Przetadowanie nazw funkgcji

e Zanim zajmiemy sie pojeciem klasy opiszemy tak zwane
przetadowanie nazw funkgcji. C++ pozwala definiowac rézne
funkcje o tej samej nazwie, pod warunkiem, ze réznia sie
sposobem wywotania. Moga mieé¢ rézne ilosci argumentdw,
argumenty réznych typéw, albo rézna kolejnos$¢ argumentéw.
Na przyktad, wyobrazmy sobie, ze mamy w programie dwie
struktury
struct osoba

char nazwisko [50];
char imie[20];

}

struct etat

char nazwa[100];

int pensja;

}

Przetadowanie nazw funkgcji

e Chcielibysmy zdefiniowaé spos6b wypisywania tych struktur.
Tworzymy funkcja, ktéra przyjmuje strukture i ja wypisuje na
ekran. Naturalnie chcielibySmy nazwa¢ ja wypisz (). Mozemy
utworzy¢ dwie takie funkcje:

Void wypies (et

e Kazda z tych funkcji moze mie¢ inng definicje. Kompilator

rozpozna, po sposobie wywotania, ktéra z definicji zastosowac.

Przetadowanie nazw funkgcji

e Na przyktad:
void wypisz(osoba x)

cout<<"Pracownik:,"<<x.imie<<""<<x.nazwisko<<endl;
}

e Podobnie:
void wypisz(etat x)
cout<<"Stanowisko:,"<<x.etat<<endl;

cout<<"Uposazenie: "<<x.pensja<<endl;

}

e W sumie mamy wiec dwie rézne funkcje, o tej samej nazwie.
Whbrew pozorom jest to bardzo wygodne, i czesto stosowane.
Zamiast przetadowania moglibysmy nada¢ tym dwém funkcjom
rézne nazwy. Ale podczas pisania programu niektére nazwy s3a
naturalne. Nie chcemy wnika¢ w to jak dana funkcja sobie
konkretnie radzi z konkretnym wywotaniem, interesuje nas
finalny wynik.

Przetadowanie nazw funkcji

e Przypomnijmy operator <. To nie jest funkcja, tylko operator,
ale operatory tez podlegaja przetadowaniu na tej samej
zasadzie. Jezeli kompilator zobaczy

to podstawi za x warto$¢ 40. Jest to bitowe przesuniecie w
lewo o 2 pozycje (czyli mnozenie przez 4). Jezeli natomiast
zobaczy

cout << "Jakisyunapis";

po prostu wypisze tre$¢ napisu na ekran. Co ma zrobi¢ pozna
po kontekscie. Jezeli po lewej stronie operatora jest zmienna,
to zastosuje operator przesuniecia bitowego. Jezeli po lewej
stronie jest strumien wyjsciowy cout, wykona na zmiennej po
prawej stronie operacje wyjscia.

Przetadowanie nazw funkgcji

o Jezeli kompilator zobaczy
float x;
cout << x;
to wypisze wartos¢ zmiennej x jako liczby
zmiennoprzecinkowej. Tym razem dodatkowy kontekst polega
na typie zmiennej do wypisania.

e Oczywiscie nie ma powodu, zeby wszystkie funkcje nazywaty
sie tak samo. Powinnismy nadawaé nazwy w sposéb logiczny.
Za moment, méwiac o pojeciu klasy zobaczymy naturalne
miejsce do przetadowania.

e Jezeli chcemy korzysta¢ z przetadowania funkcji, pamietajmy o
waznych szczegétach.

e Funkcje przetadowane muszg réznié sie sposobem wywotania.
Albo ilo§¢ argumentéw musi sie réznié, albo ich typ, albo
kolejnosc.

Przetadowanie nazw funkgcji

e Typ zwracane] wartosci nie ma znaczenia. Nastepujaca
sytuacja bedzie zgtoszona przez kompilator jako btad

void funkcja(int x)

int funkcja(int y)

{

e Obie definicje réznia sie tylko typem zwracanej wartosci, wiec
to nie jest przetadowanie. Zastanéwmy sie, zeby wiedzie¢ przy
wywotaniu ktéra definicje zastosowaé, kompilator musiatby
~Zapusci¢” obie definicje na konkretnych danych, i sprawdzi¢,
jakiego typu wychodzi wynik.

