 :

Calkowalnos$é¢ funkcji

Calkowanie funkcji wymiernych

Funkcje wymierne to funkcje postaci f = g, gdzie P i () sa wielomianami.
Utamki proste to szczeg6lny rodzaj funkeji wymiernych, postaci

A Bx+C
(. —a)"’ (22 + px + q)"’

n=12,..., (9.1)

gdzie A, B,C,a,p,q to dowolne stale, a wyrazenie kwadratowe 2% + px + ¢
nie ma pierwiastka, czyli p> — 4¢ < 0. Okazuje sie, ze kazda funkcje wy-
mierna mozna przedstawi¢ jako sume utamkow prostych plus, ewentualnie,
wielomian. Z drugiej strony istnieja wzory na calki nieoznaczone utamkow
prostych. W ten sposob otrzymujemy procedure na obliczanie catek nieozna-
czonych funkcji wymiernych.

Twierdzenie 9.3. Kazdg funkcje wymierng mozna przedstawié jako sume
wielomianu 1 utamkow prostych.

Procedura rozkltadu: Zamiast dowodu naszkicujemy procedure rozkladu
funkcji. Szkic ten mozna uscisli¢ i zrobié¢ z niego dowdd, ale my pozostaniemy
przy szkicu. Majac konkretnag funkcje f = g najpierw dzielimy wielomian
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P przez Q) ,z reszta”, to znaczy znajdujemy wielomiany W (iloraz) oraz R
(reszta) takie, ze

W) Ol . P@) _ ey, @)
P(r) = W(z) - Q(x) + R(x), = O(x) W )+Q<x)7

przy czym stopien reszty R jest mniejszy od stopnia ). Robimy to uzywajac

zwyklej procedury ,dlugiego dzielenia”, czy ,pisemnego dzielenia”, doktadnie
tak samo, jak dzielac liczby naturalne.

Przyklady: (a) Z=22=1 — ( — 2) 4 &3

z2—1 z2—1

(b) Fs = o + S

Po wydzieleniu czesci wielomianowej pozostaje nam ulamek £, w ktorym
licznik ma stopient nizszy od mianownika. W nastepnym kroku przeprowa-
dzamy faktoryzacje mianownika, czyli rozktad mianownika na czynniki nie-
rozktadalne. Czynnikami nierozktadalnymi sa wielomiany liniowe (x—a) oraz
kwadratowe (2® + px + ¢), nie posiadajace rzeczywistych pierwiastkow, czyli
takie, dla ktorych p? — 4¢ < 0. Przypomnijmy, ze w przypadku wielomia-
noéow o wspotezynnikach zespolonych czynnikami nierozktadalnymi sg jedynie
wielomiany liniowe. Kazdy wielomian stopnia wyzszego niz 1 mozna dalej
rozktadaé na czynniki. W przypadku wielomianéw o wspotczynnikach rzeczy-
wistych moga istnie¢ czynniki nierozktadalne (czyli, zgodnie z twierdzeniem
Bezout, nie posiadajace pierwiastkow) stopnia wyzszego niz 1, ale okazuje
sie, ze takie czynniki nierozkladalne nie mogag mie¢ stopnia wyzszego niz 2.
Przeprowadzamy wiec rozklad mianownika () na czynniki nierozkladalne, i
w efekcie przedstawiamy @) jako iloczyn wyrazen postaci

(x—a)" oraz (2> +px+q)" (9.2)

Rozklad mianownika na czynniki nierozktadalne to, w praktyce, gtéwny pro-
blem w catkowaniu funkcji wymiernych. W zadaniach ktore bedziemy robié¢
albo faktoryzacja bedzie bardziej lub mniej oczywista, albo bedzie jawnie po-
dana. W przyktadach rozpatrywanych jako ilustracja procedury faktoryzacja
jest prosta: > —1 = (x — 1)(x + 1) oraz 2° — 222 + 32 — 6 = (v — 2)(2* + 3).
Jezeli wielomian ma wspotczynniki catkowite, i wspotezynnik przy wyrazie o
najwyzszej potedze réowny 1, to w pierwszej kolejnosci szukamy pierwiastkow
sposrod dzielnikow wyrazu wolnego. Majac pierwiastek wydzielamy odpo-
wiedni czynnik liniowy, i otrzymujemy wielomian nizszego stopnia, ktory
,obrabiamy” do skutku. Jezeli wielomian nie ma pierwiastkéw musimy sobie
radzi¢ inaczej. Na przyklad rozwazmy wielomian Q(z) = 2% + 1. Wiemy,
ze rozklada sie na iloczyn dwoch wielomianéow kwadratowych, przy czym
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mozemy tak dobra¢ state, aby ich wyrazy wiodace mialy wspoétczynniki 1.
Piszemy wiec najogdlniejsza postaé takiego rozktadu, a nastepnie mnozymy
czynniki:

' +1 = (2 +ax+b) (2’ +cr+d) = 2*+(a+c) 2’ +(b+d+ac)z®+(ad+be)z+bd.

Poréwnujac wspotczynniki po obu stronach otrzymujemy uktad rownan, ktory
bedzie mozna rozwiaza¢. W naszym przypadku tatwo znajdujemy rozwigza-
nie:

'+ 1= (2 = V2 +1)- (2 + V2 + 1),

Majac rozktad mianownika na czynniki nierozktadalne postaci (9.2) mo-
zemy napisaé¢ prototyp rozkltadu funkcji na utamki proste. W pierwszym
kroku wypisujemy wszystkie utamki proste postaci (9.1) ktore znajda sie w
rozktadzie, a w nastepnym kroku ustalimy stale w licznikach. Dla kazdego
czynnika postaci (z — a)” w rozkladzie mianownika wypisujemy n utamkow

prostych
Al + A2 + + L
(x—a) (x—a)? (x —a)"’

natomiast dla kazdego czynnika (z* + px + ¢)" w rozkladzie mianownika
wypisujemy n utamkow

le—l—Cl BQZ"*’CQ Bn$+Cn
2 2 Tt T3 n'
(@2 +pr+q) (224pr+q) (2 4+ pr+q)

Zauwazmy, ze wypisujac powyzszy rozklad wypisaliémy tacznie doktadnie
tyle nieoznaczonych (na razie) statych A;, B;, C; jaki jest stopiei mianownika.
Wypiszmy nasz rozktad dla rozwazanych przyktadow:

(a):
r—3 Tz —3 A B

xz—lz(m—l)(x+1) :10—1—|Fac—|—17

(b):
—322 4+ 6x — 35 —32*+6x—-35 A Bz +C

3 —2124+32 -6 (v—2)(22+3) —2 2 +3

Na ostatnim etapie rozkladu wyznaczamy state w licznikach utamkow
prostych. W tym celu sume wszystkich wymaganych utamkéw prostych spro-
wadzamy do wspolnego mianownika, ktérym jest wielomian Q. W liczniku
otrzymamy wielomian stopnia nizszego niz mianownik @ (gdyz wszystkie
utamki proste maja liczniki stopnia nizszego niz mianowniki). Wielomian
ten musi by¢ identyczny z wielomianem R, ktory jest licznikiem rozkladanej
funkcji wymiernej. Oba wielomiany musza wiec mie¢ te same wspolczynniki.
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Daje to dokladnie n réwnan, gdyz wielomiany stopnia n — 1 maja n wspol-
czynnikéw. Mamy wiec n rownan liniowych, i n niewiadomych, i okazuje
sie, ze uktad ten zawsze mozna rozwigzac¢. Nie bedziemy tego dowodzié, ale
zobaczmy jak to dziata na przyktadach.
(a):

r—3 A N B (A+B)r+(A-DB)

22—1 -1 x+1  (z—1(x+1) ~’
czyli A+ B=1oraz A— B = —3. Otrzymujemy A =—-11 B =2, a wiecw
koticu

v-3 _ -1 2
2—-1 z—1 z+1

(b):

—3x? + 62 — 35 A Bx+C
23— 212+ 37— 6 m—2+ 2+ 3
A(z*+3) + (Bx + C)(x — 2)
(x —2)(x%2+3)
(A+ B)z? 4+ (—2B + C)z + (3A —2C)
(x —2)(z2 + 3) ’
czyli A+ B = -3, —2B + C' = 6 oraz 3A — 2C = —35. Rozwiazujac ten
uktad otrzymujemy A = -5, B=21i C = 10, i w konicu

-3z + 62 — 35 ) 2z + 10

x3—2x2+3x—6_a}—2+ x2+3°

Wyznaczajac state w rozktadzie na utamki proste zakonczyliSmy procedure
rozktadu. Jedyny punkt ktéry wymaga usciSlenia, zeby otrzymaé dowdd
Twierdzenia 9.3 to fakt, ze state zawsze da sie wyznaczy¢, innymi stowy, ze
powstaly uktad n rownan liniowych z n niewiadomymi jest taki, ze zawsze
ma rozwigzanie. Zostawimy ten punkt jako zadanie dla zainteresowanego
czytelnika.

Calkowanie utamkoéw prostych

Pierwszy rodzaj utamkoéw prostych daje sie tatwo catkowa¢. Mamy nastepu-

jace wzory:
dx
=log |z — a| +¢,
—a

/ dx -1 1 n o1
= . c, n )
(x—a)» n—-1 (z—a)! ’
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Utamek prosty drugiego rodzaju roztozymy na dwa inne:

Bx+C :E‘ 2 +p . D 7 D:C—pr.
(@2 +pr+qn 2 (2+pr+qn  (22+pr+q)" 2
(9.3)
Pierwszy z ulamkéw po prawej stronie catkujemy przez podstawienie ¢ =
22 + pr + q,

r= [ —= -1
2 n tn :n > 1.
22+ px +q) (n—l)(x2+px—|—q)"*1+c n

/ 2+ p ] i log(2? + pr +q) + ¢ n=1,
(

Zauwazmy jeszcze, ze poniewaz wyrazenie z2 + pr + ¢ nie ma pierwiastkow
rzeczywistych, to jest zawsze dodatnie, wiec warto$¢ bezwzgledna pod lo-
garytmem nie jest potrzebna. Pozostal jeszcze jeden rodzaj utamkéw do
scatkowania, to znaczy drugi ulamek po prawej stronie (9.3). Wykonamy
proste przeksztatcenie i podstawienie:

/(x2+Zi+Q)" :/ ((as+§)2 :i-x(q—lig))n ) ﬁ/(tzi—tl)n’

gdzie

x_i_g 2
= a:q—p—>0.

va 4

/ dt arctant +
——— = arctan &
241 ’

natomiast dla n > 1 wyprowadzimy wzor rekurencyjny. Niech £ > 0, wtedy,
catkujac przez czesci mamy

/wi—tl)k_(erl)‘k-t’dt
:/ (t2+t1>’“_/ e +27i)’“+1 o
~
SGEasd] <<t2i+1>1k+1 @+ >) "

t
- (t2—|—1)’9+2k/(t 2k/ 1)k+1°
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Gdy n = 1 mamy




Mamy wiec

dt t dt
s A e

czyli, dlan > 1

/ at t L 23 / dt
@+ 2n-1#+1)t 2n—-2 ) (2+1)"!
Mozemy teraz obliczy¢ caltki w obu rozwazanych przez nas przyktadach.

Przyklady: (a):

23 —22% -1 2 1
T T dr = —92 — d
/ x2—1 . /((x )+:1:+1 x—l) .

2

:%—2J;—{—210g]93+1]—log!$—1|+c~

/ xt— 223 — 35 d / 5 +2:C+1O d
T = x — x
3 —222+31x—6 x— 2 x2+3

72 21 10 dx
5 5log |z 2[—{—/33 +3d:z:+3 <%)2+1
2 L4
:x——510g|x—2|+10gx +3) + / xf
2 ENE
T

22
=" —5log|z — 2|+ log(z® + 3 +—arctan + c.
7 Sloale =2l logte" +8)+ arctn (72
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Rozdziat 10

Calka oznaczona

Calka oznaczona, intuicyjnie, mierzy ,wielko$¢ funkcji”, w podobny sposéb
jak pole mierzy wielko$¢ obszaru na plaszczyznie. Niech bedzie dana funkcja
f, nieujemna na odcinku [a, b] i rozwazmy obszar pod wykresem f. Bedziemy
chcieli jako$ policzy¢ pole tego obszaru. Bedziemy korzystali z wlasnosci pola
ktore sa intuicyjnie jasne, na przyklad, ze wickszy obszar ma wicksze pole.
Niech f(x) = z i rozwazamy obszar nad odcinkiem [0,a]. Obszar ten jest
trojkatem o wysokosci 1 podstawie réownych a. Pole wynosi wiec P = %a?.
Rozwazmy teraz obszar pod wykresem f(z) = 2%, nad tym samym odcinkiem
[0,a]. Zbudujemy wielokat wpisany w ten obszar, oraz wielokat opisany na
tym obszarze.

Rysunek 10.1: Obszar pod wykresem funkcji.

Pole obszaru musi by¢ liczbg pomiedzy polami wielokata mniejszego i
wiekszego. Niech n € N i podzielmy odcinek [0,a] na n odcinkow rownej
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dhugosci:

a a _a a a a
[0,a] = [o,n] U [n,2n} U---U[(n—2) ~(n—1) n] U [(n 1)n,a].
Nad kazdym z odcinkoéw podziatu [k ¢, (k+ 1) £] zbudujemy dwa prostokaty,
mniejszy o wysoko$ci f(%2) oraz wiekszy prostokat o wysokosci f (@)
Funkcja f jest rosnaca, wiec istotnie drugi prostokat jest wiekszy niz pierwszy.
Niech L, bedzie tacznym polem wszystkich mniejszych prostokatow, a U,
tacznym polem wszystkich wiekszych.

OB ORI OE
Un:nz_lf((k+1)a>g:§<(k+1)a>zg: ¢ (@)29

Kazdy z mniejszych prostokatow zawiera sie w obszarze pod wykresem, a wiec
takze wielokat bedacy ich suma, ktoérego pole jest réwne L,. Z kolei suma
wszystkich wiekszych prostokatoéow tworzy wielokat o polu U,, zawierajacy
obszar pod wykresem. Jezeli wiec oznaczymy przez P pole obszaru pod
wykresem, to dla kazdego n € N musimy mie¢

L, <P<U,.

Rysunek 10.2: Mniejszy wielokat i wiekszy wielokat.

Zauwazmy, ze L, i U, maja wspolng granice gdy n — oco. Skorzystamy

Ze WZoru

1)(2 1
12+22+32+‘”+m2:m(m+ ()j(m"‘ )’

123



ktory mozna udowodni¢ indukcyjnie. Mamy wiec

e
Il
—

a
n

Podobnie,

n—oo 1
Up=Ln+a? 2 12% 32,
n 3

Widzimy wiec, ze pole obszaru pod wykresem musi by¢ réwne P = a’

?.

Sumy dolne i sumy goérne

Niech f bedzie funkcja ograniczong na przedziale [a, b], i oznaczmy przez m
i M infimum i supremum wartosci f, czyli m < f(x) < M dla x € [a,b].
Niech P bedzie dowolnym podzialem przedziatu [a,b] na pododcinki, czyli
P={a=xy<xzy < <xp_1 <z, =0b} (podzial odcinka na pododcinki
utozsamiamy ze zbiorem punktéow tego podziatu),

[a,b] = [a, z1] U [z1, 22] U U [25-0, Tnoa] U 21, 0].
Na kazdym malym odcinku [z;, z;41], dla i = 0,1,...,n — 1, wprowadzmy
oznaczenia
m; = inf{f(r); = € [z, zi11]},
M; = sup{f(z); = € [x;, xi11]}.

