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1 Existence of liftings.

De�nition 1 Let (X,A, P ) be a probability space. A0 = {A ∈ A : P (A) = 0}.
A mapping ρ : A → A is said to be a lifting if it satis�es the following

properties:

(L1) ρ(A)
P
= A;

(L2 if A
P
= B then ρ(A) = ρ(B);

(L3) ρ(Ac) = [ρ(A)]c;

(L4) ρ(A ∩B) = ρ(A) ∩ ρ(B);

(L5) ρ(∅) = ∅ and ρ(X) = X.

A map ρ : A → A satisfying the conditions

(L1), (L2), (L4) and (L5)

is called a density on (X,A, P ).

Example 1 Let λ be the Lebesgue measure on Rn, where n ≥ 1 . If A is the family of
Lebesgue measurable sets, we put for each E ∈ A

ρ(E) : =
{
x ∈ Rn : lim

δ↘0

λ(E ∩B(x, δ))

λ(B(x, δ))
= 1

}
,

where B(x, δ) = {y ∈ Rn : ∥x− y∥ ≤ δ}.

Lemma 1 Let C ⊃ A0 be a sub−σ−algebra of A and let τ0 be a lower density
on C . If V ∈ A \ C, then there exists a lower density τ on σ(C ∪ {V }) such
that τ |C = τ0 .
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Proof. Let
M1 : = ess inf{F ∈ C : V ⊆ F}

and
M2 : = ess inf{F ∈ C : V c ⊆ F} .

If W ∈ σ(C∪{V }), then there exist A,B ∈ C such that W = (A∩V )∪ (B ∩V c) .
We set

τ [(A ∩ V ) ∪ (B ∩ V c)] : =

[V ∩ τ0[(A ∩ M1) ∪ (B ∩ M c
1)]]

∪ [V c ∩ τ0[(A ∩ M2) ∪ (B ∩ M c
2)]] .

Lemma 2 Let (Cn)
∞
n=1 be an increasing sequence of sub−σ−algebras of A and

let (τn)
∞
n=1 be a sequence of densities (i.e. τn is a lower density on Cn).

If τn+1|Cn = τn for every n ∈ N, then there exists a lower density τ on

C : = σ
(∪∞

n=1 Cn

)
such that τ |Cn = τn for every n ∈ N .

Proof. For each E ∈ C we set

τ(E) : =
∞∩
k=1

∞∪
n=1

∞∩
m=n

τm

({
x ∈ X : ECm(χE)(x) ≥ 1− 1/2k

})
.

(ECm is the conditional expectation operator on L∞(µ) with respect to Cm,
i.e.

∀ f ∈ L∞(µ) ∀ A ∈ Cm

∫
A

f dµ =

∫
A

ECm(f) dµ).

2

Theorem 1 For an arbitrary (X,A, P ) there exists a lower density τ on A .

Proof. Let D be the smallest cardinal with the property, that there exists a
collectionM ⊂ A such that σ(M) is dense in A in the pseudometric generated
by P . Let M = (Mα)α<κ be numbered by ordinals less than κ, where κ is the
�rst ordinal of the cardinality D. Denote by C0 the σ - algebra σ(A0) and
for each 1 ≤ α ≤ κ denote by Cα the σ - algebra generated by the family
{Mγ : γ < α} ∪ C0. We assume that Mα /∈ Cα for each α. It is clear that
without loss of generality, we may do so.
We shall be constructing the �nal density inductively. τ0 will be the only
existing density on (X,A0, P |A0), i.e.

τ0(B) =


∅ if B ∈ A0

X B /∈ A0
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Assume that for each α < γ ≤ κ a density τα on Cα is already constructed.
We assume, that α < β < γ yields τβ|Cα = τα . We have to separate three
cases.
A) γ ≤ κ is a limit ordinal of uncountable co�nality. Then Cγ =

∪
α<γ Cα and

we de�ne τγ ∈ ϑ(µ|Cγ) by setting

τγ(B) : = τα(B) if B ∈ Cα and α < γ .

B) There exists an increasing sequence (γγn) of ordinals that is co�nal to
γ ≤ κ.
For simplicity put τn : = τγγ

n
and Cn : = Cγγ

n
for all n ∈ N. Then Cγ = σ(∪n∈NCn)

and we can de�ne τγ by setting for each B ∈ Cγ

τγ(B) :=
∩
k∈N

∪
n∈N

∩
m≥n

τm({ECm(χB) > 1− 1/2k}) .

