
Struktury danych

• Przypomnijmy, »e zmienne dynamiczne to zmienne, które s¡
tworzone w trakcie wykonywania programu, ich ilo±¢ w pami¦ci
nie musi by¢ znana w momencie kompilacji programu.

• Zmienne te nie maj¡ nazwy, i mo»na si¦ do nic odnosi¢ tylko
przy pomocy wska¹ników.

• Najcz¦±ciej zmienne te s¡ powi¡zane pomi¦dzy sob¡ w ten
sposób, »e poszczególne zmienne zawieraj¡ w sobie wska¹niki
na inne. Logika tych powi¡za« powinna by¢ dostosowana do
sposobu pracy ze zmiennymi. Obecnie opiszemy dwa typowe
sposoby �aran»acji� zmiennych dynamicznych - list¦ i drzewo
binarne.



Struktury danych

• Przypomnijmy jeszcze, »e zmienne dynamiczne z reguªy nie s¡
prostymi zmiennymi, tylko obiektami lub strukturami. O
obiektach jeszcze nie mówili±my, wi¦c rozwa»my dane, które s¡
strukturami. Przypomnijmy, »e struktur¦ (zªo»ony typ
zmiennej) deklarujemy nast¦puj¡co:
s t r u c t nazwa
{
i n t j eden_element ;
doub l e inny_element ;
cha r j a k i s_n a p i s [ 2 0 0 ] ;

. . .
nazwa *wsk ;

} ;

• Zauwa»my, »e elementem struktury jest wska¹nik na tak¡
sam¡ struktur¦. Obecno±¢ takiego wska¹nika umo»liwia
budow¦ powi¡za« pomi¦dzy zmiennymi. Taki wska¹nik mo»e
by¢ jeden je»eli, na przykªad, nasze dane zorganizowane s¡ w
list¦, i wska¹nik zawarty w jednej zmiennej pokazuje na
nast¦pn¡ zmienn¡ na li±cie.



Struktury danych

• Cz¦sto wska¹niki s¡ 2, jeden wskazuje na nast¦pny element na
li±cie, a drugi na poprzedni element. Tak zorganizowane dane
nazywaj¡ si¦ list¡ dwukierunkow¡, i taka organizacja jest
cz¦sto stosowana. W standardowych bibliotekach C++
znajduje si¦ szablon takiej listy, który pozwala posªugiwa¢ si¦
ni¡ bez wnikania w szczegóªy techniczne. Jednak zanim
przejdziemy do takich szablonów (na C++ 2), postaramy si¦
opanowa¢ taka list¦ �r¦cznie�.

• Przykªad 1.
• Przykªad powy»szy jest szkieletem programu, który umo»liwia
wprowadzanie danych bibliogra�cznych ksi¡»ek. Umo»liwia
dodawanie ksi¡»ki do listy, usuwanie z listy, przegl¡danie listy
itp. jest to tylko szkielet, nie wszystkie opcje s¡
zaimplementowane, i wiele rzeczy jest zrealizowane
nieoptymalnie. Celem przykªadu jest pierwsze praktyczne
wykorzystanie wska¹ników.



Struktury danych

• W programie zadeklarowana jest struktura o nazwie book,
która zawiera pewne dane dotycz¡ce ksi¡»ki, a tak»e dwa
wska¹niki, nast oraz poprz, na takie same struktury.
s t r u c t book
{

cha r t y t u l [ 1 0 0 0 ] ;
cha r autor_nazw [ 5 0 ] ;
cha r autor_imie [ 2 0 ] ;
i n t cena ;
i n t rok_wyd ;
book * na s t ;
book * poprz ;

} ;

• Wspominali±my wcze±niej, »e zmienne dynamiczne w praktyce
realizowane s¡ jako tak zwane obiekty, czyli co± bardziej
ogólnego ni» struktury. Obiektami zajmiemy si¦ wkrótce.



Struktury danych

• Lista, która powstanie na stercie wymaga ró»nych funkcji,
które b¦d¡ na niej dziaªa¢. Te funkcje to tak zwany interfejs
listy. �atwo sobie wyobrazi¢, jakie funkcje b¦d¡ potrzebne. Na
przykªad funkcja, która pobierze od u»ytkownika dane, i doda
odpowiedni¡ struktur¦ z tymi danymi do listy. W naszym
przykªadzie interfejs skªada si¦ z nast¦puj¡cych funkcji:

book * doda j_ks i a zke ( book *&s_ptr , book * l_pt r ) ;
v o i d wyp i s z_ l i s t e ( book * s_ptr ) ;
v o i d wyp i s z_ks i a zke ( book * s_ptr ) ;
v o i d usun_ks iazke ( book *&s_ptr ) ;
v o i d u s un_ l i s t e ( book * s_ptr ) ;

• Wewn¡trz funkcji main() s¡ dwa dodatkowe elementy
interfejsu, wska¹niki start_ptr i end_ptr. Pierwszy pokazuje
na pierwszy element listy, drugi na ostatni element.



