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Introduction

The classical monograph of A. and C. Ionescu Tulcea (1969a) provides a systematic
exposition of almost all results about liftings known at that time, in particular the basic
existence theorems of J. von Neumann and D. Maharam were given with a new and
more direct proof. The significance and power of the existence of liftings was illustrated
there by important applications to mathematical analysis, e.g., to the point realization
for automorphisms of spaces of measurable functions, to disintegration of measures,
representation of integral operators which is equivalent to the differentiation of vector
valued measures, and to the separable modification of stochastic processes. By a proper
use of liftings they succeeded to put many classical results in their final form. Practically
at the same time Kolzow (1968) proved the equivalence of the existence of liftings, Vitali
differentiation, and Dunford Pettis theorem for locally convex spaces.

Nevertheless many interesting problems were left and formed the starting point for
further developments in this field, such as the existence proof for densities on arbitrary
finite measure spaces of Graf and von Weizsidcker (1975), the negative solution of the
so-called ‘strong lifting problem’ by Losert (1979), the discussion of the existence of
(strong) Borel liftings by Mokobodzki (1975), Fremlin (1977) and that of the non-existence
of translation invariant Borel liftings for Haar measures by Johnson (1980), Talagrand
(1982), Kupka and Prikry (1983), Losert (1983), and Burke (1993), the notion of lifting
compactness studied by Bellow (1980) as well as Edgar and Talagrand (1980), existence
results for strong Baire liftings by Grekas and Gryllakis (1991), the application of forcing
methods for the non-existence of certain types of liftings (an example which demonstrates
that lifting theory provides challenging problems for other areas of mathematics) by
Shelah (1983), Burke and Just (1991) and Burke and Shelah (1992), and the discussion
of permanence results mainly in products of probability spaces starting with a paper of
Talagrand (1989) and subsequently developed by Burke (1995), Fremlin (2007?), and the
authors to mention probably the most important ones.

Because of the large number of contributions, in this articie we can only give an overview
of these developments with short indications of methods and proofs. Concerning the
abounding number of applications we had to restrict ourselves drastically to either the
most spectacular ones or to the most recent ones, giving only references for all the others.

As far as we could single out, we have tried to incorporate any paper dealing with liftings
in the list of references at the end of this article. Sometimes we found it difficult to give
full credit to authors, since many results in that field are circulated unpublished, but on the
other hand they have become folklore.

1. Terminology

For a measure space (£2, X, ) we denote by X'/ its measure algebra (a Boolean algebra
under its canonical Boolean operations), and r : X — X'/ is the canonical map (a Boolean
homomorphism). We assume throughout that u is nontrivial, i.e., u(£2) >0.

K stands for one of the fields R of real numbers or C of complex numbers, R for the
extended real line, and N = {1, 2, 3, .. .} stands for the set of natural numbers.
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ﬁ%(p,) is the space of all K-valued X'-measurable maps on 2. .C%(u) is a K-algebra
under pointwise addition and multiplication together with multiplication by scalars from K.
L) = ﬁ% (u) and C%(u), the space of all R-valued X -measurable functions are lattices

under pointwise order. The subspace L (i) of E&(u) consisting of all strictly bounded
fe C%(,u,) (e, | fll :=sup,eq | f(w)] < 00), is a Banach algebra and £ (u) := L (1)
is a Banach lattice.

Aset N € X with u(N) =0 is called a u-null ser and the o-ideal of all p-null sets is
denoted by X and X is the ideal of all sets A € X' with u(A) < o0o. For A, B € 2 we
write A = B a.e. (), or only A = B for short if there arise no doubts about the measure,
if AAB, the symmetric difference of A and B, is a u-null set, and we write f = g a.e.
(u),or f=gforshort,if {f £g}e Xyfor f,ge ﬁ%(u) U C%(u). The equivalence class

of all functions in l:%(u) U ﬁ%(u) or of all sets in X, that are y-a.e. equal to f orto A
will be denoted by f* or by A®, respectively. Equivalent functions or sets will never be
identified.