It follows from Lemma 2, that τγ is a density on Cγ and τγ|Cn = τn for each
n ∈ N .
C) If γ = β + 1 then, τγ is constructed with the help of Lemma 1.
Finally, we de�ne τ just by setting τ = τκ . 2

De�nition 2 Each density constructed in the way described in the proof of Theorem
1 will be called an admissible density . The family of all admissible densities on

(X,A, P ) will be denoted by Aϑ(P ) .

Theorem 2 (Traynor) Let (X,A, P ) be a complete measure space and let τ :
A → A be a lower density on A, Then there exists a lifting ρ on A, such that

(1) τ(E) ⊆ ρ(E) ⊆ [τ(Ec)]c

for all E ∈ A . Each such ρ is said to be generated by τ .

De�nition 3 Each lifting constructed on a complete measure space (X,A, P ) in the
manner described by Theorem 2 from an admissible density will be called an
admissibly generated lifting . The collection of all admissibly generated liftings

on (X,A, P ) will be denoted by AGΛ(P ) .

As a direct consequence of Theorems 1 and 2 we get

Theorem 3 On an arbitrary complete (X,A, P ) there exists an admissibly
generated lifting.
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De�nition 4 A mapping ρ : L∞(P ) → L∞(P ) is called a lifting on L∞(P ) if it

possessess the following properties:

(L1) ρ(f) ≡ f for every f ∈ L∞(P ) ;

(L2) f ≡ g =⇒ ρ(f) = ρ(g) ;

(L3) ρ is linear and multiplicative;

(L4) ρ(1) = 1 .

Notice that ρ may be considered as a mapping from L∞(P ) into L∞(P ).

Proposition 1 If ρ : L∞(P ) → L∞(P ) is a lifting, then

(L5) If f ≥ 0 P−a.e., then ρ(f) ≥ 0 everywhere.

(L6) If f ≤ g P−a.e., then ρ(f) ≤ ρ(g) everywhere.

(L7) |ρ(f)| = ρ(|f |) .

(L8) sup(ρ(f), ρ(g)) = ρ(sup(f, g)) and inf(ρ(f), ρ(g)) = ρ(inf(f, g)) .

Proof. (L5) If f ≥ 0 P−a.e., then f = (
√
f)2 and so ρ(f) = [ρ(

√
f)]2 ≥ 0. 2

Proposition 2 Each lifting ρ : L∞(P ) → L∞(P ) uniquely determines a lift-
ing ρ′ : A → A satisfying for each A ∈ A the equality ρ(χA) = χρ′(A). And
conversely, if ρ′ : A → A is a lifting on A, then there is a unique lifting
ρ : L∞(P ) → L∞(P ) such that ρ(χA) = χρ′(A), for every A ∈ A .

Theorem 4 (X,A, P ) - complete. If {Et : t ∈ T} is an arbitrary family of
sets such that Et ⊆ ρ(Et) for each t ∈ T , then

∪
t∈T Et ∈ A and

∪
t∈T Et ⊆

ρ
(∪

t∈T Et

)
. More generally, if {ft : t ∈ T} ⊆ L∞(P ) is a uniformly bounded

family of functions, such that ft ≤ ρ(ft) for every t ∈ T , then supt∈T ft is a
measurable function and supt∈T ft ≤ ρ(supt∈T ft) .

Proof. Let {Et : t ∈ T} be a family of sets satisfying for each t ∈ T the inclusion
Et ⊆ ρ(Et) . Moreover let Ξ be the collection of all at most countable subsets of T .
Since P is bounded there is a real number a such that a = supα∈Ξ P (

∪
t∈αEt) . Let

Etn , n ∈ N be such that a = P
(∪

nEtn

)
. Let E : =

∪
nEtn .

Notice now that for an arbitrary t ∈ T P (E \ Et) = 0 and so the inclusions Et ⊆
ρ(Et) ⊆ ρ(E) hold true. Consequently,

E ⊆
∪
t∈T

Et ⊆ ρ(E) .