Struktury danych

• Przyjrzyjmy si¦ funkcjom. dodaj_element() jako argumenty
przyjmuje dwa wska¹niki, b¦d¡ to wska¹niki na pocz¡tek listy i
na koniec.

• Funkcja ta tworzy now¡ struktur¦ i dopisuje j¡ na ko«cu listy.
Do tego jest jej potrzebny wska¹nik na koniec listy. Poniewa»
funkcja powinna zmody�kowa¢ wska¹nik na koniec listy (zostaª
dodany nowy element), to wska¹nik na koniec listy jest jej
przekazywany przez referencj¦ (operator &).

• Je»eli funkcja wywoªywana jest po raz pierwszy, to »adnych
zmiennych na li±cie nie ma. W tej sytuacji wska¹nik
start_ptr ma warto±¢ NULL. Funkcja tworz¡c pierszy element
listy musi wi¦c zainicjalizowa¢ wska¹nik start_ptr. Dlatego
argument ten te» przekazywany jest do funkcji przez referencj¦.



Struktury danych

• Funkcja najpierw sprawdza, czy lista jest pusta (s_ptr ==

NULL). Nastepnie tworzy now¡ zmienn¡ dynamiczn¡ typu
book. Nast¦pnie �podª¡cza� j¡ do listy na ko«cu. Wska¹nik
nast dotychczasowego ostatniego elementu zostaje zapisany
adresem nowego elementu. Wska¹nik poprz nowego elementu
zostaje zapisany adresem poprzednio ostatniego elementu. W
ko«cu wska¹nik nast nowo utworzonego elementu zostaje
zapisany warto±ci¡ NULL.

• Je»eli lista byªa pusta, to oba wska¹niki w nowej zmiennej s¡
ustawiane na NULL, oraz oba wska¹niki, na pocz¡tek i na
koniec listy s¡ ustawiane na adres nowej zmiennej.

• Nast¦pnie funkcja pobiera od u»ytkownika dane, i zapisuje je
do zmiennej. Przypomnijmy, »e wprowadzanych stringów nie
mo»emy bezpo±rednio wpisywa¢ do zmiennej, je»eli zawieraj¡
spacje.



Struktury danych

• Proste podstawienie
c i n >> (* temp_str ) . t y t u l ;

zapisze jedynie pierwszy wyraz tytuªu. Pozostaªe wyrazy b¦d¡
w buforze wej±ciowym, i do ich odczytania byªyby potrzebne
kolejne instrukcje cin.

• Zamiast tego korzystamy z funkcji cin.getline(), która
odczytuje caª¡ linijk¦ a» do znaku ko«ca linii '\n' (klawisz
enter), i zapisuje caªo±¢ do podanego bufora. Dodatkowym
argumentem funkcji cin.getline() jest maksymalna ilo±¢
znaków do zapisania do bufora.



Struktury danych

• Zwró¢my uwag¦ na dodatkowe wywoªanie funkcji get() przed
samym odczytem tytuªu ksi¡»ki. Kiedy u»ytkownik wybraª
opcj¦ 1., wcisn¡ª te» klawisz enter. Do bufora wej±ciowego
wczytana zostaªa liczba 1, a tak»e znak ko«ca linii. Program
pobraª z bufora sam¡ liczb¦ 1, ale znak ko«ca linii pozostaª.
Funkcja cin.getline() odczytuje wszystko do znaku ko«ca
linii (odczytuje te» ten znak, ale zapisuje zamiast niego znak
'\0', ko«cz¡cy string). W sytuacji, gdy w buforze wej±ciowym
cin czeka sam znak ko«ca linii, funkcja odczyta pusty string.
�eby tego unikn¡¢ i»ywamy funkcji cin.get() która, w tej
postaci, pobiera z bufora wej±ciowego jeden bajt i nic z nim nie
robi. Bufor jest wi¦c pusty i czeka na nasz string.

• Przy kolejnych wywoªaniach funkcji cin.getline() nie ma
tego problemu, bo ta funkcja pobiera znak ko«ca linii z bufora
wej±ciowego.



Struktury danych

• Po wywoªaniu funkcji dodaj_ksiazke() z parametrami
start_ptr oraz end_ptr do listy doª¡czony zostaje na ko«cu
nowy element, zapisany danymi podanym przez u»ytkownika.
Wska¹niki start_ptr oraz end_ptr po wywoªaniu funkcji
zawieraj¡ adresy pocz¡tku i ko«ca listy.

