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1 Podstawowe de�nicje

De�nicja 1.1 Partycj¡ w odcinku I nazywamy ka»d¡ rodzin¦ par P =
{(I1, t1), . . . , (Ip, tp)}, gdzie I1, . . . , Ip s¡ niemal rozª¡cznymi odcinkami do-
mkni¦tymi, których suma jest zawarta w I i ti ∈ Ii dla i ≤ p. Je±li

∪
i Ii = I,

to mówimy o partycji odcinka I. Partycj¦ nazwiemy wierzchoªkow¡, je±li
ka»dy punkt ti jest ko«cem lub pocz¡tkiem odcinka Ii.
Dla danej partycji P = {(I1, t1), . . . , (Ip, tp)} odcinka I i funkcji f zadanej
na I wyra»enie

HK(f, P ) =

p∑
i=1

f(ti)|Ii|

nazwiemy sum¡ caªkow¡ f nad P .

Je±li δ jest dodatni¡ funkcj¡ na I, to partycj¦ {(I1, t1), . . . , (Ip, tp)} nazywamy
δ-maª¡, je±li |Ii| < δ(ti), dla ka»dego i ≤ p.

Lemat 1.2 Dla ka»dej dodatniej funkcji δ na odcinku I istnieje δ-maªa par-

tycja odcinka I.

Lemat 1.3 Je±li δ jest funkcj¡ dodatni¡ na odcinku I, to ka»da δ-maªa par-

tycja w I jest podzbiorem pewnej δ-maªej partycji I.

De�nicja 1.4 Funkcja f zde�niowana na odcinku I jest na tym odcinku
caªkowalna w sensie Henstocka-Kurzweila, je±li istnieje liczba z o nast¦puj¡cej
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wªasno±ci: dla ka»dej dodatniej liczby ϵ > 0 istnieje zde�niowana na I funkcja
dodatnia δ taka, »e

|HK(f, P )− z| < ϵ

dla ka»dej δ-maªej partycji P odcinka I

Mo»na ªatwo zauwa»y¢, »e liczba z jest jednoznacznie wyznaczona przez funk-
cj¦ f . Nazywamy j¡ caªk¡ Henstocka-Kurzweila funkcji f na I i oznaczamy
przez (HK)

∫
I
f(t) dt lub przez (HK)

∫ b

a
f(t) dt, je±li I = [a, b].

Rodzin¦ wszystkich HK-caªkowalnych funkcji na I oznaczamy przez HK(I).
HK-caªka oczywi±cie jest uogólnieniem caªki Riemanna.
Z poni»szego przykªadu wida¢, »e uogólnienie to jest istotne.

Przykªad 1.5 NiechQ b¦dzie zbiorem liczb wymiernych odcinka [0, 1]. Funk-
cja χQ nie jest caªkowalna w sensie Riemanna, ale jest HK-caªkowalna i

(HK)
∫ 1

0
χQ(t) dt = 0. Aby to udowodni¢, wybierzmy ϵ > 0 i uporz¡dkujmy

Q w ci¡g ⟨rn⟩. De�niujemy δ wzorem

δ(t) =

{
ϵ2−n−1 je±li t = rn, n ∈ N
1 je±li t /∈ Q.

Je±li teraz P = {(I1, t1), . . . , (Ip, tp)} jest δ-maª¡ partycj¡ [0, 1], to

0 ≤ HK(χQ, P ) ≤
∞∑
n=1

∑
ti=rn

|Ii| <
∞∑
n

2ϵ2−n−1 = ϵ,

co ko«czy dowód. 2

Uwaga 1.6 Powy»szy przykªad pokazuje, »e funkcja HK-caªkowalna mo»e
nie by¢ ci¡gªa w »adnym punkcie.

Stwierdzenie 1.7 HK(I) jest przestrzeni¡ liniow¡ nad R, a HK-caªka jest

funkcj¡ monotoniczn¡.