This proves the measurability of the set
∪

t∈T Et and the required inclusion.
The proof of the function part of the theorem is based on a similar idea. 2
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2 Product densities and liftings.

Let (X,A, P ) and (Y,B, Q) be probability spaces.

The completion of P is denoted by P̂ and Â is the P -completion of A.
P ⊗Q � the direct product of P and Q on the product σ-algebra A⊗B .

P ⊗̂Q � the completion of P ⊗Q.

A⊗̂B � the completion of A⊗B with respect to P ⊗Q.

Λ(P ) � the set of all liftings on (X,A, P ).

ϑ(P ) � the set of all densities on (X,A, P ). The σ-algebra generated by a family

L of sets is denoted by σ(L). N and R stand for the natural numbers and the real
numbers respectively.
If M ⊆ A, then M c := X \ M .

De�nition 5 We call π ∈ Λ(P ⊗̂Q) a product lifting of the liftings ρ ∈ Λ(P ) for
and σ ∈ Λ(Q) (we write then π ∈ ρ⊗ σ) if the equation

π(A×B) = ρ(A)× σ(B)

holds true for all A ∈ A and all B ∈ B. We use a similar de�nition for densities instead
of liftings.

Assuming the continuum hypothesis Talagrand proved that there exists a
lifting ξ on ([0, 1],L , λ) such that no lifting η on the unit square satis�es the
relation η ∈ ξ ⊗ ξ.

Theorem 5 [MMS, Fund. Math. 166(2000)] Let (X,A, P ) and (Y,B, Q) be
complete. For each ρ ∈ AGΛ(P ) and each σ ∈ Λ(Q), there exists π ∈ Λ(P ⊗̂Q)
such that the following conditions are satis�ed:

(i) π(A×B) = ρ(A)× σ(B)
for all A ∈ A and B ∈ B;

(ii) [π(E)]y = ρ
(
[π(E)]y

)
for all y ∈ Y and E ∈ A⊗̂B .

Proposition 3 Let (X,A, P ) and (Y,B, Q) be probability spaces and densities
ρ ∈ ϑ(P ), σ ∈ ϑ(Q) and π ∈ ϑ(P ⊗̂Q) be such that for each E ∈ A⊗̂B and each
(x, y)

[π(E)]x = σ
(
[π(E)]x

)
and [π(E)]y = ρ ([π(E)]y) .

Then either P or Q is atomic.
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Proposition 4 Let (X,A, P ) be complete non�atomic and let (Y,B, Q) be com-
plete, non�atomic and perfect . If ρ, σ and π are liftings satisfying

(i) π(A×B) = ρ(A)× σ(B)
for all A ∈ A and B ∈ B;

(ii) [π(E)]y = ρ
(
[π(E)]y

)
for all y ∈ Y and E ∈ A⊗̂B ,

then for each x ∈ X there exists E ∈ A⊗̂B such that [π(E)]x is non-measurable.

3 Densities and liftings in product spaces.

De�nition 6 Assume that R : A ⊗B → [0, 1] (or R : A⊗̂B → [0, 1]) is a prob-
ability measure with marginals P and Q. A product regular conditional
probability {Sy : y ∈ Y } on A with respect to B is a collection of probability
measures {Sy : y ∈ Y } on A such that

(D1) ∀ A ∈ A y → Sy(A) is B-measurable;

(D2) R(A×B) =
∫
B
Sy(A) dQ(y)

for every A ∈ A and B ∈ B.

Theorem 6 [MMS, JMAA 335(2007)] Let R be a probability measure de-
�ned on A⊗B. If R ≪ P ⊗Q, then there exists a product r.c.p. {Sy : y ∈ Y }
on A with respect to B which is absolutely continuous with respect to P and
there exist ξ ∈ Λ(R̂) and a collection of liftings {ξy ∈ Λ(Ŝy) : y ∈ Y } such that
for every E ∈ A⊗̂RB

[ξ(E)]y = ξy
(
[ξ(E)]y

)
for all y ∈ Y .