Przetadowanie nazw funkgji

e Przypomnijmy, ze funkcje moga posiadaé¢ argumenty domysline.
Na przyktad, mozemy zdefiniowa¢ funkcje nastepujaco:

void funkcja(int x, int y = 0)

}

e Wtedy mozemy wywotaé funkcje z dwoma argumentami:
funkcja(a,b);
albo z jednym argumentem

funkcja(a);

e W tym drugim przypadku za drugi argument zostanie
podstawiona wartos¢ domyslna 0. Nie mozemy wiec
zdefiniowa¢ innej funkgcji przetadowane;j

void funkcja(int x)

Przetadowanie nazw funkcji

e To bytby btad. Kompilator nie wiedziatby, czy przy wywotaniu
z jednym parametrem zastosowaé wersje przetadowang, czy
wersje z argumentem domyslnym.

e Tak naprawde o argumentach domysinych mozna wtasnie
mysle¢ jako o przetadowanych wersjach funkgcji. Btad pokazany
powyzej kompilator przypuszczalnie zgtosi jako podwdéjng
definicje.

e Kolejna sprawa o ktérej trzeba pamietaé przy przetadowaniu
jest to, ze C++ moze w miare potrzeby sam rzutowac typy
zmiennych (jezeli sie da).

Przetadowanie nazw funkgcji

e Na przyktad, jezeli mamy definicje:

void funkcja(int x)

{

to przy wywotaniu

funkcja (0.1);

kompilator najpierw zrzutuje 0.1 na int, a nastepnie podstawi
jako argument (w tym przypadku podstawi 0). Jezeli gdzies, w
tym samym zakresie waznosci nazw bedzie tez definicja

void funkcja(double x)
{

to kompilator nie bedzie zmiennej rzutowat, tylko podstawi
rowno 0.1, ale do definicji przetadowane;j.

Przetadowanie nazw funkgji

e Trzeba o tym pamietaé. Widzac wywotanie funkcji, kompilator
najpierw szuka wersji definicji z doktadnie takimi samymi
typami.

o W drugiej kolejnosci, jezeli kompilator nie znajdzie defnicji
funkgji z doktadnie identycznymi typami, prébuje dokona¢ tak
zwanej konwersji trywialnej. Jak pamietamy niektére typy sa
pozornie rézne, ale jednak identyczne. Na przyktad obie
zmienne, tablica i tablica_ptr

char tablica[10];
char xtablica_ptr;

sa tak naprawde tego samego typu.

Przetadowanie nazw funkgcji

e Jezeli konwersja trywialna nie wystarcza, kompilator prébuje
tak zwanej promocji. Rzutuje typ zmiennej na podobng, ale o
wiekszej pojemnosci. Na przyktad, jezeli wywotanie jest z
argumentem typu char, a kompilator znalazt definicje funkgcji z
argumentem typu int to dokona promocji i podstawi.
Podobnie typ float moze by¢ promowany do double.

e W koncu kompilator prébuje rzutowania standardowego. Tak
jak powyzej widzieliSmy, typ double moze by¢ rzutowany na
int (przez zaokraglenie).

o Jezeli argumentdw jest wiele, sytuacja jeszcze bardziej sie
komplikuje. Zamiast pamietaé wszystkie szczegéty warto wiec
pamietaé zasade. Kompilator powinien w miejscu wywotania
wiedzie¢, ktérag definicje zastosowac.

Klasy

e Uzywalismy poprzednio typu zmiennej definiowanej przez
uzytkownika, tak zwanej struktury. Zawierata ona wiele
sktadnikéw w jednej catosci. Skfadniki byty innymi zmiennymi.
Klasa to taka bardziej ogélna struktura. Oprécz réznych
zmiennych moze tez zawiera¢ funkcje.

e Pojecie klasy czyli typu zmiennej, oraz obiektu, czyli zmienne;
takiego typu jest obecnie centralnym pojeciem w wielu
jezykach programowania.

e Wyobrazmy sobie, ze w ramach naszego programu chcielibysmy
mie¢ funkcje, ktéra wyswietla okno, z jakas zawartoscia, gdzies
na ekranie. Funkcja, wyswietlajaca takie okno musi wiedzie¢,
w ktérym miejscu je wyswietli¢, jaki ma by¢ rozmiar, jaki kolor
tta, jaka czcionka, skad wzig¢ zawartosé.

e Z takim oknem zwigzane s3 rézne funkcje, na przyktad przesun
okno, zmniejsz okno, nadpisz zawarto$¢ itp.

