Struktury danych

® Przypomnijmy, ze zmienne dynamiczne to zmienne, ktére sg
tworzone w trakcie wykonywania programu, ich ilo$¢ w pamieci
nie musi by¢ znana w momencie kompilacji programu.

® Zmienne te nie maja nazwy, i mozna sie do nic odnosi¢ tylko
przy pomocy wskaznikéw.

® Najczesciej zmienne te s powigzane pomiedzy sobg w ten
sposéb, ze poszczegdlne zmienne zawierajg w sobie wskazniki
na inne. Logika tych powigzan powinna by¢ dostosowana do
sposobu pracy ze zmiennymi. Obecnie opiszemy dwa typowe
sposoby ,,aranzacji” zmiennych dynamicznych - liste i drzewo
binarne.



Struktury danych

® Przypomnijmy jeszcze, ze zmienne dynamiczne z reguty nie s3

prostymi zmiennymi, tylko obiektami lub strukturami. O
obiektach jeszcze nie méwilismy, wiec rozwazmy dane, ktdre s3
strukturami. Przypomnijmy, ze strukture (ztozony typ
zmiennej) deklarujemy nastepujaco:

struct nazwa

int jeden element;

double inny element;

char jakis napis[200];

nazwa *xwsk;

® Zauwazmy, ze elementem struktury jest wskaznik na taka
samg strukture. Obecnosé takiego wskaznika umozliwia
budowe powigzah pomiedzy zmiennymi. Taki wskaznik moze
by¢ jeden jezeli, na przyktad, nasze dane zorganizowane s3 w
liste, i wskaznik zawarty w jednej zmiennej pokazuje na
nastepna zmienna na liscie.



Struktury danych

® (Czesto wskazniki sg 2, jeden wskazuje na nastepny element na
liscie, a drugi na poprzedni element. Tak zorganizowane dane
nazywaja sie lista dwukierunkows, i taka organizacja jest
czesto stosowana. W standardowych bibliotekach C++
znajduje sie szablon takiej listy, ktéry pozwala postugiwaé sie
nia bez wnikania w szczegéty techniczne. Jednak zanim
przejdziemy do takich szablonéw (na C++ 2), postaramy sie
opanowac taka liste ,recznie”.

® Przykfad 1.

® Przyktad powyzszy jest szkieletem programu, ktéry umozliwia
wprowadzanie danych bibliograficznych ksiazek. Umozliwia
dodawanie ksigzki do listy, usuwanie z listy, przegladanie listy
itp. jest to tylko szkielet, nie wszystkie opcje s3
zaimplementowane, i wiele rzeczy jest zrealizowane
nieoptymalnie. Celem przyktadu jest pierwsze praktyczne
wykorzystanie wskaznikéw.



Struktury danych

® W programie zadeklarowana jest struktura o nazwie book,

ktéra zawiera pewne dane dotyczace ksigzki, a takze dwa
wskazniki, nast oraz poprz, na takie same struktury.
struct book

char tytul [1000];

char autor nazw[50];

char autor imie[20];

int cena;

int rok wyd;

book *nast;

book *poprz;

+

® WspominaliSmy wczesniej, ze zmienne dynamiczne w praktyce
realizowane sg jako tak zwane obiekty, czyli cos bardzie;
ogdlnego niz struktury. Obiektami zajmiemy sie wkrétce.



Struktury danych

e Lista, ktéra powstanie na stercie wymaga réznych funkcji,
ktére beda na niej dziataé. Te funkcje to tak zwany interfejs
listy. tatwo sobie wyobrazi¢, jakie funkcje beda potrzebne. Na
przyktad funkcja, ktéra pobierze od uzytkownika dane, i doda
odpowiednig strukture z tymi danymi do listy. W naszym
przyktadzie interfejs sktada sie z nastepujacych funkgji:

book xdodaj ksiazke (book *&s ptr, book x| _ptr);
void wypisz liste (book *s ptr);
void wypisz ksiazke (book s _ptr);

void usun_ ksiazke(book *&s ptr);
void usun liste(book *s ptr);

® Wewnatrz funkcji main() sa dwa dodatkowe elementy
interfejsu, wskazniki start_ptr i end_ptr. Pierwszy pokazuje
na pierwszy element listy, drugi na ostatni element.



