Klasy

e Uzywalismy poprzednio typu zmiennej definiowanej przez
uzytkownika, tak zwanej struktury. Zawierata ona wiele
sktadnikéw w jednej catosci. Skfadniki byty innymi zmiennymi.
Klasa to taka bardziej ogélna struktura. Oprécz réznych
zmiennych moze tez zawiera¢ funkcje.

e Pojecie klasy czyli typu zmiennej, oraz obiektu, czyli zmienne;
takiego typu jest obecnie centralnym pojeciem w wielu
jezykach programowania.

e Wyobrazmy sobie, ze w ramach naszego programu chcielibysmy
mie¢ funkcje, ktéra wyswietla okno, z jakas zawartoscia, gdzies
na ekranie. Funkcja, wyswietlajaca takie okno musi wiedzie¢,
w ktérym miejscu je wyswietli¢, jaki ma by¢ rozmiar, jaki kolor
tta, jaka czcionka, skad wzig¢ zawartosé.

e Z takim oknem zwigzane s3 rézne funkcje, na przyktad przesun
okno, zmniejsz okno, nadpisz zawarto$¢ itp.

Klasy

e Logiczne jest zgromadzenie tych wszystkich danych oraz
operujacych na nich funkgji (tak zwanych metod klasy) w
jedna catos¢. Wyobrazmy sobie, ze strukture, reprezentujaca
ksigzki, ktéra tworzylismy poprzednio chcemy rozbudowaé do
klasy. Robimy to nastepujaco:

class book

char
char
char
char

tytul [1000];

autor nazw[50];
autor imie [20];
wydawnictwo [1000];

int cena;
int rok_wyd;

book
book

}

*nast;
kpoprz;

e Jak na razie nie jest to nic zawitego. Jezeli chcemy, mozemy
postugiwac sie taka klasg tak jak strukturg. Ale mozemy do
niej doda¢ funkcje. Taka typowa funkcja jest zapisanie
konkretnej zawartosci do zmiennych bedacych sktadnikami

klasy.

Klasy

e Zauwazmy ze poprzednio, postugujac sie strukturg, musieliSmy
dobrze wiedzie¢, jak dane wewnatrz struktury s3
przechowywane, jak sie nazywaja. Zastapimy to jedna funkcja

class book

void zapisz_ksiazke(char tytul[], char autor_nazw][],
char autor_imie[], char wydawnictwo[], int cena, int rok_wyd);
}

e Zauwazmy, ze wewnatrz definicji klasy funkcje sktadowa tylko
zadeklarowalismy. Definicja bedzie gdzies dalej. Tak sie z
reguty postepuje. Mozna jednak sama definicje tez umiesci¢
od razu w definicji klasy. Tak robimy, jezeli taka definicja jest
krétka, rzedu kilku linijek.

e Funkcje, ktérych definicja znajduje sie wewnatrz klasy
traktowane sg przez kompilator jako inline. Jezeli nie
chcemy funkgji inline, wyniesmy definicje na zewnatrz.

Klasy

e Jezeli definicja funkcji sktadowej klasy znajduje sie poza klasa,
z reguty gdzies ponizej, wyglada to nastepujaco:

class book

\.I;)-id zapisz_ksiazke(char tyt[], char nazw][],
char imie[], char wyd[], int c, int rok);
+

book :: zapisz ksiazke(char tytul[], char autor nazw][],

char autor imie[], char wydawnictwo[], int cena, int rok wyd)
{

strcpy (tytul , tyt);

strcpy (autor_nazw, nazw);

strcpy (autor_imie, imie);
strcpy (wydawnictwo , wyd);
cena = c;

rok_wyd = rok;

Klasy

e Zwr6Emy uwage na operator przestrzeni nazw: book: :. Jest
jasne, jaka jest jego rola. Méwi nam, ze nastepujaca po nim
nazwa odpowiada tej z klasy book. Konieczno$¢ stosowania
tego operatora bierze sie stad, ze zakres waznosci nazw
sktadnikéw klasy (zmiennych i funkcji) ograniczony jest do
danej klasy.

e Jest w tym réznica w poréwnaniu do zwyktych funkgji (nie
bedacych sktadnikami klas). Dla zwyktych funkgji zakres
waznosci nazwy to caty plik, w ktérym funkcja jest
zadeklarowana (od miejsca deklaracji).

