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1 Podstawowe definicje

Definicja 1.1 Partycjg w odcinku [ nazywamy kazda rodzine par P =
{(Ii,t1),...,(Ip,tp)}, gdzie Iy,..., I, sa niemal roztacznymi odcinkami do-
mknietymi, ktorych suma jest zawartaw I'it; € I; dlai <p. Jesli|J, [; = I,
to moéwimy o partycji odcinka I.  Partycje nazwiemy wierzchotkowq, jesli
kazdy punkt t; jest koncem lub poczatkiem odcinka I;.

Dla danej partycji P = {([1,t1),...,(I,,t,)} odcinka I i funkeji f zadanej
na [ wyrazenie

p
HK(f,P)= Zf(ti)\fil
i=1
nazwiemy sumg catkowa f nad P.

Jesli § jest dodatnia funkcja na I, to partycje {(I1,%1), ..., (I,, t,) } nazywamy
d-mala, jesli |I;| < d(¢;), dla kazdego i < p.

Lemat 1.2 Dla kazdej dodatniej funkcji 6 na odcinku I istnieje d-mata par-
tycja odcinka 1.

Lemat 1.3 Jesli  jest funkcjg dodatnig na odcinku I, to kazda d-mata par-
tycja w I jest podzbiorem pewnej d-matej partycyi I.

Definicja 1.4 Funkcja f zdefiniowana na odcinku [ jest na tym odcinku
catkowalna w sensie Henstocka- Kurzweila, jesli istnieje liczba z o nastepujacej



wlasnosci: dla kazdej dodatniej liczby € > 0 istnieje zdefiniowana na I funkcja
dodatnia ¢ taka, ze

|HK(f,P)—z| <e€
dla kazdej 6-malej partycji P odcinka [
Mozna tatwo zauwazy¢, ze liczba z jest jednoznacznie wyznaczona przez funk-
cje f. Nazywamy ja catka Henstocka- Kurzwezla funkcji f na I i oznaczamy
przez (HK) [, f(t) dt lub przez (HK) f f(t)dt, jesli I = [a,b].
Rodzine Wszystk1ch H K-catkowalnych funkcji na I oznaczamy przez H K (I).

HK-calka oczywiscie jest uogdlnieniem catki Riemanna.
7 ponizszego przyktadu widac, ze uogoélnienie to jest istotne.

Przyktlad 1.5 Niech @) bedzie zbiorem liczb wymiernych odcinka [0, 1]. Funk-
cja xq nie jest calkowalna w sensie Riemanna, ale jest HK-catkowalna i

(HK) fo Xo(t) dt = 0. Aby to udowodnié¢, wybierzmy e > 0 i uporzadkujmy
Q w ciag (rn> Definiujemy ¢ wzorem

27"l jedlit=r,,neN
o) = { 1 jeslit ¢ Q.
Jesli teraz P = {(I1,t1),...,(Ip, t,)} jest 6-mala partycja [0, 1], to

0< HK(xq, P <ZZ|I|<2262_n 1—

n=1 t;=rp

co konczy dowod. O

Uwaga 1.6 Powyzszy przyklad pokazuje, ze funkcja HK-catkowalna moze
nie by¢ ciagta w zadnym punkcie.

Stwierdzenie 1.7 HK(I) jest przestrzeniq liniowq nad R, a HK-catka jest
funkcjg monotoniczng.

Stwierdzenie 1.8 Jesli f € HK(I), to f € HK(J) dla kazdego odcinka
JCI.

Stwierdzenie 1.9 Niech [ bedzie funkcjq na [a,b] i niech ¢ € (a,b). Jesli f
jest HK-catkowalna na [a,c] i na [c,b], to [ jest rowniez HK-calkowalna na

la,b] i
b c b
(HE) / F(#)dt = (HK) / F(t) dt + (HK) / (1) dt



Stwierdzenie 1.10 Niech f i g bedqg dwiema funkcjami zdefiniowanymi na
odcinku I. JeSli f = g prawie wszedzie, to f € HK(I) wtedy i tylko wtedy,
gdy g € HK(I). Ponadto

) [ 1= [ o

Dowo6d. Korzystajac z tego, ze H K (I) jest przestrzenia liniowa, wystarczy
udowodnié, ze jesli h jest nieujemna i prawie wszedzie rowna zeru na I, to
jest HK-catkowalna i ma catke rowng zeru.

