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Abstract

We study the fuzzy Henstock and the fuzzy McShane integrals for fuzzy-number valued functions. The main purpose of this paper
is to establish the following decomposition theorem: a fuzzy-number valued function is fuzzy Henstock integrable if and only if it
can be represented as a sum of a fuzzy McShane integrable fuzzy-number valued function and of a fuzzy Henstock integrable fuzzy
number valued function generated by a Henstock integrable function.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The Henstock integral introduced, independently, in 1957 by Kurzweil [11] and, in 1963 by Henstock [8], by a
simple modification of Riemann’s method turned out to be more general than that of Lebesgue. It is a powerful tool
which integrates highly oscillating functions that the Lebesgue integral fails to integrate.

In this paper we continue the study of the Henstock integral for set valued functions started in [2–4] and we consider
the more general setting of fuzzy-number valued functions. In case of the fuzzy-number space E1, the fuzzy Henstock
integral has been introduced and studied by Wu and Gong in [17,18]. It is an extension of the integrals introduced
in [12,10]. Here we consider the fuzzy Henstock and the fuzzy McShane integrals for functions taking values in the
fuzzy number space En . In Section 3 we give a characterization of the fuzzy-number valued functions which are fuzzy
Henstock or McShane integrable by means of the equi-integrability of the support functions (see Proposition 3.5).
As an application of this characterization we prove that the family of all fuzzy Henstock (resp. McShane) integrable
fuzzy-number valued functions is properly enclosed in that of all weakly fuzzy Henstock (resp. McShane) integrable
fuzzy-number valued functions. The main result of this paper is in Section 4 (Theorem 4.1):

A fuzzy-number valued function �̃: [a, b] → En is fuzzy Henstock integrable if and only if �̃ can be represented as

�̃(t) = G̃(t) + f̃ (t), where G̃: [a, b] → En is fuzzy McShane integrable and f̃ is a fuzzy Henstock integrable fuzzy
number valued function generated by a Henstock integrable selection of �̃.
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This result is a generalization of a similar decomposition for set valued functions (see [3,4]), but the technique
used here is different. The essential tool to prove it is Theorem 4.2 that provides sufficient conditions guaranteeing
the McShane equi-integrability of a family of nonnegative real valued Henstock–Kurzweil equi-integrable functions.
Theorem 4.2 gives also new contributions to the theory of integration of real valued functions.

2. Basic facts

Let Rn be the n-dimensional Euclidean space endowed with the Euclidean norm ‖ · ‖. We denote by Sn−1 its closed
unit ball and by ck(Rn) the family of all nonempty compact convex subsets of Rn endowed with the Hausdorff distance

dH (A, B):= max

{
sup
x∈A

inf
y∈B

‖x − y‖, sup
y∈B

inf
x∈A

‖x − y‖
}

,

and the operations

A + B:={x + y : x ∈ A, y ∈ B}, k A:={kx : x ∈ A}.
The space ck(Rn) endowed with the Hausdorff distance is a complete metric space. For every A ∈ ck(Rn) the support
function of A is denoted by s(·, A) and defined by s(x, A) = sup{〈x, y〉 : y ∈ A}, for each x ∈ Rn . Clearly the map
x � s(x, A) is sublinear on Rn and −s(−x, A) = inf{〈x, y〉 : y ∈ A}, for each x ∈ Rn .

According to Hörmander’s equality (cf. [9, p. 9]), for A and B nonempty members of ck(Rn) we have the equality

dH(A, B) = sup
x∈Sn−1

|s(x, A) − s(x, B)|. (1)

Definition 2.1. The n-dimensional fuzzy number space En is defined as the set

En = {u: Rn → [0, 1]: u satisfies conditions (1)–(4) below} :

(1) u is a normal fuzzy set, i.e. there exists x0 ∈ Rn , such that u(x0) = 1;
(2) u is a convex fuzzy set, i.e. u(t x + (1 − t)y) ≥ min{u(x), u(y)} for any x, y ∈ Rn , t ∈ [0, 1];
(3) u is upper semi-continuous;
(4) supp u = {x ∈ Rn : u(x) > 0} is compact, where A denotes the closure of A.

For r ∈ (0, 1] let [u]r = {x ∈ Rn : u(x) ≥ r} and [u]0 = ⋃
s∈(0,1][u]s . If u ∈ En and r ∈ [0, 1], then [u]r ∈ ck(Rn).

In the sequel we will use the following representation theorem (see [1,19]).

Theorem 2.2. If u ∈ En , then

(i) [u]r ∈ ck(Rn), for all r ∈ [0, 1];
(ii) [u]r2 ⊂ [u]r1 , for 0 ≤ r1 ≤ r2 ≤ 1;

(iii) if (rk) is a nondecreasing sequence converging to r > 0, then

[u]r =
⋂
k≥1

[u]rk .