The (Carathéodory) completion of (£2, X, u) is written (£2, ) ,). The o-algebra
generated by a family £ of subsets of 2 is denoted by o(L).

A measure space is locally determined if ¥ ={AC §2: ANBe X for Ae Xy} and
(82, X, ) (or just p) is semi-finite, i.e., u(A) =sup{u(B): A2 Be Xs}forany Ae X.
A measure space (£2, X, ) is localizable if it is semi-finite and, for any £ € X there exists
an H € ¥ suchthat ) E\ H € Xy forany E € £, (i) if G € X and E \ G € X for every
E € £ then H \ G € X,. It will be convenient to call such a set H an essential supremum
of £ in X (see Fremlin (1980, A6B)).

If (©,T,v) is a measure space and f:2 — © is a measurable function such that
v(B) = u(f~Y(B)) for all B € T then v is called the range of u via f and we write
v=f(w.

A pretopological measure space is a quadruple (2,7, X, u) such that (£2,7) is a
topological space and (§2, X, u) is a measure space. This notion is introduced only in
order to avoid repetitions of the form (£2, 7, X, u) such that (£2, 7) is a topological space
and (§2, X, ) is a measure space.

A topological measure space is a quadruple (£2,7, X, 1) such that (£2,7) is a
Hausdorff topological space and (£2, X, u) is a measure space with 7 C X. Let
(2,7, X, u) be a topological measure space. The measure p is t-additive if for any
increasing family (G;);c; of open subsets of £2 we have

/L(U G,-) =sup u(G;).

iel iel

For any Hausdorff topological space (§2, 7) we denote by B(£2) its Borel o -algebra, i.e.,
the o -algebra generated by 7. The Baire o -algebra of (§2, 7), i.e., the o -algebra generated
by the system of all cozero subsets of 2, is written By(£2). We call (£2, T, B, u) a Baire
or Borel measure space, respectively if (£2, B, i) is the completion of a finite measure
space (£2, A, v), where A = By(§2) or A = B(£2), respectively. Let (£2, 7) be a Hausdorff
topological space. A measure on By($2) is called completion regular, if for any B € B(£2)
there exist Ay, Ay € By(£2) such that A} € B € Aj and u(Az \ A1) =0. A measure p on



Liftings 1135

B(£2) is completion regular if its restriction to By($2) is completion regular. A topological
measure space (2, 7, X, u) is called a category measure space if X is the system of all
sets with the Baire property with respect to 7 and X is equal to the system of all sets of
the Ist category in §2. We use the notion of a quasi-Radon measure space in the sense of
Fremlin (1974, 72A).

For an arbitrary probability space (£2, X, u) we call (R, 7, R, v) its associated hyper-
stonian space if R is the Stone space of the measure algebra of (§2, ', u), 7 the topology
generated by {s(a): a € £/u}, where s(a) € R is the corresponding closed—open set of a
according to the Stone duality, R denotes the o -algebra of all subsets of R with the Baire
property (namely those sets A € R such that AAU is a first category set for some open
subset U of R),and v = jiom : R — R where 7 : R — X/u is the canonical epimorphism
and fi: ¥/u — R is unambiguously defined by fi(a) := u(A)ifa=A*forAe X.

Throughout we assume the validity of the Axiom of Choice.

2. Existence of liftings and densities

A lifting for a given measure space (£2, X, u) is a Boolean homomorphism p: ¥ — X
with the additional properties

p(A)=A (L)
and
p(A)y=p(B) ifA=B, (L2)

i.e., besides (L.1) and (L2) p satisfies more explicitly the equations

p( =0 and p(2)=2, (BI)

P(ANB)=p(A)N p(B), (B2)
and

p(AUB)=p(A)U p(B), (B3)

if A, B e X. It follows
p(A)=[p(4)] forAeX. (B4)
Conversely (B2) and (B4) imply (B3). We denote by A(u) the space of all liftings for
(82, X, ).
There is another way of looking at liftings. For g € A(u) we can define unambiguously

a Boolean homomorphism p*: ¥/u — X by means of

p*(A%) ==p(A) ifAeX
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with the property r o p* = idx,,, the identical map of X/u. For this reason it is perhaps
more appropriate to call p*® lifting (J. von Neumann’s original definition), since this reveals
its algebraic character more precisely. But in applications the first given definition seems
to be more in common use. It is also clear that the measure u enters only through the o -
ideal Xy of its null sets into the lifting. Therefore measures on X producing the same null
set ideal produce the same liftings, i.e., liftings depend in fact on the triple (82, X, Xy),
where X is an ideal in X and there are generalizations of the notion of lifting along these
lines already in the paper of von Neumann and Stone (1935).

