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1 Existence of liftings.

Definition 1 Let (X,2(, P) be a probability space. 2, = {A € A : P(A) = 0}.
A mapping p : A — 2 is said to be a if it satisfies the following

properties:

(L1) p(A) = 4
(L2 if AL B then p(A) = p(B);
(L3) p(A) = [p(A)]%
(L4) p(AN B) = p(A) N p(B);
(L5) p(@) =0 and p(X)=X.
A map p: A — 2 satisfying the conditions
(L1), (L2), (L4) and (L5)

is called a on (X, 2 P).

Example 1 Let A be the Lebesgue measure on R", where n > 1. If 2 is the family of
Lebesgue measurable sets, we put for each £ € A

L n . MENB(x,6))
p(E).—{xER.(IS% NB(x.0)) —1},

where B(z,0) = {y € R™: ||z —y|| < }.

Lemma 1 Let € D 2, be a sub—o—algebra of 2 and let 7y be a lower density
on €. If V € A\ €, then there exists a lower density 7 on o(C€ U {V}) such
that T7|€ =15.



Proof. Let
M, :=essinf{Fe €:V C F}

and
My :=essinf{FF e €:V°C F}.

If W e o(€U{V}), then there exist A, B € € such that W = (ANV)u(BNV°).
We set

T(ANV)U(BNVY]:=
[V N 1[(AN M) U (BN M)
U [V Nm[(AN M) U (BnN M.

Lemma 2 Let (€)%, be an increasing sequence of sub—o—algebras of 2 and
let (1,)52, be a sequence of densities (i.e. 7, is a lower density on <,).
If 7,.1|€, = 7, for every n € N, then there exists a lower density T on

¢:.= a(Uzozl €n> such that 7|C, =71, for everyn € N.

Proof. For each F € ¢ we set

T(E) := ﬁ G ﬁ Tm<{x € X:Ee, (xp)(r)>1-— 1/2k}) .

k=1n=1m=n

(E¢,, is the conditional expectation operator on L., (x) with respect to €,
i.e.

VfeLo(wVAcE, /Afdu:/AE%(f)du).

O
Theorem 1 For an arbitrary (X,2, P) there exists a lower density 7 on 2.

Proof. Let D be the smallest cardinal with the property, that there exists a
collection M C 2 such that ¢(M) is dense in 2 in the pseudometric generated
by P. Let M = (M,)a<. be numbered by ordinals less than x, where « is the
first ordinal of the cardinality D. Denote by ¢, the o - algebra o(2l,) and
for each 1 < a < k denote by ¢, the o - algebra generated by the family
{M, : v < a} U&. We assume that M, ¢ €, for each a. It is clear that
without loss of generality, we may do so.

We shall be constructing the final density inductively. 7, will be the only
existing density on (X%, P|2), i.e.

1) if Bef
T0(B) =
X B ¢,



Assume that for each o < v < k a density 7, on €, is already constructed.
We assume, that o < § < v yields 73|/¢, = 7,. We have to separate three
cases.

A) v <k is a limit ordinal of uncountable cofinality. Then ¢, = (]
we define 7, € ¥(u|¢,) by setting

¢, and

a<y

7,(B) :=71.(B) if Be€, and a<7.

B) There exists an increasing sequence (7)) of ordinals that is cofinal to
v < K.

For simplicity put 7, : =7y and ¢, := € for all n € N. Then €, = 0(U,en€,)
and we can define 7, by setting for each B € ¢,

7(B) =) U ) ml{Ee.(xp) > 1-1/2}).

keN neN m>n

It follows from Lemma 2, that 7, is a density on ¢, and 7,|¢, = 7, for each

neN.
C) If vy = 5+ 1 then, 7, is constructed with the help of Lemma 1.
Finally, we define 7 just by setting 7 =7, O

Definition 2 Each density constructed in the way described in the proof of Theorem
1 will be called an ’admissible density ‘ The family of all admissible densities on
(X, 2, P) will be denoted by AY(P).

Theorem 2 (Traynor) Let (X,2, P) be a complete measure space and let T :
A — A be a lower density on A, Then there exists a lifting p on 2, such that

(1) T(E) € p(E) C [7(E)]

for all E € A. Each such p 1s said to be generated by 7.

