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Abstract

We establish the following decomposition theorem for fuzzy mappings with values in a Banach space: a fuzzy mapping is fuzzy
Henstock integrable if and only if it can be represented as a sum of a fuzzy McShane integrable fuzzy mapping and of a fuzzy
Henstock integrable fuzzy mapping generated by a Henstock integrable function.
© 2014 Elsevier B.V. All rights reserved.

Keywords: Fuzzy Henstock integral; Fuzzy McShane integral; Henstock—Kurzweil and McShane equi-integrability

1. Introduction

In this paper we continue the investigation of the Henstock integral started in [2—4] for set-valued functions and
in [1] in case of fuzzy number valued functions, but we consider now a more general setting of fuzzy mappings on
Banach spaces.

Let R” be the n-dimensional Euclidean space and let E” = {u : R" — [0, 1] : u fulfills (1)-(4) of Definition 2.1
with X = R"}. It has been proven in [1] that a fuzzy-number valued function r: [a,b] — E™ is fuzzy Henstock
integrable if and only if I’ can be represented as r () = 5(t) + ]7 (t), where G: [a,b] — E" is fuzzy McShane
integrable and f~ is a fuzzy Henstock integrable fuzzy number valued function generated by a Henstock integrable
selection of I°.

In the current paper we consider the fuzzy Henstock and McShane integrals for functions taking values in the fuzzy
number space F.(X) (see Definition 2.1) in place of E”. In Section 3 we give a characterization of the fuzzy-number
mappings which are fuzzy Henstock or McShane integrable by means of the equi-integrability of the support functions
(Proposition 3.3). The main result of this paper, a decomposition theorem generalizing that of [1], is in Section 4
(Theorem 4.2):
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A fuzzy mapping r: [a, b] — F-(X) is fuzzy Henstock integrable if and only if I’ can be represented as r (1) =
(N;(t) + f(l), t € [a, b], where G: [a, b] = F(X) is fuzzy McShane integrable a~nd fis a fuzzy Henstock integrable
Sfuzzy number valued function generated by a Henstock integrable selection of I.

The idea of the proof is similar to that from [1]. Differences are caused by topological differences between R” and
an infinite dimensional Banach space X. First of all by the fact that the closed unit ball in X* is never norm compact,
if X is infinite dimensional. I have tried to avoid unnecessary repetitions from [1] but still the main body of the paper
is very similar. The essential tool to prove the decomposition theorem is [1, Theorem 4.2] that provides sufficient
conditions guaranteeing the McShane equi-integrability of a family of nonnegative real valued Henstock—Kurzweil
equi-integrable functions. The second important result applied here is [5, Theorem 3.3], repeated here as Theorem 2.6,
necessary in case of non-separable Banach spaces. If the Banach space X under consideration is separable, one may
apply [3, Theorem 2] instead.

2. Basic facts

Let X be an arbitrary Banach space endowed with the norm || - ||. We denote by B(X) its closed unit ball and
by o (X*, X) or w* the weak* topology of X*. ck(X) is the family of all nonempty compact convex subsets of X
endowed with the Hausdorff distance

dy(A, B) = maxisup inf ||x — y||, sup inf ||x — y||},
xecAYEB yeBXEA

and the operations
A+B:={x+y:x€A,ye€B}, kA :=1{kx:x € A}.

The space ck(X) endowed with the Hausdorff distance is a complete metric space. For every A € ck(X) the support
function of A is denoted by s(-, A) and defined by s(x, A) = sup{(x, y) : y € A}, for each x € X. Clearly the map
x —> s(x, A) is sublinear on X and —s(—x, A) = inf{(x, y) : y € A}, for each x € X.

According to Hormander’s equality (cf. [6], p. 9), for A and B non empty members of ck(X) we have the equality

dy(A,B)= sup |s(x,A)—s(x,B)|.
xeB(X¥)

Definition 2.1. The generalized fuzzy number space F.(X) is defined as the set
Fe(X) ={u: X — [0, 1] : u satisfies conditions (1)-(4) below }:

(1) u is a normal fuzzy set, i.e. there exists xo € X, such that u(xg) = 1;

(2) u is quasiconcave, i.e. u(tx + (1 —#)y) > min{u(x), u(y)} forany x, y € X, t € [0, 1];
(3) u is upper semi-continuous;

(4) suppu ={x € X : u(x) > 0} is compact, where A denotes the closure of A.