Mamy wiec m < m; < M; < M.
Majac dany podzial P napiszmy nastepujace sumy

n—1 n—1
L(P, f) =Y mi(xis — ), UPf) =3 M(zi41 — ).
i=0 i=0

L(P, f) nazywamy sumg dolna, a U(P, f) suma gorna podzialu P. Za-
uwazmy, ze sumy te zaleza od funkeji f, przedziatu [a,b], oraz podzialu P
tego przedziatu. Zauwazmy tez ze, niezaleznie od podzialu P, mamy

m-(b—a) < L(P,f) <UP,f) <M-(b—a). (10.1)
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m; 4

T; Tit1

Rysunek 10.3: m; oraz M.

Dla ustalonej funkcji f i przedziatu [a,b] zbiory wszystkich mozliwych sum
gornych i sum dolnych sa wiec ograniczone. Poréwnujac to z poprzednim
przyktadem w ktorym obliczalismy pole pod wykresem widzimy, ze jezeli
f jest nieujemna, to pole pod wykresem jest liczbg wieksza lub réowna od
kazdej sumy dolnej i mniejsza lub rowna od kazdej sumy gornej. Catke dolng
z funkcji f na przedziale [a, b] definiujemy jako

/ f(z)dx = sup{L(P, f); P - podzial [a,b]},

a catke gérna jako

/ f(z)dx = inf{U(P, f); P - podzial [a,b]}.

Calki gorna i dolna nie zalezg wiec od podziatu, a jedynie od funkcji f i
przedziatu [a, b].

Definicja 10.1. Jezeli catka dolna i catka gorna funkcji f sq rowne, to mo-
wimy, ze funkcja jest catkowalna na [a,b] w sensie Riemanna, a wspdlng war-
tosé catki gornej i dolnej nazywamy catkq Riemanna f na przedziale |a,b] i

oznaczamy
b

Uwagi: (i) Zauwazmy, (10.1), ze dla dowolnego podziatu P mamy

n—1 n—1
L(Pvf) :Zmi (xz'—l-l_xi) >m (Iz’-s-l—l’i):m(b—a),
1=0 =0



n—1 n—1
U, f) = ZMz‘(%H —1;) < MZ(%’H —x;) = M(b—a).
=0 i=0
Calka, jezeli istnieje, spelnia wiec
b
m(b—a) < / flz)dx < M(b— a). (10.2)

(i) Przypomnijmy, ze definicja, ktora podalismy wymaga, aby funkcja f byla

ograniczona, oraz aby a < b. Pdézniej wprowadzimy odpowiednie oznaczenia,
aby granice calkowania a i b mogty byé¢ dowolnymi liczbami, oraz opiszemy
w jaki sposéb mozna, czasami, catkowac¢ funkcje nieograniczone. Takie catki
z funkcji nieograniczonych bedziemy nazywac catkami niewtasciwymi.

(iii) Funkcja moze nie by¢ catkowalna. Niech f bedzie dana wzorem

B 1 12zeqQ,
f(x)—{ 0 :2¢Q.

Wtedy, dla kazdego podziatu P i dla kazdego ¢ mamy m; = 01 M; = 1, a
wiec zawsze L(P, f) =0, U(P, f) = (b—a), czyli

/Lbf(a:)dmzo, i Zf(:c)dx:b—a.

(iv) Calka Riemanna jest §cisle zwigzana z pojeciem pola. Jezeli f jest nie-

ujemna, to calka jest rowna polu pod wykresem, a jezeli f jest niedodatnia,
to caltka jest réwna polu nad wykresem, pod osiag OX, ze znakiem minus.

(v) Calke Riemanna bedziemy tez nazywac calka oznaczona. W literaturze
mozemy spotkac tez inne konstrukcje catki oznaczonej, ale my zajmujemy sie
tylko powyzsza konstrukcja. Naszym celem obecnie bedzie udowodnienie, ze
funkcje ciagte sa catkowalne w sensie Riemanna. W tym celu udowodnimy
kilka prostych twierdzen.

Twierdzenie 10.2. Catka dolna jest mniejsza lub rowna calce gornes:

ﬁf(ac) dxleff(a:) dx

Dowod. Mamy pokazaé, ze kazda suma dolna jest mniejsza lub réwna od
kazdej sumy gornej. Latwo zauwazy¢, ze suma dolna jest mniejsza lub réwna
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od sumy gornej opartej na tym samym podziale (10.1). Niech wiec L(FPy, f)
bedzie suma dolng zwiazana z podzialem Pi, a U(Ps, f) bedzie suma gorna
zwiazang z podzialem P,. Niech P* bedzie wspdélnym rozdrobnieniem po-
dzialow P i P, czyli

P* - P1 U Pz.

Oznaczmy punkty poszczegblnych podzialow nastepujaco:Py = {x1,..., 2.},
Py = {yy,...,yr} oraz P* = {z1,...,2n}. Z definicjiP* wynika, ze kazdy
punkt x; i kazdy punkt y; sa takze elementami P*. Zauwazmy, ze w zwigzku z
tym kazdy przedzial [x;, x;11] podziatu P i kazdy przedzial [y;, y;4+1] podziatu
P5 sa suma pewnych przedziatow podzialu P*. Wynika stad, ze

L(P, f) S L(P*, f) SUP", f) < U(P, f). (10.3)

Dwie skrajne nieréwno$ci wynikaja z tego, ze P* jest rozdrobnieniem P i P,
natomiast nieré6wnos$¢ srodkowa to obserwacja ktora zrobiliSmy wczesniej, ze
suma dolna jest mniejsza lub réwna sumie goérnej, zbudowanej na tym samym
podziale (10.1). O

Mamy nastepujacy wniosek:
Whniosek 10.3. Jezeli dla kazdego € > 0 istnieje podziat P taki, ze
U(Paf)_L(Puf)<E7 (104)

to funkcja f jest catkowalna, oraz dla takiego podziatu P zachodzq oszacowa-
nia

b
(NRf)—e</mﬂ@dx<LU1ﬁ+e. (10.5)

Dowdd. 7 definicji catek dolnej i gornej mamy, dla dowolnego podziatu P

/ f() d — / f(x)dz < U(P,f) — L(P, f).

Jezeli wiec spelniony jest warunek (10.4),

/f M—/f )dz < €.

Skoro jest to spetnione dla kazdego € > 0, i skoro réznica catki gérnej i dolnej
jest nieujemna, to musi by¢ réwna zeru. Funkcja f jest wiec catkowalna. Z
drugiej strony

/ flz)dx > L(P, f) > U(P, f) — €,

i podobnie dla drugiej nier6wnosci (10.5). O
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Mamy nastepujace zasadnicze twierdzenie:

Twierdzenie 10.4. Jezeli funkcja [ jest ciggla na |a,b], to jest calkowalna
w sensie Riemanna na |a,b)].

Dowdd. Pokazemy najpierw, ze f spelnia nastepujacy warunek:
Ve>0 306>0 Va,y l[z—yl<d=|f(z)— fly)] <e (10.6)

Zauwazmy, ze powyzszy warunek jest silniejszy niz ciggtosé funkcji w kazdym
punkcie. W przypadku ciaglosci w kazdym punkcie stala ¢ dobieramy do
zadanego € i dla ustalonego z. Natomiast w powyzszym warunku (10.6)
stata ¢ zalezy tylko od zadanego e, i jest dobrana wspoélnie dla wszystkich
punktow x dziedziny. Funkcje spetniajaca warunek (10.6) nazywamy wiec
czasem ,jednostajnie ciagly’. Teraz pokazemy wiec, ze funkcja ciggla na
przedziale [a,b] (zawierajacym korice) spelnia (10.6), a wiec jest jednostajnie
ciggta.

Rysunek 10.4: Funkcja ciaggta, ale nie jednostajnie ciagta.

Zeby podkresli¢ roznice pomiedzy ciagloscia a jednostajna ciagloscia roz-
wazmy funkcje f(x) = 1 na przedziale (0,1]. Wiemy, ze funkcja ta jest ciagla
na przedziale (0, 1], ale nie jest jednostajnie ciagta, czyli nie spelnia warunku
(10.6). Latwo to zauwazyé. Wezmy dowolne 6 > 0, dowolne n € N, n > 4 i

niech z = 2 oraz y =z + 2. Wtedy |z —y| = §/2 < 4, ale

I n I n 1 2 >n
y 0 %—l—g_é n+ 2 25’
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gdyz dla n > 4 mamy ni“ < % Widzimy wiec, ze niezaleznie od  rdznica

|f(x) — f(y)] moze by¢ dowolnie duza, pomimo, ze |x — y| < 6. Widzimy
wiec, ze funkcja ciggta w kazdym punkcie swojej dziedziny moze nie by¢
jednostajnie ciagta. Wréémy do naszej sytuacji, czyli niech funkcja f bedzie
ciagla na przedziale [a, b]. Dowod przeprowadzimy nie wprost, czyli zatoézmy,
ze f nie jest jednostajnie ciagla, to znaczy warunek (10.6) nie jest spetniony,
czyli

de>0 V>0 FJz,yc€lad], [x—yl<dA|f(z)— fly)| > €.

Bedziemy stosowali powyzszy warunek dla 6 = %, n=1,2,.... Dla kazdego
n otrzymujemy wiec pare liczb z,,,y, € [a,b] spemiajacych |z, — y,| < I,
oraz |f(x,)— f(yn)| > €o.-Wiemy, ze skoro ciag {z,} C [a,b] to mozna wybra¢
podciag {z,, } zbiezny do pewnego z € [a,b]. Zauwazmy, ze wtedy podciag
{Yn, } tez musi by¢ zbiezny do zn:
1
xnk—n—k<ynk <:cnk—|—n—k

W takim razie, z ciagtosci f mamy f(z,,) = f(2x) oraz f(yn,) = f(Te0)-
W takim razie f(z,,) — f(yn,) — 0, a wiec mamy sprzecznos¢ z warunkiem
|f(zn,.) — f(Yn,,)| = €0 > 0. Tym samym udowodniliémy, ze f spelnia (10.6).

Catkowalno$é¢ bedziemy chcieli pokazaé¢ korzystajac z Wniosku 10.3. Niech
wiec € > 0 bedzie dowolne, i niech 6 > 0 bedzie liczba dana przez (10.6), ale

dla € = 3=. Niech n € N bedzie dane wzorem n = [bTT“] + 1. Podzielmy

przedzial [a,b] na n rownych odcinkéw punktami podziatu

P:{xi:a%—(b—a)i; i:O,l,...,n}.

n
Zauwazmy, ze dtugos$¢ kazdego odcinka podziatu jest mniejsza niz 9, @ <
0, gdyz n > @. Jezeli wige x,y € [z;,xi0q], to |z —y| <06, gdyzixiy

naleza do tego samego przedzialika podziatu. Skoro tak, to |f(z)— f(y)| < €.
Funkcja f jest ciagta na przedziale [x;, z;11], a wiec jej kresy M; oraz m; sa
przyjete w jakich$ punktach z i y, a wiec kresy tez musza spetnia¢ M; —m; <

e = (bfa). Wynika z tego, ze
n—1 n—1
UP,f) = L(P,f) =Y Mi(win —w:) = Y mi(zigs—x:)  (10.7)
i=0 i=0

[
|
Q
E
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b—a €

< 'n

n b—a
= €.

Poniewaz € byto dowolne, to z Wniosku 10.3 otrzymujemy, ze f jest catko-

walna. O

Uwaga: Powyzszy dowdéd mozna troche wzmocnié, i pokazaé, ze jezeli f ma
skoriczenie wiele punktow niecigglosci w [a, b] to tez jest catkowalna.

Sumy Riemanna

Zalozmy, ze mamy funkcje f na przedziale [a,b], podzial tego przedzialu
P={a=20 <z <29 < -+ <y = b}, oraz niech w kazdym przedziale
podzialu wybrany bedzie punkt ¢;:

tie[xi7xi+1]7 1=0,1,...,n—1.

Utworzmy sume
n—1
i=0

Sume taka nazywamy suma Riemanna. Zalezy ona od konkretnego podziatu,
i od wyboru punktow t¢;. Zauwazmy, ze zawsze zachodzi

L(P,f) < R<U(P,f),

jezeli suma Riemanna tez zbudowana jest na podziale P, a funkcja f jest
ograniczona. Wynika to z faktu, ze t; € [z, ;41], 1 =0,1,...,n — 1, oraz

m; = inf{f(z) : x € [x;,xi1]} < f(t;) <sup{f(z): x € [x;,xi41]} = M.
Dla podziatu P = {a = 2y < 27 < -+ < x, = b} okreslamy jego Srednice

d(P):

d(P) = max{(xj11 —x;); 1=0,...,n—1}.
Mamy nastepujace twierdzenie:
Twierdzenie 10.5. Niech funkcja [ bedzie ciggla na [a,b], ¢ niech dany
bedzie cigg podziatow { P,} odcinka [a,b] taki, ze Srednice tych podziatdw dgzq
do zera: d(P,) — 0, gdy n — oo. Niech R, bedzie ciggiem sum Riemanna

2wigzanych z podziatami P,. Innymi stowy, dla kazdego podziatu P, mamy
niezaleznie wybrane punkty t; € [x;, x;11], @ wtworzong sume (10.8). Wtedy

n—o0

b
lim R, :/ f(z)dx.
0
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Uwaga: To twierdzenie daje swobode w interpretacji catki jako granicy
sum. Bardzo czesto jako t; wybieramy lewy albo prawy koniec przedziatu
[;, T;11], albo jego érodek, nie martwiac sie, gdzie funkcja przyjmuje swoja
warto$¢ najmniejszg i najwieksza. Ale pamietajmy: f musi by¢ ciggla.

Dowdd twierdzenia. Podobnie jak w dowodzie twierdzenia 10.4 zauwazmy,
ze funkcja f ciggla na [a,b] spelnia warunek (10.6) (czyli jest jednostajnie
ciagla). Wezmy dowolne € > 0 i niech § > 0 bedzie dane przez (10.6) dla
e = =) (podobnie jak w dowodzie twierdzenia 10.4). Niech ny € N bedzie
wystarczajaco duze, tak aby

Vn>ng d(P,) <.
Wtedy dla n > ng, wykonujac taki sam rachunek jak w (10.7) mamy

l](f%,f)'_-L(f%,f) <e€

[ 1w c<umn < [ gwa

/abf(x)dl’é U(Pn, f) </abf(l’)da:+e,

\L(Pn, n-|[ ) do

Skoro € bylo dowolne, a powyzsze nieré6wnosci zachodza dla wszystkich n >
ng, to

Z (10.5) mamy

oraz

czyli

< €.