Conversely, if {Ar : r ∈ [0, 1]} is a family of subsets of Rn satisfying (i)–(iii), then there exists a unique u ∈ En such
that [u]r = Ar for r ∈ (0, 1] and [u]0 = ⋃

0<r≤1[u]r ⊂ A0.

Define D: En × En → R+ ∪ {0} by the equation

D(u, v) = sup
r∈[0,1]

dH ([u]r , [v]r ).

(En, D) is a complete metric space (see [1,19]).
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For u, v ∈ En and k ∈ R the addition and the scalar multiplication are defined respectively by

[u + v]r :=[u]r + [v]r and [ku]r :=k[u]r .

Let [a, b] be a bounded closed interval of the real line equipped by the Lebesgue measure �. We denote by L and
by I the families of all Lebesgue measurable subsets of [a, b] and of all closed subintervals of [a, b], respectively. If
I ∈ I, then |I | denotes its length. A partition in [a, b] is a collection of pairs P = {(Ii , ti ) : i = 1, . . . , p}, where
Ii , are non-overlapping subintervals of [a, b] and ti are points of [a, b], i = 1, . . . , p. If

⋃p
i=1 Ii = [a, b] we say that

P is a partition of [a, b]. If ti ∈ Ii , i = 1, . . . , p, we say that P is a Perron partition of [a, b]. A gauge on [a, b] is a
positive function on [a, b]. For a given gauge � on [a, b], we say that a partition P = {(Ii , ti ) : i = 1, . . . , p} is �-fine
if Ii ⊂ (ti − �(ti ), ti + �(ti )), i = 1, . . . , p.

Given f : [a, b] → Rn and a partition P = {(Ii , ti ) : i = 1, . . . , p} in [a, b] we set

�( f,P) =
p∑

i=1

|Ii | f (ti ).

Let us recall the definitions of McShane and Henstock integral for Rn-valued functions.

Definition 2.3. A function g: [a, b] → Rn is said to be McShane (resp. Henstock) integrable on [a, b] if there exists a
vector w ∈ Rn with the following property: for every � > 0 there exists a gauge � on [a, b] such that

‖�(g,P) − w‖ < �

for each �-fine partition (resp. Perron partition) P of [a, b]. We set (Mc)
∫ b

a g(t) dt :=w (resp. (H )
∫ b

a g(t) dt :=w).

In case n = 1, g is said to be Henstock–Kurzweil integrable. We denote byMc[a, b] (resp.HK[a, b]) the set of all
real valued McShane (resp. Henstock–Kurzweil) integrable functions on [a, b].

Remark 2.4. We recall that McShane, Pettis and Bochner integrability coincide for functions taking values in a finite
dimensional space.

A set-valued function �: [a, b] → ck(Rn) is said to be Effros measurable (or for short measurable) if for each open
subset O of Rn , the set {t ∈ [a, b] : �(t) ∩ O �∅} is a measurable set. � is said to be scalarly measurable if for every
x ∈ Rn , the map s(x, �(·)) is measurable. It is however well known that in case of ck(Rn)-valued multifunctions the
scalar measurability yields the measurability. A set-valued function �: [a, b] → ck(Rn) is said to be scalarly (resp.
scalarly Henstock–Kurzweil) integrable on [a, b] if for each x ∈ Rn the real function s(x, �(t)) is integrable (resp.
Henstock–Kurzweil integrable) on [a, b].

A function f : [a, b] → Rn is called a selection of a set-valued function �: [a, b] → ck(Rn) if, for every t ∈ [a, b],
one has f (t) ∈ �(t). By S(�) (resp. SH (�)) we denote the family of all measurable selections of � that are integrable
(resp. Henstock integrable).

Definition 2.5. A measurable set-valued function �: [a, b] → ck(Rn) is said to be Aumann integrable on [a, b] if
S(�) �∅. Then we define

(A)
∫ b

a
�(t) dt :=

{∫ b

a
f (t) dt : f ∈ S(�)

}
.

Definition 2.6 (See Amri and Hess [5]). A set-valued function �: [a, b] → ck(Rn) is said to be Pettis integrable on
[a, b] if � is scalarly integrable on [a, b] and for each A ∈ L there exists a set WA ∈ ck(Rn) such that for each x ∈ Rn ,
we have

s(x, WA) =
∫

A
s(x, �(t)) dt.

Then we set WA = (P)
∫

A �(t) dt , for each A ∈ L.
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Given �: [a, b] → ck(Rn) and a partition P = {(Ii , ti ) : i = 1, . . . , p} in [a, b] we set

�(�,P) =
p∑

i=1

|Ii |�(ti ).

Definition 2.7. A set-valued function �: [a, b] → ck(Rn) is said to be Henstock (resp. McShane) integrable on [a, b]
if there exists a nonempty set W ∈ ck(Rn) with the following property: for every � > 0 there exists a gauge � on [a, b]
such that for each �-fine Perron partition (resp. partition) P of [a, b], we have

dH(W, �(�,P)) < �.

