

LIFTINGS IN PRODUCT SPACES

Kazimierz Musiał

Będlewo 2012, Koło Naukowe Matematyków Teoretyków

1 Existence of liftings.

Definition 1 Let (X, \mathfrak{A}, P) be a probability space. $\mathfrak{A}_0 = \{A \in \mathfrak{A} : P(A) = 0\}$. A mapping $\rho : \mathfrak{A} \rightarrow \mathfrak{A}$ is said to be a **lifting** if it satisfies the following properties:

(L1) $\rho(A) \stackrel{P}{=} A$;

(L2) if $A \stackrel{P}{=} B$ then $\rho(A) = \rho(B)$;

(L3) $\rho(A^c) = [\rho(A)]^c$;

(L4) $\rho(A \cap B) = \rho(A) \cap \rho(B)$;

(L5) $\rho(\emptyset) = \emptyset$ and $\rho(X) = X$.

A map $\rho : \mathfrak{A} \rightarrow \mathfrak{A}$ satisfying the conditions

(L1), (L2), (L4) and (L5)

is called a **density** on (X, \mathfrak{A}, P) .

Example 1 Let λ be the Lebesgue measure on \mathbf{R}^n , where $n \geq 1$. If \mathfrak{A} is the family of Lebesgue measurable sets, we put for each $E \in \mathfrak{A}$

$$\rho(E) := \left\{ x \in \mathbf{R}^n : \lim_{\delta \searrow 0} \frac{\lambda(E \cap B(x, \delta))}{\lambda(B(x, \delta))} = 1 \right\},$$

where $B(x, \delta) = \{y \in \mathbf{R}^n : \|x - y\| \leq \delta\}$.

Lemma 1 Let $\mathfrak{C} \supset \mathfrak{A}_0$ be a sub- σ -algebra of \mathfrak{A} and let τ_0 be a lower density on \mathfrak{C} . If $V \in \mathfrak{A} \setminus \mathfrak{C}$, then there exists a lower density τ on $\sigma(\mathfrak{C} \cup \{V\})$ such that $\tau|_{\mathfrak{C}} = \tau_0$.

Proof. Let

$$M_1 := \text{ess inf}\{F \in \mathfrak{C} : V \subseteq F\}$$

and

$$M_2 := \text{ess inf}\{F \in \mathfrak{C} : V^c \subseteq F\}.$$

If $W \in \sigma(\mathfrak{C} \cup \{V\})$, then there exist $A, B \in \mathfrak{C}$ such that $W = (A \cap V) \cup (B \cap V^c)$. We set

$$\begin{aligned} \tau[(A \cap V) \cup (B \cap V^c)] := \\ [V \cap \tau_0[(A \cap M_1) \cup (B \cap M_1^c)]] \\ \cup [V^c \cap \tau_0[(A \cap M_2) \cup (B \cap M_2^c)]] . \end{aligned}$$

Lemma 2 Let $(\mathfrak{C}_n)_{n=1}^\infty$ be an increasing sequence of sub- σ -algebras of \mathfrak{A} and let $(\tau_n)_{n=1}^\infty$ be a sequence of densities (i.e. τ_n is a lower density on \mathfrak{C}_n). If $\tau_{n+1}|_{\mathfrak{C}_n} = \tau_n$ for every $n \in \mathbb{N}$, then there exists a lower density τ on $\mathfrak{C} := \sigma\left(\bigcup_{n=1}^\infty \mathfrak{C}_n\right)$ such that $\tau|_{\mathfrak{C}_n} = \tau_n$ for every $n \in \mathbb{N}$.

Proof. For each $E \in \mathfrak{C}$ we set

$$\tau(E) := \bigcap_{k=1}^\infty \bigcup_{n=1}^\infty \bigcap_{m=n}^\infty \tau_m \left(\left\{ x \in X : E_{\mathfrak{C}_m}(\chi_E)(x) \geq 1 - 1/2^k \right\} \right).$$

($E_{\mathfrak{C}_m}$ is the conditional expectation operator on $L_\infty(\mu)$ with respect to \mathfrak{C}_m , i.e.

$$\forall f \in L_\infty(\mu) \forall A \in \mathfrak{C}_m \int_A f d\mu = \int_A E_{\mathfrak{C}_m}(f) d\mu.$$

□

Theorem 1 For an arbitrary (X, \mathfrak{A}, P) there exists a lower density τ on \mathfrak{A} .