<e 'U(Pn,ﬂ - / ) do

lim U(P,, f) = hm L(P,, [)= / flx

n—0o0

7 drugiej strony, jak wiemy

L(P,, ) < R, <U(P,, f),

a wiec takze

n—oo

b
lim R, :/ f(z)dz.
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Przyklad: Nastepujaca granice sprowadzimy do catki oznaczone;j:

1 1 1 1 1
lim + + —l—--'—i-—) —.
n—><><>(\/n+3 vVn+6  vn+9 Vin) Vvn
Sprobujemy przeksztalci¢ wyrazenie, zeby sprowadzié je do postaci sumy Rie-
manna jakiejs funkcji, dla jakiegos przedziatu, jakiego$ podzialu tego prze-
dziahu, i jakiego§ wyboru punktow ¢;.

1 1 1 1 1
+ + +r ) —==
(\/n—i—?) vn+6 vVn+9 \/771) n
2n
B 1 1
S Vnt3ivn
_i:I n+3in
_2n 1 1
=1 \/1+3L17
_12n 1
n

Mozna sie juz wszystkiego domysle¢: jest to suma Riemanna dla funkcji
flz) = Jliﬁ’ dla przedzialu [0, 2], podzialu réwnomiernego na 2n pod-
przedziatéw réwnej dtugosci %, i dla punktow ¢; bedacych prawymi koncami
podprzedziatéw. Skoro zidentyfikowaliémy wyrazy naszego ciagu jako sumy
Riemanna, a érednice podzialéw odpowiadajacych kolejnym wyrazom ciggu

daza do zera, to ciag ten zbiega do calki oznaczonej

/2 dz

0o Vv 1+3z ‘

Na razie nie jesteSmy w stanie obliczy¢ tej catki. Juz wkrotce, dzieki za-
sadniczemu twierdzeniu rachunku rézniczkowego i catkowego policzymy ja z
latwoscia, okaze sie rowna %(\/7 — 1). Mamy nastepujace twierdzenie (cal-
kowalno$¢ wszedzie oczywiscie w sensie Riemanna).

Twierdzenie 10.6. (i) Jezeli f i g sq calkowalne na przedziale [a,b] a ¢ jest
statqg, to funkcje f £ g oraz cf tez sq catkowalne, dla dowolnej statej c, oraz

/ab(f(x) + g(z)) dx = /ab f(x)dx £+ /abg(x) dx
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/abcf(x)dx:c/abf(x)dx.

(it) Jezeli f i g sq catkowalne na |a,b] i dla wszystkich x w tym przedziale

zachodzi f(x) < g(x) to

/abf(a:) dr < /abg(a:) dx. (10.9)

(1) Jezeli f jest catkowalna na [a,b] oraz a < ¢ < b, to f jest tez catkowalna

na kazdym z podprzedziatow |a, c| i [c,b], oraz

/abf(x) dr = /acf(x) d:v—i—/cbf(x) dz. (10.10)

Rowniez na odwrdt: jezeli f jest catkowalna na przedziatach [a,c i [c,b] (a <
c < b), to jest tez catkowalna na [a,b], i zachodzi (10.10).

(iv) Jezeli [ jest calkowalna na [a,b], to |f] tez jest catkowalna na [a,b], i

/ (o) dr

Uwaga: Czesé (ii) mozna troche wzmocnié, i udowodni¢, ze jezeli dodat-
kowo f(z) < g(x) poza skonczong iloscia punktow przedziatu [a,b] (a < b),
to nieréwnos¢ (10.9) tez jest ostra. Dowod w zasadzie jest ten sam.

< [ Vwla

Dowdd twierdzenia. (i) Niech dany bedzie podzial P odcinka [a,b]. Wtedy
L(P, f)+ L(P,g) < L(P, f +9) SU(P, f +9) SU(P, f) + U(P,g).
A wiec
UP,f+9) = L(P,f+9) U f) = L(P, [) + U(P,g) = L(P,g). (10.11)

Skoro f i g sa catkowalne, to dla dowolnego € > 0 istniejg podzialy P i P,
takie, ze

U(Plaf)_L(Plaf)<E/27 U(P27g)_L(P27g)<e/2

Jezeli P* jest wspolnym rozdrobnieniem podzialow P, i P, to, jak wiemy
(10.3), nieréwnosci zachowuja sie dla P*, a wiec z (10.9)

UP* f+g)—L(P", f+g) <e
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Poniewaz € > 0 bylo dowolne, to f + ¢ jest catkowalna (Wniosek 10.3), i
dodatkowo

| @)+ gt s <UP s+ g)
<UP".f) + U(P".g)
b b
< [ f@ydas iz [ gla)dat o2
ab b a
:/ f(x)dx+/ g(z)dx + e.

Skoro € > 0 bylo dowolne, to

[ s s [s@ars [ o

Przeciwng nieréwnosé¢ pokazujemy podobnie, wykorzystujac L(P*, f + g). Z
roznicg funkcji postepujemy tak samo.

Niech ¢ > 0. Wtedy, oczywiscie L(P,cf) = cL(P,f) i U(P,cf) =
cU(P, f). W takim razie

U(P,cf) = L(Pcf) =c(U(P, f) = L(P, f)).
Podobnie, jezeli ¢ < 0 to L(P,cf) = cU(P, f) i U(P,cf) = c L(P, f), i
U(P.cf) = L(P.cf) = c(L(P,f) = U(P, f)) = le| (U(P, f) = L(P, f)).
W obu przypadkach dla € > 0 znajdujemy podzial P taki, ze
UP, f) — L(P,f) < = = U(P,cf) — L(P,cf) < .

]
Oczywiscie, jezeli ¢ = 0 to cf(z) = 0, wiec jest catkowalna, i calka jest rowna
0. W kazdym przypadku otrzymujemy teze.
(ii) Mamy
b b b
[ s e [ f@yde= [ o) - f@)de. 02

Funkcja podcatkowa po prawej stronie jest catkowalna (punkt (i)) oraz nie-
ujemna. Latwo zauwazy¢, ze catka z nieujemnej funkcji tez jest nieujemna -
po prostu kazda suma dolna jest nieujemna. W takim razie wyrazenie (10.12)
jest > 0, 1 otrzymujemy

/a " fle)dr < / () do.
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(iii) Niech € > 0, i niech P bedzie podzialem przedziatu [a, ], takim, ze

UP,f) - L(P, f) < ¢ (10.13)

Dodajmy punkt ¢ do punktéw podzialu P, i otrzymane tak rozdrobnienie
oznaczmy przez P*. Poniewaz P* jest rozdrobnieniem P, to (10.13) zachodzi
tez dla P*. Niech P; i P» beda czesciami podzialu P* wpadajacymi do [a, ¢]
i [c,b] odpowiednio. P i P, sa wiec podziatami przedziatow [a,c| 1 [c,b].
Zauwazmy, 7e

L(P*, f) = L(P, f) + L(P, f), oraz U(P", f)=U(P, f)+U(P f).
Podstawiajac to do (10.13) otrzymujemy
(U(PL, f) = L, f) + (U(Py, f) = L(P2, f)) = U(P, f) = L(P", f) <€

Kazda z wielkosci w nawiasach po lewej stronie jest nieujemna, wiec kazda
z osobna jest < €. Poniewaz € > 0 bylo dowolne, wiec funkcja f jest cal-
kowalna na przedziatach [a,c] i [c, b]. Korzystajac z oszacowania z wniosku
10.3 otrzymujemy dodatkowo

/ f(@)dz < U(P*, f) = U(P,, f) + U(Ps, f)

</acf(x)d:p+e+/cbf(x)dx+e
:/acf(ac)d:v+/cbf(x)dw+2e.

Powyzsza nier6wnosé jest prawdziwa dla dowolnego € > 0, wiec musi zacho-

dzié
[ rwars [Cs@as [ s

Nieréwnos¢ w druga strone pokazujemy tak samo, wykorzystujac sumy dolne,
i oszacowania z wniosku 10.3. Musi wiec zachodzié¢ réwnosé catek.

(iv) Niech ¢ = +1, w zaleznosci od znaku calki, a wiec

—c/f d:v—/acf da;</|f )| dz,

gdyz ¢ f(x) < e f(z)] = [f(2)]. N

x) dx
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Nastepne dwa twierdzenia pokazuja zwigzek catki oznaczonej z catka nie-
oznaczona i z pochodnymi.

Twierdzenie 10.7. Niech [ bedzie funkcjq catkowalng na przedziale |a,b].

Dla x € [a,b] okreslamy
_ / oL

Wtedy F jest ciggla na |a,b] i rézniczkowalna w kazdym punkcie © w ktérym
funkcja podcatkowa f jest ciggta, oraz w takim punkcie r mamy

Dowdd. Skoro f jest Calkowalna to jest domyslnie ograniczona: |f(z)| < M,
a wiec dla dowolnych z,y € [a,b], v < y zachodzi oszacowanie

/f dt' /|f ) dt < M(y — z).

Wynika z tego, ze F' jest ciggla, a nawet jednostajnie ciggla na [a,b]. Niech
€ (a,b). Niech € > 0 bedzie dowolne, i § > 0 bedzie takie, ze dla [t —z| < §

mamy
[f(t) = f(2)] <e.

Zauwazmy, ze skoro f(x) jest stalg niezalezng od t, wiec mozemy napisaé

z+h
_ % / Fz)dt

dla dowolnego h takiego, ze [z,z + h| C [a,b]. Dla 0 < h < § mozemy wigc
napisac

|F(y) = Fa)| =

4 e
e t——/ o]
-!%/ @)
g%/ (2)] dt
<3 ohee
.
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Podobnie, dla —d < h < 0

'F(az +h) — F(x

)
=2 )

1

-5 [ rwa- s
-1 [* -1 [*

_ ‘7 [ s T/Mf(ac) dt‘

! / () — f@) de

IR o

< e.

Widzimy wiec, ze granica

F _

iy L@+ 1) — F(2)
h—0

istnieje, 1 jest rowna f(x). O

7 powyzszego twierdzenia wynika natychmiast nastepujacy wniosek, na
ktory czekamy juz od poprzedniego rozdziatu:

Whniosek 10.8. Funkcja ciggta na przedziale ma na nim funkcje pierwotng.

Nastepujace twierdzenie jest gtbwnym narzedziem do liczenia catek ozna-
czonych. Samo twierdzenie jest proste i dosy¢ oczywiste, 1 jest znane jako
zasadnicze twierdzenie rachunku rézniczkowego i catkowego.

Twierdzenie 10.9 (Zasadnicze twierdzenie rachunku rézniczkowego i cal-
kowego). Jezeli funkcja f jest calkowalna na przedziale [a,b] (w sensie Rie-
manna), oraz istnieje funkcja pierwotna F, czyli

F'(z) = f(x)  z€(ab),

(czyli f jest catkowalna w sensie definicji 9.2), to

b
/ f(x)dz = F(b) — F(a) = F(a)".

Zwroémy uwage na symbol F(z)[8, oznacza on przyrost funkeji F' pomie-
dzy a i b, i bedziemy go uzywa¢ w przysztosci.

Dowdd. Niech P = {a =129 < 1 < -+ < x, = b} bedzie dowolnym podzia-

lem przedziatu [a,b]. Dla kazdego przedzialu [z;, z;11] podziatu stosujemy

twierdzenie o wartosci $redniej, a wiec istnieje t; € (z;, x;41) takie, ze
F(xi1) — F(x;)

f(t:) = : i=0,...,n—1.
Tit1 — T4
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A wiec

i
L
L

n—

ft) (i —z) = ) (F(2ip) — F(x;)) = F(2n) — F(x0) = F(b) — F(a).

%

Il
=)
Il
=)

Dla kazdego podziatu P prawdziwe sa wiec nierdwnosci

F(b) — F(a) lezy wiec pomiedzy caltky dolng i catky gorng funkcji f na [a, b].
Skoro funkcja f jest catkowalna, to F'(b) — F(a) musi wiec byé¢ rowne calce.
[

Uwaga: W powyzszym twierdzeniu zaktadamy, ze funkcja f jest catko-
walna w sensie Riemanna, i w sensie istnienia funkcji pierwotnej. Wiemy,
ze funkcje ciagte spelniaja to zatozenie. Sa catkowalne w sensie Riemanna
(twierdzenie 10.4) oraz maja funkcje pierwotna (wniosek 10.8). Zasadnicze
twierdzenie rachunku rozniczkowego i catkowego odnosi sie wiec gtéwnie do
funkcji ciaglych.

Granice calkowania

Calke oznaczong zdefiniowaliSmy na przedziale [a,b], dla a < b. Dolna gra-
nica catkowania byta wiec mniejsza od goérnej. Wygodnie jest rozszerzy¢ ta
definicje. WprowadZzmy wiec nastepujace oznaczenia. Jezeli a < b to

[ 1= [ s,

/Ccf(:c)dac:O.

Przy tak dobranych oznaczeniach wzor (10.10) zachodzi niezaleznie od wza-
jemnych relacji pomiedzy liczbami a, b, ¢

oraz dla dowolnego ¢

/abf(x)dxz/acf(x)d:p—k/cbf(x)da:. Y a,b,ec,

jezeli tylko wszystkie calki istnieja. Dowod mozna przeprowadzié¢ rozpatrujac
przypadki.
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Calkowanie przez czeSci

Twierdzenie 10.9 daje nam nastepujace wzory na catki oznaczone. Jezeli
F' = f i G = g na przedziale [a,b], to

/ H(2)G(2) dz = F(2)G()]’ — / Fla)g() d.

Wzér ten zachodzi, jezeli ktorakolwiek z calek istnieje (wtedy obie istnieja).

Przyktad:
6 ° [ :
log(z)dx = [ 2'log(x)dx = xlog(z)|]— | z-—dr=e—x|] =e—et+l=1.
1 1 1z

Calkowanie przez podstawienie

Jezeli f jest funkcja rézniczkowalna na [a, b, to

b f(b)
/ o(F(@)) f(2) do = /f g(y) dy, (10.14)

(a)

przy czym, tak jak poprzednio, wzér ten zachodzi, jezeli ktorakolwiek z calek
istnieje — wtedy obie istniejg.

Przyklad: W nastepujacej calce podstawiamy g(z) = sin(x) oraz f(z) = 22

™ 1 s
/ rsin(2?) do = —/ sin(2?)2 -z dr =
0 2 Jo
1~ 1 1 — cos(”
=3 /02 sin(y) dy = — 3 cos(y)\z)r2 — +S(7T)

Bardzo czesto catkujemy przez podstawienie w nastepujacy sposob, stosujac
wzor (10.14) ,od tytu”

/49 Ve dx:{m:(t+1)2 N dx:2(t+1)dt}:

Vo —1
V91 2 42
t+1 t*+2t+1
:/ L.Q.(H_l)dtzg/ ;dt.
V-1 l 1 t

Ostatnia catke tatwo juz policzy¢, znajdujac funkcje pierwotng. Zapis dz =
2(t+1) dt oznacza po prostu ‘fl—f = 2(t+1). Zauwazmy, ze powyzszy rachunek
jest catkowicie uzasadniony, i wynika ze wzoru (10.14). Wystarczy zauwazy¢,

ze funkcja z = (t + 1)? jest odwracalna na przedziale [1,2], i odwrotna do
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niej to funkcja t = y/r — 1 na przedziale [4,9]. Czasem, stosujac ten sposob
odstawiania mozemy wpas¢ w putapke. Na przyktad

2 4
1
/ xde:{xQZt = 2xdx:dt}:/ ix/gdtzo,
2 4

chociaz z drugiej strony wiemy, ze catka po lewej stronie jest réwna % > 0.
W zadaniach sytuacja moze nie by¢ tak oczywista, wiec zawsze warto doktad-
nie sprawdzi¢ rachunki, szczegélnie w sytuacji, gdy robimy podstawienie, a
funkcja podstawiana nie jest odwracalna.
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Rozdzial 11

Zastosowania calek

Wiele wartosci fizycznych, ,namacalnych”, intuicyjnie zrozumiatych mozna
opisac¢ jako granice sum. Taka granice sum mozna czesto zinterpretowac jako
granice ciggu sum Riemanna dla pewnej funkcji, i w takim razie dana wielkosé
fizyczng zinterpretowaé jako calke oznaczong z jakiej$ funkcji. Calke taka
mozemy nastepnie obliczy¢ korzystajac ze znanych sposobow calkowania.
Omowimy kilka przyktadow.

