
Szablony funkcji

• W C++ istnieje mo»liwo±¢ zde�niowania funkcji dziaªaj¡cej na

nieustalonym z góry typie danych. To tak zwany szablon

funkcji. Zamiast konkretnego typu zmiennej wpisuje si¦ jaki±

identy�kator. Konkretny typ przypisujemy do identy�katora

przed u»yciem szablonu. Wygl¡da to nast¦puj¡co

t emp l a t e <typename T>
T doda j (T a , T b)
{

r e t u r n a + b ;
}

• funkcja mo»e by¢ u»yta do dodawania liczb dowolnego typu

(dla którego zde�niowany jest operator +), i zwraca taki sam

typ.

Szablony funkcji

• pierwsza linijka wyja±nia kompilatorowi rol¦ nowego

identy�katora T (bez ±rednika). Tradycyjnie do oznaczania

typów u»ywa si¦ du»ych liter lub sªów zaczynaj¡cych si¦ od

du»ych liter.

• u»ycie szablonu jest nast¦puj¡ce:

. . .
z = dodaj<i n t >(x , y) ;

. . .
h = dodaj<doub le >(u , w) ;

. . .

Szablony funkcji

• je»eli w momencie u»ycia szablonu typ T jest jasny, nie

potrzeba go jawnie podawa¢, np:

. . .
i n t x , y , z ;

. . .
z = doda j (x , y) ;

. . .

(mo»emy pomin¡¢ <int>).

Szablony funkcji

• Szablonów mo»na u»ywa¢ z ró»nymi typami zmiennych, nie

tylko typami fundamentalnymi. W typowym zastosowaniu

typem zmiennej u»ywanym w szablonie funkcji jest

zde�niowana przez u»ytkownika klasa. W takim przypadku

zamiast sªowa typename u»ywamy sªowa class

• w powy»szym przykªadzie mo»emy u»ywa¢ dowolnej klasy, dla

której zde�niowany jest (przez przeªadowanie) operator +.

• typów ukrytych pod identy�katorami mo»e by¢ wi¦cej, skªadnia

jest nast¦puj¡ca:

t emp la te<typename S , typename T>
S add (S x , T y)
{

r e t u r n x + y ;
}

Szablony funkcji

• wywoªanie takiego szablonu funkcji jest nast¦puj¡ce:

. . .
f l o a t x = 7 . f ; i n t y = 3 ;

. . .
cout << add<f l o a t , i n t >(x , y) << end l ;

. . .

• Przykªad: Prog1.cpp

Szablony funkcji

• Warto zapami¦ta¢: szablony funkcji zaoszcz¦dzaj¡ nam pisania

kodu ¹ródªowego. Nie maj¡ natomiast wpªywu na

skompilowany kod wynikowy. Ka»de wywoªanie szablonu, z

nowym typem zmiennej, lub typami, powoduje, »e kompilator

wstawia do programu odpowiedni¡ wersj¦ funkcji (to jest tak

zwana instancja szablonu). Wywoªanie szablonu z takim

samym typem zmiennej, lub typami, co wcze±niej, nie dodaje

nowego kodu, wykorzystana jest funkcja wstawiona wcze±niej.

• Biblioteka STL, o której zaraz powiemy zawiera wiele

gotowych szablonów, w tym szablonów funkcji

Szablony

• Podobnie jak szablony funkcji, w C++ wyst¦puj¡ szablony

klas. Wyobra¹my sobie cz¦sto stosowan¡ struktur¦, stos.

Napiszmy klas¦ realizuj¡c¡ stos zmiennych int

c l a s s I n t S t a c k
{

s t a t i c c on s t i n t s s i z e = 100 ;
i n t s t a c k [s s i z e] ;
i n t top ;

p u b l i c :
I n t S t a c k () : top (0) {}
v o i d push (i n t i) { s t a c k [top++] = i ; }
i n t pop () { r e t u r n s t a c k [==top] ; }

} ;

Szablony

• jest to typowa implementacja stosu, z dwoma podstawowymi

metodami.