Each u € F.(X) is called a generalized fuzzy number on X. For r € (0, 1] let [u]" = {x € X : u(x) > r} and
[u® = Use.ul*. If u € Fo(X) and r € [0, 1], then [u]” € ck(X).
In the sequel we will use the following representation theorem (cf. [7]).

Theorem 2.2. If u € F.(X), then

(i) [u) €ck(X), forallr €0, 1];
(i) W] Cul", forO<r <rn <L
(iii) if (rr) is a nondecreasing sequence converging to r > 0, then

[u]” = [ [ul™.

k>1
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Conversely, if {A, :r € [0, 11} is a family of subsets of X satisfying (i)—(iii), then there exists a unique u € F.(X) such
that [u]" = A, forr € (0, 1] and [u]’ = Uy_, <, [u]" C Ao.

Define D : F.(X) x F.(X) — RT U {0} by the equation

D(u,v)= sup dp([u]",[v]").
rel0,1]
(F¢(X), D) is a metric space.
For u, v € F.(X) and k € R the addition u 4 v and the scalar multiplication ku are defined respectively by

[u+v]) :=[u] +[v] and [ku] :=k[u]" foreveryr €]O0,1].

Let [a, b] be a bounded closed interval of the real line equipped by the Lebesgue measure A. We denote by £ and
by Z the families of all Lebesgue measurable subsets of [a, b] and of all closed subintervals of [a, b], respectively. If
I € Z, then || denotes its length. A partition in [a, D] is a collection of pairs P ={(/;,#;):i =1,..., p}, where [;,
are non-overlapping subintervals of [a, b] and ¢; are points of [a,b],i =1,..., p. If Uf:] I; = [a, b] we say that P
is a partition of [a,b]. If t; € I;, i =1, ..., p, we say that P is a Perron partition of [a, b]. A gauge on [a, D] is a
positive function on [a, b]. For a given gauge § on [a, b], we say that a partition P = {(I;, ;) :i =1, ..., p} is §-fine
if ; C(t —6@t),4+68(8),i=1,...,p.
Given f :[a,b] — X and a partition P = {(I;, ;) :i =1, ..., p}in [a, b] we set

p
o(f,P)=Y_ILIf ).

i=1

Let us recall the definitions of McShane and Henstock integral for X-valued functions.

Definition 2.3. A function g : [a, b] — X is said to be McShane (resp. Henstock) integrable on [a, b] if there exists a
vector w € X with the following property: for every € > 0 there exists a gauge § on [a, b] such that

lote. Py —w| <e

for each 6-fine partition (resp. Perron partition) P of [a, b]. We set (MS) fab g(®)dt :=w (resp. (H) fab g®)dt :=w).

In case of X =R, g is said to be Henstock—Kurzweil integrable. We denote by M S[a, b] (resp. HK[a, b]) the set
of all real valued McShane (resp. Henstock—Kurzweil) integrable functions on [a, b].

A set-valued function I' : [a, b] — ck(X) is said to be scalarly measurable if for every x* € X*, the map
s(x*, I'(-)) is measurable. A set-valued function I" : [a, b] — ck(X) is said to be scalarly Lebesgue (resp. scalarly
Henstock—Kurzweil) integrable on [a, b] if for each x* € X™* the real function s(x*, I'(¢)) is integrable (resp.
Henstock—Kurzweil integrable) on [a, b].

A function f : [a, b] — X is called a selection of a set-valued function I" : [a, b] — ck(X) if, for every ¢ € [a, D],
one has f(t) € I'(t). By Sy (I") we denote the family of all scalarly measurable selections of I" that are Henstock
integrable.

