
Przeªadowanie nazw funkcji

• Zanim zajmiemy si¦ poj¦ciem klasy opiszemy tak zwane

przeªadowanie nazw funkcji. C++ pozwala de�niowa¢ ró»ne

funkcje o tej samej nazwie, pod warunkiem, »e ró»ni¡ si¦

sposobem wywoªania. Mog¡ mie¢ ró»ne ilo±ci argumentów,

argumenty ró»nych typów, albo ró»n¡ kolejno±¢ argumentów.

Na przykªad, wyobra¹my sobie, »e mamy w programie dwie

struktury

s t r u c t osoba
{
cha r nazwi sko [5 0] ;
cha r im i e [2 0] ;

}

s t r u c t e t a t
{
cha r nazwa [1 0 0] ;
i n t pen s j a ;

}

Przeªadowanie nazw funkcji

• Chcieliby±my zde�niowa¢ sposób wypisywania tych struktur.

Tworzymy funkcj¡, która przyjmuje struktur¦ i j¡ wypisuje na

ekran. Naturalnie chcieliby±my nazwa¢ j¡ wypisz(). Mo»emy

utworzy¢ dwie takie funkcje:

v o i d wyp i s z (osoba x) ;
v o i d wyp i s z (e t a t x) ;

• Ka»da z tych funkcji mo»e mie¢ inn¡ de�nicj¦. Kompilator

rozpozna, po sposobie wywoªania, któr¡ z de�nicji zastosowa¢.

Przeªadowanie nazw funkcji

• Na przykªad:

v o i d wyp i s z (osoba x)
{
cout<<"Pracownik : "<<x . imie<<" "<<x . nazwisko<<end l ;

}

• Podobnie:
v o i d wyp i s z (e t a t x)
{
cout<<"Stanowisko : "<<x . e ta t<<end l ;
cout<<"Uposa»en i e : "<<x . pens ja<<end l ;

}

• W sumie mamy wi¦c dwie ró»ne funkcje, o tej samej nazwie.

Wbrew pozorom jest to bardzo wygodne, i cz¦sto stosowane.

Zamiast przeªadowania mogliby±my nada¢ tym dwóm funkcjom

ró»ne nazwy. Ale podczas pisania programu niektóre nazwy s¡

naturalne. Nie chcemy wnika¢ w to jak dana funkcja sobie

konkretnie radzi z konkretnym wywoªaniem, interesuje nas

�nalny wynik.

Przeªadowanie nazw funkcji

• Przypomnijmy operator �. To nie jest funkcja, tylko operator,

ale operatory te» podlegaj¡ przeªadowaniu na tej samej

zasadzie. Je»eli kompilator zobaczy

i n t x = 10 ;
x = x << 2 ;

to podstawi za x warto±¢ 40. Jest to bitowe przesuni¦cie w

lewo o 2 pozycje (czyli mno»enie przez 4). Je»eli natomiast

zobaczy

cout << " J a k i ± n ap i s " ;

po prostu wypisze tre±¢ napisu na ekran. Co ma zrobi¢ pozna

po kontek±cie. Je»eli po lewej stronie operatora jest zmienna,

to zastosuje operator przesuni¦cia bitowego. Je»eli po lewej

stronie jest strumie« wyj±ciowy cout, wykona na zmiennej po

prawej stronie operacj¦ wyj±cia.

Przeªadowanie nazw funkcji

• Je»eli kompilator zobaczy

f l o a t x ;
cout << x ;

to wypisze warto±¢ zmiennej x jako liczby

zmiennoprzecinkowej. Tym razem dodatkowy kontekst polega

na typie zmiennej do wypisania.

• Oczywi±cie nie ma powodu, »eby wszystkie funkcje nazywaªy

si¦ tak samo. Powinni±my nadawa¢ nazwy w sposób logiczny.

Za moment, mówi¡c o poj¦ciu klasy zobaczymy naturalne

miejsce do przeªadowania.

• Je»eli chcemy korzysta¢ z przeªadowania funkcji, pami¦tajmy o

wa»nych szczegóªach.