• Kolejna funkcja operuj¡ca na li±cie to wypisz_liste(). Jako
argument otrzymuje wska¹nik na pocz¡tek listy. Wypisuje
caªo±¢. Logika funkcji jest jasna. Wypisywanie pozycji
nast¦puje w p¦tli. Koniec p¦tli wykrywany jest kiedy wska¹nik
nast danej zmiennej ma warto±¢ NULL (nie ma nast¦pnego
elementu).



Struktury danych

• Kolejn¡ funkcj¡ jest wypisz_ksiazke(). Funkcja prosi
u»ytkownika o podanie roku wydania ksi¡»ki, po czym
przegl¡da list¦. Je»eli znajdzie zmienn¡ o pasuj¡cym roku
wydania, wypisuje j¡, i ko«czy. Je»eli nie znajdzie pasuj¡cej
ksi¡»ki, informuje o tym. Zauwa»my, »e tak napisana funkcja
wypisuje tylko pierwsz¡ napotkan¡ ksi¡»k¦ o podanym roku
wydania. Zastanówmy si¦, jak zrobi¢, »eby funkcja po
znalezieniu jednej pozycji kontynuowaªa szukanie nast¦pnej.
Oczywi±cie mo»emy ªatwo wybra¢ inny parametr wyszukiwania,
na przykªad nazwisko autora.

• Kolejn¡ istotn¡ funkcj¡ jest usun_ksiazke(). U»ytkownik
identy�kuje ksi¡»k¦ do usuni¦cia po roku wydania. Lista jest
przegl¡dana, i kiedy odnaleziona zostaje ksi¡»ka o podanym
roku wydania, zostaje usuni¦ta.



Struktury danych

• Zauwa»my, »e sytuacja jest ró»na w zale»no±ci od tego, czy
znaleziona pozycja jest na pocz¡tku listy, czy gdzie± dalej.
Je»eli ksi¡»ka do usuni¦cia jest na pocz¡tku listy, to trzeba
zaktualizowa¢ wska¹nik pocz¡tku listy start_ptr. Z drugiej
strony, je»eli pozycja do usuni¦cia jest gdzie± dalej na li±cie, to
list¦ trzeba �sklei¢� po usuni¦ciu elementu. Zastanówmy si¦,
jak zrobi¢, »eby po znalezieniu pozycji do usuni¦cia wypisa¢ j¡,
i poprosi¢ u»ytkownika o potwierdzenie usuni¦cia.

• Ostatni¡ zaimplementowan¡ funkcj¡ jest usun_liste(), która
usuwa wszystkie elementy listy z pami¦ci. Otrzymuje wska¹nik
na koniec listy i rekurencyjnie, od ko«ca, usuwa zmienne.

• Wszystkie zmienne utworzone przy u»yciu instrukcji new
powinni±my usun¡¢, przy pomocy instrukcji delete.

• Zauwa»my, »e w programie wielokrotnie u»ywamy konstrukcji
while(wskaznik). Wska¹nik mo»e mie¢ warto±¢ NULL lub
jak¡± konkretn¡. C++ traktuje ten pierwszy przypadek jako
logiczne 0, a ten drugi jako logiczne 1.



Struktury danych

• Interfejs naszej listy dwukierunkowej jest dosy¢ ubogi, zawiera
tylko to, czego bezpo±rednio potrzebowali±my. W wielu
wypadkach tak¡ list¦ obudowuje si¦ dodatkowymi funkcjami.
Typowym przykªadem jest sortowanie.

• Zauwa»my, »e zupeªnie bez znaczenia dla programu ma
faktyczna, �zyczna, lokalizacja utworzonych zmiennych
dynamicznych. Wa»na jest tylko struktura logiczna,
wyznaczona przez relacj¦, która zmienna jest za/przed któr¡.

• Id¡c dalej, zauwa»my, »e jedna lista mo»e mie¢ wiele ró»nych
struktur logicznych. Wymaga to tylko wi¦kszej ilo±ci
wska¹ników (na nast¦pny i poprzedni element) wbudowanych
w list¦. W szczególno±ci lista mo»e by¢ posortowana
jednocze±nie wedªug ró»nych parametrów. Tego typu zadanie
byªo sporym problemem dla niektórych studentów w ubiegªym
roku jako ostatni projekt.



Struktury danych

• Ko«cz¡c omawianie listy dwukierunkowej zwró¢my uwag¦ na
jeszcze jedn¡ rzecz. W naszej li±cie nowe elementy zawsze byªy
dopisywane na ko«cu. Równie dobrze mogliby±my dopisywa¢
nowe elementy na pocz¡tku. Ale te» mogliby±my utrzymywa¢
nasz¡ list¦ caªy czas posortowan¡ (wzgl¦dem jakiego±
parametru) i nowe elementy dopisywa¢ zawsze we �wªa±ciwym
miejscu�.