Proof. Let \mathcal{D} be the smallest cardinal with the property, that there exists a collection $\mathcal{M} \subset \mathfrak{A}$ such that $\sigma(\mathcal{M})$ is dense in \mathfrak{A} in the pseudometric generated by P . Let $\mathcal{M} = (M_\alpha)_{\alpha < \kappa}$ be numbered by ordinals less than κ , where κ is the first ordinal of the cardinality \mathcal{D} . Denote by \mathfrak{C}_0 the σ - algebra $\sigma(\mathfrak{A}_0)$ and for each $1 \leq \alpha \leq \kappa$ denote by \mathfrak{C}_α the σ - algebra generated by the family $\{M_\gamma : \gamma < \alpha\} \cup \mathfrak{C}_0$. We assume that $M_\alpha \notin \mathfrak{C}_\alpha$ for each α . It is clear that without loss of generality, we may do so.

We shall be constructing the final density inductively. τ_0 will be the only existing density on $(X, \mathfrak{A}_0, P|_{\mathfrak{A}_0})$, i.e.

$$\tau_0(B) = \begin{cases} \emptyset & \text{if } B \in \mathfrak{A}_0 \\ X & B \notin \mathfrak{A}_0 \end{cases}$$

Assume that for each $\alpha < \gamma \leq \kappa$ a density τ_α on \mathfrak{C}_α is already constructed. We assume, that $\alpha < \beta < \gamma$ yields $\tau_\beta|\mathfrak{C}_\alpha = \tau_\alpha$. We have to separate three cases.

A) $\gamma \leq \kappa$ is a limit ordinal of uncountable cofinality. Then $\mathfrak{C}_\gamma = \bigcup_{\alpha < \gamma} \mathfrak{C}_\alpha$ and we define $\tau_\gamma \in \vartheta(\mu|\mathfrak{C}_\gamma)$ by setting

$$\tau_\gamma(B) := \tau_\alpha(B) \quad \text{if} \quad B \in \mathfrak{C}_\alpha \quad \text{and} \quad \alpha < \gamma.$$

B) There exists an increasing sequence (γ_n^γ) of ordinals that is cofinal to $\gamma \leq \kappa$.

For simplicity put $\tau_n := \tau_{\gamma_n^\gamma}$ and $\mathfrak{C}_n := \mathfrak{C}_{\gamma_n^\gamma}$ for all $n \in \mathbb{N}$. Then $\mathfrak{C}_\gamma = \sigma(\bigcup_{n \in \mathbb{N}} \mathfrak{C}_n)$ and we can define τ_γ by setting for each $B \in \mathfrak{C}_\gamma$

$$\tau_\gamma(B) := \bigcap_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{m \geq n} \tau_m(\{E_{\mathfrak{C}_m}(\chi_B) > 1 - 1/2^k\}).$$

It follows from Lemma 2, that τ_γ is a density on \mathfrak{C}_γ and $\tau_\gamma|\mathfrak{C}_n = \tau_n$ for each $n \in \mathbb{N}$.

C) If $\gamma = \beta + 1$ then, τ_γ is constructed with the help of Lemma 1.

Finally, we define τ just by setting $\tau = \tau_\kappa$. □

Definition 2 Each density constructed in the way described in the proof of Theorem 1 will be called an **admissible density**. The family of all admissible densities on (X, \mathfrak{A}, P) will be denoted by $A\vartheta(P)$.