Klasy

e Majac zdefiniowana klase mozemy tworzy¢ zmienne tego typu.
Takie zmienne, ktérych typ jest klasa nazywaja sie obiektami.
Obiekty, tak jak inne zmienne, moga by¢ statyczne lub
dynamiczne. Na przyktad, jezeli wczesniej zdefiniowalismy
klase book, to mozemy napisac

book a,b;
book xc;

c = new book;

e Utworzone zostaty dwie zmienne typu book statyczne a i b,
oraz zmienna dynamiczna, wskazywana przez wskaznik c.

e Majac utworzone zmienne, mozemy odnosi¢ sie do ich czesci
sktadowych tak jak to robilismy w przypadku struktur:

a.rok _wyd = 1587;

(*c).cena = 45000;

strcpy((*c) tytul ,"TeorlauGrawnach)
b.zapisz ksiazke(...

Klasy

e Uwaga: mozemy odnosi¢ sie tylko do sktadnikéw tak zwanych
publicznych. Sktadniki moga by¢ tez prywatne, nie s3 wtedy w
ogdle widoczne poza obiektem. To jest wazny temat, i
zajmiemy sie nim niedtugo.

e Przypomnijmy, ze funkcje bedace czeSciami sktadowymi klas
nazywaja sie metodami klas.

o Wywotanie metody klasy zawsze zawiera w sobie obiekt
wywotujacy:

b.zapisz ksiazke(...);

e To jest zupetnie oczywiste. Funkcja musi wiedzie¢, na jakich
konkretnych danych ma dziataé¢. W powyzszym przyktadzie
funkgji zapisujacej konkretne wartosci w zmiennych zawartych
w obiekcie, funkcja musi wiedzie¢, o ktéry konkretny obiekt
chodzi. Wszystkie obiekty tej samej klasy maja sktadowe o
tych samych nazwach.

Klasy

e Metody klasy s3 jej czeSciami sktadowymi. Jezeli tworzymy
wiec obiekty jakiej$ klasy kazdy z tych obiektéw zawiera swoje
czesci sktadowe, dane, oraz metody. Jezeli chodzi o dane, to
sprawa jest jasna, kazdy obiekt ma swoje dane, konkretna
wartos¢ jest zapewne rézna w réznych obiektach. Ale po co
tym wszystkim obiektom wtasne kopie funkcji, ktére przeciez
sa wszystkie identyczne?

e Oczywiscie C++ bierze to pod uwage. Nie jest to widoczne
dla uzytkownika, ale metody obiektéw danej klasy
przechowywane s3 w pamieci tylko w jednym egzemplarzu
(inaczej niz dane, ktére kazdy obiekt ma swoje). Kiedy
wywotywana jest metoda dla dowolnego obiektu, tak naprawde
wywotywany jest ten jeden wspdlny egzemplarz.

Klasy

e W takim razie pojawia sie problem. Przeciez metoda musi
wiedzie¢, ktéry konkretny obiekt jg wywotat. Jezeli jest to
metoda zapisz_ksiazke(...), to metoda musi wiedziec,
gdzie konkretnie przekazane dane zapisa¢. Rozwigzanie jest
takie, ze metoda, oprécz wszystkich argumentéw, dostaje tez
+po cichu” wskaznik na obiekt, ktéry j3 wywotat. Ten wskaznik
nazywa sie this, i mozna si¢ nim postugiwac.

e Wewnatrz klasy mozna stosowa¢ etykiety public, private
oraz protected. Kazdy sktadnik nalezy do jednej z tych
kategorii. Sktadowe kategorii public sa widoczne na zewnatrz
klasy, tak jak sktadowe struktury. Sktadowe kategorii private
i protected nie s3 widoczne na zewnatrz, i tylko metody
danej klasy moga na nich operowa¢ (zapisa¢, odczytaé, czy
wywotaé, jezeli jest to metoda).