Remark 2.8. We recall that Pettis and McShane integrals coincide for set-valued functions taking values in ck(Rn),
with the same value for the integrals (see [3, Proposition 2]). Then, taking into account Remark 2.4, by [5, Theorems
3.7 and 5.4] it follows that for scalarly integrable set-valued functions taking values in a finite dimensional space the
Pettis, the McShane and the Aumann integrability coincide (with the same value for the integrals).

The following theorem has been proven in [3] (with Rn replaced by an arbitrary separable Banach space and the
McShane integral in place of the Aumann integral).

Theorem 2.9. Let �: [a, b] → ck(Rn) be a scalarly Henstock–Kurzweil integrable set valued function. Then the
following conditions are equivalent:

(i) � is Henstock integrable;
(ii) for every f ∈ SH (�) the multifunction G: [a, b] → ck(Rn) defined by �(t) = G(t) + f (t) is Aumann integrable;

(iii) there exists f ∈ SH (�) such that the multifunction G: [a, b] → ck(Rn) defined by �(t) = G(t) + f (t) is Aumann
integrable;

(iv) every measurable selection of � is Henstock integrable.

3. Weakly fuzzy Henstock and fuzzy Henstock integral

We recall that a fuzzy-number valued function �̃: [a, b] → En is said to be strongly measurable if for every r ∈ [0, 1]
the set valued function [�̃]r : [a, b] → ck(Rn) is graph measurable (see [9, p. 141]) . Since the range space Rn is finite
dimensional this is equivalent to the measurability of all support functions s(x, [̃�(·)]r ), x ∈ Sn−1.

From now on we set

�̃r (t) = [�̃(t)]r .

A fuzzy-number-valued function �̃: [a, b] → En is said to be scalarly (resp. scalarly Henstock–Kurzweil) integrable
on [a, b] if for all r ∈ [0, 1] the set-valued function �̃r : [a, b] → ck(Rn) is scalarly (resp. scalarly Henstock–Kurzweil)
integrable.

Definition 3.1. A fuzzy-number valued function �̃: [a, b] → En is said to be weakly fuzzy Henstock or weakly fuzzy
Pettis or weakly fuzzy McShane integrable on [a, b] if for every r ∈ [0, 1] the set-valued function �̃r is Henstock or
Pettis or McShane integrable on [a, b] and there exists a fuzzy number Ã ∈ En such that for any r ∈ [0, 1] and for any
x ∈ Rn we have

s(x, [ Ã]r ) = (H K )
∫ b

a
s(x, �̃r (t)) dt

or

s(x, [ Ã]r ) =
∫ b

a
s(x, �̃r (t)) dt,

respectively.
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Definition 3.2. A fuzzy-number valued function �̃: [a, b] → En is said to be fuzzy Aumann integrable on [a, b] if
there exists a fuzzy number Ã ∈ En such that for every r ∈ [0, 1] the set-valued function �̃r is Aumann integrable on
[a, b] and [ Ã]r = (A)

∫ b
a �̃r (t) dt . We write (F A)

∫ b
a �̃(t) dt := Ã.

Remark 3.3. Since Pettis, McShane and Aumann integrals coincide for set-valued functions taking values in a finite
dimensional space, then also the fuzzy Aumann, the weakly fuzzy Pettis and the weakly fuzzy McShane integrals
coincide.

Definition 3.4 (See Wu and Gong [18]). A fuzzy-number-valued function �̃: [a, b] → En is said to be fuzzy Henstock
(resp. fuzzy McShane) integrable on [a, b] if there exists a fuzzy number Ã ∈ En such that for every � > 0 there is a
gauge � on [a, b] such that for every �-fine Perron partition (resp. partition) P of [a, b], we have

D( Ã, �(�,P)) < �.

We write (F H )
∫ b

a �̃(t) dt := Ã (resp. (F Mc)
∫ b

a �̃(t) dt := Ã).

By means the notion of equi-integrability it is possible to characterize the fuzzy Henstock and the fuzzy Mc-
Shane integrability. We recall that a family {g�} of real valued functions in HK[a, b] (resp. Mc[a, b]) is said to be
Henstock–Kurzweil (resp. McShane) equi-integrable on [a, b] whenever for every � > 0 there is a gauge � on [a, b]
such that

sup
�

∣∣∣∣�(g�,P) − (H K )
∫ b

a
g�(t) dt

∣∣∣∣ < �,

(
resp. sup

�

∣∣∣∣�(g�,P) −
∫ b

a
g�(t) dt

∣∣∣∣ < �

)
for each �-fine Perron partition (resp. partition) P of [a, b].