Struktury danych

® Przyjrzyjmy sie funkcjom. dodaj_element () jako argumenty
przyjmuje dwa wskazniki, bedg to wskazniki na poczatek listy i
na koniec.

® Funkgcja ta tworzy nowsa strukture i dopisuje ja na koncu listy.
Do tego jest jej potrzebny wskaznik na koniec listy. Poniewaz
funkcja powinna zmodyfikowaé wskaznik na koniec listy (zostat
dodany nowy element), to wskaznik na koniec listy jest jej
przekazywany przez referencje (operator &).

e Jezeli funkcja wywotywana jest po raz pierwszy, to zadnych
zmiennych na liscie nie ma. W tej sytuacji wskaznik
start_ptr ma warto$¢ NULL. Funkcja tworzac pierszy element
listy musi wiec zainicjalizowa¢ wskaznik start_ptr. Dlatego
argument ten tez przekazywany jest do funkgji przez referencje.



Struktury danych

® Funkcja najpierw sprawdza, czy lista jest pusta (s_ptr ==
NULL). Nastepnie tworzy nowa zmienna dynamiczng typu
book. Nastepnie ,podtacza” ja do listy na koncu. Wskaznik
nast dotychczasowego ostatniego elementu zostaje zapisany
adresem nowego elementu. Wskaznik poprz nowego elementu
zostaje zapisany adresem poprzednio ostatniego elementu. W
koricu wskaznik nast nowo utworzonego elementu zostaje
zapisany wartoécig NULL.

e Jezeli lista byta pusta, to oba wskazniki w nowej zmiennej s3
ustawiane na NULL, oraz oba wskazniki, na poczatek i na
koniec listy s3 ustawiane na adres nowej zmiennej.

® Nastepnie funkcja pobiera od uzytkownika dane, i zapisuje je
do zmiennej. Przypomnijmy, ze wprowadzanych stringéw nie
mozemy bezposrednio wpisywaé do zmiennej, jezeli zawieraja
spacje.



Struktury danych

® Proste podstawienie

cin >> (xtemp str). tytul;

zapisze jedynie pierwszy wyraz tytutu. Pozostate wyrazy beda
w buforze wejsciowym, i do ich odczytania bytyby potrzebne
kolejne instrukcje cin.

® Zamiast tego korzystamy z funkgcji cin.getline(), ktéra
odczytuje cata linijke az do znaku konca linii ?\n’ (klawisz
enter), i zapisuje catos¢ do podanego bufora. Dodatkowym
argumentem funkcji cin.getline() jest maksymalna ilos¢
znakéw do zapisania do bufora.



Struktury danych

e Zwréémy uwage na dodatkowe wywotanie funkgcji get () przed
samym odczytem tytutu ksiazki. Kiedy uzytkownik wybrat
opcje 1., wcisnat tez klawisz enter. Do bufora wejsciowego
wczytana zostafa liczba 1, a takze znak konca linii. Program
pobrat z bufora samg liczbe 1, ale znak konca linii pozostat.
Funkcja cin.getline() odczytuje wszystko do znaku konca
linii (odczytuje tez ten znak, ale zapisuje zamiast niego znak
’\0”, konczacy string). W sytuacji, gdy w buforze wejsciowym
cin czeka sam znak kofica linii, funkcja odczyta pusty string.
Zeby tego uniknaé izywamy funkcji cin.get () ktéra, w te]
postaci, pobiera z bufora wejSciowego jeden bajt i nic z nim nie
robi. Bufor jest wiec pusty i czeka na nasz string.

® Przy kolejnych wywotaniach funkcji cin.getline() nie ma
tego problemu, bo ta funkcja pobiera znak konca linii z bufora
wejsciowego.



Struktury danych

® Po wywotaniu funkcji dodaj_ksiazke() z parametrami
start_ptr oraz end_ptr do listy dotaczony zostaje na koncu
nowy element, zapisany danymi podanym przez uzytkownika.
Wskazniki start_ptr oraz end_ptr po wywotaniu funkgji
zawieraja adresy poczatku i konca listy.

® Kolejna funkcja operujaca na liscie to wypisz_liste(). Jako
argument otrzymuje wskaznik na poczatek listy. Wypisuje
catos¢. Logika funkcji jest jasna. Wypisywanie pozycji
nastepuje w petli. Koniec petli wykrywany jest kiedy wskaznik
nast danej zmiennej ma wartos¢ NULL (nie ma nastepnego
elementu).