• Funkcje przeªadowane musz¡ ró»ni¢ si¦ sposobem wywoªania.

Albo ilo±¢ argumentów musi si¦ ró»ni¢, albo ich typ, albo

kolejno±¢.

Przeªadowanie nazw funkcji

• Typ zwracanej warto±ci nie ma znaczenia. Nast¦puj¡ca

sytuacja b¦dzie zgªoszona przez kompilator jako bª¡d

v o i d f u n k c j a (i n t x)
}
. . .
}
i n t f u n k c j a (i n t y)
{
. . .
}

• Obie de�nicje ró»ni¡ si¦ tylko typem zwracanej warto±ci, wi¦c

to nie jest przeªadowanie. Zastanówmy si¦, »eby wiedzie¢ przy

wywoªaniu któr¡ de�nicj¦ zastosowa¢, kompilator musiaªby

�zapu±ci¢� obie de�nicje na konkretnych danych, i sprawdzi¢,

jakiego typu wychodzi wynik.

Przeªadowanie nazw funkcji

• Przypomnijmy, »e funkcje mog¡ posiada¢ argumenty domy±lne.

Na przykªad, mo»emy zde�niowa¢ funkcj¦ nast¦puj¡co:

v o i d f u n k c j a (i n t x , i n t y = 0)
}
. . .
}

• Wtedy mo»emy wywoªa¢ funkcj¦ z dwoma argumentami:

f u n k c j a (a , b) ;

albo z jednym argumentem

f u n k c j a (a) ;

• W tym drugim przypadku za drugi argument zostanie

podstawiona warto±¢ domy±lna 0. Nie mo»emy wi¦c

zde�niowa¢ innej funkcji przeªadowanej

v o i d f u n k c j a (i n t x)
}
. . .
}

Przeªadowanie nazw funkcji

• To byªby bª¡d. Kompilator nie wiedziaªby, czy przy wywoªaniu

z jednym parametrem zastosowa¢ wersj¦ przeªadowan¡, czy

wersj¦ z argumentem domy±lnym.

• Tak naprawd¦ o argumentach domy±lnych mo»na wªa±nie

my±le¢ jako o przeªadowanych wersjach funkcji. Bª¡d pokazany

powy»ej kompilator przypuszczalnie zgªosi jako podwójn¡

de�nicj¦.

• Kolejn¡ spraw¡ o której trzeba pami¦ta¢ przy przeªadowaniu

jest to, »e C++ mo»e w miar¦ potrzeby sam rzutowa¢ typy

zmiennych (je»eli si¦ da).

Przeªadowanie nazw funkcji

• Na przykªad, je»eli mamy de�nicj¦:

v o i d f u n k c j a (i n t x)
{
. . .
}

to przy wywoªaniu

f u n k c j a (0 . 1) ;

kompilator najpierw zrzutuje 0.1 na int, a nast¦pnie podstawi

jako argument (w tym przypadku podstawi 0). Je»eli gdzie±, w

tym samym zakresie wa»no±ci nazw b¦dzie te» de�nicja

v o i d f u n k c j a (doub l e x)
{
. . .
}

to kompilator nie b¦dzie zmiennej rzutowaª, tylko podstawi

równo 0.1, ale do de�nicji przeªadowanej.

Przeªadowanie nazw funkcji

• Trzeba o tym pami¦ta¢. Widz¡c wywoªanie funkcji, kompilator

najpierw szuka wersji de�nicji z dokªadnie takimi samymi

typami.

• W drugiej kolejno±ci, je»eli kompilator nie znajdzie defnicji

funkcji z dokªadnie identycznymi typami, próbuje dokona¢ tak

zwanej konwersji trywialnej. Jak pami¦tamy niektóre typy s¡

pozornie ró»ne, ale jednak identyczne. Na przykªad obie

zmienne, tablica i tablica_ptr

cha r t a b l i c a [1 0] ;
cha r ∗ t a b l i c a_p t r ;

s¡ tak naprawd¦ tego samego typu.