Proposition 3.5. Let �̃: [a, b] → En be a Henstock–Kurzweil scalarly (resp. scalarly) integrable fuzzy-number-valued
function. Then the following are equivalent:

(j) �̃ is fuzzy Henstock (resp. McShane) integrable on [a, b];
(jj) the collection {s(x, �̃r (·)) : x ∈ Sn−1 and 0 ≤ r ≤ 1} is Henstock–Kurzweil (resp. McShane) equi-integrable.

Proof. (j) ⇒ (jj). According to Hörmander’s equality and the definition of metric D in En we have

D

(
Ã,

p∑
i=1

|Ii | �̃(ti )

)
= sup

r∈[a,b]
sup

x∈Sn−1

∣∣∣∣∣s(x, [ Ã]r ) −
p∑

i=1

s(x, �̃r (ti )) |Ii |
∣∣∣∣∣ . (2)

So the implication holds true.
(jj) ⇒ (j). Let us fix r ∈ [0, 1]. Since the collection {s(x, �̃r (·)) : x ∈ Sn−1} is Henstock–Kurzweil (resp. McShane)

equi-integrable, by [3, Proposition 1] there exists Ar ∈ ck(Rn) such that for each x ∈ Sn−1

s(x, Ar ) = (H K )
∫ b

a
s(x, �̃r (t)) dt, (3)

(
resp. s(x, Ar ) =

∫ b

a
s(x, �̃r (t)) dt

)
. (4)

Now we are going to prove that the family {Ar : r ∈ [0, 1]} satisfies properties (i)–(iii) of Theorem 2.2. Since Ar ∈
ck(Rn) it remains to prove only (ii) and (iii). Let 0 ≤ r1 ≤ r2 ≤ 1. By Theorem 2.2 we have �̃r2 (t) ⊂ �̃r1 (t), for each
t ∈ [a, b]. Therefore

s(x, Ar2 ) ≤ s(x, Ar1 ),
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for each x ∈ Rn . Then, as a consequence of the separation theorem for convex sets, we also infer the inclusion Ar2 ⊂ Ar1

and property (ii) is satisfied. If (rk) is a nondecreasing sequence converging to r > 0, then for each t ∈ [a, b] we have

�̃r (t) =
⋂
k≥1

�̃rk (t).

Consequently (see [16, Proposition 1]) *

s(x, �̃r (t)) = lim
k

s(x, �̃rk (t)),

for each t ∈ [a, b] and x ∈ Rn .
By hypothesis, for each x ∈ Rn , the sequence of real valued functions (s(x, �̃rk (·))) is Henstock–Kurzweil (resp.

McShane) equi-integrable. So we have (see [15])

s(x, Ar ) = (H K )
∫ b

a
s(x, �̃r (t)) dt = lim

k
(H K )

∫ b

a
s(x, �̃rk (t)) dt = lim

k
s(x, Ark ) = s

⎛⎝x,
⋂
k≥1

Ark

⎞⎠ ,

⎡⎣resp. s(x, Ar ) =
∫ b

a
s(x, �̃r (t)) dt = lim

k

∫ b

a
s(x, �̃rk (t)) dt = lim

k
s(x, Ark ) = s

⎛⎝x,
⋂
k≥1

Ark

⎞⎠⎤⎦ .

Since the above equalities hold for each x ∈ Rn , we obtain Ar = ⋂
k≥1 Ark and property (iii) is satisfied. Therefore

according to Theorem 2.2 there exists a unique u ∈ En such that [u]r = Ar for r ∈ (0, 1] and [u]0 = ⋃
s∈(0,1][u]s ⊂ A0. *

Taking into account (3) (resp. (4)) and the definition of the distance D we get the fuzzy Henstock (resp. McShane)
integrability of �̃ on [a, b] with the fuzzy Henstock (resp. McShane) integral equal to u. �

As a direct consequence of Proposition 3.5 we have the following characterization of the fuzzy Henstock and fuzzy
McShane integrability:

Corollary 3.6. A fuzzy-number-valued function �̃: [a, b] → En is fuzzy Henstock (resp. fuzzy McShane) integrable
on [a, b] if and only if it is weakly fuzzy Henstock (resp. weakly fuzzy McShane) integrable on [a, b] and the collection
{s(x, �̃r (·)) : x ∈ Sn−1 and 0 ≤ r ≤ 1} is Henstock–Kurzweil (resp. McShane) equi-integrable.

Now we use Proposition 3.5 to show that the family of all weakly fuzzy Henstock (resp. McShane) integrable
functions is wider than the family of all fuzzy Henstock (resp. McShane) integrable fuzzy-number-valued functions. At
first it may look strange since we are in Rn and the Henstock (resp. McShane) integral of ck(Rn)-valued multifunctions
defined with the help of support functions coincides with that defined with the help of the Hausdorff distance. In
particular, for each 0 ≤ r ≤ 1 the family {s(x, �̃r (·)) : x ∈ Sn−1} is Henstock–Kurzweil (resp. McShane) equi-
integrable. But it is known that an infinite union of equi-integrable families may be not equi-integrable. Thus, the fuzzy
approach may change the situation. In fact, in the example below we show even more. We prove that there exists a
weakly fuzzy McShane integrable fuzzy-number-valued function on [0,1] that is not fuzzy Henstock integrable (then
also not fuzzy McShane integrable).