Dtugosé tuku

Niech funkcja f, okreslona na przedziale [a, b] bedzie ciagla, rozniczkowalna,
oraz niech jej pochodna bedzie ciggla na (a,b). Obliczymy dlugosé¢ krzywej
na plaszczyznie, bedacej wykresem funkeji f, czyli krzywej {(z, f(z)); = €
[a,b]}. Dltugosé¢ krzywej okreslamy jako granice dlugosci lamanych, przy-
blizajacych krzywa. Innymi stowy, wybieramy na krzywej ciagg weztow, a
nastepnie laczymy sasiednie wezly ze soba odcinkiem. Powstaje tamana,
ktorej dhugosé obliczamy. Nastepnie zageszczamy wezty na krzywej i znowu
liczymy dlugo$é powstalej tamanej. Powstaly w ten sposob cigg tamanych,
jezeli odlegtosci sasiednich wezlow zbiegaja do zera, powinien mieé¢ dtugo-
Sci zbiezne. Granice tych dtugosci przyjmujemy za dtugosé krzywej. Krzywa
moze nie mie¢ dtugos$ci. W przypadku ktory rozpatrujemy, to znaczy krzywej
bedacej wykresem odpowiednio regularnej funkcji dtugosé¢ istnieje, i wyraza
sie przez calke.

W przypadku naszej krzywej kazda tamana z weztami na wykresie f nad
przedzialem [a,b] wiaze sie z podzialem P = {a = 2o < 21 < -+ < x, =
b}. Punkty podzialu sa rzutami na o§ OX wezlow tamanej. Diugosé takiej
lamanej, zwiazanej z podzialem P dana jest wzorem
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Rysunek 11.1: Przyblizenie krzywej tamana.

i
L

~
3
I

V(@i — 22 + (f(zigr — f(2:))2 =

S \/1 (L) f(xo)%

=0 Lit1 — Li

~
Il
o

Funkcja f jest rozniczkowalna w kazdym przedziale [z;, z;41], a wiec z twier-
dzenia o wartosci $redniej w kazdym takim przedziale istnieje punkt ¢; taki,

* f(xig) — f;)

Tit1 — X4

= f'(ts).

Mamy wiec

—_

n—

Ly =% (zip1 — )/ 14 f/(t:)%

7

I
o

Dlugos¢ tamanej jest wiec suma Riemanna funkcji ciaglej /1 + f/(x)?. Za-
geszczanie weztow tamanej daje zageszczanie otrzymanych podzialow, a je-
zeli maksymalna odlegtosé sasiednich weztow dazy do zera, to rowniez mak-
symalna odleglos¢ ich rzutow (czyli $rednica zwiazanych z nimi podziatow)
dazy do zera. W takim razie, korzystajac z Twierdzenia 10.5 sumy Riemanna

zbiegaja do calki
b
L= / V14 f(x)?de. (11.1)

Caltka L reprezentuje dtugosé¢ wykresu f. Jak wspomnieliémy juz wczesniej
krzywa moze nie mie¢ dtugosci. Wtasnie uzasadniliSmy natomiast, ze wykres
funkcji majacej ciagta pochodng ma dlugosé, i dtugosé ta dana jest calka
(11.1).
Przyklad: Rozwazmy przyklad tak zwanego cosinusa hiperbolicznego

et +e*

f(z) = cosh(x) = —5 — € [—1,1].
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Wykresem tej funkcji jest tak zwana ,linia tancuchowa”. Gietka, ale nie-
rozciagliwa lina (na przyktad lancuch) zaczepiona na koricach, i zwisajaca
swobodnie, przyjmie ksztalt wykresu funkcji cosh(x), oczywiscie odpowied-
nio rozciggnietego w poziomie i pionie. Taki ksztalt uwazany jest za bardzo
solidny. Na przyktad stynny tuk w St. Louis nad rzeka Missisipi ma ksztatt
linii laricuchowej (do goéry nogami).

Rysunek 11.2: Linia tancuchowa i tuk w St. Louis.

Dla tej funkcji mamy

f'(x) = ——=—— = sinh(z).

Wiemy tez, ze sinh’(x) = cosh(z) oraz ze funkcje hiperboliczne spelniaja tak
zwang, ,,jedynke hiperboliczng”

cosh?(x) — sinh?(z) = 1.

Mozemy wiec obliczy¢ dtugosé wykresu

1 1 1
Lz/ \/1+f’(:c)2dcc:/ \/1+sinh2(x)dx:/ \/cosh?(z) dr =
-1 -1 -1
1 ol ol gl ol

= h(z)dz = sinh(z)|", = — =e— -
/_lcos () dx = sinh(z)|_, 5 5 e~ -
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Objetos$¢ bryly obrotowej wokot osi OX

Niech bedzie dana funkcja f na odcinku [a,b], ciagta i nieujemna. Obra-
cajac obszar pod wykresem f wokot osi OX otrzymujemy tak zwang bryle
obrotowa

obszar pod
wykresem

<>

Rysunek 11.3: Bryta obrotowa.

Objetos¢ tej bryty mozemy przyblizyé przy pomocy walcow, powstatych
przez obrot prostokgtow wokot osi OX.

Rysunek 11.4: Przyblizanie objetosci walcami.

Wybierzmy podzial P = {a = 29 < 21 < --- < z,, = b}. Niech, dla
1=0,...,n—1

m; =inf{f(r); z; <x <@},  M;y=sup{f(v); ;i <2 < @i}

Rozwazmy ,plasterek” bryly obrotowej wokot przedziatu [z;, x;.1]. Walec o
promieniu m; jest calkowicie zawarty w tym plasterku, natomiast walec o
promieniu M; zawiera plasterek w calosci w swoim wnetrzu. Wynika z tego,
ze objetos¢ takiego plasterka (oznaczmy ja przez V;) musi by¢ liczba zawarta
pomiedzy objetosciami tych dwoch walcow, czyli

(ziy1 — x)mmi < Vi < (w1 — x;) m M7
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Widzimy wiec, ze objetos¢ V' calej bryty obrotowej, sktadajacej sie ze wszyst-
kich ,plasterkow” spetnia

[y
[y

n— n—

(IZ'Jrl - I',L> Wm? S vV S (IZ’+1 — Iﬁ) 7TMZ-2.

i

Il
o
I
o

i

Sumy po lewej i prawej stronie powyzszej podwdjnej nieréwnosci sa sumami
dolng i gérng funkeji m f2, dla podziatu P. Poniewaz nieréwnodci te zachodza
dla wszystkich podzialéw, a funkcja 7 f2 jest calkowalna (bo jest ciagla), wiec
V' musi by¢ rowne calce

V = W/bfz(ac)dx.

R

—

Rysunek 11.5: Torus.

Przyktad: Rozwazmy torus o duzym promieniu R i matym r (0 < r < R).
Torus taki mozemy przedstawi¢ jako brylte obrotowa powstala z obrotu kota

2?4+ (y— R)?* <r? (11.2)

wokot osi OX. Obszar (11.2) nie jest obszarem pod wykresem funkcji, ale
mozemy go przedstawié¢ jako réznice dwoch takich obszaréw, i w ten sposob
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przedstawi¢ torus jako rdéznice dwoch bryt obrotowych, ktorych objetosci
potrafimy obliczyé¢ przy pomocy catek. Wieksza bryte otrzymujemy jako
obrot obszaru pod gérnym poétokregiem a mniejsza jako obrot obszaru pod
dolnym poétokregiem. Gorny i dolny polokrag sa wykresami funkeji

fl(l"):R‘*’W"Q—J?Q, fQ(l"):R—\/TZ—:EQ, —r<z<r.

R+ 12 22 R rZ g2
—_—
R 1R R
—_—
r 4 r r r 4

Rysunek 11.6: Obszar (11.2) jako roznica dwoch obszarow.

Mamy wiec wzor na objetosé torusa:
Ve _1; £2(z) de —w/_i f2(2) da
= [ () - i) do
—r [ (h@) ~ Rl (i) + o) do
:w/rzm.zﬁdx
= 4Rm / V2 — 22 da.

Ostatnig catke mozemy obliczy¢ stosujgc podstawienie x = sin(t), ale mozna
tez jej wartos¢ szybko odgadna¢. Zauwazmy, ze wykresem funkeji podcal-
kowej jest gorna polowka okregu o §rodku w punkcie (0,0) i promieniu r.
Calka, jako pole obszaru pod wykresem, to w takim razie polowa pola kota
o promieniu 7, czyli "77’2 Otrzymali$my wiec nastepujacy wzor na objetosé
torusa:

V =27* R0
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Pole powierzchni bryly obrotowej wokot osi OX

Rozwazmy obecnie pole powierzchni bocznej bryly obrotowej opisanej w po-
przednim punkcie. Zalézmy, ze funkcja f jest roézniczkowalna, jej pochodna
jest ciagla na (a,b) i ma skoniczone granice na korncach a,b (do obliczenia
objetosci bryly obrotowej wystarczyto, zeby f byla ciagta). Ponownie roz-
wazmy podzial P = {a = 29 < --- < x, = b} odcinka [a, ], i ,plasterek”
bryly obrotowej wokot przedziatu [x;, z;11]. Powierzchni¢ boczng plasterka
przyblizymy powierzchnia boczng stozka Scietego (nie walca), powstatego
przez obrét obszaru pod sieczng wykresu wokot osi OX.

Ti Tit1 T Tit1
Rysunek 11.7: Stozek przyblizajacy bryte obrotows.

Powstaly stozek $ciety ma promienie podstaw f(x;) i f(x;41), oraz wy-
sokos¢ x;11 — x;. Jak wiadomo z geometrii pole powierzchni bocznej takiego
stozka $cietego jest réwne dlugosci ,tworzacej” stozka razy sredni obwod.

Jezeli ktos nie pamieta tego wzoru, to moze sobie taki wzor wyprowadzic,
rozcinajac stozek, i rozplaszezajac rozcieta Scianke boczng. W naszym przy-
padku stozka $cietego nad przedziatem [z;, z;,1] $redni obwod czyli obwod w
potowie wysokosSci to

f(@iz1) + (i)

2 )

2m
a dhugosé ,tworzacej” to

V(@i — 2:)? + (f(wi) — f2))2

Laczna powierzchnia boczna wszystkich stozkow przyblizajacych bryte jest
wiec dana wzorem

S5 — jz:;% (f($i+1)2+ f(%)) "

% (Tip1 — 1) \/1 n (f("”"“) i f(%))Q. (11.3)

LTiy1 — T4
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redni obwdd
tworz ca

Rysunek 11.8: Tworzaca i Sredni obwdd stozka Scietego.

Korzystajac z twierdzenia o wartosci Sredniej powyzsza sume mozemy zapisac
jako

; o (f(:cm);r f(:c@-)) (@ips — 23) T 1 P2, (11.4)

dla odpowiednich punktow t; € (z;, x;11). Zauwazmy, ze nie jest to suma Rie-
manna zadnej funkcji. Musimy wiec wykonaé jeszcze jeden krok. Poniewaz
f jest jednostajnie ciggla to dla kazdego ¢ > 0

f(ig) + f(z;)

5 — f(t:)

<€

jezeli tylko érednica podzialu P jest odpowiednio malta. Z naszych zalozen
wynika tez, ze f’ jest ograniczona, a wiec sume (11.3), ktora jest rowna (11.4)
mozna zastapi¢ suma

Z_:?W ft) - (i — ) - 1+ f(t3)? (11.5)

z bledem dowolnie maltym, jezeli srednica podzialu P jest odpowiednio mala.
Suma (11.5) jest suma Riemanna funkcji ciaglej 27 f(x)\/1 + f'(x)?, a wiec
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sumy Riemanna daza do calki z tej funkcji, gdy srednice podziatow daza do
zera. Pole S powierzchni bocznej powstalej bryty obrotowej jest wiec réwne

S = 27?/ f(x) V14 f'(x)?dx.

Przyktad: Obliczymy pole powierzchni torusa, ktorego objetos¢ obliczy-
liSmy w poprzednim punkcie. Wiemy, ze torus mozna zapisa¢ jako bryle
powstaty z obrotu kota
2 2 2
"+ (y—R) <

wokot osi OX, a w takim razie pole powierzchni bocznej torusa jest réwna
sumie sumie p6l powierzchni bocznych bryt powstalych przez obrét gérnego
i dolnego poétokregu:

S =27 / fle)V/1+ fi(z)?de + 27 / fo(2)V/ 1+ fi(x)? d,
gdzie, jak poprzednio

filz) = R+ V2 =2, fo(e) = R—Vr?— a2,

Mamy wiec
1 1 —T
() =z ——="(-212) = ———,
@) =5 (20) = s
i podobnie
x
F@) = .

Obie pochodne réznia sie wiec tylko znakiem, i mamy

V1t fi(@)? = 1+ fi(w)? =

\/1+ x? \/TQ—x2+x2 r
r2 — g2 r2 — g2 r2 — x2
Ostatecznie wiec

S:27r/r ((R+M);+(R—M);) dz

r2 — 2 r2 — 2

" dx
=47 Rr —_—
/r Vr?— a2
V=P
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ST
:4WRT/4—J@——
14/ 1 —y?
=47 Rr arcsiny|',
=47 Rr.

| 8

=47 Rr
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Rozdzial 12

Calki niewlasciwe

Catke oznaczong zdefiniowalismy dla funkcji ograniczonych na skoniczonym
przedziale [a, b]. Teraz definicje te¢ rozszerzymy na funkcje niekoniecznie ogra-
niczone i na przedzialy nieskoniczone. Calki takie nazywamy catkami niewta-
Sciwymi. Najpierw rozwazmy przypadek funkcji, ktora nie jest ograniczona
na przedziale [a, ], ale jest ograniczona, i catkowalna, na kazdym podprze-
dziale postaci [c,b], a < ¢ < b. Rozpatrujemy wiec przypadek funkeji ktora
jest zupelnie porzadna(ciagta) na przedziale [a, b] z wyjatkiem lewego korica
przedziatu, w ktérym zadnej regularnosci nie zaktadamy. Punkt a nawet nie
musi naleze¢ do dziedziny. Mozna jednak obliczy¢ catke na przedziatach po-
staci [c, b] dla dowolnego ¢ € (a,b] na ktorych funkcja jest ciagla, i zapytac
sie czy takie calki sg zbiezne do czego$ gdy ¢ — a™. Jezeli istnieje granica

c—at

b
g = lim / f(z)dx, (12.1)
C
to mowimy, ze funkcja f jest catkowalna w sensie niewlasciwym na przedziale
[a,b], albo ze calka niewlasciwa po [a, ] jest zbiezna. Granice g oznaczamy,
oczywiscie, przez

c—at

/abf(x)daf=g= lim /cbf(x)daf,

i nazywamy catka niewtasciwa f po [a,b]. Podobnie zdefiniowana jest caltka
niewlasciwa gdy funkcja f ma ,,0sobliwo$¢” w prawym koricu przedziatu cal-
kowania (czyli nie jest ograniczona w otoczeniu tego konca, i najczesciej nie
jest tez w tym punkcie okreslona). W tym przypadku catka niewlasciwa ist-
nieje (jest zbiezna) jezeli f jest calkowalna na kazdym przedziale [a, c], gdzie
a < ¢ < b, oraz istnieje granica

g = lim /cf(x) dx. (12.2)
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Uwaga: Jezeli funkcja f jest calkowalna na [a, b to oczywiscie granice (12.1)
i (12.2) istnieja, i sa rowne calce w zwyklym sensie. Calka niewtasciwa jest
wiec rozszerzeniem definicji catki zwyktej.