Definition 3 Each lifting constructed on a complete measure space (X, 2, P) in the
manner described by Theorem 2 from an admissible density will be called an
’admissibly generated lifting | The collection of all admissibly generated liftings

on (X, 2, P) will be denoted by | AGA(P) .

As a direct consequence of Theorems 1 and 2 we get

Theorem 3 On an arbitrary complete (X,2, P) there exists an admissibly
generated lifting.



Definition 4 A mapping p : Loo(P) = Loo(P) is called a on L (P) if it

possessess the following properties:

(L1) p(f) = f for every f € Loo(P);

L2) f=g= p(f) =p(9);

(L2) f
(L3) pis linear and multiplicative;
(L4)

L4) p(1) =

Notice that p may be considered as a mapping from L., (P) into L..(P).
Proposition 1 If p: L(P) = L(P) s a lifting, then

(L5) If f >0 P—a.e., then p(f) > 0 everywhere.

(L6) If f < g P—a.e., then p(f) < p(g) everywhere.

(L7) |p(H) = p(1F1D) -

(L8) sup(p(f), p(9)) = p(sup(f.g9)) and inf(p(f),p(g)) = p(inf(f,g)).

Proof. (L5) If f >0 P—a.e., then f = (v/f)? and so p(f) = [p(v/[)]* > 0. O
Proposition 2 Each lifting p : L(P) — L(P) uniquely determines a lift-
ing p' @ A — A satisfying for each A € A the equality p(xa) = Xpa). And

conversely, if p) : A — A is a lifting on A, then there is a unique lifting
p: Loo(P) = L(P) such that p(xa) = Xy (a), for every Ac .

Theorem 4 (X, P) - complete. If {E, : t € T} is an arbitrary family of
sets such that E, C p(E;) for each t € T, then J,ep £y € A and J,op By C
p(UteT Et> . More generally, if {f; :t € T} C L(P) s a uniformly bounded
family of functions, such that f, < p(f.) for everyt e T , then sup,.p fi is a

measurable function and sup,cp fi < p(sup,er fi) -

Proof. Let {E;:t € T} be a family of sets satisfying for each ¢ € T' the inclusion
E; C p(E;). Moreover let = be the collection of all at most countable subsets of 7.
Since P is bounded there is a real number a such that a = sup,cz P(U,c, £) - Let

E; ,n € N be such that a = P(UnEtn) .Let E:=J, E,, .

Notice now that for an arbitrary t € T" P(E \ E;) = 0 and so the inclusions E; C
p(E:) C p(E) hold true. Consequently,

EC|JE Cp(E).

teT

This proves the measurability of the set | J,.; £+ and the required inclusion.
The proof of the function part of the theorem is based on a similar idea. O
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2 Product densities and liftings.

Let (X,%2, P) and (Y,,Q) be probablhty spaces.
The completion of P is denoted by P and 2 is the P-completion of 2.

— the direct product of P and () on the product o-algebra .

P®Q |- the completion of P ® Q.

AR%B | — the completion of 2A ® B with respect to P ® Q.

A(P)| — the set of all liftings on (X,2, P).

J(P)|— the set of all densities on (X, 2, P). The o-algebra generated by a family

L of sets is denoted by o(L). N and R stand for the natural numbers and the real
numbers respectively.

If M C 2, then M¢:= X \ M.

Definition 5 We call 7 € A(PRQ) a product lifting of the liftings p € A(P) for
and o € A(Q) (we write then 7 € p ® o) if the equation

(A x B) = p(A) x o(B)

holds true for all A € 20 and all B € B. We use a similar definition for densities instead
of liftings.

Assuming the continuum hypothesis Talagrand proved that there exists a
lifting £ on ([0, 1], £, ) such that no lifting 1 on the unit square satisfies the
relation n € £ ® &.

Theorem 5 [MMS, Fund. Math. 166(2000)] Let (X,2, P) and (Y,8,Q) be
complete. For each p € AGA(P) and each o € A(Q), there exists 1 € A(PRQ)
such that the following conditions are satisfied:

(i) 7(A x B) = p(A) x o(B)
forall Ac®A and Bec'B;

(i) [(B) = p([r(E))
forall yeY and E cAXB.