Klasy

e Logiczne jest zgromadzenie tych wszystkich danych oraz
operujacych na nich funkgji (tak zwanych metod klasy) w
jedna catos¢. Wyobrazmy sobie, ze strukture, reprezentujaca
ksigzki, ktéra tworzylismy poprzednio chcemy rozbudowaé do
klasy. Robimy to nastepujaco:

class book

char
char
char
char

tytul [1000];

autor nazw[50];
autor imie [20];
wydawnictwo [1000];

int cena;
int rok_wyd;

book
book

}

*nast;
kpoprz;

e Jak na razie nie jest to nic zawitego. Jezeli chcemy, mozemy
postugiwac sie taka klasg tak jak strukturg. Ale mozemy do
niej doda¢ funkcje. Taka typowa funkcja jest zapisanie
konkretnej zawartosci do zmiennych bedacych sktadnikami

klasy.

Klasy

e Zauwazmy ze poprzednio, postugujac sie strukturg, musieliSmy
dobrze wiedzie¢, jak dane wewnatrz struktury s3
przechowywane, jak sie nazywaja. Zastapimy to jedna funkcja

class book

void zapisz_ksiazke(char tytul[], char autor_nazw][],
char autor_imie[], char wydawnictwo[], int cena, int rok_wyd);
}

e Zauwazmy, ze wewnatrz definicji klasy funkcje sktadowa tylko
zadeklarowalismy. Definicja bedzie gdzies dalej. Tak sie z
reguty postepuje. Mozna jednak sama definicje tez umiesci¢
od razu w definicji klasy. Tak robimy, jezeli taka definicja jest
krétka, rzedu kilku linijek.

e Funkcje, ktérych definicja znajduje sie wewnatrz klasy
traktowane sg przez kompilator jako inline. Jezeli nie
chcemy funkgji inline, wyniesmy definicje na zewnatrz.

Klasy

e Jezeli definicja funkcji sktadowej klasy znajduje sie poza klasa,
z reguty gdzies ponizej, wyglada to nastepujaco:

class book

\.I;)-id zapisz_ksiazke(char tyt[], char nazw][],
char imie[], char wyd[], int c, int rok);
+

book :: zapisz ksiazke(char tytul[], char autor nazw][],

char autor imie[], char wydawnictwo[], int cena, int rok wyd)
{

strcpy (tytul , tyt);

strcpy (autor_nazw, nazw);

strcpy (autor_imie, imie);
strcpy (wydawnictwo , wyd);
cena = c;

rok_wyd = rok;

Klasy

e Zwr6Emy uwage na operator przestrzeni nazw: book: :. Jest
jasne, jaka jest jego rola. Méwi nam, ze nastepujaca po nim
nazwa odpowiada tej z klasy book. Konieczno$¢ stosowania
tego operatora bierze sie stad, ze zakres waznosci nazw
sktadnikéw klasy (zmiennych i funkcji) ograniczony jest do
danej klasy.

e Jest w tym réznica w poréwnaniu do zwyktych funkgji (nie
bedacych sktadnikami klas). Dla zwyktych funkgji zakres
waznosci nazwy to caty plik, w ktérym funkcja jest
zadeklarowana (od miejsca deklaracji).

Klasy

e Majac zdefiniowana klase mozemy tworzy¢ zmienne tego typu.
Takie zmienne, ktérych typ jest klasa nazywaja sie obiektami.
Obiekty, tak jak inne zmienne, moga by¢ statyczne lub
dynamiczne. Na przyktad, jezeli wczesniej zdefiniowalismy
klase book, to mozemy napisac

book a,b;
book xc;

c = new book;

e Utworzone zostaty dwie zmienne typu book statyczne a i b,
oraz zmienna dynamiczna, wskazywana przez wskaznik c.

e Majac utworzone zmienne, mozemy odnosi¢ sie do ich czesci
sktadowych tak jak to robilismy w przypadku struktur:

a.rok _wyd = 1587;

(*c).cena = 45000;

strcpy((*c) tytul ,"TeorlauGrawnach)
b.zapisz ksiazke(...