Proof. Let

Φ : = {φ ∈ ϑ(R̂) : ∀y ∈ Y ∀E ∈ A⊗̂RB

[φ(E)]y ⊆ ξy

(
[φ(E)]y

)
& ψ(E) ⊆ φ(E) }

Notice �rst that Φ ̸= ∅ (One constructs ψ ∈ Φ).
We consider Φ with inclusion as the partial order: φ1 ≤ φ2 if φ1(E) ⊆ φ2(E)
for each E ∈ A⊗̂RB.
Φ contains a maximal element ξ that satis�es the required section property.
2
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Theorem 7 [MMS, Ann. Prob. 32(2004)]
Assume that A contains a countably generated σ-algebra which is dense in
A with respect to P . Then there exist σy ∈ Λ(Ŝy) for all y ∈ Y and π ∈ Λ(R̂)
such that

[π(E)]y = σy

(
[π(E)]y

)
for all y ∈ Y and E ∈ A⊗̂RB.

Proof. According to Proposition ?? there exist τy ∈ ϑ(Ŝy) for all y ∈ Y and

ψ ∈ ϑ(R̂) such that for all E ∈ A⊗̂RB

(2) [ψ(E)]y = τy

(
[ψ(E)]y

)
for all y ∈ Y ,

and

(3) Ŝy

(
[ψ(E)]y ∪ [ψ(Ec)]y

)
= 1 for all y ∈ Y .

We take now for each y ∈ Y a lifting σy ∈ Λ(Ŝy) such that τy ⊆ σy and de�ne

π ∈ ϑ(R̂) by setting for each E ∈ A⊗̂RB and each y ∈ Y

(4) [π(E)]y = σy

(
[ψ(E)]y

)
.

Since ψ(E) ⊆ π(E) for all E ∈ A⊗̂RB we get R̂-measurability of π(E) and

π(E)
R̂
= E.

In order to prove that π is a lifting it su�ces to show that we have always
π(Ec) = [π(E)]c. But this is a consequence of (3) and (4) as we get for each y

[π(Ec)]y = σy

(
[ψ(Ec)]y

)
= σy

[(
[ψ(E)]y

)c]
=

[
σy

(
[ψ(E)]y

)]c
=

(
[π(E)]y

)c

.

This proves that π ∈ Λ(R̂) . 2

4 Category product liftings

Throughout X,Y are topological spaces such that X × Y is a Baire space.

M(X) � the σ-ideal of meager subsets of X. X is called a Baire space if

every non-empty open set in X is non-meager.
A ⊆M B denotes that A \ B ∈ M(X).

A =M B denotes that (A \ B) ∪ (B \ A) ∈ M(X). B ⊆ X has the Baire property
if there exists an open set U such that B =M U .

Bc(X) � the σ-algebra of subsets of X possessing the Baire property.

DEFINITION. A map ρ : Bc(X) → Bc(X) is a category density if
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(L1) ρ(A) =M A;

(L2) if A =M B then ρ(A) = ρ(B);

(L3) ρ(∅) = ∅ and ρ(X) = X ;

(L4) ρ(A ∩ B) = ρ(A) ∩ ρ(B).

If ρ satis�es also

(L5) ρ(Ac) = [ρ(A)]c

then, it is called a category lifting .

Λ(M(X)) � all liftings on (X,Bc(X),M(X)).

ϑ(M(X)) � all densities on (X,Bc(X),M(X)).

Y another space and let σ be lifting or density on (Y,Bc(Y ),M(Y )).
Consider now the product space
(X × Y,Bc(X × Y ),M(X × Y )). If π is a lifting or density on (X × Y,Bc(X ×
Y ),M(X × Y )), then we say that

π is a product of ρ and σ if

π(A × B) = ρ(A) × σ(B)

∀A ∈ Bc(X) and ∀B ∈ Bc(Y ). We write then π ∈ ρ ⊗ σ .

An open set U ⊆ X is regular open if it coincides with the interior of its

closure.

EXAMPLE of a category density.

For each E ∈ Bc(X) we denote by φX(E) the regular open set equivalent

to E.
φX : Bc(X) → Bc(X) de�ned in that way is called the canonical density
on X.
THE BANACH CATEGORY THEOREM : In any topological space X, if
A is a set which is covered by open sets U such that every U ∩A is meager,
then A is meager.

Proposition 5 . Let X be a Baire space and let δ ∈ ϑ
(
M(X)

)
be arbitrary.