In 1931 A. Haar raised the problem of the existence of a lifting for the Lebesgue measure
space on RY, d € N. J. von Neumann gave a positive solution based on the classical
Lebesgue density. Clearly the same problem can be raised for arbitrary measure spaces
and there too, as we will see below, densities provide a useful step in the construction
of liftings. A lower density for the measure space (§2, X, ;) is a map §: X — X with
the properties (L.1), (L2), (B1), and (B2) and for the notion of upper density we have to
replace (B2) by (B3) therein. If we define §(A) := (8(A“))" for arbitrary maps § : &' — X
then the operation § — §¢ is a bijection from the space ¥ (u) of all lower densities onto
the space Y (u) of all upper densities obeying the law (§)¢ =8 for all 8 € ¥ (u) U Y (u),
where §¢ = § if and only if § € A(u). For this reason we consider only lower densities and
call them “densities” for short.

The best known example of a (lower) density (being no lifting) is the Lebesgue density
D, defined by means of

D(A) := {x eRY: fim #AN B 1]
N0 p(Bs(x))

for Lebesgue measurable sets A € RY, i the Lebesgue measure on RY, and Bj(x) the ball
of center x and radius § > 0. Lebesgue’s celebrated density theorem is just (L1) while the
other axioms of a lower density follow more or less by technicalities (see, e.g., Oxtoby
(1971, Theorems 3.20 and 3.21)). Starting from the Lebesgue density J. von Neumann
(1931) constructed liftings for the Lebesgue measure on R¢ by a process which has been
generalized (see Graf and von Weizsicker (1976), Traynor (1974)) to arbitrary densities
on measure spaces (£2, X, u) and, at the same time, was made more transparent in the
following way. For § € #(u) and @ € §2 define a filterbase

Bw):={Ae X: wed(A)}
and apply the axiom of choice to find an ultrafilter U {w) finer than B(w). Then put
p(A)={weR: AcU(w)} ifAcZX.
It follows §(A) € p(A) C §(A) for A € X and this implies for complete measure spaces
(2, X, 1) that p(A) € ¥ and p satisfies (L1), while all other properties of a lifting are

immediate by construction.

THEOREM 2.1. If the measure space (82, X, u) is complete, then for any 6 € 9(u) there
exists a p € A(w) such that §(A) C p(A) C8(A) forall Ae X.
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By an application of Theorem 2.1 to the Lebesgue density the first existence result of
von Neumann (1931) is now immediate.

COROLLARY 2.2. There exists a lifting for the Lebesgue measure space on RY, d € N.

The construction above leading to Theorem 2.1 makes it obvious that the liftings of
the corollary rely on a more or less arbitrary choice of an ultrafilter in a non-constructive
way with the consequence that any trace of uniqueness or “naturalness” is hopelessly lost.
Though starting from the, in a certain sense “natural” Lebesgue density, we cannot single
out some sort of “canonical” lifting. Taking any lifting p for the Lebesgue measure on R
obtained by this process, we cannot without further information answer such a simple
question as, e.g., 0 € p(]—00, 0]) or 0 € p(]0, oc[). On the other hand it can be easily seen
that the axiom of choice is necessary for producing a lifting for the Lebesgue measure
space (see, e.g., Burke (1993)). For general measure spaces not even a “natural” density is
at hand as it was for the Lebesgue measure space. But for finite (even incomplete) measure
spaces (§2, X', ) with u(£2) > 0 a density can be constructed by transfinite induction
using the following two extension lemmata for densities. Clearly it is sufficient to consider
probability spaces for simplicity.

