Szablony funkcji

e W C++ istnieje mozliwos¢ zdefiniowania funkgji dziatajacej na
nieustalonym z géry typie danych. To tak zwany szablon
funkcji. Zamiast konkretnego typu zmiennej wpisuje sie jakis
identyfikator. Konkretny typ przypisujemy do identyfikatora
przed uzyciem szablonu. Wyglada to nastepujaco

template <typename T>

T dodaj(T a, T b)
{

return a + b;

¢ funkcja moze by¢ uzyta do dodawania liczb dowolnego typu
(dla ktérego zdefiniowany jest operator +), i zwraca taki sam
typ.

Szablony funkcji

® pierwsza linijka wyjasnia kompilatorowi role nowego
identyfikatora T (bez $rednika). Tradycyjnie do oznaczania
typéw uzywa sie duzych liter lub stéw zaczynajacych sie od
duzych liter.

® uzycie szablonu jest nastepujace:

z = dmli;aj<int >(x, y);

h

dodaj<double >(u, w);

Szablony funkcji

e jezeli w momencie uzycia szablonu typ T jest jasny, nie
potrzeba go jawnie podawaé, np:

int x, y, z;

z = dodaj(x, y);

(mozemy pomina¢ <int>).

Szablony funkcji

® Szablonéw mozna uzywa¢ z réznymi typami zmiennych, nie
tylko typami fundamentalnymi. W typowym zastosowaniu
typem zmiennej uzywanym w szablonie funkcji jest
zdefiniowana przez uzytkownika klasa. W takim przypadku
zamiast stowa typename uzywamy stowa class
® w powyzszym przyktadzie mozemy uzywaé dowolnej klasy, dla
ktérej zdefiniowany jest (przez przetadowanie) operator +.
e typéw ukrytych pod identyfikatorami moze by¢ wiecej, sktadnia
jest nastepujaca:
template<typename S, typename T>
S add(S x, T y)
{
}

return x 4+ y;

Szablony funkcji

® wywotanie takiego szablonu funkgji jest nastepujace:

float x = 7.f; int y = 3;

COI.'I":.<< add<float , int>(x, y) << endl;

® Przyktad: Progl.cpp

Szablony funkcji

® \Warto zapamietaé: szablony funkgcji zaoszczedzajg nam pisania
kodu zrédtowego. Nie maja natomiast wptywu na
skompilowany kod wynikowy. Kazde wywotanie szablonu, z
nowym typem zmiennej, lub typami, powoduje, ze kompilator
wstawia do programu odpowiednia wersje funkgji (to jest tak
zwana instancja szablonu). Wywotanie szablonu z takim
samym typem zmiennej, lub typami, co wczesniej, nie dodaje
nowego kodu, wykorzystana jest funkcja wstawiona wczesniej.

® Biblioteka STL, o ktérej zaraz powiemy zawiera wiele
gotowych szablonéw, w tym szablonéw funkgji

Szablony

® Podobnie jak szablony funkgji, w C++ wystepuja szablony
klas. Wyobrazmy sobie czesto stosowang strukture, stos.
Napiszmy klase realizujaca stos zmiennych int

class IntStack

static const int ssize = 100;
int stack[ssize];
int top;
public:
IntStack () : top(0) {}
void push(int i) {stack[top++] = i;}

int pop() {return stack[——top];}

Szablony

® jest to typowa implementacja stosu, z dwoma podstawowymi
metodami.

® Przyktad: Prog2.cpp

® nie ma potrzeby przepisywania tego kodu jezeli potrzebujemy
stosu obiektéw innych niz int. Stuza do tego szablony

template<class T>
class IntStack

{
static const int ssize = 100;
T stack[ssize];
int top;
public:
IntStack () : top(0) {};
void push(const T& i) {stack[top++] = i;}

T pop() {return stack[——top];}
int size() {return top;}

¥

Szablony

® Przyktad Prog3.cpp

® Dostepna jest mozliwo$¢ tzw. specjalizacji szablonu. Jezeli dla
pewnego konkretnego typu T potrzebujemy szczegdlngj
realizacji funkgji,jest to mozliwe, takze w ramach szablonu.

® Progd.cpp

® C++ oferuje gotowa biblioteke szablonéw STL. Nie jest to
cze$¢ standardu jezyka C++, ale jest projektem
towarzyszacym C++ i tez jest standardem.

® Szablony zgromadzone w STL mozna podzieli¢ na 3 grupy:
kontenery, iteratory i algorytmy.

e Kontenery to struktury danych, w ktérych wystepuje pewna
ilos¢ pewnych obiektéw tej samej klasy. Widzielismy tego typu
struktury, byty to np. listy. Kontener przechowuje obiekty, oraz
oferuje pewna dodatkowa funkcjonalnos¢.

Szablony

® Przyktadowa, typowa funkcjonalno$é konteneréw:

tworzenie kontenera (poprzez konstruktor)
dodawanie/usuwanie obiektéw z kontenera
dostep do obiektéw

sortowanie

raportowanie rozmiaru

opréznianie kontenera

® Dostepne w STL kontenery moga sie rézni¢ wbudowang
funkcjonalnoscia. Wiecej wbudowanej funkcjonalnosci moze
by¢ wygodniejsze dla programisty, ale wymaga wiecej zasobéw
od systemu operacyjnego oraz spowalnia dziatanie.

e Kontenery moga by¢ typu value, to znaczy przechowywaé
wtasne kopie obiektéw, lub typu reference, to znaczy
przechowywa¢ wskazniki do obiektéw istniejacych niezaleznie.
W tym drugim przypadku kontener nie zajmuje sig tworzeniem
ani usuwaniem sktadnikéw.