Theorem 2 (Traynor) *Let (X, \mathfrak{A}, P) be a complete measure space and let $\tau : \mathfrak{A} \rightarrow \mathfrak{A}$ be a lower density on \mathfrak{A} , Then there exists a lifting ρ on \mathfrak{A} , such that*

$$(1) \quad \tau(E) \subseteq \rho(E) \subseteq [\tau(E^c)]^c$$

for all $E \in \mathfrak{A}$. Each such ρ is said to be generated by τ .

Definition 3 Each lifting constructed on a complete measure space (X, \mathfrak{A}, P) in the manner described by Theorem 2 from an admissible density will be called an **admissibly generated lifting**. The collection of all admissibly generated liftings on (X, \mathfrak{A}, P) will be denoted by **$AGA(P)$** .

As a direct consequence of Theorems 1 and 2 we get

Theorem 3 *On an arbitrary complete (X, \mathfrak{A}, P) there exists an admissibly generated lifting.*

Definition 4 A mapping $\rho : \mathcal{L}_\infty(P) \rightarrow \mathcal{L}_\infty(P)$ is called a lifting on $\mathcal{L}_\infty(P)$ if it possesses the following properties:

- (L1) $\rho(f) \equiv f$ for every $f \in \mathcal{L}_\infty(P)$;
- (L2) $f \equiv g \implies \rho(f) = \rho(g)$;
- (L3) ρ is linear and multiplicative;
- (L4) $\rho(1) = 1$.

Notice that ρ may be considered as a mapping from $L_\infty(P)$ into $\mathcal{L}_\infty(P)$.

Proposition 1 *If $\rho : \mathcal{L}_\infty(P) \rightarrow \mathcal{L}_\infty(P)$ is a lifting, then*

- (L5) *If $f \geq 0$ P -a.e., then $\rho(f) \geq 0$ everywhere.*
- (L6) *If $f \leq g$ P -a.e., then $\rho(f) \leq \rho(g)$ everywhere.*
- (L7) $|\rho(f)| = \rho(|f|)$.

$$(L8) \sup(\rho(f), \rho(g)) = \rho(\sup(f, g)) \quad \text{and} \quad \inf(\rho(f), \rho(g)) = \rho(\inf(f, g)).$$

Proof. (L5) If $f \geq 0$ P -a.e., then $f = (\sqrt{f})^2$ and so $\rho(f) = [\rho(\sqrt{f})]^2 \geq 0$. \square

Proposition 2 *Each lifting $\rho : \mathcal{L}_\infty(P) \rightarrow \mathcal{L}_\infty(P)$ uniquely determines a lifting $\rho' : \mathfrak{A} \rightarrow \mathfrak{A}$ satisfying for each $A \in \mathfrak{A}$ the equality $\rho(\chi_A) = \chi_{\rho'(A)}$. And conversely, if $\rho' : \mathfrak{A} \rightarrow \mathfrak{A}$ is a lifting on \mathfrak{A} , then there is a unique lifting $\rho : \mathcal{L}_\infty(P) \rightarrow \mathcal{L}_\infty(P)$ such that $\rho(\chi_A) = \chi_{\rho'(A)}$, for every $A \in \mathfrak{A}$.*

Theorem 4 *(X, \mathfrak{A}, P) - complete. If $\{E_t : t \in T\}$ is an arbitrary family of sets such that $E_t \subseteq \rho(E_t)$ for each $t \in T$, then $\bigcup_{t \in T} E_t \in \mathfrak{A}$ and $\bigcup_{t \in T} E_t \subseteq \rho\left(\bigcup_{t \in T} E_t\right)$. More generally, if $\{f_t : t \in T\} \subseteq \mathcal{L}_\infty(P)$ is a uniformly bounded family of functions, such that $f_t \leq \rho(f_t)$ for every $t \in T$, then $\sup_{t \in T} f_t$ is a measurable function and $\sup_{t \in T} f_t \leq \rho(\sup_{t \in T} f_t)$.*

Proof. Let $\{E_t : t \in T\}$ be a family of sets satisfying for each $t \in T$ the inclusion $E_t \subseteq \rho(E_t)$. Moreover let Ξ be the collection of all at most countable subsets of T . Since P is bounded there is a real number a such that $a = \sup_{\alpha \in \Xi} P(\bigcup_{t \in \alpha} E_t)$. Let $E_{t_n}, n \in \mathbf{N}$ be such that $a = P\left(\bigcup_n E_{t_n}\right)$. Let $E := \bigcup_n E_{t_n}$.