Klasy

e Rdéznica pomiedzy private a protected jest subtelna, i nie
bedziemy jej teraz zglebiac.

e Domyslna jest etykieta private. Etykiety mozna stosowa¢
wielokrotnie, kazda jest aktywna az do nastepne;.

e Cel tych etykiet jest jasny. Sktadowe publiczne, to interface,
ktérym klasa komunikuje sie z programem. Sktadowe prywatne
to czeSci mechanizméw wewnetrznych, ktére nie dotycza
zewnetrznego programu.

e Jezeli chcemy docenié¢ zalety pojecia klasy wyobrazmy sobie
duzy program, ktéry jest pisany przez wiele oséb, i ktéry musi
by¢ wspierany i unowoczesniany caty czas. Jezeli gtéwne
elementy programu zorganizowane s3 w obiektach, to rézne
klasy moga pisac i sie nimi zajmowac rézni ludzie. Jedynymi
elementami klas, ktére trzeba konsultowaé pomiedzy soba s3
elementy publiczne.

Klasy

e Podobnie, przy nowych wersjach programu, jezeli klasa
zachowuje niezmienione sktadowe publiczne (czyli swéj
interfejs z programem), to mozna ja w programie podmienic.
Nic sie nie zmieni z punktu widzenia programu (chociaz nowa
klasa moze na przyktad szybciej dziata¢). Programista ma
swobode zmiany sktadowych prywatnych bez ogladania sie na
reszte programu.

e Stosowanie etykiet jest nastepujace:
class book
private :
char tytul[100];
char autor_nazw[50];
pu-b-l.ic:
void zapisz_ksiazke(...);

o

Klasy

e Skfadowe tytul i autor_nazw sa prywatne (etykieta private
nie jest nawet konieczna, prywatne jest domyslne), natomiast
funkcja zapisz_ksiazke() jest publiczna. Program moze
zapisywa¢ dane do obiektu postugujac sie ta funkcja, i tylko
tak. Taki sposéb komunikacji z obiektem jest przewidywalny i
bezpieczny.

e Klasy z reguty zawieraja specjalne funkcje, tak zwane
konstruktor i destruktor. Nazwy nie oddaja doktadnie
funkcjonalnosci. Wiadomo, jakie instrukcje tworza obiekty, i
jakie je likwiduja. Konstruktor jest funkcja wywotywana
automatycznie w momencie tworzenia obiektu. Z reguty jest
wykorzystywana do nadania poczatkowych wartosci zmiennym,
takze do ew. tworzenia potrzebnych zmiennych dynamicznych,
bedacych sktadowymi klasy. Destruktor z kolei jest
wywotywany automatycznie przy likwidacji obiektu. Typowo
zajmuje sie likwidacjg zmiennych dynamicznych, ktére
mogtyby by¢ sktadowymi klasy.

Klasy

e Konstruktor ma taka sama nazwe jak klasa, a destruktor taka
samg nazwe jak klasa, poprzedzong znakiem . Obie metody
muszg by¢ publiczne. Inaczej niz inne funkcje nie maja typu
zwracanego. Na przyktad:

class book

private :

char tytul[100];

char autor nazw[50];

pu.b.llic:

book ();

book (char tyt[]);

book (char tyt[], char nazw[], char im[]);

“book(void);
void zapisz_ksiazke(...);

,

e Jak zwykle, definicje konstruktoréw i destruktora znajda sie
gdzies ponizej.

Klasy

e Zauwazmy, ze w powyzszym mamy kilka wersji konstruktora.
Konstruktor klasy to funkcja ktéra z reguty podlega
przetadowaniu. Majac powyzsze przetadowane wersje
konstruktora mozemy definiowa¢ obiekty tej klasy na rézne
sposoby:

book a; //powstaje obiekt bez adnej inicjalizacji
book b("Teoriaugrawitacji"); //powstaje obiekt z zapisanym tytutem

book c("teoriauGrawitacji", "Newton", "lsaac");
//powstaje obiekt z zapisanym tytutem | autorem

e Oczywiscie wymaga to odpowiedniego zdefiniowania
wszystkich wersji konstruktora:

Klasy

book :: book(char tyt][])
strcpy (tytul , tyt);

book :: book(char tyt[], char nazw[], char im[])

strcpy (tytul , tyt);
strcpy (autor nazw, nazw);
strcpy (autor imie, im);

e W naszej klasie book nie ma potrzeby definiowania
destruktora. Niczego specjalnego nie trzeba robi¢ przy
usuwaniu z pamieci obiektu tej klasy.

e Postugujac sie klasami warto poszczegéline klasy wydzieli¢ do
osobnych plikéw *.cpp. Nazwa pliku powinna by¢ taka sama,
jak nazwa klasy, i powinny mie¢ wtasne pliki nagtéwkowe * .h.