Klasy

e Uwaga: mozemy odnosi¢ sie tylko do sktadnikéw tak zwanych
publicznych. Sktadniki moga by¢ tez prywatne, nie s3 wtedy w
ogdle widoczne poza obiektem. To jest wazny temat, i
zajmiemy sie nim niedtugo.

e Przypomnijmy, ze funkcje bedace czeSciami sktadowymi klas
nazywaja sie metodami klas.

o Wywotanie metody klasy zawsze zawiera w sobie obiekt
wywotujacy:

b.zapisz ksiazke(...);

e To jest zupetnie oczywiste. Funkcja musi wiedzie¢, na jakich
konkretnych danych ma dziataé¢. W powyzszym przyktadzie
funkgji zapisujacej konkretne wartosci w zmiennych zawartych
w obiekcie, funkcja musi wiedzie¢, o ktéry konkretny obiekt
chodzi. Wszystkie obiekty tej samej klasy maja sktadowe o
tych samych nazwach.

Klasy

e Metody klasy s3 jej czeSciami sktadowymi. Jezeli tworzymy
wiec obiekty jakiej$ klasy kazdy z tych obiektéw zawiera swoje
czesci sktadowe, dane, oraz metody. Jezeli chodzi o dane, to
sprawa jest jasna, kazdy obiekt ma swoje dane, konkretna
wartos¢ jest zapewne rézna w réznych obiektach. Ale po co
tym wszystkim obiektom wtasne kopie funkcji, ktére przeciez
sa wszystkie identyczne?

e Oczywiscie C++ bierze to pod uwage. Nie jest to widoczne
dla uzytkownika, ale metody obiektéw danej klasy
przechowywane s3 w pamieci tylko w jednym egzemplarzu
(inaczej niz dane, ktére kazdy obiekt ma swoje). Kiedy
wywotywana jest metoda dla dowolnego obiektu, tak naprawde
wywotywany jest ten jeden wspdlny egzemplarz.

Klasy

e W takim razie pojawia sie problem. Przeciez metoda musi
wiedzie¢, ktéry konkretny obiekt jg wywotat. Jezeli jest to
metoda zapisz_ksiazke(...), to metoda musi wiedziec,
gdzie konkretnie przekazane dane zapisa¢. Rozwigzanie jest
takie, ze metoda, oprécz wszystkich argumentéw, dostaje tez
+po cichu” wskaznik na obiekt, ktéry j3 wywotat. Ten wskaznik
nazywa sie this, i mozna si¢ nim postugiwac.

e Wewnatrz klasy mozna stosowa¢ etykiety public, private
oraz protected. Kazdy sktadnik nalezy do jednej z tych
kategorii. Sktadowe kategorii public sa widoczne na zewnatrz
klasy, tak jak sktadowe struktury. Sktadowe kategorii private
i protected nie s3 widoczne na zewnatrz, i tylko metody
danej klasy moga na nich operowa¢ (zapisa¢, odczytaé, czy
wywotaé, jezeli jest to metoda).

Klasy

e Rdéznica pomiedzy private a protected jest subtelna, i nie
bedziemy jej teraz zglebiac.

e Domyslna jest etykieta private. Etykiety mozna stosowa¢
wielokrotnie, kazda jest aktywna az do nastepne;.

e Cel tych etykiet jest jasny. Sktadowe publiczne, to interface,
ktérym klasa komunikuje sie z programem. Sktadowe prywatne
to czeSci mechanizméw wewnetrznych, ktére nie dotycza
zewnetrznego programu.

e Jezeli chcemy docenié¢ zalety pojecia klasy wyobrazmy sobie
duzy program, ktéry jest pisany przez wiele oséb, i ktéry musi
by¢ wspierany i unowoczesniany caty czas. Jezeli gtéwne
elementy programu zorganizowane s3 w obiektach, to rézne
klasy moga pisac i sie nimi zajmowac rézni ludzie. Jedynymi
elementami klas, ktére trzeba konsultowaé pomiedzy soba s3
elementy publiczne.