Szablony

® Najbardziej popularnym kontenerem zawartym w STL jest
vector, czyli lista, zajmiemy sie nim za moment.

® Przypomnijmy, wszystkie klasy dostepne w STL sa szablonami.
W momencie ich uzycia specyfikujemy, jakiego typu elementy
beda przechowywac.

Szablony

® [teratory to narzedzie do poruszania sie po kontenerach.
Pamietamy, ze w liscie dwukierunkowej majac dostep do
konkretnego elementu mielismy tatwy dostep do elementéw
nastepnego i poprzedniego. Byto to zrealizowane przy pomocy
wskaznikéw. Iteratory zachowuja sie podobnie do wskaznikéw.

e Kontenery majg wbudowane iteratory, jako typ zmiennej.
Rézne kontenery moga miec iteratory o réznych
funkcjonalnosciach. Jednak podstawowe operacje na
iteratorach s3 wspélne dla réznych typéw. Powtérzmy,
iteratory w dziataniu przypominaja wskazniki, i tak mozna o
nich mysle¢.

e Kazdy kontener zawiera przynajmniej dwa typy iteratoréw:
iterator oraz const_iterator. Ten drugi uniemozliwia
zmiane wskazywanego elementu.

® Dla iteratoréw dostepne s3 operacje *, ++, ==, !=, =
tatwo sie domysleé, jak dziataja.

Szablony

e W kazdym kontenerze dostepne sg funkcje:
begin()

end ()

cbegin()

cend ()

® begin() zwraca iterator wskazujacy na pierwszy element
kontenera. end () zwraca iterator wskazujacy na adres
nastepny po ostatnim elemencie kontenera. Nie jest to dziwne,
poréwnujac wartos¢ iteratora z wartoscia zwracang end ()
sprawdzamy, czy przejrzany zostat juz caty kontener.

® Funkcje cbegin() i cend() zachowuja sie tak samo, ale
zwracaja iterator typu const_iterator.

® Przyktad Progb. cpp, Prog6.cpp, Prog7.cpp.

Szablony

® Przyjrzyjmy sie doktadniej szablonowi vector. Jest to
uporzadkowana lista, do ktdrej elementéw jest dostep przy
pomocy operatora [], tak jak do elementéw tablicy
(niezaleznie od mozliwego dostepu przy pomocy iteratoréw).
Elementy mozna wstawia¢ w dowolne miejsce i usuwaé z
dowolnej pozycji. Szablon zawiera iterator typu random access,
najbardziej uniwersalny

® Podobne do vector kontenery to 1ist, array i deque. Kazdy
z nich ma swoja specyfike, dostepne metody i szybkos¢
dziatania

® Przyktad: Prog8.cpp.

Szablony

® Szablon vector daje mozliwo$¢ wstawiania i usuwania
elementéw w dowolnym punkcie listy, ale wstawianie i
usuwanie na kohcu sa znacznie szybsze. Szablon 1ist nie
pozwala na wstawianie czy usuwanie elementéw w dowolnych
miejscach, ale dziata szybciej niz vector. Nalezy pamietac o
tego typu sprawach.

® \Wymienione powyzej kontenery to tak zwane sequence
containers. S3 tez inne typy, takie jak set, map czy stack

® Nie bedziemy omawiaé wszystkich istniejacych konteneréw.
Pracujac z konkretna strukturg danych nalezy znalezé
wiasciwy dla niej kontener i szczegétowo sie z nim zapozna¢.

® Zwr6éémy uwage, ze w STL nie ma kontenera tree. Wynika to
z filozofii nazewnictwa. Nazwy s3 ogélne, i poszczegélne
kontenery moga realizowaé rézne modele danych.

® Na przyktad drzewo mozna zrealizowaé jako set lub map

Szablony

® Uzywajac iteratora, przegladanie wektora v6 z poprzedniego
przyktadu mozemy zrealizowa¢ nastepujaco
vector<int >::const iterator it;
it = v6.cbegin (),7
while (it != v6.cend())
{

cout << *it << ",";
it

Szablony

® Algorytmy to szablony funkcji, realizujace typowe operacje, na
przyktad sortowanie czy wyszukiwanie.

® Szablony funkcji realizujace réznego rodzaju czesto stosowane
operacje dostepne s3 w bibliotece algorithm, bedacej czescia
STL.

® Przyktad Prog9.cpp.

® Zauwazmy ciekawa petle. To jest tak zwana petla range based
loop wprowadzona w jednej z ostatnich rewizji standardu
C++. Parametrem tej petli jest para typ elementu : zakres. W
naszym przypadku zakresem jest wektor. Zakresem moze by¢
jakakolwiek uporzadkowana struktura dla ktérych podstawowe
funkcje takie jak begin() i end() s3 zdefiniowane.