• Przykªad: Prog2.cpp

• nie ma potrzeby przepisywania tego kodu je»eli potrzebujemy

stosu obiektów innych ni» int. Sªu»¡ do tego szablony

t emp la te<c l a s s T>
c l a s s I n t S t a c k
{

s t a t i c c on s t i n t s s i z e = 100 ;
T s t a c k [s s i z e] ;
i n t top ;

p u b l i c :
I n t S t a c k () : top (0) {} ;
v o i d push (c on s t T& i) { s t a c k [top++] = i ; }
T pop () { r e t u r n s t a c k [==top] ; }
i n t s i z e () { r e t u r n top ; }

} ;

Szablony

• Przykªad Prog3.cpp

• Dost¦pna jest mo»liwo±¢ tzw. specjalizacji szablonu. Je»eli dla

pewnego konkretnego typu T potrzebujemy szczególnej

realizacji funkcji,jest to mo»liwe, tak»e w ramach szablonu.

• Prog4.cpp

• C++ oferuje gotow¡ bibliotek¦ szablonów STL. Nie jest to

cz¦±¢ standardu j¦zyka C++, ale jest projektem

towarzysz¡cym C++ i te» jest standardem.

• Szablony zgromadzone w STL mo»na podzieli¢ na 3 grupy:

kontenery, iteratory i algorytmy.

• Kontenery to struktury danych, w których wyst¦puje pewna

ilo±¢ pewnych obiektów tej samej klasy. Widzieli±my tego typu

struktury, byªy to np. listy. Kontener przechowuje obiekty, oraz

oferuje pewn¡ dodatkow¡ funkcjonalno±¢.

Szablony

• Przykªadowa, typowa funkcjonalno±¢ kontenerów:
• tworzenie kontenera (poprzez konstruktor)
• dodawanie/usuwanie obiektów z kontenera
• dost¦p do obiektów
• sortowanie
• raportowanie rozmiaru
• opró»nianie kontenera

• Dost¦pne w STL kontenery mog¡ si¦ ró»ni¢ wbudowan¡

funkcjonalno±ci¡. Wi¦cej wbudowanej funkcjonalno±ci mo»e

by¢ wygodniejsze dla programisty, ale wymaga wi¦cej zasobów

od systemu operacyjnego oraz spowalnia dziaªanie.

• Kontenery mog¡ by¢ typu value, to znaczy przechowywa¢

wªasne kopie obiektów, lub typu reference, to znaczy

przechowywa¢ wska¹niki do obiektów istniej¡cych niezale»nie.

W tym drugim przypadku kontener nie zajmuje si¡ tworzeniem

ani usuwaniem skªadników.

Szablony

• Najbardziej popularnym kontenerem zawartym w STL jest

vector, czyli lista, zajmiemy si¦ nim za moment.

• Przypomnijmy, wszystkie klasy dost¦pne w STL s¡ szablonami.

W momencie ich u»ycia specy�kujemy, jakiego typu elementy

b¦d¡ przechowywa¢.

Szablony

• Iteratory to narz¦dzie do poruszania si¦ po kontenerach.

Pami¦tamy, »e w li±cie dwukierunkowej maj¡c dost¦p do

konkretnego elementu mieli±my ªatwy dost¦p do elementów

nast¦pnego i poprzedniego. Byªo to zrealizowane przy pomocy

wska¹ników. Iteratory zachowuj¡ si¦ podobnie do wska¹ników.

• Kontenery maj¡ wbudowane iteratory, jako typ zmiennej.

Ró»ne kontenery mog¡ mie¢ iteratory o ró»nych

funkcjonalno±ciach. Jednak podstawowe operacje na

iteratorach s¡ wspólne dla ró»nych typów. Powtórzmy,

iteratory w dziaªaniu przypominaj¡ wska¹niki, i tak mo»na o

nich my±le¢.

• Ka»dy kontener zawiera przynajmniej dwa typy iteratorów:

iterator oraz const_iterator. Ten drugi uniemo»liwia

zmian¦ wskazywanego elementu.