LEMMA 2.3. Ler (82, X, u) be a probability space, n a o-subalgebra of X with £y C n,
A € X, and denote by 7 the o-subalgebra of ¥ generated by n'J {A}. Then for every
ée V(i | n) there exists a § € ?(u | 1) extending 8. For § € A(u | n) may be chosen
de A(u 7).

Firstnote 7 = {(DNA)U(EN AY): D, E € 5} and choose elements B. C € n such that
B=essinf{Den: ACD} and C =essinf{Den: A° C D}.
Then
s((DNAYU(ENAY))
=[ANS((DNB)U(ENB))JU[A NSU(ENC)U(DNC))],
if D, E € n is a solution given by Graf and von Weizsicker (1976).

LEMMA 2.4. Let (2, X, u) be a probability space, {n,)ner; an increasing sequence of
o-subalgebras of X with Xo C ny, and let n be the o -subalgebra of X generated by
Upen in- For each n € N let be given 8, € © (i | ny) with 8, | Ny = 8 for all m < n. Then
exists a 8oc € V(1 | nxc) satisfying 8 | ny =8, foralln € N.

If E;(f) denotes a version of the conditional expectation of f € £> (u) with respect to
the g -subalgebra n of X' we may define (following Graf and von Weizsicker (1976))

x

o)=Y () n{Enn(x) =1 - 1/k}) if Aenx.

k=l n=1m=n
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From Doob’s martingale convergence theorem (see, e.g., Fremlin (1989, Chapter 22, 1.6))
follows 650 (A) = A a.e. (u).

A measure space (§2, X, i) is called strictly localizable if there exists a family (A;)ie;
in ¥ of pairwise disjoint sets A; € X with u(A;) < oo forall i € I such that

| Jai=2.2={ac2: AnA e Sforalliel},

iel
and

w(A) = Z,u(A NA;) forAeX.

iel

Such a family (A;);e; is called a decomposition of §2. We will derive existence theorems
from the following strictly more general extension theorem.

THEOREM 2.5. Let be given a strictly localizable measure space (2, X, 1), a U-_subalge—
bra n of X with Xy C n, and a density § € 9(u | n). Then there exists a density § € ¥(u)

This and the next theorem are in fact theorems about probability spaces since the
generalization to strictly localizable spaces is obvious and purely technical. We give a short
indication of the proof for a probability space (£2, X, u) for later reference. Any proof uses
induction in one form or another. We can apply induction taking the following steps.

(A) Choose the smallest cardinal d with the property that there exists a collection
M C ¥ of cardinality d such that the o -algebra generated by nU M is dense in X
for the pseudometric generated by pt. Let M = (My)q <« be indexed by ordinals
less than «, where « is the first ordinal of cardinality d. For o < « denote by 7,
the o-subalgebra of %' generated by n U {My: B < a}. where we may assume
My ¢ ny for @ < «. Inductively we can construct a family (84)eg« Of densities
Sa € B (1t [ no) With 85 | ne = 84 fora < f < k.

(B) The induction starts with 8y = 8.

(C) The step from & to « + 1 is covered by Lemma 2.3.

(D) For a limit ordinal o < « of an uncountable cofinality put §, = | p<a OB

(E) For a limit ordinal & < « of countable cofinality apply Lemma 2.4.

(F) Finally put 8 :=38,.

Densities constructed in this way will become important later on in Section 6. We
therefore turn their proof in a definition and call any density é for a probability space
(2, ¥, 1) admissible if it is constructed inductively taking the steps (A) to (F) above
starting from the o -subalgebra n = o (X(); AP () denotes the family of all admissible
densities for p. Clearly A9 (u) # @.

The last theorem and Theorem 2.1 imply the next result.

THEOREM 2.6. Let be given a strictly localizable complete measure space (£2, X, i), a
o-subalgebra n of X with Xy C n, and a lifting p € A(u | n). Then there exists a lifting
0 €AW withp [n=p.
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We call any p € A(u) admissibly generated if there exists a density § € A (u) such
that §(A) € p(A) forall A € ¥'; AG A(u) is the (for complete probability spaces clearly
non-empty) class of all admissibly generated liftings for u.