Stwierdzenie 1.8 Je±li f ∈ HK(I), to f ∈ HK(J) dla ka»dego odcinka

J ⊆ I.

Stwierdzenie 1.9 Niech f b¦dzie funkcj¡ na [a, b] i niech c ∈ (a, b). Je±li f
jest HK-caªkowalna na [a, c] i na [c, b], to f jest równie» HK-caªkowalna na

[a, b] i

(HK)

∫ b

a

f(t) dt = (HK)

∫ c

a

f(t) dt+ (HK)

∫ b

c

f(t) dt.
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Stwierdzenie 1.10 Niech f i g b¦d¡ dwiema funkcjami zde�niowanymi na

odcinku I. Je±li f = g prawie wsz¦dzie, to f ∈ HK(I) wtedy i tylko wtedy,

gdy g ∈ HK(I). Ponadto

(HK)

∫
I

f = (HK)

∫
I

g.

Dowód. Korzystaj¡c z tego, »e HK(I) jest przestrzeni¡ liniow¡, wystarczy
udowodni¢, »e je±li h jest nieujemna i prawie wsz¦dzie równa zeru na I, to
jest HK-caªkowalna i ma caªk¦ równ¡ zeru.
Niech wi¦c h b¦dzie ró»na od zera wyª¡cznie na zbiorze E miary zero i niech
ϵ > 0 b¦dzie dowolne.
Dla ka»dego n ∈ N de�niujemy zbiór En wzorem

En = {t ∈ E : n− 1 < h(t) ≤ n}.

Poniewa» En jest zbiorem miary zero, wi¦c mo»na go pokry¢ zbiorem b¦d¡-
cym sum¡ ci¡gu parami rozª¡cznych odcinków otwartych (anj , b

n
j ) i maj¡cym

wªasno±¢
∞∑
j=1

(bnj − anj ) < ϵ/n2n, dla ka»dego n ∈ N.

Funkcj¦ δ de�niujemy wzorem

δ(t) =

{
1 dla t ∈ [a, b] \ E
min{|t− anj |, |t− bnj |} dla t ∈ En ∩ (anj , b

n
j )

Je±li teraz P = {(I1, t1), . . . , (Ip, tp)} jest δ-maª¡ partycj¡ I, to

HK(h, P ) =

p∑
i=1

h(ti)|Ii| =
∞∑
n=1

∑
ti∈En

h(ti)|Ii| =

=
∞∑
n=1

∞∑
j

∑
ti∈En∩(anj ,bnj )

h(ti)|Ii|

≤
∞∑
n=1

∞∑
j=1

n
∑

ti∈En∩(anj ,bnj )

|Ii| ≤

≤
∞∑
n=1

n
∞∑
j=1

(bnj − anj ) ≤
∞∑
n=1

ϵ/2n = ϵ.
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Zauwa»my, »e z de�nicji δ wynika, »e Ii ⊂ (anj , b
n
j ), co daje∑

ti∈En∩(anj ,bnj )

|Ii| ≤ bnj − anj .

To dowodzi caªkowalno±ci funkcji h. 2

Pochodna funkcji caªkowalnej w sensie Riemanna nie musi by¢ caªkowalna
w sensie Riemanna. Caªka Henstocka-Kurzweila rozwi¡zuje ten problem w
zadowalaj¡cy sposób.

Twierdzenie 1.11 Je±li F jest funkcj¡ ró»niczkowaln¡ na [a, b], to F ′ ∈
HK[a, b] i

F (x) = F (a) + (HK)

∫ x

a

F ′(t) dt

dla ka»dego x ∈ [a, b].

