INTEGRATION OF MULTIFUNCTIONS

Kazimierz Musiał

Będlewo 2012 Koło Naukowe Matematyków Teoretyków

1 Preliminaries.

Throughout (Ω, Σ, μ) is a complete probability space, Σ_{μ}^{+} is the collection of all sets of positive measure and X is a Banach space with its dual X^{*} . The closed unit ball of X is denoted by B(X). cwk(X) denotes the family of all nonempty convex weakly compact subsets of X and ck(X) is the collection of all nonempty convex and compact subsets of X. cb(X) is the collection of all nonempty closed bounded and convex subsets of X and c(X) denotes the collection of all nonempty closed convex subsets of X. For every $C \in c(X)$ the support function of C is denoted by $s(\cdot, C)$ and defined on X^{*} by

$$s(x^*, C) = \sup\{\langle x^*, x \rangle \colon x \in C\}$$
 for each $x^* \in X^*$.

 $\tau(X^*,X)$ denotes the topology of uniform convergence on elements of cwk(X) and the weak*-topology of X^* will be denoted by $\sigma(X^*,X)$. If Y is a subspace of X, then $Y^{\perp} := \{x^* \in X^* : \forall y \in Y \ x^*(y) = 0\}$ is the annihilator of Y in X^* .

A map $\Gamma \colon \Omega \to c(X)$ is called a multifunction.

A function $f: \Omega \to X$ is called a selection of Γ if $f(\omega) \in \Gamma(\omega)$, for every $\omega \in \Omega$. If $A \subset X$ is nonempty, then we write $|A| := \sup\{|x|| : x \in A\}$.

A map $M: \Sigma \to c(X)$ is called a *multimeasure* if $s(x^*, M(\cdot))$ is a measure, for every $x^* \in X^*$. If M is a point map, then we talk about measure.

2 Aumann integral

Definition 2.1 Let X be a separable Banach space. A multifunction $\Gamma: \Omega \to c(X)$ is said to be measurable if for every open $U \subset X$, we have

$$\{w \in \Omega : \Gamma(\omega) \cap U \neq \emptyset\} \in \Sigma.$$

A measurable Γ ; $\Omega \to c(X)$ is said to be Aumann integrable, if \mathcal{S}_{Γ} , the set of all Bochner integrable selections of Γ is nonempty.

The Aumann integral (Aumann (1965)) of Γ over $E \in \Sigma$ is defined by

$$(A) \int_{E} \Gamma d\mu := \left\{ \int_{E} f d\mu : f \in \mathcal{S}_{\Gamma} \right\}.$$

Example 2.2 Let X be a separable Banach space. Let $f: \Omega \to X$ be a Bochner integrable function and let $r: \Omega \to (0, \infty)$ be an integrable function. Define $\Gamma: \Omega \to cb(X)$ by

$$\Gamma(\omega)$$
: $= B(f(\omega), r(\omega))$,

where B(x,r) is the closed ball with its center in x and of radius r. One can easily check that Γ is measurable.

Then, Γ is Aumann integrable in cb(X) and

$$\forall E \in \Sigma \ (A) \int_{E} \Gamma \, d\mu = B \left(\int_{E} f \, d\mu, \int_{E} r \, d\mu \right).$$

3 Pettis integral

Definition 3.1 A multifunction Γ is said to be *scalarly measurable*, if for every $x^* \in X^*$, the map $s(x^*, \Gamma(\cdot))$ is measurable. A multifunction $\Gamma \colon \Omega \to c(X)$ is *scalarly integrable* if $s(x^*, \Gamma)$ is integrable for every $x^* \in X^*$.

We associate with each scalarly integrable $\Gamma \colon \Omega \to c(X)$ a sublinear operator $T_{\Gamma} \colon X^* \to L_1(\mu)$, defined by $T_{\Gamma}(x^*) := s(x^*, \Gamma)$.

Definition 3.2 A scalarly integrable multifunction $\Gamma: \Omega \to c(X)$ is *Pettis integrable* in c(X) [cb(X), ck(X), cwk(X)] if for each $A \in \Sigma$ there exists a set $M_{\Gamma}(A) \in c(X)$ [cb(X), ck(X), cwk(X), respectively] such that

(1)
$$s(x^*, M_{\Gamma}(A)) = \int_A s(x^*, \Gamma) d\mu$$

for every $x^* \in X^*$. We set $(P) \int_A \Gamma d\mu := M_{\Gamma}(A)$ and call $M_{\Gamma}(A)$ the *Pettis integral of* Γ over A. It follows from (2) that M_{Γ} is a μ -continuous multimeasure. \square

If Γ is an X-valued function, then we have a Pettis integrable function.

Definition 3.3 Let V be a topological space and $s:V\to\mathbb{R}$ be a function. s is said to be *lower semicontinuous*, if for each $\alpha\in\mathbb{R}$ the set $\{v\in V:s(v)\leq\alpha\}$ is closed in V.