Przeªadowanie nazw funkcji

• Je»eli konwersja trywialna nie wystarcza, kompilator próbuje

tak zwanej promocji. Rzutuje typ zmiennej na podobn¡, ale o

wi¦kszej pojemno±ci. Na przykªad, je»eli wywoªanie jest z

argumentem typu char, a kompilator znalazª de�nicj¦ funkcji z

argumentem typu int to dokona promocji i podstawi.

Podobnie typ float mo»e by¢ promowany do double.

• W ko«cu kompilator próbuje rzutowania standardowego. Tak

jak powy»ej widzieli±my, typ double mo»e by¢ rzutowany na

int (przez zaokr¡glenie).

• Je»eli argumentów jest wiele, sytuacja jeszcze bardziej si¦

komplikuje. Zamiast pami¦ta¢ wszystkie szczegóªy warto wi¦c

pami¦ta¢ zasad¦. Kompilator powinien w miejscu wywoªania

wiedzie¢, któr¡ de�nicj¦ zastosowa¢.

Klasy

• U»ywali±my poprzednio typu zmiennej de�niowanej przez

u»ytkownika, tak zwanej struktury. Zawieraªa ona wiele

skªadników w jednej caªo±ci. Skªadniki byªy innymi zmiennymi.

Klasa to taka bardziej ogólna struktura. Oprócz ró»nych

zmiennych mo»e te» zawiera¢ funkcje.

• Poj¦cie klasy czyli typu zmiennej, oraz obiektu, czyli zmiennej

takiego typu jest obecnie centralnym poj¦ciem w wielu

j¦zykach programowania.

• Wyobra¹my sobie, »e w ramach naszego programu chcieliby±my

mie¢ funkcj¦, która wy±wietla okno, z jak¡± zawarto±ci¡, gdzie±

na ekranie. Funkcja, wy±wietlaj¡ca takie okno musi wiedzie¢,

w którym miejscu je wy±wietli¢, jaki ma by¢ rozmiar, jaki kolor

tªa, jaka czcionka, sk¡d wzi¡¢ zawarto±¢.

• Z takim oknem zwi¡zane s¡ ró»ne funkcje, na przykªad przesu«

okno, zmniejsz okno, nadpisz zawarto±¢ itp.

Klasy

• Logiczne jest zgromadzenie tych wszystkich danych oraz

operuj¡cych na nich funkcji (tak zwanych metod klasy) w

jedn¡ caªo±¢. Wyobra¹my sobie, »e struktur¦, reprezentuj¡c¡

ksi¡»ki, któr¡ tworzyli±my poprzednio chcemy rozbudowa¢ do

klasy. Robimy to nast¦puj¡co:
c l a s s book
{

cha r t y t u l [1 0 0 0] ;
cha r autor_nazw [5 0] ;
cha r autor_imie [2 0] ;
cha r wydawnictwo [1 0 0 0] ;
i n t cena ;
i n t rok_wyd ;
book ∗ na s t ;
book ∗poprz ;

} ;

• Jak na razie nie jest to nic zawiªego. Je»eli chcemy, mo»emy

posªugiwa¢ si¦ tak¡ klas¡ tak jak struktur¡. Ale mo»emy do

niej doda¢ funkcje. Tak¡ typow¡ funkcj¡ jest zapisanie

konkretnej zawarto±ci do zmiennych b¦d¡cych skªadnikami

klasy.

Klasy

• Zauwa»my »e poprzednio, posªuguj¡c si¦ struktur¡, musieli±my

dobrze wiedzie¢, jak dane wewn¡trz struktury s¡

przechowywane, jak si¦ nazywaj¡. Zast¡pimy to jedn¡ funkcj¡

c l a s s book
{
. . .
v o i d z ap i s z_k s i a z k e (cha r t y t u l [] , cha r autor_nazw [] ,

cha r autor_imie [] , cha r wydawnictwo [] , i n t cena , i n t rok_wyd) ;
} ;

• Zauwa»my, »e wewn¡trz de�nicji klasy funkcj¦ skªadow¡ tylko

zadeklarowali±my. De�nicja b¦dzie gdzie± dalej. Tak si¦ z

reguªy post¦puje. Mo»na jednak sam¡ de�nicj¦ te» umie±ci¢

od razu w de�nicji klasy. Tak robimy, je»eli taka de�nicja jest

krótka, rz¦du kilku linijek.