Example 3.7. It is enough to show that such a function exists for n = 1. Define gm = �[1−2−m ,1], m = 1, 2, . . . where

�B denotes the characteristic function of the set B, and let fk = ∑k
m=1 gm , k = 1, 2, . . . .

Remark that fk(t) ≤ fk+1(t), for t ∈ [0, 1], and setOr (t) = [0, fk(t)],Qr = [0, 1 − 2−k], for (k + 1)−1 < r ≤ k−1,

t ∈ [0, 1] and k ∈ N , O0(t) = ⋃
r∈(0,1]Or (t), Q0 = [0, 1]. It is easy to check that Or (t) and Qr satisfy conditions

(i)–(iii) of Theorem 2.2, for any t ∈ [0, 1], then from Theorem 2.2 it is possible to define a function �̃: [0, 1] → E1

and a fuzzy number Ã such that �̃r (t) = Or (t) and [ Ã]r = Qr for all 0 < r ≤ 1 and all t ∈ [0, 1].
The fuzzy-number-valued function �̃ is weakly fuzzy McShane (and then also weakly fuzzy Henstock) integrable.

In fact for each k ∈ N it is∫ 1

0
fk(t) dt =

k∑
m=1

∫ 1

0
gm(t) dt =

k∑
m=1

1

2m
= 1 − 1

2k
,
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and for each x ∈ S0 = [−1, 1] and each (k + 1)−1 < r ≤ k−1, k = 1, 2, . . ., we have

s(x, [ Ã]r ) =
{

x(1 − 2−k) if 0 < x ≤ 1,

0 if − 1 ≤ x ≤ 0,

s(x, �̃r (t)) =
{

x fk(t) if 0 < x ≤ 1,

0 if − 1 ≤ x ≤ 0,

and ∫ 1

0
s(x, �̃r (t)) dt =

{
x
∫ 1

0 fk(t) dt = x(1 − 2−k) if 0 < x ≤ 1,

0 if − 1 ≤ x ≤ 0.

Now, by an application of Proposition 3.5, we are going to prove that �̃ is not fuzzy McShane integrable. To this aim
it is enough to show that the sequence ( fk) is not Henstock–Kurzweil equi-integrable.

Given a gauge � on [0, 1], we define �̃: [0, 1] → R+ as follows:

�̃(t) =

⎧⎪⎨⎪⎩
min{�(t), t − (1 − 2−m+1), 1 − 2−m − t} if 1 − 2−m+1 < t < 1 − 2−m, m ∈ N ,

min{�(t), 1 − 2−m} if t = 1 − 2−m+1, m ∈ N ,

�(1) if t = 1.

Let P = {(I j , t j )}p
j=1 be a �̃-fine Perron partition of [a, b]. By the definition of �̃ it follows that t j = 1 for some j. For

simplicity we can assume that j = p. Let q ∈ N be the first index such that Ip ⊃ [1 − 2−q , 1]. Then, since fk(1) = k,
we have fk(tp)|Ip| = k|Ip| ≥ k2−q , for k = 1, 2, . . . .

Moreover, since fk = m on [1 − 2−m, 1 − 2−(m+1)) for k ≥ m, by the definition of �̃ it follows
∑p−1

j=1 fk(t j )|I j | ≥∑q−2
m=1 m2−(m+1), for k ≥ q . Hence, for k ≥ q ,∣∣∣∣∣∣

p∑
j=1

fk(t j )|I j | −
∫ 1

0
fk(t) dt

∣∣∣∣∣∣≥ fk(tp)|Ip| +
p−1∑
j=1

fi (t j )|I j | −
∫ 1

0
fk(t) dt ≥ k

2q
+

q−2∑
m=1

m2−(m+1) − 1 + 1

2k
.

Consequently, since q depends only on P , we have

lim
k→∞

∣∣∣∣∣∣
p∑

j=1

fk(t j )|I j | −
∫ 1

0
fk(t) dt

∣∣∣∣∣∣ = ∞,

that gives the mentioned Henstock not equi-integrability of ( fk). �

4. A decomposition of the fuzzy Henstock integral

The following decomposition theorem is the main result of the paper.