Notice now that for an arbitrary $t \in T$ $P(E \setminus E_t) = 0$ and so the inclusions $E_t \subseteq \rho(E_t) \subseteq \rho(E)$ hold true. Consequently,

$$E \subseteq \bigcup_{t \in T} E_t \subseteq \rho(E).$$

This proves the measurability of the set $\bigcup_{t \in T} E_t$ and the required inclusion.

The proof of the function part of the theorem is based on a similar idea. \square

2 Product densities and liftings.

Let (X, \mathfrak{A}, P) and (Y, \mathfrak{B}, Q) be probability spaces.

The completion of P is denoted by \widehat{P} and $\widehat{\mathfrak{A}}$ is the P -completion of \mathfrak{A} .

$P \otimes Q$ – the direct product of P and Q on the product σ -algebra $\mathfrak{A} \otimes \mathfrak{B}$.

$P \widehat{\otimes} Q$ – the completion of $P \otimes Q$.

$\mathfrak{A} \widehat{\otimes} \mathfrak{B}$ – the completion of $\mathfrak{A} \otimes \mathfrak{B}$ with respect to $P \otimes Q$.

$\Lambda(P)$ – the set of all liftings on (X, \mathfrak{A}, P) .

$\vartheta(P)$ – the set of all densities on (X, \mathfrak{A}, P) . The σ -algebra generated by a family \mathcal{L} of sets is denoted by $\sigma(\mathcal{L})$. \mathbf{N} and \mathbf{R} stand for the natural numbers and the real numbers respectively.

If $M \subseteq \mathfrak{A}$, then $M^c := X \setminus M$.

Definition 5 We call $\pi \in \Lambda(P \widehat{\otimes} Q)$ a **product lifting** of the liftings $\rho \in \Lambda(P)$ for and $\sigma \in \Lambda(Q)$ (we write then $\pi \in \rho \otimes \sigma$) if the equation

$$\pi(A \times B) = \rho(A) \times \sigma(B)$$

holds true for all $A \in \mathfrak{A}$ and all $B \in \mathfrak{B}$. We use a similar definition for densities instead of liftings.

Assuming the continuum hypothesis Talagrand proved that there exists a lifting ξ on $([0, 1], \mathfrak{L}, \lambda)$ such that no lifting η on the unit square satisfies the relation $\eta \in \xi \otimes \xi$.

Theorem 5 [MMS, Fund. Math. 166(2000)] Let (X, \mathfrak{A}, P) and (Y, \mathfrak{B}, Q) be complete. For each $\rho \in \text{AGA}(P)$ and each $\sigma \in \Lambda(Q)$, there exists $\pi \in \Lambda(P \widehat{\otimes} Q)$ such that the following conditions are satisfied:

- (i) $\pi(A \times B) = \rho(A) \times \sigma(B)$
for all $A \in \mathfrak{A}$ and $B \in \mathfrak{B}$;
- (ii) $[\pi(E)]^y = \rho([\pi(E)]^y)$
for all $y \in Y$ and $E \in \mathfrak{A} \widehat{\otimes} \mathfrak{B}$.

Proposition 3 Let (X, \mathfrak{A}, P) and (Y, \mathfrak{B}, Q) be probability spaces and densities $\rho \in \vartheta(P)$, $\sigma \in \vartheta(Q)$ and $\pi \in \vartheta(P \widehat{\otimes} Q)$ be such that for each $E \in \mathfrak{A} \widehat{\otimes} \mathfrak{B}$ and each (x, y)

$$[\pi(E)]_x = \sigma([\pi(E)]_x) \text{ and } [\pi(E)]^y = \rho([\pi(E)]^y).$$

Then either P or Q is atomic.