Calke niewlasciwa mozemy tez zdefiniowaé¢ w sytuacjach, gdy funkcja f
ma ,,0sobliwosci” na obu koricach przedziatu catkowania [a, 0], lub w jednym
lub kilku punktach wewnetrznych przedzialu. W tym celu najpierw dzielimy
przedzial catkowania na podprzedzialy tak, aby w kazdym podprzedziale
funkcja f miata tylko jedna ,0sobliwo$¢”, na tylko jednym z dwoch koncow.
Na przyklad, jezeli badamy catkowalnosé¢ funkcji f(z) = % na przedziale
[—1, 1], to rozpatrujemy osobno zbieznos¢ catek

0 dx Udx
—  oraz —, (12.3)
1z 0 T

i jezeli obie powyzsze calki sg zbiezne, to mowimy, ze catka niewtasciwa
po przedziale [—1, 1] istnieje. Zauwazmy, ze w tym konkretnym przypadku
zadna z powyzszych calek nie jest zbiezna (przyktad (b)).

Przyklady: (a) Rozpatrzmy f(x) = \/LE na przedziale [0, 1]. Funkcja ta jest
ciagla na (0, 1], ale ma osobliwos¢” w 0. Sprawdzamy wiec

1

/1dx /1 g T
_— = T 2ddr = —

1

€ \/E € 2

czyli catka niewlasciwa jest zbiezna, i

da

0o X

= 2.

(b) Rozwazmy funkcje f(2) = < na przedziale [—1,1]. Funkcja ta ma jedna

osobliwos¢ w punkcie 0 wewnatrz przedziatu catkowania. Musimy sprawdzi¢
zbieznosé kazdej z calek niewlasciwych (12.3) osobno. Sprawdzmy najpierw
catke po [0, 1]

1

d 1\

& log(z)]! = 0 — log(e) = log (—) <0 .
I €
Nie ma potrzeby sprawdzania zbieznosci drugiej calki z (12.3) (tez jest zreszta
rozbiezna). Skoro jedna z calek (12.3) nie jest zbiezna, to calka po calym
przedziale [—1, 1] nie istnieje.
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Drugi rodzaj catek niewtasciwych dotyczy nieskoriczonego przedziatu cal-
kowania. Niech funkcja f(z) bedzie calkowalna w kazdym przedziale [a, M],
dla pewnego a i kazdego M > a. Jezeli istnieje granica

g = lim /Mf(x) dzx,

M—oo

to mowimy, ze f jest calkowalna w sensie niewlasciwym na [a,00) i piszemy

00 M
/ f(z)dr =g = lim f(z)de.
a M—oo [,

Podobnie definiujemy caltke niewlasciwa po przedziale (—oo, b]:

b b
/ f(z)dr = lim f(z)dx,
—o M ——o00 M
o ile kazda z calek po prawej stronie rownosci istnieje (w sensie wlasciwym),
oraz istnieje granica. W koricu calke na calej prostej (—oo, 00) definiujemy

jako sume
[e%S) b [e%S)
dr = d d
| f@ae= [ e+ [ faa

o ile obie calki po prawej stronie, niezaleznie od siebie, istnieja. Zauwazmy,
ze definicja ta nie zalezy od punktu b w ktérym rozdzielamy polproste.

W koncu mozemy potaczy¢ oba rodzaje catek niewtasciwych, i catko-
wadé po przedziale nieskoriczonym funkcje ktéra ma ,,0sobliwosci” w pewnych
punktach. Przedziat calkowania dzielimy na podprzedzialy tak, aby funk-
cja w kazdym podprzedziale skoriczonym miata tylko jedna ,;0sobliwo$¢” na
ktoryms koncu, oraz zeby na nieskoniczonych nie miata zadnych osobliwosci,
i nastepnie sprawdzamy zbieznos¢ kazdej z catek niewtasciwych osobno. Na
przyklad, istnienie calki niewlasciwej z funkcji f(z) = 2 na calej prostej
(—00, 00) oznacza istnienie kazdej z calek niewtasciwych

/_ldx /Od:p /1dx /Oodx

e Z’Q Y 71 J’/‘Z ) 0 1’2 ) 1 x2 .

W tym konkretnym przypadku catki pierwsza i ostatnia sa zbiezne, ale druga
i trzecia sa rozbiezne, wiec catka niewlasciwa

/ > dx L
nie 1stnieje.

2
o T
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sinz : |sinz|

Rysunek 12.1: Funkcje *2% 1 =

Przyktlady: (a) Funkcje # i W sa ciagle na polprostej [0, co) (wartosci
w 0 ustalamy na 1). Pierwsza jest catkowalna w sensie niewlasciwym na tej
polprostej, a druga nie jest.

Wezmy dowolne M > 0, i rozwazmy

M gin 27M] gin o M gin
dr = dr + dz.
0 T 0 T on[M] T

Gdy M — oo druga catka po prawej stronie ma granice 0, gdyz dlugosé
przedziatu catkowania nie przekracza 27, a wartosé funkcji podcatkowej jest

ograniczona przez ﬁ co dazy do 0 gdy M — oco. W takim razie mamy

2m M 27 [ M]

. sinx . sinx
lim dzr = lim
M —o00 0 x M —o00 0 x

dz, (12.4)

istnienie jednej granicy pocigga za soba istnienie drugiej. Zajmiemy sie w
takim razie granica po prawej stronie, i pokazemy, ze istnieje. Rozl6zmy

calke:
[M]-1

on[M] 2m(k+1)
[y e, 125)
0 2

u k=0 27k v

Przyjrzyjmy sie wyrazom szeregu:

2m(k+1) o 2wk+m : 2n(k+1) s
/ sin dr — / sin dr + / sin de
2k x 2k x 2nk+m x
T sinz T sin «
= ——dx — _
/0 o+ 2kn /0 r+ (2k+ 1)m v
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gdzie wykorzystalismy fakt, ze sin(x+2km) = sin(z) oraz sin(z+(2k+1)7) =
—sin(z). Kontynuujac, mamy

27r(k+1) Sin:C T 1 1
dr = i — d
/m z /0 S (ac+2k7r x+(2k+1)7r) .

Zauwazmy, ze calka jest dodatnia, gdyz funkcja podcatkowa jest dodatnia
wewnatrz przedziatlu catkowania. Szereg (12.5) ma wiec dodatnie wyrazy, i
jest zbiezny (czyli jest zbiezna caltka po lewej stronie (12.5)) dokladnie wtedy,
gdy jest ograniczony. Oszacujmy jeszcze ostatnia catke. Dla k£ > 0 mamy

/Wsinx L — ! dr =
0 r+2kr  x+ (2k+ )7 B

™

= | si dr <
/0 2%k (kD) S

<7 /”' p 1
—— [ sinzdx =
~ Ar2k? ), 2mk?’

natomiast dla k = 0 oszacujmy brutalnie

/27r Sinxdajg/% sinz dr < 27
0 x 0 T
Mamy wiec
20M] gin g RAne
dr <2
[ s 3 o
k=1
[M]—1
1 1
=T+ — —
7T+27r = k2
1 1
<2 — —.
T 27 k2

Jak juz wspomnieli$my lewa strona jest niemalejaca funkcja M, i jest ogra-
niczona, czyli ma granice, gdy M — oco. Granice (12.4) istnieja wiec, a wiec

catka niewlasciwa )
/ *“sinw
dx
0
jest zbiezna. Mozna pokaza¢ (ale to wymaga zupelnie innych narzedzi), ze

calka ta jest rowna \/§ Catka ta jest wazna, i pojawia sie w zastosowa-
niach. Istnienie jej zawdzieczamy temu, ze ,pagoérki” sinusa wystepuja na

155



przemian powyzej i ponizej osi OX, i ich pola sie skracaja. Natomiast suma
pol wszystkich ,pagérkow” wykresu jest nieskoniczona. Innymi stowy, po na-
lozeniu wartosci bezwzglednej na funkcje podcatkowsa catka niewtasciwa nie
istnieje. Zeby sie o tym przekonaé, wezmy dowolne M > 0, i obliczmy

/”M ]sinx|d >/”[M} |sin:z:|d
x x
0 xr —Jo €

[M]

1 kD) |
-y / [sinzl .
T
k=0 VKT
Z SID.T
x+k7r

> Z k:7r+7r/ sin x dx
[M]

_Zlm
Gdy M — oo to [M] — oo i w takim razie

/”M | sin z| dr o
——— dx — o0,
0

X

czyli catka niewladciwa nie jest zbiezna.

(b) Pokazemy, ze caltka z funkcji f(x) = e~ na calej prostej (—oo, o) jest

zbiezna. Pokazemy najpierw, ze calka po potprostej dodatniej istnieje. Niech
M > 0. Poniewaz funkcja podcatkowa jest dodatnia, to catka

M 2
/ e dx (12.6)
0

ros$nie wraz z M, wiec granica gdy M — oo istnieje, jezeli calki te sa wspoélnie
ograniczone od gory dla wszystkich M.

Mo L Mo
/ e’ dx:/ e "’ dx+/ e dx
0 0 1
L M
§/ e * d:(:—i—/ e dx
0 1
Lo e M
= / e " dr—e™"|)
0
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1
_p2 _ _
:/exdx—kel—eM
0

1
< [ertdneer
0

Calki (12.6) stanowia wiec ograniczong i rosnaca funkcje M, maja wiec gra-
nice gdy M — oo. Rozwazmy teraz druga caltke niewlasciwa. Skorzystamy
z parzystosci funkcji podcatkowej. Niech M > 0.

0 2 0 2 M 2
/ e dr = —/ e dx :/ e v dx,
-M M 0

czyli, jak przed chwila udowodniliémy, catki te maja granice gdy M — oo.
Calki niewlasciwe funkcji e po przedzialach (—00,0] i [0,00) istnieja, a
wiec istnieje caltka niewtasciwa po catej prostej. Mozna pokazaé, ze

/ e dy = T,

[e.9]

ale wymaga to dodatkowych narzedzi. Funkcja e~ to tak zwana funkcja

Gaussa, i jest jedna z wazniejszych funkcji w matematyce i zastosowaniach.

(c) Niech f(x) = %, x > 1. Jezeli obrocimy wykres tej funkcji wokot osi OX,
to otrzymamy nieskonczony ,lejek”. Obliczymy objeto$¢ tego ,lejka”; i pole
jego powierzchni bocznej. Stozek jest nieskoriczony, i zauwazmy, ze pasuje
dokladnie do naszych catek niewlasciwych. Jego objetos¢ jest rowna granicy
objetosci lejkow ucietych, i jego pole powierzchni bocznej jest granicg pol
powierzchni bocznych lejkow z ucieta ,koncowka”. Widzimy wiec, ze wielkoSci
te wyrazaja sie catkami niewlasciwymi, i istnienie tych wielkoSci wiaze sie z
istnieniem calek niewlasciwych

001 Ool 1/ 2
V:ﬂ'/ — dz, S:27r/ —Ul—f—(—) dx.
1z . T

Policzmy te calki.
, M _ 1M , 1
V=I1lmn« —dr=7 lim ——| =x lim ——+1| =m.
1 1 M —o00 M

Moo x2 M—oo X

Widzimy wiec, ze catka niewlasciwa jest zbiezna, a wiec objetos¢ nieskon-
czonego ,lejka” jest skonczona i wynosi m. Obliczmy teraz pole powierzchni
bocznej
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Rysunek 12.2: Nieskonczony ,lejek”.

]\/11 / 2 ]\/11
27r/ da:—27r/ \/1+—4dx>
T

>27r/ —dx—27rlogx\1 =orlogM 2%
L

Widzimy wiec, ze calka niewlasciwa nie istnieje. Pole powierzchni bocz-
nej,lejka” jest wiec nieskoriczone. Whrew pozorom, moglibysmy jednak po-
malowaé taki lejek farba, pomimo nieskoriczonej powierzchni. Wystarczy m
litrow farby nala¢ do $rodka lejka. Wnetrze — to chyba jasne — w calosci
sie pomaluje.
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Rozdzial 13

Wzory Wallisa 1 Stirlinga

Wykorzystamy te okazje, zeby udowodni¢ wzor Stirlinga. Wzor ten stosuje
sie do przyblizonego obliczania silni, ktora jest czasem potrzebna w zasto-
sowaniach, na przyklad w statystyce. Silnia tylko pozornie jest tatwa do
obliczenia. W praktyce liczenie duzej liczby z definicji jest niemozliwe, za
duzo dziatan.