If in the last two theorems 7 is the o -subalgebra of X generated by Xy with the obvious
lifting on it, we get the following existence theorems of Graf and von Weizsicker (1976)
for densities and of von Neumann (1931) and Maharam (1958) for liftings, respectively.

DENSITY THEOREM. For every nontrivial strictly localizable measure space there exists
a density.

LIFTING THEOREM. For every nontrivial strictly localizable complete measure space
there exists a lifting.

Radon measure spaces are strictly localizable since they have a concassage (see, €.g.,
Schwartz (1973)) and hence the lifting theorem applies.

COROLLARY. Fach nontrivial Radon measure space has a lifting.

Around 1942 J. von Neumann gave an oral proof to S. Kakutani and D. Maharam for the
lifting theorem, but “the proof was unfortunately forgotten beyond hope of reconstruction”
according to Maharam (1958). In 1958 D. Maharam gave a different proof based on her
structure theorem for measure algebras, reducing the general case to the product space
{0, 1}, where « is any infinite ordinal, hence only needing a special instance of the
martingale convergence theorem. The proof indicated above using general martingale
convergence theorem in connection with induction was given by A. and C. Ionescu
Tulcea (1961) and is today, in one form or another, standard in literature. It is an open
problem whether (even for probability spaces) the lifting theorem remains true without
the assumption of completeness. The most interesting case is when measure is defined on
the o -algebra of Borel sets. A lifting p € A(u) is called a Borel lifting for a topological
measure space (2,7, X, u) if p(A) € B(£2) forall A € ¥, and a similar definition applies
for Baire liftings. According to Shelah {1983) it is consistent with ZFC that there exists no
Borel lifting for Lebesgue measure on [0, 1] . On the other hand already von Neumann
and Stone (1935) proved the existence of a lifting for the Borel measure space on [0, 1]
under the assumption of the continuum hypothesis. This has been later generalized to the
following result of Mokobodzki (1975) and Fremlin (1977).

THEOREM 2.7 (CH). Subject to the continuum hypothesis any o -finite measure space
with a measure algebra of cardinality less or equal to w> has a lifting.

The assumption of the strict localizability implies that the basic measure space is locally
determined. Within the class of all complete locally determined (c.l.d. for short) measure
spaces, the strict localizability is in fact a necessary condition for the existence of a lifting.
To see it we need only to consider for a measure space weaker types of decompositions,
so called decompositions (ND) and (D), respectively, i.e., families (A;);cs in X'y such that
(A =i, m(ANA;) forall Ae Xy as well as u(A;NAj)=0and A, NA; =0,
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respectively for i # j in I (see Ellis and Snow (1963)). Due to an application of the
axiom of choice decompositions (ND) exist for any measure space and a lifting converts
a decomposition (ND) into a decomposition (D). If {A;);¢; is such a decomposition (D) it
follows sup; A? = 2°* and by Fremlin (1978, Theorem 2), the measure space (£2, X', u)
is c.l.d. It is obvious that this argument remains true for a much weaker type of “lifting”, the
so-called orthogonal lifting, i.e., for a map ¢ from X into itself with the properties (L1),
(L2), as well as (O) ¢(A) N@(B) = for all A, B ¢ ¥ with AN B ={. Another such
weaker notion has been considered by Kélzow (1968), the monotonous lifting, i.e., a map
A from X into itself with the properties (L1), (L2), and (M) A(A) C A(B) if A C B for
A, B € X. Any density is a monotonous lifting, and from the existence of a monotonous
lifting A follows that of an orthogonal lifting ¢ by taking ¢(A) ;= A(A)NA°(A)if Ae X,
see Gapaillard (1973) and Strauss (1971). Bichteler (1972) considers pre-densities, i.e.,
maps A from X into itself with the properties (L1), (L2), (B1),and A(A1)N---NA(Ax) =¥
if AyN---NAy =@ for Ay,..., A; € ¥ and shows that the existence of a pre-density
implies the existence of a density in complete measure spaces. For this reason we get the
somewhat surprising result that within the class of all ¢.1.d. measure spaces the existence
of a lifting is equivalent to the existence of considerably weaker types of set functions.