Proposition 4 *Let (X, \mathfrak{A}, P) be complete non-atomic and let (Y, \mathfrak{B}, Q) be complete, non-atomic and perfect. If ρ, σ and π are liftings satisfying*

- (i) $\pi(A \times B) = \rho(A) \times \sigma(B)$
for all $A \in \mathfrak{A}$ and $B \in \mathfrak{B}$;
- (ii) $[\pi(E)]^y = \rho([\pi(E)]^y)$
for all $y \in Y$ and $E \in \mathfrak{A} \widehat{\otimes} \mathfrak{B}$,

then for each $x \in X$ there exists $E \in \mathfrak{A} \widehat{\otimes} \mathfrak{B}$ such that $[\pi(E)]_x$ is non-measurable.

3 Densities and liftings in product spaces.

Definition 6 Assume that $R : \mathfrak{A} \otimes \mathfrak{B} \rightarrow [0, 1]$ (or $R : \mathfrak{A} \widehat{\otimes} \mathfrak{B} \rightarrow [0, 1]$) is a probability measure with marginals P and Q . A product regular conditional probability $\{S_y : y \in Y\}$ on \mathfrak{A} with respect to \mathfrak{B} is a collection of probability measures $\{S_y : y \in Y\}$ on \mathfrak{A} such that

(D1) $\forall A \in \mathfrak{A} \ y \rightarrow S_y(A)$ is \mathfrak{B} -measurable;

(D2) $R(A \times B) = \int_B S_y(A) dQ(y)$

for every $A \in \mathfrak{A}$ and $B \in \mathfrak{B}$.

Theorem 6 [MMS, JMAA 335(2007)] *Let R be a probability measure defined on $\mathfrak{A} \otimes \mathfrak{B}$. If $R \ll P \otimes Q$, then there exists a product r.c.p. $\{S_y : y \in Y\}$ on \mathfrak{A} with respect to \mathfrak{B} which is absolutely continuous with respect to P and there exist $\xi \in \Lambda(\widehat{R})$ and a collection of liftings $\{\xi_y \in \Lambda(\widehat{S}_y) : y \in Y\}$ such that for every $E \in \mathfrak{A} \widehat{\otimes}_R \mathfrak{B}$*

$$[\xi(E)]^y = \xi_y([\xi(E)]^y) \quad \text{for all } y \in Y.$$

Proof. Let

$$\begin{aligned} \Phi : &= \{\bar{\varphi} \in \vartheta(\widehat{R}) : \forall y \in Y \forall E \in \mathfrak{A} \widehat{\otimes}_R \mathfrak{B} \\ &[\bar{\varphi}(E)]^y \subseteq \xi_y([\bar{\varphi}(E)]^y) \& \psi(E) \subseteq \bar{\varphi}(E)\} \end{aligned}$$

Notice first that $\Phi \neq \emptyset$ (One constructs $\psi \in \Phi$).

We consider Φ with inclusion as the partial order: $\bar{\varphi}_1 \leq \bar{\varphi}_2$ if $\bar{\varphi}_1(E) \subseteq \bar{\varphi}_2(E)$ for each $E \in \mathfrak{A} \widehat{\otimes}_R \mathfrak{B}$.

Φ contains a maximal element ξ that satisfies the required section property.

□

Theorem 7 [MMS, Ann. Prob. 32(2004)]

Assume that \mathfrak{A} contains a countably generated σ -algebra which is dense in \mathfrak{A} with respect to P . Then there exist $\sigma_y \in \Lambda(\widehat{S}_y)$ for all $y \in Y$ and $\pi \in \Lambda(\widehat{R})$ such that

$$[\pi(E)]^y = \sigma_y([\pi(E)]^y)$$

for all $y \in Y$ and $E \in \mathfrak{A} \widehat{\otimes}_R \mathfrak{B}$.