Struktury danych

® Kolejna funkcja jest wypisz_ksiazke (). Funkcja prosi
uzytkownika o podanie roku wydania ksiazki, po czym
przeglada liste. Jezeli znajdzie zmienna o pasujacym roku
wydania, wypisuje ja, i konczy. Jezeli nie znajdzie pasujacej
ksigzki, informuje o tym. Zauwazmy, ze tak napisana funkcja
wypisuje tylko pierwsza napotkana ksiazke o podanym roku
wydania. Zastanéwmy sie, jak zrobi¢, zeby funkcja po
znalezieniu jednej pozycji kontynuowata szukanie nastepnej.
Oczywiscie mozemy tatwo wybra¢ inny parametr wyszukiwania,
na przyktad nazwisko autora.

® Kolejna istotng funkcja jest usun_ksiazke (). Uzytkownik
identyfikuje ksiazke do usuniecia po roku wydania. Lista jest
przegladana, i kiedy odnaleziona zostaje ksigzka o podanym
roku wydania, zostaje usunieta.



Struktury danych

® Zauwazmy, ze sytuacja jest rézna w zaleznosci od tego, czy
znaleziona pozycja jest na poczatku listy, czy gdzies dale;.
Jezeli ksigzka do usuniecia jest na poczatku listy, to trzeba
zaktualizowa¢ wskaznik poczatku listy start_ptr. Z drugiej
strony, jezeli pozycja do usuniecia jest gdzie$ dalej na liscie, to
liste trzeba ,sklei¢” po usunieciu elementu. Zastanéwmy sie,
jak zrobi¢, zeby po znalezieniu pozycji do usuniecia wypisac ja,
i poprosi¢ uzytkownika o potwierdzenie usuniecia.

e QOstatnig zaimplementowang funkcjg jest usun_liste (), ktéra
usuwa wszystkie elementy listy z pamieci. Otrzymuje wskaznik
na koniec listy i rekurencyjnie, od kofca, usuwa zmienne.

® \Wszystkie zmienne utworzone przy uzyciu instrukcji new
powinnismy usunaé, przy pomocy instrukcji delete.

® Zauwazmy, ze w programie wielokrotnie uzywamy konstrukgji
while (wskaznik). Wskaznik moze mie¢ warto$¢ NULL lub
jakas konkretng. C++ traktuje ten pierwszy przypadek jako
logiczne 0, a ten drugi jako logiczne 1.



Struktury danych

® Interfejs naszej listy dwukierunkowej jest dosy¢ ubogi, zawiera
tylko to, czego bezposrednio potrzebowaliSmy. W wielu
wypadkach taka liste obudowuje sie dodatkowymi funkcjami.
Typowym przyktadem jest sortowanie.

® Zauwazmy, ze zupetnie bez znaczenia dla programu ma
faktyczna, fizyczna, lokalizacja utworzonych zmiennych
dynamicznych. Wazna jest tylko struktura logiczna,
wyznaczona przez relacje, ktéra zmienna jest za/przed ktéra.

e |dac dalej, zauwazmy, ze jedna lista moze mie¢ wiele réznych
struktur logicznych. Wymaga to tylko wiekszej ilosci
wskaznikéw (na nastepny i poprzedni element) wbudowanych
w liste. W szczegélnosci lista moze by¢ posortowana
jednoczesnie wedtug réznych parametréw. Tego typu zadanie
byto sporym problemem dla niektérych studentéw w ubiegtym
roku jako ostatni projekt.



Struktury danych

e Korniczac omawianie listy dwukierunkowej zwr6émy uwage na
jeszcze jedng rzecz. W naszej liscie nowe elementy zawsze byty
dopisywane na koricu. Réwnie dobrze moglibysmy dopisywac
nowe elementy na poczatku. Ale tez moglibysmy utrzymywa¢
nasza liste caty czas posortowana (wzgledem jakiegos

parametru) i nowe elementy dopisywaé zawsze we ,wtasciwym
miejscu’”’.