Definition 2.4. (See [8].) A set-valued function I" : [a, b] — ck(X) is said to be Pettis integrable in ck(X) if I" is
scalarly Lebesgue integrable on [a, b] and for each A € L there exists a set W4 € ck(X) such that for each x* € X*,
we have

s(x*, WA) = (L)/s(x*, F(t)) dt,
A

where (L) stands for Lebesgue. Then we set (P) fA I (t)dt := Wy, for each A € L. One can find in [8] examples of
ck(X)-valued multifunctions that are Pettis integrable in the family of closed convex subsets of X but not in ck(X).
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Given I' : [a, b] — ck(X) and a partition P = {([;,t;) :i =1, ..., p}in [a, b] we set

14
o(IP)=Y_|LIT®).

i=1

Definition 2.5. A set-valued function I" : [a, b] — ck(X) is said to be Henstock (resp. McShane) integrable on [a, b]
if there exists a nonempty bounded, closed and convex set W C X with the following property: for every ¢ > 0 there
exists a gauge § on [a, b] such that for each §-fine Perron partition (resp. partition) P = {([;,#;):i =1,..., p} of
[a, b], we have

dH(W, o(l, 73)) <e.

Notice that since dy is a complete metric on ck(X), the set W is necessarily compact.
The following theorem has been proven in [5, Theorem 3.3] (if X is separable, then the same result, but with a
different proof, is contained in [3, Theorem 2]).

Theorem 2.6. Let I' : [a,b] — ck(X) be a scalarly Henstock—Kurzweil integrable set-valued function. Then the
following conditions are equivalent:

(i) I' is Henstock integrable;
(ii) Sy(I') # @ and for every f € Sy (I') the multifunction G : [a, b] — ck(X) defined by I'(t) = G(t) + f(t) is
McShane integrable;
(iii) there exists f € Sy (I") such that the multifunction G : [a, b] — ck(X) defined by I'(t) = G(t) + f(t) is Mc-
Shane integrable.

3. Weakly fuzzy Henstock and fuzzy Henstock integral

Each mapping r: [a, b] — F.(X) is called a fuzzy mapping on X. For each r € [0, 1] we set ﬁ(t) = [F(t)]’.

A fuzzy mapping I :[a,b] — Fe(X) is said to be scalarly Lebesgue (resp. scalarly Henstock—Kurzweil) inte-
grable on [a, b] if for all r € [0, 1] the set-valued function 1:, : [a, b] — ck(X) is scalarly Lebesgue (resp. scalarly
Henstock—Kurzweil) integrable.

Definition 3.1. A fuzzy mapping I :la, bl — F.(X) is said to be weakly fuzzy Henstock (or weakly fuzzy Pettis or
weakly fuzzy McShane) integrable in F.(X) if for every r € [0, 1] the set-valued function F,(t) is Henstock (or Pettis
or McShane) integrable in ck(X) and there exists a generalized fuzzy number A € F.(X) such that for any r € [0, 1]
and for any x* € X* we have

b
s(x*, [A]") = (HK) / s(x*, (1) dt,

(or
b
S IAT) = @) [ s, Frw) ar

respectively).

Definition 3.2. (See [9].) A fuzzy mapping I :la, b] — F(X) is said to be fuzzy Henstock (resp. fuzzy McShane)
integrable on [a, b] if there exists a fuzzy number A € F.(X) such that for every ¢ > O there is a gauge § on [a, b]
such that for every §-fine Perron partition (resp. partition) P of [a, b], we have

D(A,o(I',P)) <,
where o (', P) = Y7 || T (). We write (FH) [” (1) dt := A (resp. (FMS) [ F(t)dt := A).
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By means the notion of equi-integrability it is possible to characterize the fuzzy Henstock and the fuzzy McShane
integrability. We recall that a family {g, : @ € A} of real valued functions in H/[a, b] (resp. M S[a, b]) is said to be
Henstock—Kurzweil (resp. McShane) equi-integrable on [a, b] whenever for every € > 0 there is a gauge § on [a, b]

such that
:aeA}<8 (resp. sup{ :aeA}<g>

sup{
for each §-fine Perron partition (resp. partition) P of [a, b].

Proposition 3.3. Let I :la,b]l— Fe(X) be a scalarly Henstock—Kurzweil (resp. scalarly Lebesgue) integrable fuzzy
mapping. Then the following are equivalent:

b b
G(ga,P)—(HK)/ga(t)dl G(ga»P)_(L)/ga(t)dt

(j) [ is fuzzy Henstock (resp. McShane) integrable on [a, b];
(jj) the collection {s(x*, I(-)) : x* € B(X*) and 0 < r < 1} is Henstock—Kurzweil (resp. McShane) equi-integrable.

The proof of the above proposition is similar to that of [1, Proposition 3.5].