• Funkcje, których de�nicja znajduje si¦ wewn¡trz klasy

traktowane s¡ przez kompilator jako inline. Je»eli nie

chcemy funkcji inline, wynie±my de�nicj¦ na zewn¡trz.

Klasy

• Je»eli de�nicja funkcji skªadowej klasy znajduje si¦ poza klas¡,

z reguªy gdzie± poni»ej, wygl¡da to nast¦puj¡co:

c l a s s book
{
. . .
v o i d z ap i s z_k s i a z k e (cha r t y t [] , cha r nazw [] ,

cha r im i e [] , cha r wyd [] , i n t c , i n t rok) ;
} ;

. . .

book : : z a p i s z_k s i a z k e (cha r t y t u l [] , cha r autor_nazw [] ,
cha r autor_imie [] , cha r wydawnictwo [] , i n t cena , i n t rok_wyd)

{
s t r c p y (t y t u l , t y t) ;
s t r c p y (autor_nazw , nazw) ;
s t r c p y (autor_imie , im i e) ;
s t r c p y (wydawnictwo , wyd) ;
cena = c ;
rok_wyd = rok ;

}

Klasy

• Zwró¢my uwag¦ na operator przestrzeni nazw: book::. Jest

jasne, jaka jest jego rola. Mówi nam, »e nast¦puj¡ca po nim

nazwa odpowiada tej z klasy book. Konieczno±¢ stosowania

tego operatora bierze si¦ st¡d, »e zakres wa»no±ci nazw

skªadników klasy (zmiennych i funkcji) ograniczony jest do

danej klasy.

• Jest w tym ró»nica w porównaniu do zwykªych funkcji (nie

b¦d¡cych skªadnikami klas). Dla zwykªych funkcji zakres

wa»no±ci nazwy to caªy plik, w którym funkcja jest

zadeklarowana (od miejsca deklaracji).

Klasy

• Maj¡c zde�niowan¡ klas¦ mo»emy tworzy¢ zmienne tego typu.

Takie zmienne, których typ jest klas¡ nazywaj¡ si¦ obiektami.

Obiekty, tak jak inne zmienne, mog¡ by¢ statyczne lub

dynamiczne. Na przykªad, je»eli wcze±niej zde�niowali±my

klas¦ book, to mo»emy napisa¢

book a , b ;
. . .

book ∗c ;
. . .

c = new book ;

• Utworzone zostaªy dwie zmienne typu book statyczne a i b,

oraz zmienna dynamiczna, wskazywana przez wska¹nik c.

• Maj¡c utworzone zmienne, mo»emy odnosi¢ si¦ do ich cz¦±ci

skªadowych tak jak to robili±my w przypadku struktur:

a . rok_wyd = 1587 ;
(∗ c) . cena = 45000 ;
s t r c p y ((∗ c) . t y t u l , " Teo r i a G r aw i t a c j i ") ;
b . z a p i s z_k s i a z k e (. . .) ;

Klasy

• Uwaga: mo»emy odnosi¢ si¦ tylko do skªadników tak zwanych

publicznych. Skªadniki mog¡ by¢ te» prywatne, nie s¡ wtedy w

ogóle widoczne poza obiektem. To jest wa»ny temat, i

zajmiemy si¦ nim niedªugo.

• Przypomnijmy, »e funkcje b¦d¡ce cz¦±ciami skªadowymi klas

nazywaj¡ si¦ metodami klas.

• Wywoªanie metody klasy zawsze zawiera w sobie obiekt

wywoªuj¡cy:

b . z a p i s z_k s i a z k e (. . .) ;

• To jest zupeªnie oczywiste. Funkcja musi wiedzie¢, na jakich

konkretnych danych ma dziaªa¢. W powy»szym przykªadzie

funkcji zapisuj¡cej konkretne warto±ci w zmiennych zawartych

w obiekcie, funkcja musi wiedzie¢, o który konkretny obiekt

chodzi. Wszystkie obiekty tej samej klasy maj¡ skªadowe o

tych samych nazwach.