Proof. According to Proposition ?? there exist $\tau_y \in \vartheta(\widehat{S}_y)$ for all $y \in Y$ and $\psi \in \vartheta(\widehat{R})$ such that for all $E \in \mathfrak{A} \widehat{\otimes}_R \mathfrak{B}$

$$(2) \quad [\psi(E)]^y = \tau_y([\psi(E)]^y) \quad \text{for all } y \in Y,$$

and

$$(3) \quad \widehat{S}_y([\psi(E)]^y \cup [\psi(E^c)]^y) = 1 \quad \text{for all } y \in Y.$$

We take now for each $y \in Y$ a lifting $\sigma_y \in \Lambda(\widehat{S}_y)$ such that $\tau_y \subseteq \sigma_y$ and define $\pi \in \vartheta(\widehat{R})$ by setting for each $E \in \mathfrak{A} \widehat{\otimes}_R \mathfrak{B}$ and each $y \in Y$

$$(4) \quad [\pi(E)]^y = \sigma_y([\psi(E)]^y).$$

Since $\psi(E) \subseteq \pi(E)$ for all $E \in \mathfrak{A} \widehat{\otimes}_R \mathfrak{B}$ we get \widehat{R} -measurability of $\pi(E)$ and $\pi(E) \stackrel{\widehat{R}}{=} E$.

In order to prove that π is a lifting it suffices to show that we have always $\pi(E^c) = [\pi(E)]^c$. But this is a consequence of (3) and (4) as we get for each y

$$\begin{aligned} [\pi(E^c)]^y &= \sigma_y([\psi(E^c)]^y) = \sigma_y\left[\left([\psi(E)]^y\right)^c\right] \\ &= \left[\sigma_y\left([\psi(E)]^y\right)\right]^c = \left([\pi(E)]^y\right)^c. \end{aligned}$$

This proves that $\pi \in \Lambda(\widehat{R})$. □

4 Category product liftings

Throughout X, Y are topological spaces such that $X \times Y$ is a Baire space.

$\boxed{\mathcal{M}(X)}$ – the σ -ideal of meager subsets of X . X is called a Baire space if every non-empty open set in X is non-meager.

$A \subseteq_{\mathcal{M}} B$ denotes that $A \setminus B \in \mathcal{M}(X)$.

$A =_{\mathcal{M}} B$ denotes that $(A \setminus B) \cup (B \setminus A) \in \mathcal{M}(X)$. $B \subseteq X$ has the Baire property if there exists an open set U such that $B =_{\mathcal{M}} U$.

$\boxed{\mathfrak{B}_c(X)}$ – the σ -algebra of subsets of X possessing the Baire property.

DEFINITION. A map $\rho : \mathfrak{B}_c(X) \rightarrow \mathfrak{B}_c(X)$ is a category density if

- (L1) $\rho(A) =_{\mathcal{M}} A$;
- (L2) if $A =_{\mathcal{M}} B$ then $\rho(A) = \rho(B)$;
- (L3) $\rho(\emptyset) = \emptyset$ and $\rho(X) = X$;
- (L4) $\rho(A \cap B) = \rho(A) \cap \rho(B)$.

If ρ satisfies also

- (L5) $\rho(A^c) = [\rho(A)]^c$

then, it is called a **category lifting**.

$\Lambda(\mathcal{M}(X))$ – all liftings on $(X, \mathfrak{B}_c(X), \mathcal{M}(X))$.

$\vartheta(\mathcal{M}(X))$ – all densities on $(X, \mathfrak{B}_c(X), \mathcal{M}(X))$.

Y another space and let σ be lifting or density on $(Y, \mathfrak{B}_c(Y), \mathcal{M}(Y))$.

Consider now the product space

$(X \times Y, \mathfrak{B}_c(X \times Y), \mathcal{M}(X \times Y))$. If π is a lifting or density on $(X \times Y, \mathfrak{B}_c(X \times Y), \mathcal{M}(X \times Y))$, then we say that

π is a product of ρ and σ if

$$\pi(A \times B) = \rho(A) \times \sigma(B)$$

$\forall A \in \mathfrak{B}_c(X)$ and $\forall B \in \mathfrak{B}_c(Y)$. We write then **$\pi \in \rho \otimes \sigma$** .