It follows from the definitions that each fuzzy Henstock (resp. McShane) integrable function is also weakly fuzzy
Henstock (resp. McShane) integrable. It has been shown in [1, Example 3.6] that even in case of finite dimensional
Banach space the family of all weakly fuzzy Henstock (resp. McShane) integrable fuzzy-number valued functions is
larger than the family of all fuzzy Henstock (resp. McShane) integrable fuzzy-number valued functions.

4. A decomposition of the fuzzy Henstock integral

Before proving the main result we need yet the following fact that is a very special case of a general theorem proved
in [8, Theorem 3.3].

Proposition 4.1. Let G : [a, b] — ck(X) be a multifunction that is Pettis integrable in ck(X) and whose support
functions are non negative. Then the set

S={s(x*,G():x" € B(X™)}

is totally bounded in L'a, b].

Proof. Let M (E) be the Pettis integral of G on the set E € L. Moreover, let {x;} : n € N} C B(X™) be an arbitrary
sequence and let {x}}oca be a subnet of {x; : n € N} that is weak*-converging to a functional x; € B(X*). Since
the set M¢la, b] is norm compact, the net is uniformly convergent to x(’)‘ on Mgla, b]. It follows that there exists a
subsequence {x,’fk : k € N} that is also uniformly convergent to x; on M¢[a, b]. We have then

b
liin(L) / s(x:k —X{s G(t)) dt = 1il£ns(x:k — x5, Mgla, b]) =0.
a

*

Since the support functions are non-negative and subadditive the sequence {s(x,, , G)}x is convergent in L;(u) to

N (xa‘ , G). Consequently, S is totally bounded in La, b).

If X =R", we may simply apply the norm compactness of the unit ball of R” (as it has been done in [1]) but in
case of infinite dimensional X the unit ball is never norm compact. That is one of the essential differences between
this paper and [1]. O

The following decomposition theorem is the main result of the paper.
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Theorem 4.2. Let I : [a, b] — Fe(X) be a fuzzy mapping. Then the following conditions are equivalent:

(A) Iis Jfuzzy Henstock integrable;

(B) Sy (Fl) # ) and for every Henstock integrable function f € SH(Fl) the fuzzy mapping G:la,bl > F. X)
defined by F(t) = G(t) + f(t) (where f(t) = X{/(t)}) is fuzzy McShane integrable on [a, b].

(C) There exists a Henstock integrable function f € SH(Fl) such that the fuzzy mapping G: [a, b] —> F.(X) defined
by F(t) = 5(t) + f(t) is fuzzy McShane integrable on [a, b].

If (B) or (C) are fulfilled, then

(FH)/F(t)dt=(FMS)/@(t)dt—i—(H)ff(t)dt; (1)

Proof of Theorem 4.2. (A) = (B). We assume that I is fuzzy Henstocg integrable. Then for each r €0, 1] the set
function I, is Henstock integrable. So, according to Theorem 2.6, Sy (1) # 0. Let us fix f € Sy (I7) and define a

fuzzy mapping f: [a, b] = F.(X) as follows: f(t) = X{f@)} for each t € [a, D]. Then define G: [a, b] — F.(X) by
setting a(t) = F(t) - f(t). To prove that é(t) is fuzzy McShane integrable on [a, b], by Proposition 3.3 it is enough
to show that the collection

B:={s(x*,G,()) :x* € B(X*) and 0 < r < 1}

is McShane equi-integrable. To this end we are going to prove that B fulfills the hypotheses of [ 1, Theorem 4.2]. Since
I' is fuzzy Henstock integrable, it follows from Proposition 3.3 that the family of functions

[s(x*, () :x* € B(X*) and 0 < r < 1}
is Henstock—Kurzweil equi-integrable. Moreover, for each r € [0, 1] the set-function fr (t) is Henstock integrable and
Lo=6,0+rfw. 2)
Hence, for r € [0, 1] and x* € X,
s(x*, G, () =s(x*, [7(0) — (x*, f().

Applying Theorem 2.6 to each set-function I, we obtain McShane integrability of each set function G, (). Since the
function f is Henstock integrable, B is Henstock—Kurzweil equi-integrable. Since all support functions of G, (¢) are

non negative it follows that if 0 <r; <ry < 1, then (~}r2 (t) C (N}rl (1) C éo(t), and

0<s(x*, G () <s(x*, Gr () <s(x*, Go(1)), 3)
for every x* € B(X™).
Thus, the family B is pointwise bounded. We shall prove yet that B is also totally bounded in L'[a, b].