Then for each collection C ⊆ Bc(X) such that C ⊆ δ(C) for each C ∈ C, we
have ∪

C ∈ Bc(X) and
∪

C ⊆ δ(
∪

C) .
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Proof. Let U be the regular open set in
∨
{C• : C ∈ C}, where C• denotes

the equivalence class of C in Bc(X) and
∨
is the sup operation in the algebra

Bc(X)/M(X).
For any C ∈ C, we have C• ≤ U• and hence C ⊆M U . This gives C ⊆ δ(C) ⊆
δ(U) and hence ∪

C ⊆ δ(U).

It remains to check that δ(U) \
∪
C is meager, or equivalently, that U \

∪
C is

meager.
Note that if UC denotes the regular open set equivalent to C, then

∪
{UC :

C ∈ C} is a dense open subset of U . Moreover,

UC ∩ (U \
∪

C)
⊆ UC ∩ (U \ C) =M UC ∩ (U \ UC) = ∅.

Hence U \
∪
C has a meager trace on each UC and thus, by the Banach

Category Theorem, it has a meager trace on
∪
{UC : C ∈ C} and hence is

meager. 2

Proposition 6 . Given ρ ∈ ϑ
(
M(X)

)
and

σ ∈ ϑ
(
M(Y )

)
, we set

ξ(E) : =
∪

{ρ(A) × σ(B) : A × B ⊆M E}

for every E ∈ Bc(X × Y ).
Then ξ ∈ ϑ

(
M(X × Y )

)
and it satis�es the following conditions:

(j) ξ ∈ ρ ⊗ σ;

(jj) [ξ(E)]x ∈ Bc(Y ) and [ξ(E)]x ⊆ σ
(
[ξ(E)]x

)
for every E ∈ Bc(X × Y ) and x ∈ X;

(jjj) [ξ(E)]y ∈ Bc(X) and [ξ(E)]y ⊆ ρ
(
[ξ(E)]y

)
for every E ∈ Bc(X × Y ) and y ∈ Y .

If ξ1 : Bc(X × Y ) → P(X × Y ) is de�ned by

[ξ1(E)]x = σ([ξ(E)]x)

then, ξ1 ∈ ϑ(M(X × Y )) and ξ1 ∈ ρ ⊗ σ.

Theorem 8 . [BMMS, Top. Appl. 153(2006)] Assume that X × Y is a
Baire space. Then for arbitrary ρ ∈ Λ

(
M(X)

)
and σ ∈ Λ

(
M(Y )

)
, there exists

π1 ∈ Λ
(
M(X × Y )

)
such that

(α) π1 ∈ ρ ⊗ σ ;
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(β) [π1(E)]x = σ
(
[π1(E)]x

)
for all x ∈ X and all E ∈ Bc(X × Y ) .

Proof. Let ξ be taken from Proposition 6 and let ξ1 be de�ned by [ξ1(E)]x = σ([ξ(E)]x).
Then, let

Φ := {φ ∈ ϑ
(
M(X × Y )

)
:

∀ E ∈ Bc(X × Y ) ξ1(E) ⊆ φ(E)

& ∀ x ∈ X ∀E ∈ Bc(X × Y )

[φ(E)]x ⊆ σ
(
[φ(E)]x

)
& ∀ C ∈ Bc(X)∀x ∈ X

[φ(C × Y )]x ∈ {∅, Y }}.

We order Φ by inclusion and take a maximal element. 2

Corollary 1 . Let Y be a separable metric space without isolated points. If
ρ, σ and π1 are liftings satisfying Theorem 8 (with X = P (N)), then for each
y ∈ Y
there exists

E ∈ Bc(P (N) × Y )

such that
[π1(E)]y /∈ Bc(P (N)).

2

It follows from the above corollary, that Theorem 8 cannot be in general
improved.
Thus, in general if ρ ∈ Λ

(
M(X)

)
and σ ∈ Λ

(
M(Y )

)
are arbitrary, then there

is no
π ∈ Λ

(
M(X × Y )

)
such that

(α) π ∈ ρ ⊗ σ;

(β) [π(E)]x = σ
(
[π(E)]x

)
for all x ∈ X and all E ∈ Bc(X × Y ) ;

(δ) [π(E)]y = ρ
(
[π(E)]y

)
for all y ∈ Y and all E ∈ Bc(X × Y ) .
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