Struktury danych

• Inn¡ struktur¡ danych jest drzewo. Skªada si¦ z w¦zªów, w
których przechowywane s¡ dane, oraz poª¡cze« mi¦dzy
w¦zªami. Ka»dy w¦zeª ma jednego przodka i pewn¡, by¢ mo»e
zerow¡ liczb¦ potomków. Jest dokªadnie jeden w¦zeª, który nie
ma przodka, to jest tak zwany korze«. Terminologia nie jest
dokªadnie ±ci±le ustalona, ale wida¢ o co chodzi

• W¦zeª, który nie ma potomków nazywa si¦ li±ciem, a taki,
który ma potomków nazywa si¦ w¦zªem wewn¦trznym

• Cz¦sto spotykanym rodzajem drzewa jest drzewo binarne, czyli
takie, którego ka»dy w¦zeª ma co najwy»ej 2 potomków



Struktury danych

• Implementacja drzewa binarnego mo»e by¢ nast¦puj¡ca. W¦zªy
s¡ obiektami nast¦puj¡cej klasy
c l a s s my_node
{

my_node *up , * l e f t , * r i g h t ;
. . .

i n n e dane/metody
. . .

} ;

• Tak naprawd¦ wska¹nik na przodka nie jest potrzebny.
Tworzenie, usuwanie, przeszukiwanie drzewa w zasadzie zawsze
zachodzi od korzenia w dóª

• Korze« poznajemy po tym, »e jego wska¹nik up jest nullptr,
podobnie li±cie poznajemy po tym, »e oba wska¹niki left i
right s¡ nullptr

• Program musi pami¦ta¢ wska¹nik do korzenia. Do wszystkich
innych w¦zªów mo»na doj±¢ pocz¡wszy od korzenia



Struktury danych

• Przegl¡danie drzewa mo»e przebiega¢ zgodnie z algorytmem
DFS (Depth First Search). Algorytm ten ma kilka wariantów,
rozwa»my jeden. Piszemy procedur¦, która jest wywoªywana
rekurencyjnie
v o i d c z y t a j (my_node *p )
{

i f ( p ) // j e ± l i wska¹n ik n i e j e s t NULL
{

od c z y t a j dane
c z y t a j ( p => l e f t ) ;
c z y t a j ( p => r i g h t ) ;

}
}

• Aby przej±¢ caªe drzewo wywoªujemy procedur¦ czytaj() ze
wska¹nikiem na korze«

• �atwo zauwa»y¢, czemu algorytm nazywa si¦ Depth First



Struktury danych

• Inna mo»liwo±¢ to algorytm BFS (Breadth First Search). Nie
b¦dziemy go implementowali, ale w tym algorytmie drzewo
przegl¡damy poziomami. Odwiedzamy w¦zeª, i wszystkich jego
potomków zapami¦tujemy. Mo»na to zrobi¢ przy pomocy
struktury zwanej kolejk¡. Jest to lista, w której nowe elementy
dodajemy zawsze na ko«cu, a pobieramy zawsze z pocz¡tku
(mªodzie» w dzisiejszych czasach mo»e nie � jarzy¢� poj¦cia
kolejki :-) )

• Odwiedzamy wi¦c w¦zeª, i wszystkich potomków dodajemy do
kolejki. Nast¦pnie przechodzimy do kolejnego w¦zªa w kolejce.
Oczywi±ci, je»eli odwiedzili±my li±¢, to nic ju» do kolejki nie
dochodzi

• �atwo zauwa»y¢, czemu algorytm nazywa si¦ Breadth First



Struktury danych

• Teksty, czyli ci¡gi znaków b¦dziemy chcieli zapisa¢ przy
pomocy minimalnej ilo±ci bitów

• Poszczególnym literom przypisujemy ci¡gi bitów, ale ró»nej
dªugo±ci. Literom, których jest du»o przypiszemy krótkie ci¡gi,
a literom wyst¦puj¡cym w tek±cie rzadko dªu»sze ci¡gi

• Maj¡c gotowy kod, czyli poszczególnym znakom alfabetu
przypisany konkretny ci¡g binarny, mo»emy go
zaimplementowa¢ jako drzewo binarne. W¦zªy wewn¦trzne
drzewa nie maj¡ przypisanych znaków, natomiast ka»dy li±¢ ma
przypisany znak wyst¦puj¡cy w alfabecie

• Pocz¡wszy od korzenia, przechodz¡c do lewego potomka do
ci¡gu binarnego dopisujemy 0, natomiast przechodz¡c do
prawego potomka dopisujemy 1. W ten sposób ka»da ±cie»ka
od korzenia do li±cia reprezentuje pewien unikalny ci¡g binarny

• Procedura kodowania (czyli zamiany ci¡gu znaków alfabetu na
ci¡g bitów) i odkodowywania (czyli zamiany ci¡gu bitów na
ci¡g znaków alfabetu) sprowadza si¦ do przeszukiwania drzewa.

• Przykªad 2.