Proposition 3.4 Let $\Gamma: \Omega \to c(X)$ be scalarly integrable. Then Γ is Pettis-integrable in cb(X) if and only if the functional $x^* \longrightarrow \int_E s(x^*, \Gamma) d\mu$ is weak* lower semicontinuous for every $E \in \Sigma$.

Theorem 3.5 Let $\Gamma: \Omega \to c(X)$ be scalarly integrable. Then Γ is Pettis-integrable in cwk(X) if and only if T_{Γ} is $\tau(X^*, X)$ -weakly continuous.

Theorem 3.6 Let $\Gamma: \Omega \to c(X)$ be scalarly integrable. Then Γ is Pettis-integrable in ck(X) if and only if T_{Γ} is $\sigma(X^*, X)$ -weakly continuous on $B(X^*)$.

Definition 3.7 We say that a space $Y \subset X$ determines a multifunction $\Gamma \colon \Omega \to c(X)$ if $s(x^*, \Gamma) = 0$ μ -a.e. for each $x^* \in Y^{\perp}$ (the exceptional sets depend on x^*).

Theorem 3.8 A scalarly integrable multifunction $\Gamma \colon \Omega \to cwk(X)$ is Pettis integrable in cwk(X) if and only if it satisfies the following conditions

(WC) $T_{\Gamma} \colon X^* \to L_1(\mu)$ is weakly compact;

(D) Γ is determined by a WCG space $Y \subseteq X$.

Theorem 3.9 Let X be a Banach space not containing any isomorphic copy of c_0 . If $\Gamma \colon \Omega \to c(X)$ is scalarly integrable and determined by a WCG space, then Γ is Pettis integrable in cb(X). If $\Gamma \colon \Omega \to cwk(X)$ is scalarly integrable and determined by a WCG space, then Γ is Pettis integrable in cwk(X).

Theorem 3.10 Let $\Gamma \colon \Omega \to \operatorname{cwk}(X)$ be a scalarly integrable multifunction with weakly compact T_{Γ} . If each scalarly measurable selection of Γ is Pettis integrable, then Γ is Pettis integrable in $\operatorname{cwk}(X)$.

4 Henstock-Kurzweil-Pettis integral

Definition 4.1 A multifunction $\Gamma: [0,1] \to c(X)$ is scalarly HK-integrable if $s(x^*, \Gamma)$ is HK-integrable for every $x^* \in X^*$.

A scalarly HK-integrable multifunction $\Gamma: [0,1] \to c(X)$ is Henstock-Kurzweil-Pettis integrable in

c(X) [cb(X), ck(X), cwk(X)], if for each interval $I \subset [0,1]$ there exists a set $M_{\Gamma}(I) \in c(X)$ [cb(X), ck(X), cwk(X), respectively] such that

(2)
$$s(x^*, M_{\Gamma}(I)) = (HK) \int_I s(x^*, \Gamma) d\mu$$

for every $x^* \in X^*$.

If Γ is a function, then we have a HKP-integrable function.

We set $(HKP) \int_I \Gamma d\mu := M_{\Gamma}(I)$ and call $M_{\Gamma}(I)$ the Henstock-Kurzweil-Pettis integral of Γ over I.

Let

$$(AHKP) \int_{J} \Gamma(t) dt$$

$$:= \left\{ (HKP) \int_{J} f(t)dt : f \in \mathcal{S}_{HKP}(\Gamma) \right\}.$$

Theorem 4.2 (Di Piazza, Musiał(2009)) Let $\Gamma: [0,1] \to cwk(X)$ be a scalarly measurable multifunction. Then the following conditions are equivalent:

- (i) Γ is HKP-integrable in cwk(X);
- (ii) $S_{HKP}(\Gamma) \neq \emptyset$ and for every $f \in S_{HKP}(\Gamma)$ the multifunction $G : [0,1] \rightarrow cwk(X)$ defined by $\Gamma(t) = G(t) + f(t)$, is Pettis integrable in cwk(X);
- (iii) there exists $f \in \mathcal{S}_{HKP}(\Gamma)$ such that the multifunction $G : [0,1] \to cwk(X)$ defined by $\Gamma(t) = G(t) + f(t)$ is Pettis integrable in cwk(X);
- (iv) for each interval $I \in \mathcal{I}$, the set $(AKHP) \int_I \Gamma(t) dt$ belongs to cwk(X) and

$$s\left(x^*, (AHKP)\int_I \Gamma(t) dt\right) = (HK)\int_I s(x^*, \Gamma(t)) dt$$

for all $x^* \in X^*$;

(v) each scalarly measurable selector of Γ is HKP-integrable.

Literatura

- [1] R. Aumann, Integrals of set-valued functions. JMAA 12(1965), 1-12.
- [2] L. Di Piazza and K. Musiał, A decomposition of Henstock-Kurzweil-Pettis integrable multifunctions. Operator Theory: Advances and Appl. 201(2009), 171-182.
- [3] S. Hu and N.S. Papageorgiou, *Handbook of Multivalued Analysis I*. Kluwer Acad. Press (1997).
- [4] K. Musiał: Pettis integrability of multifunctions with values in arbitrary Banach spaces, J. Convex Analysis 18 (2011) 769-810.