An open set $U \subseteq X$ is **regular open** if it coincides with the interior of its closure.

EXAMPLE of a category density.

For each $E \in \mathfrak{B}_c(X)$ we denote by **$\varphi_X(E)$** the regular open set equivalent to E .

$\varphi_X : \mathfrak{B}_c(X) \rightarrow \mathfrak{B}_c(X)$ defined in that way is called the **canonical density** on X .

THE BANACH CATEGORY THEOREM: In any topological space X , if A is a set which is covered by open sets U such that every $U \cap A$ is meager, then A is meager.

Proposition 5 . Let X be a Baire space and let $\delta \in \vartheta(\mathcal{M}(X))$ be arbitrary. Then for each collection $\mathcal{C} \subseteq \mathfrak{B}_c(X)$ such that $C \subseteq \delta(C)$ for each $C \in \mathcal{C}$, we have

$$\bigcup \mathcal{C} \in \mathfrak{B}_c(X) \quad \text{and} \quad \bigcup \mathcal{C} \subseteq \delta\left(\bigcup \mathcal{C}\right).$$

Proof. Let U be the regular open set in $\bigvee\{C^\bullet : C \in \mathcal{C}\}$, where C^\bullet denotes the equivalence class of C in $\mathfrak{B}_c(X)$ and \bigvee is the sup operation in the algebra $\mathfrak{B}_c(X)/\mathcal{M}(X)$.

For any $C \in \mathcal{C}$, we have $C^\bullet \leq U^\bullet$ and hence $C \subseteq_{\mathcal{M}} U$. This gives $C \subseteq \delta(C) \subseteq \delta(U)$ and hence

$$\bigcup \mathcal{C} \subseteq \delta(U).$$

It remains to check that $\delta(U) \setminus \bigcup \mathcal{C}$ is meager, or equivalently, that $U \setminus \bigcup \mathcal{C}$ is meager.

Note that if U_C denotes the regular open set equivalent to C , then $\bigcup\{U_C : C \in \mathcal{C}\}$ is a dense open subset of U . Moreover,

$$\begin{aligned} U_C \cap (U \setminus \bigcup \mathcal{C}) \\ \subseteq U_C \cap (U \setminus C) =_{\mathcal{M}} U_C \cap (U \setminus U_C) = \emptyset. \end{aligned}$$

Hence $U \setminus \bigcup \mathcal{C}$ has a meager trace on each U_C and thus, by the Banach Category Theorem, it has a meager trace on $\bigcup\{U_C : C \in \mathcal{C}\}$ and hence is meager. \square

Proposition 6 . Given $\rho \in \vartheta(\mathcal{M}(X))$ and $\sigma \in \vartheta(\mathcal{M}(Y))$, we set

$$\boxed{\xi(E) := \bigcup\{\rho(A) \times \sigma(B) : A \times B \subseteq_{\mathcal{M}} E\}}$$

for every $E \in \mathfrak{B}_c(X \times Y)$.

Then $\xi \in \vartheta(\mathcal{M}(X \times Y))$ and it satisfies the following conditions:

(j) $\xi \in \rho \otimes \sigma$;

(jj) $[\xi(E)]_x \in \mathfrak{B}_c(Y)$ and $[\xi(E)]_x \subseteq \sigma([\xi(E)]_x)$ for every $E \in \mathfrak{B}_c(X \times Y)$ and $x \in X$;

(jjj) $[\xi(E)]^y \in \mathfrak{B}_c(X)$ and $[\xi(E)]^y \subseteq \rho([\xi(E)]^y)$ for every $E \in \mathfrak{B}_c(X \times Y)$ and $y \in Y$.

If $\xi_1 : \mathfrak{B}_c(X \times Y) \rightarrow \mathcal{P}(X \times Y)$ is defined by

$$\boxed{[\xi_1(E)]_x = \sigma([\xi(E)]_x)}$$

then, $\xi_1 \in \vartheta(\mathcal{M}(X \times Y))$ and $\xi_1 \in \rho \otimes \sigma$.