Dowód. Dla ustalonego ϵ > 0 i dowolnego s ∈ [a, b] istnieje liczba δ(s) > 0
o tej wªasno±ci, »e

∀ t ∈ [a, b] [|t− s| < δ(s) ⇒
∣∣∣∣F (t)− F (s)

t− s
− F ′(s)

∣∣∣∣ < ϵ]

Niech
P = {([t0, t1], s1), . . . , ([tp−1, tp], sp)}

b¦dzie δ-maª¡ wierzchoªkow¡ partycj¡ [a, b]. Mamy wtedy

|F (ti)− F (ti−1)− F ′(si)(ti − ti−1)| =

=

∣∣∣∣F (ti)− F (ti−1)

ti − ti−1

− F ′(si)

∣∣∣∣ (ti − ti−1) < ϵ(ti − ti−1),

a st¡d

|HK(F ′, P )− [F (b)− F (a)]| =

=

∣∣∣∣∣
p∑

i=1

F ′(si)(ti − ti−1)−
p∑

i=1

[F (ti)− F (ti−1)]

∣∣∣∣∣ ≤
≤

p∑
i=1

|F ′(si)(ti − ti−1)− [F (ti)− F (ti−1)]| < ϵ(b− a).

To ko«czy dowód twierdzenia. 2

Przejdziemy teraz do badania wªasno±ci funkcji F (x) = (HK)
∫ x

a
f(t)dt, dla

funkcji f zadanej na odcinku [a, b].
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Twierdzenie 1.12 Niech f b¦dzie funkcj¡ HK-caªkowaln¡ na [a, b]. Niech

F (a) = 0 i F (x) = (HK)
∫ x

a
f(t) dt, dla wszystkich x ∈ (a, b]. Wówczas F

jest funkcj¡ ci¡gª¡ na [a, b].

Twierdzenie 1.13 Niech f b¦dzie funkcj¡ HK-caªkowaln¡ na [a, b]. Niech

F (a) = 0 i F (x) = (HK)
∫ x

a
f(t) dt, dla wszystkich x ∈ (a, b]. Wówczas dla

prawie wszystkich x ∈ [a, b], funkcja F jest ró»niczkowalna w x i F ′(x) =
f(x). W szczególno±ci równo±¢ ta jest speªniona w ka»dym punkcie ci¡gªo±ci

funkcji f .

Wniosek 1.14 Je±li f ∈ HK[0, 1], to f jest mierzalna.

Dowód. F ′(x) = limn
1
n
[F (x+ 1/n)− F (x)] p.w., wi¦c F ′ jest mierzalna.

Poniewa» f = F ′ p.w., wi¦c równie» f jest mierzalna. 2

Przykªad 1.15 Przykªad funkcji f ∈ HK[0, 1], dla której |f | ̸∈ HK[0, 1].

Kªadziemy

F (x) =

{
0 dla x = 0
x2 sin(x−2) dla x ̸= 0

oraz

f(x) =

{
0 dla x = 0
2x sin(x−2)− 2x−1 cos(x−2) dla x ̸= 0

Poniewa» F ′(x) = f(x) dla ka»dego x ∈ R, wi¦c f ∈ HK[0, 1] na mocy
Twierdzenia 1.2. Poniewa» funkcja h(x) = 2x sin(x−2) jest ci¡gªa na [0, 1],
wi¦c zarówno h jak i |h| s¡ na [0, 1] HK-caªkowalne (bo s¡ caªkowalne w sensie
Riemanna). Niech

g(x) =

{
0 gdy x = 0
2x−1 cos(x−2) gdy x ̸= 0

Oczywi±cie g = h− f ∈ HK[0, 1]. Zauwa»my, »e funkcja g jest w otoczeniu
zera nieograniczona. Mo»na pokaza¢, »e |g| ̸∈ HK[0, 1].
Dokªadniej, dla ka»dego n otrzymujemy nierówno±¢

(HK)

∫ 1

0

|g(t)| dt ≥ 2−5/2

n∑
k=1

1/k ,

która dowodzi, »e funkcja |g| nie jest HK-caªkowalna.

Poniewa» f = h+ g = F ′, wi¦c f jest pochodn¡, która nie jest caªkowalna w
sensie Lebesgue'a.
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Twierdzenie 1.16 Je±li f : [a, b] → R jest caªkowalna w sensie Lebesgue'a,

to jest równie» caªkowalna w sensie Henstocka-Kurzweila i caªki s¡ sobie

równe.