Proposition 3 Let (X, 2, P) and (Y, ‘B, () be probability spaces and densities
p €Y9(P), o € 9(Q) and 7 € J(PRQ) be such that for each £ € AXB and each
(z,9)

7(B), = o([<(E)], ) and [r(B) = p([w(E)}")

Then either P or () is atomic.



Proposition 4 Let (X,2, P) be complete non—atomic and let (Y,5,()) be com-
plete, non—atomic and perfect . If p,oc and © are liftings satisfying

(i) 7(A x B) = p(A) x o(B)
forall Ac®A and Bec'B;

(i) [=(E) = p([m(E))Y)
forall yeY and FE ARV,

then for each © € X there exists E € A such that [7(E)], ts non-measurable.

3 Densities and liftings in product spaces.

Definition 6 Assume that R :A® %5 — [0,1] (or R : AXB — [0,1]) is a prob-
ability measure with marginals P and ). A product regular conditional
probability {S, : y € Y} on 2 with respect to ‘B is a collection of probability
measures {S, : y € Y} on 2 such that

(D1) VAeA y— S,(A) is B-measurable;

(D2) R(A x B) = [ 5,(4)dQ(y)
for every A € 2l and B € ‘8.

Theorem 6 [MMS, JMAA 335(2007)] Let R be a probability measure de-
fined on AR B. If R<K P®(Q, then there exists a product r.c.p. {S,:y €Y}
on 2 with respect to B which 1s absolutely continuous with respect to P and
there exist £ € A(R) and a collection of liftings {&, € A(S,) :y € Y} such that
for every E € ARQrB

[E(E)]Y = &,([¢(E))Y)| forall yeY.

Proof. Let
®: = {ped(R):VycYVE € ADxDB
BE)N €& (E)) & (E) CH(E) )

Notice first that ® # () (One constructs ¢ € ).
We consider ¢ with inclusion as the partial order: @, < 3, if §,(F) C $,(F)
for each F € ARQrDB.

® contains a maximal element ¢ that satisfies the required section property.
O



Theorem 7 [MMS, Ann. Prob. 32(2004)]
Assume that 2 contains a countably generated o-algebra which is dense in

~

2 with respect to P. Then there exist o, € A(S,) for all y € Y and m € A(R)
such that
[*(B) = o, (r(E)))

for ally €Y and E € ARp'B.

Proof. According to Proposition 7?7 there exist 7, € 19(:9;/) for all y € Y and
Y € Y(R) such that for all £ € AR ;B

2) WE) =7 (wE))  forallyey,
and
(3) §y([¢(E)}y U [w(EC)}y) —1 forall yev.

~

We take now for each y € Y a lifting o, € A(S,) such that 7, C 0, and define
7 € 9(R) by setting for each F € AXB and each y € Y

@) (B = o, (W(E)).
SinceA@b(E) C 7(E) for all E € A®zB we get R-measurability of 7(E) and
m(E) L E.

In order to prove that 7 is a lifting it suffices to show that we have always
m(E°) = [r(E)]°. But this is a consequence of (3) and (4) as we get for each y

m (BN = oy (WEN) = o | ((E)) ]

= [o(wE))] = (=®))

This proves that 7 € A(R). O

4 Category product liftings

Throughout X,Y are topological spaces such that X x Y is a Baire space.
M(X) |- the o-ideal of meager subsets of X. X is called a ’Baire space‘ if

every non-empty open set in X is non-meager.
A Caq B denotes that A\ B € M(X).

A =p B denotes that (A\ B)U (B \ A) € M(X). B C X has the’Baire property

if there exists an open set U such that B =, U.
B.(X)|— the o-algebra of subsets of X possessing the Baire property.

DEFINITION. A map [p: B.(X) — B.(X)|is a ’category density‘ if
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(L1) p(A) =m A;
(L2) if A = B then p(A) = p(B);
(L3) p(0) =0 and p(X) =X ;
(L4) p(AN B) = p(A) N p(B).