Wz6r Wallisa

Najpierw udowodnimy nastepujacy wzor, znany jako wzor Wallisa.
1 2.4 on \° .1/ (@) \?
™= lim — =lim— (———— ] .
n—oom \1-3-----(2n—1) n—oom \ (2n — 1)!!
Wzor Wallisa zastosujemy w dowodzie wzoru Stirlinga. Mamy, dla n > 2

™ s
2 2
/ sin" x dr = / sinz sin” !z dx
0 0

us
2
:/ (—cosz) sin" ' xdx
0

jus

s 2
= —cosz sin"! x|02 —i—/ cosz (n — 1) sin" 2z cosz dx
0
us
22 ne2
=(n-1) cos” x sin" "z dx
0
us
2 .9 . n—9
=n-—1) [ (1—sin“x)sin" “zdx
0

= (n—l)/zsin”295(135—(71—1)/2 sin” z dz.
0 0
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Wynika stad, ze

T us
2 n—1 2 .
/ sin” ¢ dx = / sin" 2z dx.
0 n 0

[terujac to, otrzymujemy

2 1-3-5-----(2!{:—1)/3dx_(%—l)!! T
0

sin?* x do =

/0 246 (2k) k2
/’5 sin?* ¢ dx = 2:4-6--- (2k) /72r sinx dr = —(Qk)” ,
A 357 (2k+ 1) J, 2k + 1)1
czyli
T fog sin?* 2 dx (2R fog sin?* ¢ dx B
2 GEr R DUEER Rt edr

2 \* 1 fog sin®* x dz
(( >!!) < (131)

2k — 1 2k + 1) fo% sinZ*+ o do

Zauwazmy, ze mamy
jus jus jus
2 2 2
0< / sin?* 1l ¢ de < / sin?* x dx < / sin?*1 z dz,
0 0 0

czyli

| < ff sin?* ¢ dx < ff sin?*~ 1 x dx _

I sin?**1 g dx I sin?**1 ¢ dx
2(k =1 (2k+ 1N 2k+1
(2k — 1! K 2k

Wyrazenia na poczatku i koncu powyzszego ciggu nieré6wnosci daza do 1,
wiec z twierdzenia o 3 ciagach widzimy, ze iloraz calek w (13.1) tez dazy do
1, a wiec

Ty 1 21 \* 1 o L (20N 2
— = lim =—lm - | ———— ] .
2 kbeo (2k+1) \(2k— D! 2 koo ki \ (2 — 1)

Otrzymalismy wiec zapowiadany wzor Wallisa. Wzor ten wykorzystamy teraz
do dowodu wzoru Stirlinga.
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Wzér Stirlinga
Wrzoér Stirlinga to nastepujacy wzor:
nle

lim —— = 1.
n—00 \/2 T nn"

Niech

nle”

N

Oczywiscie a, > 0, pokazemy tez, ze ciag {a,} jest malejacy. Najpierw
zauwazmy, ze

an nle® n+1(n+1)" 1 (714—1)7”é

n

ap =

(13.2)

Uni1  y/nn” (n+41)lertl ¢

Chcemy pokazaé, ze powyzsza wielkosé jest wieksza niz 1. Wstawmy % za
n, i rozwazmy funkcje bedaca logarytmem z wyrazenia (13.2), pomnozonego
przez e.

flz) = (é + %) log(14+z), x>0. (13.3)
Pokazemy, ze funkcja f jest zawsze wieksza od 1, czyli funkcja e/®) jest
zawsze wicksza od e, w szczegolnosci jest wieksza od e w punktach postaci
x = +, czyli wyrazenie (13.2) jest wigksze od 1 dla kazdego n = 1,2,3,...,
czyli ciag {a,} jest malejacy. Wroémy wiec do funkgeji (13.3), i pokazmy, ze
f(x) > 1dla z > 0. Jest to typowe ¢wiczenie na analize przebiegu funkcji.
Po pierwsze mamy

1 1
li = lim —log(1 — lim log(1 =1
i Jle) =l plost o)+ 5l logll +2)
(pierwsza granice liczyliémy w przesztosci, mozna pokazac z reguly de I’'Hopitala,
ze wynosi 1, a druga granica wynosi 0, i wynika z ciggtosci logarytmu). Ob-
liczymy teraz pochodna i pokazemy, ze f jest rosnaca dla z > 0.

, 1 1 1\ 1
f(x)——ﬁlog(l+x)+(5+§) T2

Chcemy pokazad, ze dla x > 0 powyzsze wyrazenie jest > 0, czyli

11 (1+2x)+ 1+1 L >0
22 & x 2/ 1+=x ’
2

—(1+x) 10g(1+x)—|—x+%>0.
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Rozpatrzmy pomocnicza funkcje

2
x
g(z)=—(1+2x)log(l+2z)+x+ -
Wtedy ¢(0) =0, oraz ¢'(x) = —log(l4+2) =14+ 1+z =2 —log(l+z) > 0,
(ostatnia nier6wnos¢ to po prostu €® > 1+ z dla x > 0). Funkcja g jest wiec
rosnaca, a poniewaz ,startuje” z 0, wiec jest wieksza od 0 dla x > 0. Mamy
wiec f'(z) > 0 czyli f jest rosnaca, a wiec
f(z) > lim f(t) =1.
t—07t
Pokazalismy wiec ze f jest wieksza od 1, a wiec wyrazenie (13.2) jest wieksze
od 1 dla wszystkich n € N, a wiec ciag {a,} jest malejacy. Cigg malejacy, o
wyrazach dodatnich musi byé zbiezny, i niech jego granica wynosi g.
g = lim a,.
n—oo
Skoro wyrazy ciggu sa dodatnie, to automatycznie g > 0. Pokazemy, ze
g > 0. W tym celu pokazemy, ze wszystkie wyrazy a,, sa wieksze niz pewna
dodatnia liczba. Mamy
1

log aazlz(n—l—%)leg(l—l—g)—l. (13.4)

Bedziemy potrzebowali nastepujacej nieréwnosci:
1 1/1 1
1 1+— )<= (- : 13.5
Og(+n)_2(n+n+1) (13:5)

& sieczna wykresu

/

wykres f(z) =2

n n+1
Rysunek 13.1: Oszacowanie (13.5).

Na rysunku 13.1 pole obszaru pod wykresem, od n do n 4+ 1 to calka
z funkeji 1, po przedziale [n,n + 1], czyli log(n + 1) —logn = log(1 + +).
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Natomiast pole trapezu, czyli pole obszaru pod sieczng to = %(% + n%l)
Funkcja * jest wypukla: (1)” = % > 0. Wykres lezy wiec pod kazda sieczna,
pomiedzy punktami przeciecia, czyli obszar pod wykresem zawiera sie we-
wnatrz trapezu, czyli pole obszaru pod wykresem jest nie wicksze niz pole
trapezu, czyli otrzymujemy oszacowanie (13.5). Wstawiajac (13.5) do (13.4)

otrzymujemy

log _n <1 +1 1+ 1 ]
0 —|n+=) |- —
gan+1_2 2 n n+1

Y SRR - 1
2 n+1 2n 2n+2

1 1
C4dn An+4
Dodajac do siebie powyzsze oszacowania dlan =1,...,k — 1 mamy
1ogﬂ :logﬂ—i—log@ —|—---—|—logak_1
ay as as Qg

Otrzymujemy wiec

ai 1 _1 3
— < et = ap>are 4 =e4,
ag

gdyz a; = e. Wszystkie wyrazy ciagu sa wiec wieksze niz e%, a wiec takze
3 . . ..
g > ez > 0. Pozostalo nam jeszcze troche manipulacji.

, (nl)?e*n (2n)! e
a; = ———, Aoy = —F———,
" nn?n 2 (2n)2n

czyli

a2 (n)*  V2n(2n)?  (nl)222n

V2 nmniya @n)l | @n)h/n
Zauwazmy zwiazek ze wzorem Wallisa, ktory mozemy zapisa¢ tak
1 2n)!
vn (2n— 1N
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Zauwazmy tez nastepujace zwiazki

(2n)!  (2n)!
1\ =1.3..... —
2n—-—1)I=1-3 2n—1)= @l 2l
Sktadajac to razem otrzymujemy

1 (2n) 1 2"nl2"n!  (n!)222" a?

VR @n=DI T Vi @20 @n)Va a2

W koricu wiec

CL2 2

. n 9
m = lim = =
\/_ n—reo a2n\/§ g \/§

gdyz g > 0. Zauwazmy, ze udowodniliémy w ten spos6b wzor Stirlinga

F—V2rg=0 = g=+2m,
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Rozdzial 14

Calkowanie numeryczne

Jest kilka typowych algorytmoéw catkowania numerycznego. Opiszemy me-
tode trapezéw, metode Simpsona i, jako ciekawostke, metode Monte Carlo.
Metoda trapezow i metoda Simpsona to podstawowe metody catkowanie w
przypadku funkeji, o ktérych niewiele wiadomo. Sprawdzaja sie dobrze w
sytuacji, gdy catkowana funkcja ma dobre oszacowanie na druga pochodng
(metoda trapezow) lub 4 pochodna (metoda Simpsona).

Metoda trapezéw

Chcemy obliczy¢ catke funkcji f na przedziale [a,b]. Funkcje f przyblizamy
funkcja liniowa, o tych samych wartosciach na koncach przedziatu catko-
wania, i zamiast calki z f obliczamy catke z otrzymanej funkcji liniowe;j.
Oznaczmy xg = a i x; = b, oraz yo = f(x¢) i y1 = f(x1). Funkcja liniowa,
ktéra w punktach o i x; przyjmuje warto$ci odpowiednio yo i y; dana jest

wzorem
Y1 — Yo

Tr1 — X

w(x) = yo + (x — x0), (14.1)

a catka z niej wynosi

/ w(z)dr = (x1 — xo) Yo —; 2y
Zo

Mamy nastepujace oszacowanie bledu metody trapezow.
Fakt 14.1. Jezeli funkcja f ma ograniczong drugq pochodng, czyli spetnia
|f"(z)] < M, x € (a,b), (14.2)

to catka z funkcji f na przedziale [a,b] rdzni sie od calki z funkecji liniowej
(14.1) o nie wiecej niz
M —a)?

R <
- 12

(14.3)
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Dowod. Mamy udowodnié¢ oszacowanie

Lw@ﬂxé%ﬁéﬂﬂ

dla funkeji p(z) = f(x) — w(x). Funkcja p(z) spelnia wiec
pla) =) =0,  |¢" (@) =[f"(=)| < M,

gdyz w”(z) = 0. Najpierw udowodnimy (14.4) dla szczegolnego przypadku

(14.4)

a = —1, b = 1. Ogoélny przypadek dowolnych a < b otrzymamy z tego
szczegblnego przypadku przez zamiane zmiennych. Niech wiec a = —1 i
b=1. Wtedy

/_zgo(a:)dx:/_llx"go(az)d:c

a:'2 / 1 ! 2 1
-5 @| 5[ P
1 ! 1 / 1 ! 2 "
~ (3#C0-500) 43 [ @ v

Zauwazmy teraz, z zasadniczego twierdzenia rachunku rozniczkowego i cal-

kowego, ze
—(s¢ -3¢ ——1/1 "(z)d
5 ? 5 ? =3 71(,0 x)dx.

Wstawiajac to do poprzedniego rachunku, otrzymujemy

w0

:%‘/_1(;52—1)-@"(93)(19;

1 [l
<> [ @ -1 @)da
2/,

M 1
g—/ (1—2?)dx

2 /),

M 22\ |
_7(%3) -




_2M
==

Zauwazmy, ze otrzymalismy dokladnie oszacowanie (14.4) w szczegdlnym
przypadku @ = —1 1 b = 1. Obecnie rozciagniemy to na dowolne a < b.
Niech wiec funkcja ¢ spelnia ¢(a) = ¢(b) =0, i |¢"(z)| < M dla x € [a, b].
Zdefiniujmy pomocnicza funkcje

(z) = (5% (z+ 1) +a). (14.5)
Wtedy, ©(—1) = p(a) =01 (1) = ¢(b) = 0, oraz
V() = (550)%e(55* (v + 1) +a),

czyli
2
0" (z)] < M(%52)% = MU= = A,

Z udowodnionego juz oszacowania otrzymujemy, ze

s

7 drugiej strony, stosujac zamiane zmiennych, mamy

- 2M’ M(b—a)?
- 3 6 '

71¢(x) dx :/ go(b_T“(x—i- 1)+ a)de

1

__b—a
_ t=>5% (z+1)+a
dt=b52 do

2 b
= b—a/ o(t) dt.

Laczymy wszystko razem, i ostatecznie otrzymujemy

/ab@(x) dx /_11 Y(x)dr| < %;Q)S’

czyli (14.4). Zauwazmy jeszcze, ze powyzszego oszacowania bledu nie da
sie, ogblnie rzecz biorac, poprawi¢. Przyktadem moze by¢ a = —1, b = 1,
i f(z) =2? W tym przypadku calka dokladna z funkcji wynosi 2, calka z
funkcji przyblizajacej liniowej wynosi 2, czyli btad metody trapezéw wynosi

3. Z drugiej strony (b —a)® =8, f"(z) = 2, czyli

b—a
2

Mb—a)? 16 4

12 T 12 3
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a = xm T b= x5

Rysunek 14.1: Metoda trapezow, n = 2.

Na rysunku 14.1 widzimy dlaczego metoda nazywa sie metoda trapezow.
W celu zwiekszenia doktadnosci przyblizenia catki dzielimy przedziat na n
podprzedzialow jednakowej dtugosci a = xp < 1 < --- < x,, = b, oznaczamy
y; = f(x;),i=0,1,...,n i stosujemy metode trapezéw w kazdym kolejnym
podprzedziale. Otrzymujemy

—_

n— n—1

ity b—a

S=> (Tiq1 — 23 5 = = on Z(yz + Yiy1) =
; i=0

I
o

b—a
:W(yowyl+2y2+---+2yn,1+yn).

Jezeli funkcja f spelia (14.2), to blad przyblizenia w kazdym podprzedziale

M(b—a)3
12n3

przyblizenia jest nie wiekszy niz

, 1 btedoéw takich jest n, czyli catkowity btad
M(b—a)3
12n2

jest nie wiekszy niz

Metoda Simpsona

Ta metoda jest podobna do poprzedniej, z tym ze catkowang funkcje f przy-
blizamy funkcjg kwadratowa, ktora ma te same warto$ci co f w koricach i
w poSrodku przedzialu [a,b]. Oznaczmy zo = a, 1 = 42, 2y = b, oraz
y; = f(z;) dla i = 0,1,2. Szukana przez nas funkcja kwadratowa to funkcja
postaci

w(z) =az®+ Br+ 7, (14.6)

speliajaca w(x;) = y;, i = 0,1, 2, czyli nastepujace 3 warunki

aa2+5a+7=yo,

a+b\? a+b
8] 2 "‘B 2 +/y:y17
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ab®+ Bb+y =1

Nie musimy wylicza¢ «, ( ani 7, catke z funkcji w wyrazimy przy pomocy
Yo, Y1 1 Ya.

/abw(x)dx _ /ab(a:cz—i—ﬁx—l—fy)dx

= 043 9 Yx )
3 b2 CL3 CL2
—ag—i-ﬁg—i-’yb—ozg—ﬁg—’ya
o s
:5(63—a3)+§(b2—a2)+’y(b—a)
b—
:Ta(Qab2+2aab+2aa2+356+35a+6v)
b—
— 6a(aa2+ﬁa+7+ab2+6b+7+a(bz+2ab—|—a2)+26(b—|—a)—1—47)
b— b ? b
:_“(y0+y2+4a< +a> +4p5 +a+4v)
6 2 2
b—a
=~ (o +dyi +y2).

Dla metody Simpsona mamy nastepujace oszacowanie bledu.

Fakt 14.2. Jezeli funkcja f ma ograniczong czwartg pochodnag, czyli spetnia
fO@ <M, xe(ab),

to catka z funkcji [ na przedziale |a,b] rézni sie od calki z funkeji kwadratowej
(14.6) o nie wiecej niz
M(b—a)®
RS ——~
- 2880
Dowad. O

(14.7)

W celu zwickszenia doktadnosci dzielimy przedzial catkowania na 2n pod-
przedziatow, i w kazdym podprzedziale przeprowadzamy powyzszy rachunek.
Mamy 2n punktow podziatu a = xy < 1 < -+ < 29, = b (wliczajac w to
srodki n podprzedzialow), jak zwykle oznaczamy y; = f(x;) i piszemy

b—a <
6n

b—a
:W(y0+y2n+2(y2+y4+"'+y2n—2)+4<y1+y3+"'+y2n—1))~

S =

(Y2i + 4 Y2it1 + Yo2ir2)
i=0
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a = xm T b= x5

Rysunek 14.2: Metoda Simpsona, n = 2.