Klasy

• Metody klasy s¡ jej cz¦±ciami skªadowymi. Je»eli tworzymy

wi¦c obiekty jakiej± klasy ka»dy z tych obiektów zawiera swoje

cz¦±ci skªadowe, dane, oraz metody. Je»eli chodzi o dane, to

sprawa jest jasna, ka»dy obiekt ma swoje dane, konkretna

warto±¢ jest zapewne ró»na w ró»nych obiektach. Ale po co

tym wszystkim obiektom wªasne kopie funkcji, które przecie»

s¡ wszystkie identyczne?

• Oczywi±cie C++ bierze to pod uwag¦. Nie jest to widoczne

dla u»ytkownika, ale metody obiektów danej klasy

przechowywane s¡ w pami¦ci tylko w jednym egzemplarzu

(inaczej ni» dane, które ka»dy obiekt ma swoje). Kiedy

wywoªywana jest metoda dla dowolnego obiektu, tak naprawd¦

wywoªywany jest ten jeden wspólny egzemplarz.

Klasy

• W takim razie pojawia si¦ problem. Przecie» metoda musi

wiedzie¢, który konkretny obiekt j¡ wywoªaª. Je»eli jest to

metoda zapisz_ksiazke(...), to metoda musi wiedzie¢,

gdzie konkretnie przekazane dane zapisa¢. Rozwi¡zanie jest

takie, »e metoda, oprócz wszystkich argumentów, dostaje te»

�po cichu� wska¹nik na obiekt, który j¡ wywoªaª. Ten wska¹nik

nazywa si¦ this, i mo»na si¦ nim posªugiwa¢.

• Wewn¡trz klasy mo»na stosowa¢ etykiety public, private

oraz protected. Ka»dy skªadnik nale»y do jednej z tych

kategorii. Skªadowe kategorii public s¡ widoczne na zewn¡trz

klasy, tak jak skªadowe struktury. Skªadowe kategorii private

i protected nie s¡ widoczne na zewn¡trz, i tylko metody

danej klasy mog¡ na nich operowa¢ (zapisa¢, odczyta¢, czy

wywoªa¢, je»eli jest to metoda).

Klasy

• Ró»nica pomi¦dzy private a protected jest subtelna, i nie

b¦dziemy jej teraz zgª¦bia¢.

• Domy±lna jest etykieta private. Etykiety mo»na stosowa¢

wielokrotnie, ka»da jest aktywna a» do nast¦pnej.

• Cel tych etykiet jest jasny. Skªadowe publiczne, to interface,

którym klasa komunikuje si¦ z programem. Skªadowe prywatne

to cz¦±ci mechanizmów wewn¦trznych, które nie dotycz¡

zewn¦trznego programu.

• Je»eli chcemy doceni¢ zalety poj¦cia klasy wyobra¹my sobie

du»y program, który jest pisany przez wiele osób, i który musi

by¢ wspierany i unowocze±niany caªy czas. Je»eli gªówne

elementy programu zorganizowane s¡ w obiektach, to ró»ne

klasy mog¡ pisa¢ i si¦ nimi zajmowa¢ ró»ni ludzie. Jedynymi

elementami klas, które trzeba konsultowa¢ pomi¦dzy sob¡ s¡

elementy publiczne.

Klasy

• Podobnie, przy nowych wersjach programu, je»eli klasa

zachowuje niezmienione skªadowe publiczne (czyli swój

interfejs z programem), to mo»na j¡ w programie podmieni¢.

Nic si¦ nie zmieni z punktu widzenia programu (chocia» nowa

klasa mo»e na przykªad szybciej dziaªa¢). Programista ma

swobod¦ zmiany skªadowych prywatnych bez ogl¡dania si¦ na

reszt¦ programu.

• Stosowanie etykiet jest nast¦puj¡ce:

c l a s s book
{
p r i v a t e :
cha r t y t u l [1 0 0] ;
cha r autor_nazw [5 0] ;
. . .

p u b l i c :
v o i d z ap i s z_k s i a z k e (. . .) ;
. . .