Dowód. Ustalmy ε > 0. Z absolutnej ci¡gªo±ci caªki wynika istnienie
η > 0 takiej, »e

∀ E ∈ L |E| < η ⇒
∫
E

|f(t)| dt < ε/2.

Zaªó»my dla uproszczenia, »e f ≥ 0 everywhere, α = (L)
∫ b

a
f(t) dt, i niech

En :=

{
t ∈ [a, b] : n− 1 ≤ 3(η + b− a)

ε
f(t) < n

}
.

We¹my otwarty zbiór Gn ⊃ En taki, »e

|Gn \ En| <
η

(n+ 1)2n

i poªó»my

δ(t) = inf{|t− s| : s /∈ Gn} dla t ∈ En, n ∈ N.

Je±li P = {(I1, t1), . . . , (Ip, tp)} jest δ-maª¡ partycj¡ odcinka [a, b], to∣∣∣∣∣
p∑

i=1

f(ti)|Ii| − α

∣∣∣∣∣ < ε.

2

Lemat 1.17 Je±li F jest funkcj¡ niemalej¡c¡ na [a, b], to F ′ jest caªkowalna

w sensie Lebesgue'a i ∫ b

a

F ′(t) dt = F (b)− F (a).

Dowód. F ′ istnieje p.w. Poniewa» F ′ jest nieujemna, wi¦c caªka Le-
besgue'a funkcji F ′ istnieje; musimy tylko udowodni¢, »e jest sko«czona.
Rozszerzamy F na (b,+∞), kªad¡c F (t) = F (b), dla t > b. Dla ka»dego
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n ∈ N kªadziemy fn(t) = n[F (t+1/n)−F (t)]. Poniewa» Fn jest niemalej¡ca
i ograniczona, wi¦c fn jest caªkowalna w sensie Riemanna (zbiór punktów
nieci¡gªo±ci fn jest co najwy»ej przeliczalny). St¡d mamy∫ b

a

fn(t) dt

= n

∫ b+1/n

b

F (t) dt− n

∫ a+1/n

a

F (a) dt

≤ F (b)− F (a).

Poniewa» fn ≥ 0 p.w. i fn → F ′ p.w., wi¦c stosuj¡c lemat Fatou, otrzymu-
jemy nierówno±¢∫ b

a

F ′(t) dt =

∫ b

a

lim inf
n

fn(t) dt

≤ lim inf
n

∫ b

a

fn(t) dt ≤ F (b)− F (a).

2

Stwierdzenie 1.18 Je±li 0 ≤ f p.w. i f ∈ HK[a, b], to f jest caªkowalna w

sensie Lebesgue'a.

Dowód. Wobec nieujemno±ci f funkcja F (x) =
∫ x

a
f(t) dt jest niemalej¡ca

na [a, b]. Na mocy Lematu 1.17 F ′ jest caªkowalna w sensie Lebesgue'a. Ale
F ′ = f p.w., wi¦c f jest caªkowalna w sensie Lebesgue'a. 2

Twierdzenie 1.19 Dla dowolnego odcinka I funkcja f : I → R jest caªko-

walna w sensie Lebesgue'a wtedy i tylko wtedy, gdy f i |f | s¡ caªkowalne w

sensie Henstocka-Kurzweila.

Dowód. ⇐ Wiadomo, »e f = f+−f− ∈ HK(I) i |f | = f++f− ∈ HK(I).
Poniewa» HK(I) jest przestrzeni¡ liniow¡, równie» funkcje f+ i f− s¡ HK-
caªkowalne. Na mocy Stwierdzenia 1.18 funkcje te s¡ caªkowalne w sensie
Lebesgue'a, co natychmiast daje caªkowalno±¢ w sensie Lebesgue'a funkcji f .
2
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