Niech wiec h bedzie rozna od zera wylacznie na zbiorze E miary zero i niech
€ > 0 bedzie dowolne.

Dla kazdego n € N definiujemy zbioér E, wzorem

E,={te E:n—1<h(t) <n}.

Poniewaz E,, jest zbiorem miary zero, wiec mozna go pokry¢ zbiorem beda-
cym sumg ciggu parami roztacznych odcinkow otwartych (a7, b%) i majacym
wlasnosé .

Z:(b’]1 —aj) <e/n2", dlakazdego n € N.

Jj=1

Funkcje ¢ definiujemy wzorem

sty < {1 dla t € [a,b]\ E
| min{[t —af|, [t =07} dla t € E,N(a},b})

Jesli teraz P = {(I1,t1),...,(Ip,t,)} jest 6-mala partycja I, to

K(h Py =3 h(t)[Ll = 3 btk =

n=1t,eEy,

=20 > W

n=1 j t;eB.n(a’b?)

DD ILE

<
n=1j=1  t,€B,N(al,b7)
o oo o
7n n n __
< ny (b —aj) < E €/2" =e.

3



Zauwazmy, 7e 7 definicji 6 wynika, ze I; C (a},b}), co daje

oL < —al.

ti€BpN(al b7

To dowodzi catkowalnosci funkcji h. a
Pochodna funkcji catkowalnej w sensie Riemanna nie musi by¢ catkowalna
w sensie Riemanna. Calka Henstocka-Kurzweila rozwigzuje ten problem w
zadowalajacy sposob.

Twierdzenie 1.11 Jesli F jest funkcjg réziniczkowalng na |a,b], to F' €
HKla,b] i

F(z) = F(a) + (HK) / CP

a

dla kazdego x € [a,b.

Dowo6d. Dla ustalonego € > 0 i dowolnego s € [a, b] istnieje liczba §(s) > 0
o tej wlasnosci, ze

F(t) = F(s)

t—s — F(s)

Vtela,b Ht—s]<5(s):>’ < €]

Niech
P = {({t(]? tl]a 31)7 R ([tpflvtp]a Sp)}
bedzie 0-maly wierzchotkowa partycja [a, b]. Mamy wtedy

|F(ti) — F(ti1) — F'(si)(ti — tic1)| =

— ‘F(t;z:f;(f“) — F'(si)| (ti — ti1) < e(t; — tion),
a stad
|[HK(F', P) = [F(b) — F(a)]| =
= iF’(Sz’)(tz —ti1) - Zpl[F(ti) — F(tia)]| <
< Zp: [F' (i) (ti = tia) = [F(t:) = F(ti-a)]] < e(b— a).
To koticzy dow()zczlltwierdzenia. 0

Przejdziemy teraz do badania wlasnosci funkeji F(z) = (HK) [ f(t)dt, dla
funkeji f zadanej na odcinku |a, b].



Twierdzenie 1.12 Niech f bedzie funkcjq HK-catkowalng na |a,b]. Niech
F(a) =04 F(z) = (HK) [ f(t)dt, dla wszystkich = € (a,b]. Wowczas F
jest funkcjq ciggla na [a,b].

Twierdzenie 1.13 Niech f bedzie funkcjq HK-catkowalng na [a,b]. Niech
F(a) =01 F(z) = (HK) [T f(t)dt, dla wszystkich = € (a,b]. Wowczas dla
prawie wszystkich x € [a,b], funkcja F jest rézniczkowalna w x i F'(x) =
f(x). W szczegdlnosci réwnosé ta jest spetniona w kazdym punkcie ciggtosci
funkcji f.

Whiosek 1.14 Jesli f € HK|0,1], to f jest mierzalna.

Dowoéd. F'(z) = lim, :[F(z + 1/n) — F(x)] p.w., wiec F” jest mierzalna.
Poniewaz f = F’ p.w., wiec rowniez [ jest mierzalna. O

Przyklad 1.15 Przyklad funkcji f € HK|[0, 1], dla ktorej | f| € H K]0, 1].