Monte Carlo

Majac funkcje nieujemna (i, oczywiscie, ograniczona) f na [a,b] mozemy
postepowaé nastepujaco. Wyznaczmy ograniczenie f od gory, powiedzmy
f(x) < M. Nastepnie generujemy losowo n punktéw (z;,v;) w prosto-
kacie [a,b] x [0, M] (,rzucamy” losowo n punktoéw na prostokat). Rozktad
prawdopodobieristwa powinien by¢ jednostajny (czyli prawdopodobieristwo,
ze punkt wpadnie w jaki§ obszar powinno by¢ proporcjonalne do pola po-
wierzchni tego obszaru), a wszystkie liczby losowe x;,y;, i = 1,...,n powinny
by¢ generowane niezaleznie (niezalezne zmienne losowe). Nastepnie zliczamy
wszystkie przypadki, w ktorych y; < f(z;). To sg te losowo rzucone punkty,
ktore wpadty w obszar pod wykresem funkcji f, i niech ich bedzie m. Wtedy
proporcja ©* powinna by¢ taka sama, jak proporcja pola pod wykresem do
pola caltego prostokata

m fab f(z)dx

n  (b—a) M’

Taka metoda liczenia calki nazywa sie metoda Monte Carlo. W niektorych
zastosowaniach (na przyktad przy pomiarach wielkosci elektrycznych) tego
typu metody sa stosowane.
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Rozdzial 15
Ciagi 1 szeregi funkcyjne

Niech f,, n = 1,2,... beda funkcjami okreslonymi na pewnym zbiorze FE.
Moéwimy, ze tworzg one ciag funkcyjny na E. Zauwazmy, ze dla dowolnego
ustalonego punktu x € E mamy ciag liczbowy {f,(x)}. Ciag taki moze by¢
zbiezny lub nie. Jezeli dla kazdego = € F istnieje granica lim, . f,(x), to
mowimy, ze cigg funkeyjny {f,} jest zbiezny punktowo. Podobnie, jezeli dla
kazdego x € E szereg liczbowy > " | f.(x) jest zbiezny, to mowimy, ze szereg
funkcyjny > 7 fu jest zbiezny punktowo na E.

Naszym celem jest zbadanie mozliwosci zamiany kolejnosci wykonywania
dzialan analitycznych na funkcjach. Na przykitad rézniczkowanie szeregu
funkcyjnego wyraz za wyrazem (,wejscie” z pochodng pod znak sumy).

Przyklady: (a) Rozwazmy szereg
Sug
n=1

Ten szereg jest zbiezny dla |¢| < 1 (mozna zastosowa¢ na przyktad kryterium
d’Alemberta), ale jaka jest jego suma? Napiszmy

1—2’

f(a:):ix”: ! dla z € (—1,1).
n=0

Pochodna funkgji f tatwo policzyé: f'(x) = ﬁ Gdybys$my mogli r6znicz-
kowacé szereg funkcyjny Y2 2" wyraz za wyrazem, to

1 ! _Oo n/_oo n—_l oo n
—(1_x)2:f($)—;($)—;nx 1—E;n$.

Otrzymaliby$smy wiec

00 . q
an = ——, dlalq <1
— )
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(b) Przypu$émy, ze szukamy funkeji f dla ktorej

f'(x) = o f(x). (15.1)

Sprobujmy znalez¢ f w postaci szeregu potegowego f(z) = > o a,z". Gdy-
by$my mogli szereg rézniczkowaé wyraz za wyrazem to, podstawiajagc wynik
do rownania (15.1)

f(x) = (ian:ﬂ”)/ = inan "l = i(n + 1) ap 2" = iaan ",
n=0 n=1 n=0 n=0

Widac¢, ze wystarczy znalez¢ takie wspotezynniki a,,, aby spelnione byto row-
nanie
(n+1)ap1 =aa,, dlan=01,....

Jest to réwnanie rekurencyjne, ktore tatwo mozna rozwiagzac:

a a
" = a4, =« —0.
n+1 n!

py1 = &

OtrzymalibySmy wiec rozwigzanie
S an n ax
f(x):Zaomx =aqpe™”. (15.2)
n=0

Zauwazmy, ze chociaz nie wiemy na razie, czy powyzsze rozumowanie jest
prawidtowe, to znaczy czy w powyzsze] sytuacji istotnie szereg potegowy
mozna rozniczkowaé wyraz za wyrazem, to funkcja dana w (15.2) rzeczywiscie
spetnia réwnanie (15.1)

(¢) Niech ciag funkcyjny bedzie dany wzorem

_ sin(nx)
T

Zauwazmy, ze dla kazdego ustalonego x € R cigg zbiega f,(z) — 0, gdy
n — oo. Wyrazy ciggu sg funkcjami rozniczkowalnymi, i f/ (x) = y/n cosnuz.
Ciag funkcji pochodnych nie zbiega wiec do pochodnej granicy ciagu, bo,
na przyktad f/(0) = \/n - 0. Widzimy wiec, ze w tym wypadku granica
pochodnych nie jest pochodna granicy.

()

(d) Rozwazmy ciag funkcyjny

folx)=nx(l—2%)" da 0<z<l1.
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Ciag ten ma granice w kazdym punkcie, i tg granica jest funkcja f(x) stale
rowna O:

fn(0)=0, lim f,(z)=0 dla z € (0,1].

n—oo

7. drugiej strony

chociaz fol 0dzr = 0. W tym wypadku catka z granicy nie jest r6wna granicy
catek.

Przyklady (a) i (b) pokazuja, ze zamiana kolejnosci operacji analitycz-
nych, na przykltad rézniczkowanie szeregu funkcyjnego wyraz za wyrazem,
moze by¢ przydatna, natomiast przyklady (c) i (d) pokazuja, ze sprawa jest
delikatna, i czasem taka zamiana nie jest mozliwa. Teraz zbadamy to za-
gadnienie doktadniej, i, na przyktad, pokazemy, ze szeregi potegowe mozna
rozniczkowa¢ wyraz za wyrazem.

Definicja 15.1. Cigg funkcyjny {f.} jest zbiezny jednostajnie do funkcji f
na zbiorze I, jezeli

Ve>o dngeN Vn>ny VaeeE |fulz)— flx)] <e,
(czyli nie tylko cigg jest zbiezny w kazdym punkcie, ale ng mozna wybraé

niezaleznie od x € E). Podobnie, szereg funkcyjny Y ., [njest zbiezny jed-
nostajnie na E, jezeli cigg sum czeSciowych

sn(2) = Z filx)

jest zbiezny jednostajnie.

Warto chwile zastanowié¢ sie nad ta definicja. Zbiezno$¢ ciagu jedno-
stajna na zbiorze E oznacza, ze ciag jest zbiezny w kazdym punkcie, oraz,
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dodatkowo, ze predkosé¢ zbieznosci jest rownomierna we wszystkich punktach.
Majac dane € > 0 mozemy dobra¢ ng € N, ktore bedzie dobre we wszystkich
punktach z € F.

Twierdzenie 15.2. Cigg funkcyjny {f.} jest zbieiny jednostajnie na zbiorze
E wtedy i tylko wtedy, gdy spetnia jednostajnie warunek Cauchy’ego, czyli

gdy
Ve>o dnyeN Vmmn>ny VeeE |f,(z)— fn(z)] <e

Dowadd. Jezeli f, zbiega jednostajnie do f, to dla e > 0 mozna znalezé ny € N
takie, ze Vm,n>ny Vrxek
€ €
[fal@) = f@)] <50 [ful2) = fl2)] < 5
Wtedy
€ €
1al@) = F@)] < 1fale) = @) + @) = F@) < S+ 5 = ¢,
a wiec widzimy, ze ze zbieznosci jednostajnej wynika jednostajny warunek
Cauchy’ego. Teraz w druga strone. Jezeli spetniony jest jednostajny warunek
Cauchy’ego, to jest tez spelniony warunek Cauchy’ego w kazdym punkcie
x € E. W takim razie w kazdym punkcie istnieje granica f(z):

f(x) = lim f,(z), Vze€E.

n—oo

Niech teraz € > 0 a ng € N bedzie takie, ze dla m,n >ngiz € E

[fu(2) = fm(z)] <.

Gdy m — oo to ciag liczbowy po lewej stronie jest zbiezny do |f,(z) — f(z)],
a wiec takze

[fulz) = flz)] <e

Poniewaz powyzsze jest spelnione dla wszystkich n > ngiz € £, ae >0
byto dowolne, to f,, — f jednostajnie. O]

Twierdzenie 15.3. Granica jednostajnie zbieznego ciggu funkcji ciggtych
jest ciggta.

Dowdd. Niech f, — f jednostajnie na zbiorze E, oraz niech wszystkie funkcje
fn beda ciagle. Niech x € E, i niech ¢ > 0 bedzie dane. Wtedy istnieje
ng € N takie, ze
€
Vnzne VyeE [fuly) - fW)l<3.
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Funkcja f,, jest ciagla, wiec istnieje 6 > 0 takie, ze
€
vyEE |y—SL’|<6 = |fn0(y)_fno(‘r>|<§'
Wtedy

|f(y) = (@) < |f(y) = fao ()| +

1o (¥) = o (@) + [ fno(2) = f@) < 3+ 5+ 5=¢

Funkcja graniczna f jest wiec ciaglta w punkcie z. O

Przyktad: Niech f,(x) = 2™ na [0,1]. Kazda z funkcji f, jest ciagla na
przedziale [0, 1]. Jak tatwo zauwazyé

lim f,(z) = {1 ce=l

n—00 0: <1

Granica ciagu jest wiec funkcja nieciagta (w punkcie 1), a w takim razie f,
nie moze by¢ zbiezny jednostajnie.

Twierdzenie 15.4. Niech {f,} bedzie ciggiem funkcji catkowalnych na [a, b]
w sensie Riemanna i niech f, — f jednostajnie na [a,b]. Wtedy f tez jest
catkowalna w sensie Riemanna oraz

n—o0 a

b b
/ f(z)dz = lim folz)de. (15.3)

Dowdd. Niech € > 0 bedzie dane. Z jednostajnej zbieznosci ciagu {f,} wy-
nika, ze istnieje ny € N takie, ze

€

Vn>ny Vaoe [aab] ‘fn(m)_f(m)‘ <€ = 2(b—a)'
Wynika stad, ze

€ €

a wiec, w szczego6lnoscei f jest funkcja ograniczong. Wezmy podzial P odcinka
[a, b], wtedy

U(P,f) < U(P, fﬁm),
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a wiec

Zf(a:) dr < /ab (fn(x) + m) dz = /ab Fulz) dz + g
Podobnie,

L(P,f)ZL(P,fn—m) - /Lbfn(ﬂf)dxz/abfn(w)dx—g-

Mamy wiec
b b e e
0§/f(x)dx—/fn(x)d$§§+§:e.

Poniewaz € byto dowolne, wiec catki dolna i gérna musza by¢ réwne, a wiec
funkcja f jest catkowalna w sensie Riemanna. Pozostala jeszcze do pokazania
rownosé (15.3). Niech, znowu, € > 0 bedzie dowolne, i niech ng € N bedzie
takie, ze

Vn>ny Vaelab |[fulz)—f(z) <

(b—a)
Wtedy

/abf(a:)dx—/abfn(x) du
[ 0@ - ne)al s [ 150 - i<

Poniewaz powyzsze oszacowanie zachodzi dla dowolnego n > ng wiec otrzy-
mujemy (15.3). O

Uwaga: Powyzsze twierdzenie udowodniliSmy dla calek wtasciwych. Dla
calek niewlasciwych niekoniecznie jest prawdziwe. Na przyktad, niech

Locos(2): |x|<nr

Widac¢, ze f, — 0 jednostajnie na calej prostej R, ale

nm

oo 51 z x
/_ folz)de = " 2 cos <%) dx:{%:t}:/j costdt:sint\fgzz

_nm T
2

/(:fn(x)dx—/»/ZO-dx:O.

W przypadku catek niewtasciwych, zeby przechodzi¢ do granicy pod znakiem
calki trzeba wiec zalozy¢ co$ wiecej niz tylko zbieznos¢ jednostajna ciagu.

[ME]

Widzimy wiec, ze
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Whiosek 15.5. Jezeli funkcje f,, sq catkowalne w sensie Riemanna na |a, b
i

— Z fo(x) jednostajnie na |[a, b,

to
[ rwa= [y > sl dw—z/ fula

Nastepujace twierdzenie podaje warunki pod jakimi mozna ,wejs¢” z roz-
niczkowaniem pod znak granicy.

Twierdzenie 15.6. Niech {f,} bedzie ciggiem funkcji rézniczkowalnych na
przedziale [a,b], takim, Ze cigg pochodnych {f}} jest zbiezny jednostajnie na
[a,b]. Jezeli sam cigg {f,} jest zbieiny chociaz w jednym punkcie, to jest
zbiezny jednostajnie do pewnej funkcji f, rézniczkowalnej na |a, b, oraz

fl(@) = lim f,(z).
n—oo
Dowdd. Niech ciagg {f,} bedzie zbiezny w punkcie x € [a, b]. Istnienie takiego
punktu jest w zalozeniach. Niech € > 0 i niech ny € N bedzie takie, ze dla
wszystkich m,n > ngy zachodzi

Fa(@) = fnl@)] < 5,

oraz
€

2(b—a)’
Skorzystaliémy z obu zaltozen, zbieznosci w jednym punkcie ciggu {f,} oraz
zbiezno$ci jednostajnej ciagu pochodnych. Nastepnie ustalmy pewne m,n >

ng, i do funkcji ®(y) = f.(y) — fi(y) zastosujmy twierdzenie o wartosci
sredniej (oczywiscie @ jest rozniczkowalna).

1fn(y) = fn ()] < y € [a,b].