Theorem 8 . [BMMS, Top. Appl. 153(2006)] Assume that $X \times Y$ is a Baire space. Then for arbitrary $\rho \in \Lambda(\mathcal{M}(X))$ and $\sigma \in \Lambda(\mathcal{M}(Y))$, there exists $\pi_1 \in \Lambda(\mathcal{M}(X \times Y))$ such that

(a) $\boxed{\pi_1 \in \rho \otimes \sigma}$;

$$(\beta) \quad [\pi_1(E)]_x = \sigma([\pi_1(E)]_x)$$

for all $x \in X$ and all $E \in \mathfrak{B}_c(X \times Y)$.

Proof. Let ξ be taken from Proposition 6 and let ξ_1 be defined by $[\xi_1(E)]_x = \sigma([\xi(E)]_x)$. Then, let

$$\begin{aligned} \Phi := \{ & \varphi \in \vartheta(\mathcal{M}(X \times Y)) : \\ & \forall E \in \mathfrak{B}_c(X \times Y) \quad \xi_1(E) \subseteq \varphi(E) \\ & \& \forall x \in X \quad \forall E \in \mathfrak{B}_c(X \times Y) \\ & \quad [\varphi(E)]_x \subseteq \sigma([\varphi(E)]_x) \\ & \& \forall C \in \mathfrak{B}_c(X) \quad \forall x \in X \\ & \quad [\varphi(C \times Y)]_x \in \{\emptyset, Y\} \}. \end{aligned}$$

We order Φ by inclusion and take a maximal element. \square

Corollary 1 . *Let Y be a separable metric space without isolated points. If ρ, σ and π_1 are liftings satisfying Theorem 8 (with $X = P(\mathbb{N})$), then for each $y \in Y$ there exists*

$$E \in \mathfrak{B}_c(P(\mathbb{N}) \times Y)$$

such that

$$[\pi_1(E)]^y \notin \mathfrak{B}_c(P(\mathbb{N})).$$

\square

It follows from the above corollary, that Theorem 8 cannot be in general improved.

Thus, in general if $\rho \in \Lambda(\mathcal{M}(X))$ and $\sigma \in \Lambda(\mathcal{M}(Y))$ are arbitrary, then there is no

$\pi \in \Lambda(\mathcal{M}(X \times Y))$ such that

(α) $\pi \in \rho \otimes \sigma$;

$$(\beta) \quad [\pi(E)]_x = \sigma([\pi(E)]_x)$$

for all $x \in X$ and all $E \in \mathfrak{B}_c(X \times Y)$;

$$(\delta) \quad [\pi(E)]^y = \rho([\pi(E)]^y)$$

for all $y \in Y$ and all $E \in \mathfrak{B}_c(X \times Y)$.

References

- [1] . M. Burke, N.D.Macheras, K. Musiał and W.Strauss, - Category product densities and liftings, *Topology and its Applications* 153(2006), 1164-1191.
- [2] . M. Burke, N.D.Macheras, K. Musiał and W.Strauss, - Various products of category densities and liftings, *Topology and its Appl.* 156(2009), 1253-1270.
- [3] Ionescu Tulcea, A. and C. (1969) - *Topics in the theory of lifting* (Springer-Verlag, Berlin-Heidelberg-New York).
- [4] Macheras, N. D., Musiał, K. and Strauss, W. - On products of admissible liftings, *J. for Analysis and Appl.* 18(1999), 651-667.
- [5] K. Musiał, W.Strauss and N.D.Macheras, Product liftings and densities with lifting invariant and density invariant sections, *Fundamenta Math.* 166 (2000), 281-303.
- [6] W.Strauss, N.D.Macheras and K. Musiał,
Liftings, Handbook of Measure Theory II, chapter 28, 1131-1184,
North Holland. 2002.
- [7] Talagrand, M. (1988) - On liftings and regularization of stochastic processes, *Probability Theory and Related Fields* 78, 127-134.