Theorem 4.1. Let �̃: [a, b] → En be a fuzzy-number valued function on [a, b]. Then the following conditions are
equivalent:

(A) �̃ is fuzzy Henstock integrable.
(B) For every Henstock integrable function f ∈ SH (�̃1) the fuzzy-number valued function G̃: [a, b] → En defined by

�̃(t) = G̃(t) + f̃ (t) (where f̃ (t) = �{ f (t)}) is fuzzy McShane integrable on [a, b] and[
(F H )

∫ b

a
�̃(t) dt

]r

=
[

(F Mc)
∫ b

a
G̃(t) dt

]r

+ (H )
∫ b

a
f (t) dt, (5)

for every r ∈ [0, 1].
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(C) There exists a Henstock integrable function f ∈ SH ([�̃]1) such that the fuzzy-number valued function
G̃: [a, b] → En defined by �̃(t) = G̃(t) + f̃ (t) is fuzzy McShane integrable on [a, b] and[

(F H )
∫ b

a
�̃(t) dt

]r

=
[

(F Mc)
∫ b

a
G̃(t) dt

]r

+ (H )
∫ b

a
f (t) dt, (6)

for every r ∈ [0, 1].

As readers may easily observe it is quite easy to define G̃ and f̃ . It is however not so simple to show that G̃ is fuzzy
McShane integrable. The proof of this fact is the most difficult part of our paper.

Before proving Theorem 4.1 we need some preliminary results. It is well known that if f : [a, b] → R is a nonnegative
Henstock–Kurzweil integrable function, then f is McShane integrable. So one could expect that if A is a family of
nonnegative Henstock–Kurzweil equi-integrable functions, then A is also McShane equi-integrable. At the moment
we do not know if this is true, however under additional suitable conditions next theorem gives the expected McShane
equi-integrability. The idea of our proof is taken from [6, Theorem 8].

Theorem 4.2. Let S �∅ be an arbitrary set and let A = {g�: [a, b] → [0, ∞): � ∈ S} be a family of functions satisfying
the following conditions:

(a) A is Henstock–Kurzweil equi-integrable.
(b) A is totally bounded in the L1 norm.
(c) A is pointwise bounded.

Then the family A is also McShane equi-integrable.

Proof. Given � > 0 and k ∈ N ∪ {0} we set 	k = 2−k�2/(2 + 12(k + 1)). By (b) we can find lk,0, . . . , lk,i(k) ∈ A such

that A ⊂ ⋃i(k)
j=1 B(lk, j , 	k), where as usual B(l, r ) denotes the ball with center at l and radius r in the L1 norm.

By (a) and by the remark that the functions lk,0, . . . , lk,i(k) are McShane integrable (since they are nonnegative and
Henstock–Kurzweil integrable; see [7]) we can find a gauge �k in [a, b] such that:∣∣∣∣�(lk, j ,P) −

∫ b

a
lk, j

∣∣∣∣ < 	k, (7)

for every j ≤ i(k) and every �k-fine partition P of [a, b], and

sup

{∣∣∣∣�(g�,P) − (H K )
∫ b

a
g�

∣∣∣∣ : � ∈ A

}
< 	k, (8)

for every �k-fine Perron partition P of [a, b].
By (c) there exists g: [a, b] → [0, ∞) such that

0 ≤ g�(t) ≤ g(t), (9)

for every t ∈ [a, b] and every g� ∈ A.
Now fix g� ∈ A and take j� ≤ i(k) such that

∫ b
a |g� − lk, j� | ≤ 	k . Then∣∣∣∣∫

H
(g� − lk, j� )

∣∣∣∣ ≤ 	k, (10)

for each H ∈ L.
By (7) and [15, Lemma 3.5.6], if S is any partial �k-fine partition in [a, b], we have∣∣∣∣∣�(lk, j� ,S) −

∫
⋃{J :(J,t)∈S}

lk, j�

∣∣∣∣∣ ≤ 	k . (11)
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So, ifR is any partial �k-fine Perron partition in [a, b], by (8), (11), and by [15, Lemma 3.5.6], we get∣∣∣∣∣�(g�,R) −
∫
⋃{I :(I,t)∈R}

g�

∣∣∣∣∣ ≤ 	k

and ∣∣∣∣∣�(g� − lk, j� ,R) −
∫
⋃{I :(I,t)∈R}

(g� − lk, j� )

∣∣∣∣∣ ≤ 2	k .

Consequently, by (10) we have∑
(I,t)∈R

|I | (g� − lk, j� )(t) = �(g� − lk, j� ,R) ≤ 3	k . (12)

Now set

V =
⋃

{(t − �k(t), t + �k(t)) : g�(t) − lk, j� (t) ≥ �}.

Then by [6, Lemma 6] applied to the function g� − lk, j� we have

�([a, b] ∩ V ) ≤ 3	k/�.

Set

Ak = {t ∈ [a, b] : k ≤ g(t) < k + 1}, (13)

and define a new gauge � on [a, b] by setting �(t) = �k(t), whenever t ∈ Ak .
Let Q = {(Ji , ti ) : i = 1, . . . , p} be a �-fine partition of [a, b] and set

Tk = {i : i ≤ p, ti ∈ Ak}, Hk =
⋃
i∈Tk

Ji .