[2(y)| = [2(y) — B(x) + ()]
< [2(y) — B(2)] + [2()]
< |®(O)|- |y — x| + |®(x)] (dla pewnego 6 pomiedzy y i x)
< byl (15
<545
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Poniewaz powyzsze oszacowanie jest prawdziwe dla wszystkich m,n > nyg
i dla wszystkich y € [a,b], to ciag {f.} spelia jednostajny warunek Cau-
chy’ego, a wiec, zgodnie z Twierdzeniem 15.2, jest jednostajnie zbiezny do
pewnej funkcji f. Funkcja f, jako granica jednostajnie zbieznego ciggu funk-
cji ciaglych jest tez ciggla. Pokazemy, ze jest takze rozniczkowalna i jej
pochodna jest granica ciagu {f,}. Ustalmy punkt = € [a,b] i niech funkcje
@ oraz ¢, beda dane wzorami

{ f(y?j:i(ﬂﬁ) Sy 7& z,

A=lim, , fl(z) y==x, Puly) =

fn(y)—fn(z) .
— Ly # o,
e(y) = { y

fulz) oy =

Zauwazmy, ze w kazdym punkcie y € [a,b] mamy ¢, (y) — ¢(y). Zauwazmy
tez, ze z definicji wynika natychmiast, ze funkcje ¢, sa ciggte w kazdym punk-
cie, a funkcja ¢ jest ciagta w kazdym punkcie réznym od x. Teraz bedziemy
chcieli pokazac ciggloé¢ funkceji ¢ w punkcie . Ciaglo$¢ w x oznaczataby do-
ktadnie, ze f jest rézniczkowalna w punkcie z, i jej pochodna w tym punkcie
jest granicag pochodnych funkcji f,. Naszym celem obecnie bedzie pokaza-
nie, ze zbieznos¢ ¢, — ¢ jest jednostajna na [a,b], z czego wynika¢ bedzie
ciaglos$¢ ¢ (przypomnijmy, ze funkcje ¢, sa ciagle). Niech m,n € N beda
dowolne, y # x i obliczmy

n(y) — om(y) = 2
)

(y — ) ’

gdzie w liczniku zastosowalismy twierdzenie o wartosci sredniej dla funkcji
¢ = f, — fm, a 0 jest punktem posrednim pomiedzy y i x. Zgodnie z (15.4)
mamy wiec

[on(y) — om¥)| = 1£,.(0) — [.(O)] <e,

jezeli tylko ng € N jest wystarczajaco duze, i m,n > ng, a y # x. Widzimy
wiec, ze ciag {p,} spelnia jednostajny warunek Cauchy’ego na zbiorze F =
la,b] \ {z}, a wiec jest na tym zbiorze jednostajnie zbiezny. Roéwniez w
punkcie x ciag jest zbiezny:

on(z) = fo(x) = A= (). (15.5)

Oczywiscie skoro ciag {p,} jest zbiezny jednostajnie na [a,b] \ {z} i dodat-
kowo zbiezny w punkcie z, to jest jednostajnie zbiezny na caltym przedziale
[a,b]. Wynika to wprost z obserwacji, ze jezeli ciag jest zbiezny jednostajnie
na zbiorze F; i jednostajnie na zbiorze Es, to jest tez zbiezny jednostajnie
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na sumie zbiorow E; U Es. Odcinek [a,b] jest suma zbiorow [a,b] \ {z} oraz
zbioru jednopunktowego {x}. Zbieznosé¢ jednostajna na pierwszym zbiorze
wladnie pokazaliémy, a na zbiorze jednopunktowym zbieznos¢ jednostajna
oznacza doktadnie zbieznos¢ w tym punkcie, czyli (15.5).

Tak jak wspomnieliémy juz wezesniej, skoro ciag funkcji ciagtych {p,}
jest zbiezny jednostajnie do funkcji {¢}, to granica tez jest funkcja ciagly, w
szczegolnoscei ciagta w punkcie . Oznacza to, ze

lim f(z) = A= ¢(z) = lim ¢(y) = lim fy) — f(z)

n—oo y—x Yy—T y—x

= f'(z).

Punkt = € [a,b] byl dowolny, a wiec pokazaliémy, ze w kazdym punkcie
x € [a,b] zachodzi

F'(x) = lim_fi ()

Wprost z powyzszego twierdzenia wynika nastepujacy wniosek

Wniosek 15.7. Niech cigg {f.} bedzie zbieiny do f jednostajnie na prze-
dziale [a,b], © niech F! = f,, czyli niech F, bedq funkcjami pierwotnymi
funkcji f,. Zalézmy dodatkowo, zZe dla jakiego$ x € [a,b] cigg F,(x) jest
zbiezny. Wtedy cigg funkcji pierwotnych {F,} jest zbiezny jednostajnie do
pewnej funkeji F', i funkcja F' jest funkcjq pierwotng funkcji f:

F'(z) = f(z), x € (a,b).

Mozna to sformutowaé w jezyku catek nieoznaczonych. Niech f, — f jedno-
stajnie na [a,b], i niech cigg

/fn(x) dx (15.6)

bedzie zbiezny w jakim$ punkcie przedziatu [a,b]. Wtedy cigg (15.6) jest
zbiezny w kazdym punkcie przedziatu [a,b] (nawet jednostajnie na |a, b)), oraz

lim [ f.(x) dx:/ lim f(z)dx.

Zwroémy jeszceze uwage, ze zalozenie, ze ciag (15.6) jest zbiezny przynaj-
mniej w jednym punkcie przedzialu [a, b] jest istotne, i tak naprawde spro-
wadza sie do wyboru stalych catkowania dla ciaggu catek nieoznaczonych.

Nastepujace twierdzenie jest bardzo wygodnym w praktyce kryterium
zbieznoéci jednostajnej.
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Twierdzenie 15.8 (Kryterium Weierstrassa). Jezeli |f.(x)| < a, dla n =
1,2,... iz € E, oraz szereg Yy .~ a, jest zbieiny, to szereg funkcyjny

> fal)

jest zbiezny jednostajnie na zbiorze E.

Dowdd. Ciag sum czesciowych s, = Y ;_, aj jest zbiezny, czyli spelnia wa-
runek Cauchy’ego:

m
Ve>0 dngeN Vm>n>ng |[Sm—su| = Zak<e.
k=n+1

Mamy, dla kazdego x € E

m

> i) = fulw)

k=1

< Y @< Y a<e

k=n+1 k=n+1

> il

k=n+1

Ciag sum czesciowych szeregu > 7| fr(z) spelnia wiec jednostajny warunek
Cauchy’ego, jest wiec jednostajnie zbiezny. O]

Szeregi potegowe

Udowodnione powyzej twierdzenia zastosujemy do szeregéw potegowych, ktore
stanowig typowy przyktad szeregéw funkcyjnych. Wiemy, ze szereg funkcyjny
postaci

Zan(x —xo)" (15.7)

jest zbiezny wewnatrz przedzialu zbieznosci (rg — R, 2o + R) (nie wiadomo
w ogblnym przypadku jak jest na koncach xg £ R), jezeli R > 0, gdzie

1
R E——y S
lim {/|a,|

n—oo

przy czym R = oo jezeli lim, o0 {/|an] = 0, a jezeli lim,,_o0 ¥/]an| = +o00 to
R =0, i szereg (15.7) jest zbiezny tylko dla x = . Szereg taki definiuje
wiec funkcje, ktorej dziedzing jest przedzial zbieznosci szeregu:

f@) =" an(x—x)" (15.8)
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Twierdzenie 15.9. 1. Szereg potegowy (15.8) jest zbieiny jednostajnie na
kazdym przedziale domknietym (zwierajgeym swoje korice) [xo—r, xo+7]
zawartym wewngtrz przedziatu zbieznosci, to znaczy v < R:

[xg —r,xg + 7| C (9 — R, 20 + R).

2. Szereg pochodnych

Z na, (r —x0)" ' = Z(n + 1) api1(z —x0)" (15.9)

ma ten sam promien zbieznosci R co szereg wyjsciowy (15.8), a wiec jest
tez zbiezny jednostajnie w kazdym przedziale domknietym [xo—r, xo+7]
dla r < R.

3. Szereg potegowy mozna wiec rozniczkowac i catkowaé wyraz za wyrazem
wewnqgtrz przedziatu zbieznosci (xg — R, o + R).

Dowdd. Niech

n

sp(z) = Z ar(r — xo)k

k=0

bedzie ciaggiem sum czesciowych. Wtedy dla = € [xg — 7, xo + ] mamy
lan(z — 20)*| = |ax| |2 — z0|F < |ag| r". (15.10)

Zauwazmy, ze szereg
o0
E |an|r"
n=0

jest zbiezny, wynika to z kryterium Cauchy’ego zbieznosci:

_ _ r

lim {/|a,|r™ =r- lim {/|a,| = = < L.
n—oo n—oo R

W takim razie, zgodnie z (15.10) i kryterium Weierstrassa szereg potegowy

(15.8) jest zbiezny jednostajnie na przedziale [zg —r, xo +7]. Udowodnilismy

wiec czesé 1. twierdzenia.

2. Mamy
Vani|(n+1) = /|apsa| Vn+ 1. (15.11)

Nietrudno pokazaé, ze granica gorna (skoriczona lub nieskoriczona) ciagu
(15.11) jest taka sama, jak granica gorna ciagu lim,, o ¥/|a,|, a wicc promien
zbieznosci szeregu pochodnych (15.9) jest taki sam, jak promien zbieznosci
R szeregu (15.8). Szereg pochodnych jest wiec rowniez zbiezny jednostajnie
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na kazdym przedziale [xg — r,xo + 1], dla r < R.

3. Rozniczkowanie i catkowanie wyraz za wyrazem szeregu potegowego w
kazdym punkcie wewnatrz przedzialu zbieznosci wynika z Twierdzen 15.4 i
15.6, z faktu, ze dla kazdego punktu z; € (xg — R, ¢ + R) mozemy znalez¢
r < R takie, ze x1 € [xg — 1,0 + 1|, oraz z udowodnionych juz czesci 1. i
2. O

Z powyzszego twierdzenia mamy nastepujacy wniosek

Whiosek 15.10. Szereg potegowy > o an (x — x0)", ktdrego promieri zbiez-
nodci R > 0 okresla na przedziale (xo— R, xo+ R) funkcje nieskoriczenie wiele
razy rozniczkowalng

fa) =" an(x —z0)", (15.12)

dla ktorej
™ (z0) = nlay.

Dowadd. Roézniczkowalnosé jednokrotna wynika z poprzedniego twierdzenia,
a rozniczkowalnosé nieskoniczenie wiele razy przez indukcje, gdyz szereg po-
chodnych jest kazdorazowo rowniez szeregiem potegowym, o tym samym pro-
mieniu zbieznoéci. Rozniczkujac n-razy szereg (15.12) wyraz za wyrazem
otrzymujemy, dla z € (xg — R, zo + 1)

f(")(x):Zk(k_l)""'(k—n+1)ak(x—x0)k_”,

Wstawiajac x = xp otrzymujemy
f™z)=nmn—-1)-----1la, =nla,.
O

Whniosek 15.11. Szereg Taylora funkcji danej szeregiem (15.12) to ten sam
szereq.

Przyklad: Rozwiniemy w szereg Taylora funkcje f(z) = - wokoé! punktu

11—z
Ty = % Mozna to zrobi¢ prosto

1 1 1 > 1\"
= =92 = 2n+1(ﬂf—_) .
l—z 1-(1-13) 1—-2(z—3) nz% 2

Wiemy, ze szereg potegowy po prawej jest zbiezny dla |z — %| < %, jego suma
jest réwna ﬁ W takim razie, zgodnie z powyzszym wnioskiem, szereg po
prawej jest szeregiem Taylora funkcji po lewej. Nie musieliSmy liczyé¢ ani
jednej pochodnej.
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Whiosek 15.12. Jezeli dwa szeregi potegowe o promieniach zbieznosci wiek-

szych od zera
Z an (x — )" i Z by (x — )"
n=0 n=0

sq sobie rowne w jakims przedziale (o — €, xg + €), to muszq byé identyczne:

an,=b, n=0,1,....

Przyktady: (a) Niech f(x) = arctan(z). Rozwiniemy funkcje f w szereg

MacLaurina (x¢ = 0).
d
arctan(z) —/ ’

Powyzsze wynika z faktu, ze szereg potegowy > - (—z*)" mozna catkowa¢é
wyraz za wyrazem. Wybierajac dla calek wyrazow state catkowania rowne 0
(tak jak w powyzszych obliczeniach), scatkowany szereg jest zbiezny, na przy-
ktad w punkcie xy = 0 do funkeji arctan(z). Jako wniosek mamy nastepujacy
wzOr na pochodne

arctan™ (z) = {(—1)731(71 — 1! :n - nieparzyste

0 1 n - parzyste.

(b) Podobnie znajdziemy rozwiniecie w szereg MacLaurina funkcji f(x) =

log(1 + ).
d
log(l + x) = / . fx

_ /ni)(_x)” da
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n=0
& . l.nJrl
B Z(_l) n+1
n=0
.@3 5
— _ _|_ -
T3S

(c) Szereg Taylora moze by¢ zbiezny, ale do innej funkcji. Niech, na przyktad

B e 32 cx#0
f(:zc)—{ 0 cx=0.

Rysunek 15.1: Funkcja 7z przykladu (c).

Funkcja f jest rézniczkowalna w kazdym punkcie. W kazdym punkcie
roznym od 0 wynika to wprost ze wzoru na f, natomiast w 0 wymaga to
sprawdzenia. Obliczymy granice ilorazu r6znicowego w 0, oddzielnie granice
prawo- i lewostronng.

_ 1 2
.oe 22 —0 ) e Y ) Y ) 1
lim — = lim — = lim = = lim s =0
z—0+ T y—+o00 y—+oo Y y—+oo 2y €Y

< =

Podobnie obliczamy granice lewostronna, gdy z — 0. Pochodna f'(0) ist-
nieje wiec, 1 jest rowna 0. Poza zerem, ze wzoru mamy

f(z) = ze_z%, x#0.

3
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Podobnie jak pierwsza pochodna, korzystajac z reguty de 'Hopitala spraw-
dzamy, ze f”(0) = 0. Nietrudno zauwazy¢, ze pochodna dowolnego rzedu
f™(z), 2 #0 Jest suma skladnikow postaci —re —2 , wiec indukcyjnie mozna
pokazaé, ze f(™(0) istnieje dla dowolnego n € N, i jest rowna 0. Funkcja f
jest wiec réozniczkowalna nieskonczenie wiele razy, a jej szereg Taylora w 0
jest szeregiem zerowym

0+0-2+0-22+---=0.

Z drugiej strony f(x) # 0 dla x # 0, czyli funkcja nie jest nigdzie, oprocz 0,
rowna swojemu szeregowi Taylora.

(d) Znajdziemy wzor na sume szeregu »_ -, n*z". Przedzialem zbieznosci

tego szeregu, jak sie tatwo przekonac jest przedzial (—1,1). Mamy

Zn Zn+2 (n+1)z" —Z3nx —Z2x
n=1

n=1

:i(w””) —Bi(n—i—l T —1—21’
n=1 n=1
S () S () -
n=1 n=1 n=1
(e.) " o0 / oo
— jg::tn+2> -3 (jg::rn+1> ‘+'§£:1En
n=1 n=1 n=1
o0 " o0 ! [o¢]
= Zx”) —3(2:6") —|—Zx”
n=3 n=2 n=1
oo " oo / oo
= x?’zx”> —3<x22x” —i—xe"
n=0 n=0 n=0
:(1i3w>/,_3(1afx)/+1fx
_22°—62+6x 6z —3a? x
T T -2 -2 1-z
22 —52° +5x
T (—ep

Sprawdzanie jednostajnej zbieznoSci

Wypiszmy proste fakty, ktore w wiekszosci wypadkow pozwalaja nam roz-
strzygnaé czy zbieznos$¢ ciagu funkcji jest jednostajna. Niech f,(z) — f(x)
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w kazdym punkcie r € F.

(a) Jesli | fn(z) — f(2)|] < o, dla kazdego x € E'i ay, — 0, to f, — f jedno-
stajnie na F.

(b) Jezeli istnieje ciag {z,} C E taki, ze |f,(x,) — f(z,)| nie jest zbiezny do
0, to f, nie jest zbiezny jednostajnie do f na F.

(c) Jezeli E = FEy U E; oraz f, — f jednostajnie na F; oraz jednostajnie
na Fs, to f, — f jednostajnie na E. W praktyce oznacza to, ze zbieznos¢
jednostajna mozna sprawdzac przedziatami.
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