• Dla iteratorów dost¦pne s¡ operacje *, ++, ==, !=, =.

�atwo si¦ domy±le¢, jak dziaªaj¡.

Szablony

• W ka»dym kontenerze dost¦pne s¡ funkcje:
• begin()
• end()
• cbegin()
• cend()

• begin() zwraca iterator wskazuj¡cy na pierwszy element

kontenera. end() zwraca iterator wskazuj¡cy na adres

nast¦pny po ostatnim elemencie kontenera. Nie jest to dziwne,

porównuj¡c warto±¢ iteratora z warto±ci¡ zwracan¡ end()

sprawdzamy, czy przejrzany zostaª ju» caªy kontener.

• Funkcje cbegin() i cend() zachowuj¡ si¦ tak samo, ale

zwracaj¡ iterator typu const_iterator.

• Przykªad Prog5.cpp, Prog6.cpp, Prog7.cpp.

Szablony

• Przyjrzyjmy si¦ dokªadniej szablonowi vector. Jest to

uporz¡dkowana lista, do której elementów jest dost¦p przy

pomocy operatora [], tak jak do elementów tablicy

(niezale»nie od mo»liwego dost¦pu przy pomocy iteratorów).

Elementy mo»na wstawia¢ w dowolne miejsce i usuwa¢ z

dowolnej pozycji. Szablon zawiera iterator typu random access,

najbardziej uniwersalny

• Podobne do vector kontenery to list, array i deque. Ka»dy

z nich ma swoj¡ specy�k¦, dost¦pne metody i szybko±¢

dziaªania

• Przykªad: Prog8.cpp.

Szablony

• Szablon vector daje mo»liwo±¢ wstawiania i usuwania

elementów w dowolnym punkcie listy, ale wstawianie i

usuwanie na ko«cu s¡ znacznie szybsze. Szablon list nie

pozwala na wstawianie czy usuwanie elementów w dowolnych

miejscach, ale dziaªa szybciej ni» vector. Nale»y pami¦ta¢ o

tego typu sprawach.

• Wymienione powy»ej kontenery to tak zwane sequence

containers. S¡ te» inne typy, takie jak set, map czy stack

• Nie b¦dziemy omawia¢ wszystkich istniej¡cych kontenerów.

Pracuj¡c z konkretn¡ struktur¡ danych nale»y znale¹¢

wªa±ciwy dla niej kontener i szczegóªowo si¦ z nim zapozna¢.

• Zwró¢my uwag¦, »e w STL nie ma kontenera tree. Wynika to

z �lozo�i nazewnictwa. Nazwy s¡ ogólne, i poszczególne

kontenery mog¡ realizowa¢ ró»ne modele danych.

• Na przykªad drzewo mo»na zrealizowa¢ jako set lub map

Szablony

• U»ywaj¡c iteratora, przegl¡danie wektora v6 z poprzedniego

przykªadu mo»emy zrealizowa¢ nast¦puj¡co

vec to r<i n t >:: c o n s t_ i t e r a t o r i t ;
i t = v6 . cbeg i n () ;
wh i l e (i t != v6 . cend ())
{

cout << * i t << " " ;
++i t ;

}

Szablony

• Algorytmy to szablony funkcji, realizuj¡ce typowe operacje, na

przykªad sortowanie czy wyszukiwanie.

• Szablony funkcji realizuj¡ce ró»nego rodzaju cz¦sto stosowane

operacje dost¦pne s¡ w bibliotece algorithm, b¦d¡cej cz¦±ci¡

STL.

• Przykªad Prog9.cpp.

• Zauwa»my ciekaw¡ p¦tl¦. To jest tak zwana p¦tla range based

loop wprowadzona w jednej z ostatnich rewizji standardu

C++. Parametrem tej p¦tli jest para typ_elementu : zakres. W

naszym przypadku zakresem jest wektor. Zakresem mo»e by¢

jakakolwiek uporz¡dkowana struktura dla których podstawowe

funkcje takie jak begin() i end() s¡ zde�niowane.