Ktadziemy
0 dlaz =0
F(z) = { r?sin(z™2) dlaz #0
oraz
) = 0 dlaz =0
| 2zsin(z7?) — 2z tcos(z7?) dlaz #0
Poniewaz F'(z) = f(x) dla kazdego z € R, wiec f € HK|[0,1] na mocy
Twierdzenia 1.2. Poniewaz funkcja h(z) = 2zsin(x™2) jest ciagla na [0,1],

wiec zaréwno h jak i |h| sa na [0, 1] HK-calkowalne (bo sa catkowalne w sensie
Riemanna). Niech

_J 0 gdy x =0
g(x) = { 2z cos(z™2) gdyx #0

Oczywiscie g = h — f € HK0,1]. Zauwazmy, ze funkcja g jest w otoczeniu
zera nieograniczona. Mozna pokaza¢, ze |g| € HK]|O0, 1].
Doktladniej, dla kazdego n otrzymujemy nier6wnosé

k) [ o> 2 g,

ktora dowodzi, ze funkcja |g| nie jest HK-catkowalna.

Poniewaz f = h+ g = F’, wiec [ jest pochodng, ktora nie jest catkowalna w
sensie Lebesgue’a.



O

Twierdzenie 1.16 Jesli f : [a,b] — R jest catkowalna w sensie Lebesgue’a,
to jest rowniez catkowalna w sensie Henstocka-Kurzweila @ catki sq¢ sobie
rowne.

Dowéd. Ustalmy € > 0. Z absolutnej ciaglosci catki wynika istnienie
n > 0 takiej, ze

VE€£|E|<n:>/|f(t)\dt<a/2.
E

Zalozmy dla uproszczenia, ze f > 0 everywhere, a = (L) fab f(t)dt, i niech

3 b—
E, = {tE la,b] :n—1< Mf(t) <n}.
5
Wezmy otwarty zbior G,, D F,, taki, ze
n
G\ E,| < ————
G\ Bl (n+1)2n

i potozmy
() =inf{|t —s|:s¢ G,} dlate E,, neN.

Jesli P = {(I1,t1),...,(I,,t,)} jest 0-mala partycja odcinka [a, b], to

< E&.

Zf(tz‘)w e

O

Lemat 1.17 Jedli F jest funkcjg niemalejgcq na [a, b, to F' jest catkowalna
w sensie Lebesque’a i

b
/ F'(t)dt = F(b) — F(a).
Dowéd. F' istnieje p.w. Poniewaz F’ jest nieujemna, wiec catka Le-
besgue’a funkcji F’ istnieje; musimy tylko udowodnié, ze jest skoriczona.

Rozszerzamy F na (b, +00), kladac F(t) = F(b), dla t > b. Dla kazdego
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n € N kltadziemy f,(t) = n[F(t+1/n)— F(t)]. Poniewaz F}, jest niemalejaca
i ograniczona, wiec f, jest calkowalna w sensie Riemanna (zbior punktow
niecigglodci f, jest co najwyzej przeliczalny). Stad mamy

/ab ful(t)dt

= n/b+1/n F(t) dt—n/a+1/n F(a)dt
< F(b) — F(a). '

Poniewaz f, > 0 p.w. i f, — F’ p.w., wiec stosujac lemat Fatou, otrzymu-
jemy nier6wnoscé

b b
/F’(t)dt = /lirglinffn(t)dt

b
< lim inf/ fu(t)dt < F(b) — F(a).
O

Stwierdzenie 1.18 Jesli 0 < f p.w. i f € HK]Ja,b], to f jest catkowalna w
sensie Lebesque’a.

Dowo6d. Wobec nieujemnosci f funkcja F'(z) = f; f(t) dt jest niemalejaca
na [a,b]. Na mocy Lematu 1.17 F” jest catkowalna w sensie Lebesgue’a. Ale
F''= f p.w., wiec f jest calkowalna w sensie Lebesgue’a. a

Twierdzenie 1.19 Dla dowolnego odcinka I funkcja f : I — R jest catko-
walna w sensie Lebesque’a wtedy i tylko wtedy, gdy f i |f| sq catkowalne w
sensie Henstocka-Kurzweila.

Dowdd. <« Wiadomo,ze f=f"—f~ e HK(I)i|f|=fT+f" € HK(I).
Poniewaz HK (I) jest przestrzenig liniows, rowniez funkcje f™ 1 f~ sg HK-
catkowalne. Na mocy Stwierdzenia 1.18 funkcje te sa catkowalne w sensie
Lebesgue’a, co natychmiast daje calkowalnosé w sensie Lebesgue’a funkcji f.
O
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