}

Klasy

• Skªadowe tytul i autor_nazw s¡ prywatne (etykieta private

nie jest nawet konieczna, prywatne jest domy±lne), natomiast

funkcja zapisz_ksiazke() jest publiczna. Program mo»e

zapisywa¢ dane do obiektu posªuguj¡c si¦ t¡ funkcj¡, i tylko

tak. Taki sposób komunikacji z obiektem jest przewidywalny i

bezpieczny.
• Klasy z reguªy zawieraj¡ specjalne funkcje, tak zwane

konstruktor i destruktor. Nazwy nie oddaj¡ dokªadnie

funkcjonalno±ci. Wiadomo, jakie instrukcje tworz¡ obiekty, i

jakie je likwiduj¡. Konstruktor jest funkcj¡ wywoªywan¡

automatycznie w momencie tworzenia obiektu. Z reguªy jest

wykorzystywana do nadania pocz¡tkowych warto±ci zmiennym,

tak»e do ew. tworzenia potrzebnych zmiennych dynamicznych,

b¦d¡cych skªadowymi klasy. Destruktor z kolei jest

wywoªywany automatycznie przy likwidacji obiektu. Typowo

zajmuje si¦ likwidacj¡ zmiennych dynamicznych, które

mogªyby by¢ skªadowymi klasy.

Klasy

• Konstruktor ma tak¡ sam¡ nazw¦ jak klasa, a destruktor tak¡

sam¡ nazw¦ jak klasa, poprzedzon¡ znakiem . Obie metody

musz¡ by¢ publiczne. Inaczej ni» inne funkcje nie maj¡ typu

zwracanego. Na przykªad:

c l a s s book
{
p r i v a t e :
cha r t y t u l [1 0 0] ;
cha r autor_nazw [5 0] ;
. . .

p u b l i c :
book () ;
book (cha r t y t []) ;
book (cha r t y t [] , cha r nazw [] , cha r im []) ;
~book (v o i d) ;
v o i d z ap i s z_k s i a z k e (. . .) ;

. . .
}

• Jak zwykle, de�nicje konstruktorów i destruktora znajd¡ si¦

gdzie± poni»ej.

Klasy

• Zauwa»my, »e w powy»szym mamy kilka wersji konstruktora.

Konstruktor klasy to funkcja która z reguªy podlega

przeªadowaniu. Maj¡c powy»sze przeªadowane wersje

konstruktora mo»emy de�niowa¢ obiekty tej klasy na ró»ne

sposoby:

book a ; // pows ta j e o b i e k t bez »adne j i n i c j a l i z a c j i

book b (" Teo r i a g r a w i t a c j i ") ; // pows ta j e o b i e k t z zap isanym tytuªem

book c (" t e o r i a G r aw i t a c j i " , "Newton" , " I s a a c ") ;
// pows ta j e o b i e k t z zap isanym tytuªem i autorem

• Oczywi±cie wymaga to odpowiedniego zde�niowania

wszystkich wersji konstruktora:

Klasy

book : : book (cha r t y t [])
{
s t r c p y (t y t u l , t y t) ;

}
book : : book (cha r t y t [] , cha r nazw [] , cha r im [])
{
s t r c p y (t y t u l , t y t) ;
s t r c p y (autor_nazw , nazw) ;
s t r c p y (autor_imie , im) ;

}

• W naszej klasie book nie ma potrzeby de�niowania

destruktora. Niczego specjalnego nie trzeba robi¢ przy

usuwaniu z pami¦ci obiektu tej klasy.

• Do tematu klas wrócimy w drugiej cz¦±ci tego kursu. Jest to

kluczowe poj¦cie w j¦zykach programowania.

• Posªuguj¡c si¦ klasami warto poszczególne klasy wydzieli¢ do

osobnych plików *.cpp. Nazwa pliku pownna by¢ taka sama,

jak nazwa klasy, i powinny mie¢ wªasne pliki nagªówkowe *.h.