Struktury danych

® Inng strukturg danych jest drzewo. Sktada sie z weztéw, w
ktérych przechowywane s3 dane, oraz potaczen miedzy
weztami. Kazdy wezet ma jednego przodka i pewna, by¢ moze
zerowq liczbe potomkéw. Jest doktadnie jeden wezet, ktéry nie
ma przodka, to jest tak zwany korzer. Terminologia nie jest
doktadnie scisle ustalona, ale wida¢ o co chodzi

® \Wezet, ktéry nie ma potomkéw nazywa sie lisciem, a taki,
ktéry ma potomkéw nazywa sie weztem wewnetrznym

® (zesto spotykanym rodzajem drzewa jest drzewo binarne, czyli
takie, ktérego kazdy wezet ma co najwyzej 2 potomkéw



Struktury danych

® Implementacja drzewa binarnego moze by¢ nastepujaca. Wezty
sa obiektami nastepujacej klasy
class my node
my_node sup, *left, xright;
inne dane/metody

+

e Tak naprawde wskaznik na przodka nie jest potrzebny.
Tworzenie, usuwanie, przeszukiwanie drzewa w zasadzie zawsze
zachodzi od korzenia w dét

e Korzen poznajemy po tym, ze jego wskaznik up jest nullptr,
podobnie liscie poznajemy po tym, ze oba wskazniki left i
right s3 nullptr

® Program musi pamieta¢ wskaznik do korzenia. Do wszystkich
innych weztéw mozna dojs¢ poczawszy od korzenia



Struktury danych

® Przegladanie drzewa moze przebiegaé zgodnie z algorytmem

DFS (Depth First Search). Algorytm ten ma kilka wariantéw,
rozwazmy jeden. Piszemy procedure, ktéra jest wywotywana
rekurencyjnie
void czytaj(my_node #p)
{ if (p) //ieséli wskaznik nie jest NULL

odczytaj dane

czytaj( p —> left );

czytaj( p —> right );

}

® Aby przejs¢ cate drzewo wywotujemy procedure czytaj() ze
wskaznikiem na korzen

e }atwo zauwazy¢, czemu algorytm nazywa sie Depth First



Struktury danych

® Inna mozliwos¢ to algorytm BFS (Breadth First Search). Nie
bedziemy go implementowali, ale w tym algorytmie drzewo
przegladamy poziomami. Odwiedzamy wezet, i wszystkich jego
potomkdéw zapamietujemy. Mozna to zrobi¢ przy pomocy
struktury zwanej kolejkg. Jest to lista, w ktérej nowe elementy
dodajemy zawsze na koricu, a pobieramy zawsze z poczatku
(mtodziez w dzisiejszych czasach moze nie ,jarzy¢” pojecia
kolejki :-) )

® Odwiedzamy wiec wezet, i wszystkich potomkéw dodajemy do
kolejki. Nastepnie przechodzimy do kolejnego wezta w kolejce.
Oczywisci, jezeli odwiedzilismy lis¢, to nic juz do kolejki nie
dochodzi

e }atwo zauwazy¢, czemu algorytm nazywa sie Breadth First



Struktury danych

Teksty, czyli ciagi znakéw bedziemy chcieli zapisaé przy
pomocy minimalnej ilosci bitéw

Poszczegélnym literom przypisujemy ciagi bitéw, ale rézne;j
dtugosci. Literom, ktérych jest duzo przypiszemy krétkie ciagi,
a literom wystepujacym w tekscie rzadko dtuzsze ciagi

Majac gotowy kod, czyli poszczegdlnym znakom alfabetu
przypisany konkretny ciag binarny, mozemy go
zaimplementowac jako drzewo binarne. Wezty wewnetrzne
drzewa nie maja przypisanych znakéw, natomiast kazdy lis¢ ma
przypisany znak wystepujacy w alfabecie

Poczawszy od korzenia, przechodzac do lewego potomka do
ciagu binarnego dopisujemy 0, natomiast przechodzac do
prawego potomka dopisujemy 1. W ten sposéb kazda Sciezka
od korzenia do liscia reprezentuje pewien unikalny ciag binarny
Procedura kodowania (czyli zamiany ciggu znakéw alfabetu na
cigg bitéw) i odkodowywania (czyli zamiany ciagu bitéw na
ciag znakéw alfabetu) sprowadza sie do przeszukiwania drzewa.
Pvovlbad O