Klasy

e Podobnie, przy nowych wersjach programu, jezeli klasa
zachowuje niezmienione sktadowe publiczne (czyli swéj
interfejs z programem), to mozna ja w programie podmienic.
Nic sie nie zmieni z punktu widzenia programu (chociaz nowa
klasa moze na przyktad szybciej dziata¢). Programista ma
swobode zmiany sktadowych prywatnych bez ogladania sie na
reszte programu.

e Stosowanie etykiet jest nastepujace:
class book
private :
char tytul[100];
char autor_nazw[50];
pu-b-l.ic:
void zapisz_ksiazke(...);

o

Klasy

e Skfadowe tytul i autor_nazw sa prywatne (etykieta private
nie jest nawet konieczna, prywatne jest domyslne), natomiast
funkcja zapisz_ksiazke() jest publiczna. Program moze
zapisywa¢ dane do obiektu postugujac sie ta funkcja, i tylko
tak. Taki sposéb komunikacji z obiektem jest przewidywalny i
bezpieczny.

e Klasy z reguty zawieraja specjalne funkcje, tak zwane
konstruktor i destruktor. Nazwy nie oddaja doktadnie
funkcjonalnosci. Wiadomo, jakie instrukcje tworza obiekty, i
jakie je likwiduja. Konstruktor jest funkcja wywotywana
automatycznie w momencie tworzenia obiektu. Z reguty jest
wykorzystywana do nadania poczatkowych wartosci zmiennym,
takze do ew. tworzenia potrzebnych zmiennych dynamicznych,
bedacych sktadowymi klasy. Destruktor z kolei jest
wywotywany automatycznie przy likwidacji obiektu. Typowo
zajmuje sie likwidacjg zmiennych dynamicznych, ktére
mogtyby by¢ sktadowymi klasy.

Klasy

e Konstruktor ma taka sama nazwe jak klasa, a destruktor taka
samg nazwe jak klasa, poprzedzong znakiem . Obie metody
muszg by¢ publiczne. Inaczej niz inne funkcje nie maja typu
zwracanego. Na przyktad:

class book

private :

char tytul[100];

char autor nazw[50];

pu.b.llic:

book ();

book (char tyt[]);

book (char tyt[], char nazw[], char im[]);

“book(void);
void zapisz_ksiazke(...);

,

e Jak zwykle, definicje konstruktoréw i destruktora znajda sie
gdzies ponizej.

Klasy

e Zauwazmy, ze w powyzszym mamy kilka wersji konstruktora.
Konstruktor klasy to funkcja ktéra z reguty podlega
przetadowaniu. Majac powyzsze przetadowane wersje
konstruktora mozemy definiowa¢ obiekty tej klasy na rézne
sposoby:

book a; //powstaje obiekt bez adnej inicjalizacji
book b("Teoriaugrawitacji"); //powstaje obiekt z zapisanym tytutem

book c("teoriauGrawitacji", "Newton", "lsaac");
//powstaje obiekt z zapisanym tytutem | autorem

e Oczywiscie wymaga to odpowiedniego zdefiniowania
wszystkich wersji konstruktora:

Klasy

book :: book(char tyt[])

strepy (tytul , tyt);

book :: book(char tyt[], char nazw[], char im[])
strcpy (tytul , tyt);

strcpy (autor nazw, nazw);
strcpy (autor imie, im);

e W naszej klasie book nie ma potrzeby definiowania
destruktora. Niczego specjalnego nie trzeba robi¢ przy
usuwaniu z pamieci obiektu tej klasy.

e Do tematu klas wrécimy w drugiej czesci tego kursu. Jest to
kluczowe pojecie w jezykach programowania.

e Postugujac sie klasami warto poszczegélne klasy wydzieli¢ do
osobnych plikéw *.cpp. Nazwa pliku pownna by¢ taka sama,
jak nazwa klasy, i powinny mie¢ wtasne pliki nagtéwkowe * .h.