Claim. If g, (x*) := fa s(x*, G, (t))dt, for each x* € B(X*) and r € [0, 1], then for each r the function g, is
weak*-continuous and the family {g, : r € [0, 11} is norm relatively compact in C(B(X*), o (X*, X)), the space of
real functions on B(X*), continuous with respect to the weak™ topology.

Proof. Since each function 5, is Pettis integrable in ck(X), the functions g, are weak™ continuous (see [8, Theo-
rem 1.4]). Moreover, it follows from (3) that

0<gr(x") <go(x*) forevery0<r<landx*eX*
and so, if x*, y* € B(X*), then

gr(x") — & (V") <& (™ = %) <go(x™ —y¥)
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and further

|&r(x*) — & (%) < go(x* — ¥*) + go(»y* — x¥).

It follows that the collection {g, : 0 < r < 1} is equicontinuous on (B(X*),o(X*, X)), because gy (being
weak*-continuous on the weak*-compact set B(X*)) is uniformly continuous on (B(X*), o (X*, X)). Moreover,
since 0 < g, (x*) < go(x™) for each r € [0, 1] and each x* € B(X*), it follows from Ascoli’s theorem that the family
{g, : r €0, 1]} is norm relatively compact in C(B(X*), o (X*, X)). O

It follows from the Claim that the family {g, : r € [0, 1]} is totally bounded in C(B(X™*), o (X*, X)). That is, given
& > 0, there exist reals rq, ..., r;; € [0, 1] such that

Vrel0,1]13i <m:llgr — grllcxn,w < &/2.
But

lgr — &rillcBx*),ws) = sup (L)/ x*, G, (1) dl—(L)/ Gr, (l)
x*eB(X*)

x*eB(X*)

= sup (L)/[s(x*,é,(t))—s(x*,ari(t))]dt

b

= sup (L) | [|s(x* G, (1) —s(x*, G, (0)|dr,
x*€B(X*)

where the final equality follows from (3). Consequently, we have
(L)/\ * Gr(1)) — s(x*, Gy (1)) | dt <€/2, forevery x* € B(X*).

But from Proposition 4.1 we know that for each i < m the family {s(x*, Gri) :x* € B(X™)} is totally bounded in
Li[a, b]. Hence, there are points {le’ cee, zpi} C B(X ) such that if x* € B(X*) is arbitrary, then

(L)/‘ * Gr () —s(x U,G (1))|dt <&/2, foracertain j < p;.

It follows that the set {s(xl?“j, 5” (4)) : j < pi, i <m}is an e-mesh of B in the norm of L[a, b].

Thus, the collection B is McShane equi-integrable. Applying once again Proposition 3.3, we obtain the fuzzy
McShane integrability of G on [a, b].

The implication (B) = (C) is obvious.

(C) = (A). Let assume now that r (t) = 5(t) + f (t), where Gisa fuzzy mapping fuzzy McShane integrable
on [a,b] and f is a Henstock integrable function f € SH(f 1). Then according to Proposition 3.3 we have that the
collection

B:= {s(x*, 5,(-)) x*e B(X*) and 0 <r < 1}
is McShane equi-integrable. Therefore by the equality
s(x*, L) =s(x*, Gr (1) + {x*, f (1),
we infer that the collection

{s(x*,ﬁ(.)) :x*eB(X*)and0< r < 1}
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is Henstock—Kurzweil equi-integrable. Applying once again Proposition 3.3 we obtain the fuzzy Henstock integrabil-
ity of I'.
Now, if (B) or (C) is satisfied, then it follows from (2) that

b b b
(H) / Py di = ms) / G, (t)dr + (H) / Fyar,

for every r € [0, 1]. That immediately yields the equality (1). O

Remark 4.3. In case of a finite dimensional space X = R" it has been proven in [1, Theorem 4.1, Claim 1] that
each function g, satisfied the Lipschitz condition, with a constant independent of r € [0, 1]. In case of an infinite
dimensional X such a result is not valid and so the proof of the Claim is different from that in [1].
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