If p satisfies also
(L5) p(A°) = [p(A)]°

then, it is called a ’category lifting ‘
A(M(X)) |- all liftings on (X,B.(X), M(X)).
Y(M(X)) | — all densities on (X, B.(X), M(X)).

Y another space and let o be lifting or density on (Y,B.(Y), M(Y)).
Consider now the product space

(X XY, B (X xY), M(X xY)). If 7 is a lifting or density on (X x Y,B.(X x
Y),M(X xY)), then we say that

’7r is a product of p and a‘ if

7(A X B) = p(A) X o(B)
VA € B.(X) and VB € B.(Y). We write then .

An open set U C X is ’ regular open‘ if it coincides with the interior of its

closure.

EXAMPLE of a category density.

For each F € B.(X) we denote by |px(F) | the regular open set equivalent
to E.

px : B(X) = B.(X) defined in that way is called the | canonical density
on X.

| THE BANACH CATEGORY THEOREM |: In any topological space X, if
A is a set which is covered by open sets U such that every U N A is meager,
then A is meager.

Proposition 5 . Let X be a Baire space and let § € 9(M(X)) be arbitrary.
Then for each collection C C B.(X) such that C C §(C) for each C € C, we
have

Jce®B.(X) and [JcCé(]O).




Proof. Let U be the regular open set in \/{C* : C € C}, where C* denotes
the equivalence class of C in 5.(X) and \/ is the sup operation in the algebra
B.(X)/M(X).

For any C € C, we have C* < U*® and hence C C,, U. This gives C' C §(C) C
d(U) and hence

e cs).

It remains to check that 6(U)\ |JC is meager, or equivalently, that U \ | JC is
meager.

Note that if Us denotes the regular open set equivalent to C, then |J{U¢ :
C € C} is a dense open subset of U. Moreover,

Uen(@U\Jo)
C UcnU\C)=pmUcn(U\Uc)=0.

Hence U \ [JC has a meager trace on each Uy and thus, by the Banach
Category Theorem, it has a meager trace on |J{Uqs : C' € C} and hence is
meager. O

Proposition 6 . Given p € 9(M(X)) and
o € I(M(Y)), we set

¢(B) :=|{p(A) x o(B): Ax B Cm E}

for every E € B.(X XY).
Then & € 19(M(X X Y)) and it satisfies the following conditions:

() §E€EPRo;

(77) E(E)]x € B.(Y) and [£(E)]. C o ([€(E)]s) for every E € B(X X Y) andx € X;

(177) [E(E)]Y € B(X) and [£(E)]Y C p([E(E))Y) for every E € B(X X Y) andy € Y.
If & : B(X XY) = P(X X Y) is defined by

[£1(E)] = o ([§(E)]x)

then, &, € Y(M(X XY)) and &1 € pRo.

Theorem 8 . [BMMS, Top. Appl. 153(2006)] Assume that X XY 1is a
Baire space. Then for arbitrary p € A(M(X)) and o € A(M(Y)), there exists
m € AM(X xY)) such that

(@) [ Ep B



(3) |lm1(B))e = o ([m1(E)). )

forall x€ X andall E€B.(X XY).

Proof. Let ¢ be taken from Proposition 6 and let &; be defined by [£1(E)]. = o([§(E)]z).
Then, let

P:={peIM(X XY)):
VE € B (X XY)&i(E) C p(E)
& Vze XVEe B (X XY)
[P(B)]e C o ([p(B)]a)
& VCeEB(X)Vx e X
[p(C X Y)]. € {0,Y}}.

We order ® by inclusion and take a maximal element. O

Corollary 1 . Let Y be a separable metric space without isolated points. If
p,o and 7 are liftings satisfying Theorem 8 (with X = P(N)), then for each
yey
there exists

Ee®B.(P(N)XY)

such that
[m1(E)]Y ¢ B(P(N)).

O

It follows from the above corollary, that Theorem 8 cannot be in general
improved.

Thus, in general if p € A(M(X)) and o € A(M(Y)) are arbitrary, then there
is no
7€ A(M(X xY)) such that

() m € p® o3

(8) [v(B)o = o ([x(B)]..)
forall z€ X andall Ee€ B (X XY);

() [=(B))Y = p([m(E)]")

forall ye€Y andall Ee€B (X XY).
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