Since⋃
{Ji : i ∈ Tk, g�(ti ) − lk, j�(ti ) ≥ �} ⊂ V,

we have ∑
{i∈Tk : g�(ti )−lk, j� (ti )≥�}

|Ji | ≤ 3	k/�.

In a similar way we obtain∑
{i∈Tk : lk, j� (ti )−g�(ti )≥�}

|Ji | ≤ 3	k/�.

Moreover by (9) and (13) we have

|lk, j� (ti ) − g�(ti )| ≤ 2g(ti ) < 2(k + 1),

for every ti ∈ Ak .
So∑

i∈Tk

|Ji | |lk, j�(ti ) − g�(ti )| ≤ ��(Hk) + 12	k(k + 1)/�. (14)
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Hence by (10), (11) and (14) we obtain∣∣∣∣∣∣
∫

Hk

g� −
∑
i∈Tk

|Ji | g�(ti )

∣∣∣∣∣∣≤
∣∣∣∣∫

Hk

(g� − lk, j�)

∣∣∣∣ +
∣∣∣∣∣∣
∫

Hk

lk, j� −
∑
i∈Tk

|Ji | lk, j�(ti )

∣∣∣∣∣∣ +
∑
i∈Tk

|Ji | |lk, j�(ti ) − g�(ti )|

≤ 	k + 	k + ��(Hk) + 12	k(k + 1)/� < �(2−k + �(Hk)).

Now remark that the sets Ak are pairwise disjoint and
⋃∞

k=0 Ak = [a, b]. Then only a finite number of sets Hk are
nonempty and

⋃∞
k=0 Hk = [a, b]. Consequently, summing over k we get∣∣∣∣∫ b

a
g� − �(g�,Q)

∣∣∣∣ < �
∞∑

k=0

(2−k + �(Hk)) = �(2 + (b − a)).

Since this is true for any function g� in A and for any �-fine partition Q of [a, b], the family A is McShane equi-
integrable. �

We need yet the following fact that is a very special case of a general theorem proved in [13, Theorem 3.3].

Proposition 4.3. Let G: [a, b] → ck(Rn) be a Pettis integrable multifunction whose support functions are nonnegative.
Then the set

S = {s(x, G(·)) : x ∈ Sn−1}
is totally bounded in L1[a, b].

Proof. Let MG(E) be the Pettis integral of G on the set E ∈ L. Moreover, let {xn : n ∈ N} ⊂ Sn−1 be an arbitrary
sequence and let {xnk }k be a subsequence converging to x0. We have then

lim
k

∫
E

s(xnk − x0, G(t)) dt = lim
k

s(xnk − x0, MG(E)) = 0 for every E ∈ L,

and the convergence of the sequence {s(xnk − x0, MG(E))}k is uniform on L, because MG(E) ⊆ MG(�), for every
E ∈ L. Thus, the sequence {s(xnk , G)}k is convergent in L1(
) to s(x0, G) (cf. [14, Proposition II.5.3]). �

Proof of Theorem 4.1. (A) ⇒ (B). Since �̃ is fuzzy Henstock integrable, then for each r ∈ [0, 1] the set function �̃r

is Henstock integrable. So, according to Theorem 2.9, SH (�̃1) �∅. Let us fix f ∈ SH (�̃1) and define a fuzzy-number
valued function f̃ : [a, b] → En as follows: f̃ (t) = �{ f (t)}, for each t ∈ [a, b]. Now define G̃: [a, b] → En setting
G̃(t):=�̃(t) − f̃ (t). To prove that G̃(t) is fuzzy McShane integrable on [a, b], by Proposition 3.5 it is enough to show
that the collection

B:={s(x, G̃r (·)) : x ∈ Sn−1 and 0 ≤ r ≤ 1}
is McShane equi-integrable. To this end we are going to prove that B fulfils the hypotheses of Theorem 4.2. Since �̃ is
fuzzy Henstock integrable, it follows from Proposition 3.5 that the family of functions

{s(x, �̃r (·)) : x ∈ Sn−1 and 0 ≤ r ≤ 1}
is Henstock–Kurzweil equi-integrable. Moreover, for each r ∈ [0, 1] the set-function �̃r is Henstock integrable and

�̃r (t) = G̃r (t) + f (t) for each t ∈ [a, b]. (15)

Then, for r ∈ [0, 1], t ∈ [a, b] and x ∈ Rn , we have

s(x, G̃r (t)) = s(x, �̃r (t)) − 〈x, f (t)〉.
Now applying Theorem 2.9 to each set-function �̃r , we obtain that, for every r ∈ [0, 1], the set function G̃r is Aumann
and then Pettis integrable. Since the function f is Henstock integrable, we infer that the family B is Henstock–Kurzweil
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equi-integrable. We observe that all support functions of G̃r (t) are nonnegative. Consequently, if 0 ≤ r1 ≤ r2 ≤ 1,
then G̃r2 (t) ⊂ G̃r1 (t) ⊂ G̃0(t), and

0 ≤ s(x, G̃r2 (t)) ≤ s(x, G̃r1 (t)) ≤ s(x, G̃0(t)), (16)

for every x ∈ Sn−1 and t ∈ [a, b].
So the family B is pointwise bounded. It remains to show that B is also totally bounded in L1[a, b].

Claim 1. If gr (x):= ∫ 1
0 s(x, G̃r (t)) dt , for each x ∈ Sn−1 and r ∈ [0, 1], then for each r the function gr is continuous

and the family {gr : r ∈ [0, 1] } is norm relatively compact in C(Sn−1), the space of real continuous functions on Sn−1.

Proof. Given x, y ∈ Sn−1 and r ∈ [0, 1], we have for x � y

|gr (x) − gr (y)| ≤
∫ b

a
|s(x, G̃r (t)) − s(y, G̃r (t)) | dt ≤

∫ b

a
[s(x − y, G̃r (t)) + s(y − x, G̃r (t))] dt

≤ ‖x − y‖
∫ b

a

[
s

(
x − y

‖x − y‖ , G̃r (t)

)
+ s

(
y − x

‖x − y‖ , G̃r (t)

)]
dt

≤ ‖x − y‖
∫ b

a

[
s

(
x − y

‖x − y‖ , G̃0(t)

)
+ s

(
y − x

‖x − y‖ , G̃0(t)

)]
dt

≤ 2‖x − y‖ sup
‖z‖≤1

∫ b

a
s(z, G̃0(t)) dt.

But, since G̃0 is Pettis integrable, we have sup‖z‖≤1
∫ b

a s(z, G̃0(t)) dt < ∞ (cf. [5, Theorem 5.5]). It follows that gr

satisfies the Lipschitz condition. Consequently the family {gr : r ∈ [0, 1] } is equicontinuous. Moreover, since 0 ≤
gr (x) ≤ g0(x) for each r ∈ [0, 1] and each x ∈ [a, b], from Ascoli’s theorem follows that the family {gr : r ∈ [0, 1]}
is norm relatively compact in C(Sn−1). �

Claim 2. B is totally bounded in L1[a, b].

Proof. Let us fix � > 0. It follows from Claim 1 that the family {gr : r ∈ [0, 1] } is totally bounded in C(Sn−1). That is
there exist reals r1, . . . , rm ∈ [0, 1] such that

∀r ∈ [0, 1] ∃i ≤ m : ‖gr − gri ‖C(Sn−1) < �/2.

But

‖gr − gri ‖C(Sn−1) = sup
x∈Sn−1

∣∣∣∣∫ b

a
s(x, G̃r (t)) dt −

∫ b

a
s(x, G̃ri (t)) dt

∣∣∣∣
= sup

x∈Sn−1

∣∣∣∣∫ b

a
[s(x, G̃r (t)) − s(x, G̃ri (t))] dt

∣∣∣∣ = sup
x∈Sn−1

∫ b

a
|s(x, G̃r (t)) − s(x, G̃ri (t))| dt,

where the final equality follows from (16). Consequently, we have∫ b

a
|s(x, G̃r (t)) − s(x, G̃ri (t))| dt < �/2 for every x ∈ Sn−1 .

But from Proposition 4.3 we know that for each i ≤ m the family {s(x, G̃ri ) : x ∈ Sn−1} is totally bounded in L1[a, b].
Hence, there are points {x1i , . . . , x pi } ⊂ Sn−1 such that if x ∈ Sn−1 is arbitrary, then∫ b

a
|s(x, G̃ri (t)) − s(x ji , G̃ri (t))| dt < �/2 for a certain j ≤ pi .

It follows that the set {s(x ji , G̃ri (·)) : j ≤ pi , i ≤ m} is an �-mesh of B in the norm of L1[a, b]. �
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Then the collection B is McShane equi-integrable and, applying once again Proposition 3.5, we get that G̃ is fuzzy
McShane integrable on [a, b]. Moreover equality (5) follows at once from equality (15).

The implication (B) ⇒ (C) is obvious.
(C) ⇒ (A). Let us assume now that �̃(t) = G̃(t) + f̃ (t), where G̃ is a fuzzy-number valued function, is fuzzy

McShane integrable on [a, b] and f is a Henstock integrable function f ∈ SH ([�̃]1). Then according to Proposition 3.5
we have that the collection

B:={s(x, G̃r (·)) : x ∈ Sn−1 and 0 ≤ r ≤ 1}
is McShane equi-integrable. Therefore by the equality

s(x, �̃r (t)) = s(x, G̃r (t)) + 〈x, f (t)〉,
we infer that the collection

{s(x, �̃r (·)) : x ∈ Sn−1 and 0 ≤ r ≤ 1}
is Henstock–Kurzweil equi-integrable. And applying once again Proposition 3.5 we obtain the fuzzy Henstock
integrability of �̃. �
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