THEOREM 2.8. For a c.ld. measure space (§2, X, u) the following conditions are equi-
valent.
(1) There exists a lifting for (2, X, ).
(1) There exists a density for (2, X, u).
(i) There exists a pre-density for (2, X, ).
(iv} There exists a monotonous lifting for (2, X', u).
(v) There exists an orthogonal lifting for (2, X, ).
(vi) The measure space (2, X, u) is strictly localizable.

Any measure space has a c.l.d. version (see, e.g., Fremlin (1978)) with the same
measure algebra if the measure space is localizable. At this point we should mention that
localizable c.l.d. measure spaces are precisely spaces with the Radon-Nikodym property,
equivalently the Riesz property (see Segal (1951)) and that by Fremlin (1978) there exist
c.Ld. localizable, non strictly localizable measure spaces, i.e., within the class of all c.l.d.
measure spaces the class of measure spaces with lifting is strictly smaller than the class
of all measure spaces with the Radon-Nikodym property. According to Halmos (1950,
Section 31 (9), p. 131) there exist measure spaces without decomposition (D). For such
spaces even an orthogonal lifting cannot exist.

3. Liftings for functions

Given a measure space (£2, X, u) a (function-)lifting for Lz (u) is a K-algebra homo-
morphism ¢ : L3 (1) — L7 (1) (ie., a K-linear, multiplicative map) with the additional
properties
(H =/, (1)
p(f)=¢(g) if f=gfor f,ge L (). (12)
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and

p(l)=1. (n)

We denote by A (u) the space of all liftings for £Z (u). Any lifting ¢ for L)
is a lattice homomorphism, i.e., (| f]) = |o(f)| and o(f¥) = @(f)* for f € L(u)
(see A. and C. Tonescu Tulcea (1969a)). The original question of A. Haar was about the
existence of a lifting ¢ for £F (u), p the Lebesgue measure on RY, d e N satisfying
o(f) = ¢(f) for f € LE (1). This problem can be easily reduced to the existence
of liftings for sets in the following way. Given p € A(u) put for any simple function
f=Z:»1:|a,‘XA,. witho, e K, A, e X (i=1,....n),

n
pE(f) = ZaiXp(A,')-

i=1

This defines unambiguously a K-algebra endomorphism of the algebra Sx(X) of all
K-simple functions over ¥ of norm < | having a unique extension to an algebra
endomorphism of L (1) with p>X(f) = p>(f), since Sx(X) is dense in Lz (un) by
the Lebesgue ladder theorem. Conversely for any ¢ € Aﬁ?(u) with ¢( f )= m for
f € L (1) we can define a p € A(u) by means of

p(A):={p(xa)=1} forAeX.

PROPOSITION 3.1. Themap p € A(p) — p> € A (1) is a bijection which is completely
determined by the equation p™(xa) = Xpa) for A€ X.

A different proof of Proposition 3.1 was given by von Neumann (1931) in his first paper
on liftings based on the formula

P’ (f)(w) I=inf{r eQ: we,o({f <r})}
ifp: X —> X, feﬁ%(u). andw e £2.

Then p° and p™ can be identified on £>(u) since p°|L>(u) € AX(u) and p%(xa) =
Xp(A)- As a corollary we get the next result.

THEOREM 3.2. For any c.l.d. measure space (2, X, u) the following conditions are all
equivalent.
(1) The measure space (§2, X, ) is strictly localizable.
(i) The measure space (82, X, i) has a lifting. o
(iii) There exists a lifting ¢ for L3 (u) such that o(fY=@(f) forall f € L ().

J. von Neumann noticed already in his first paper from 1931 that for the Lebesgue
measure on R the last theorem no longer holds true if the algebra L5 (1) is replaced by
the algebra E%(/,L).
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As for liftings of sets there exist weakenings of the notion of lifting for functions
which arise naturally in de Possel derivation as well as in Fourier analysis in case of one
dimensional Lebesgue measure. Such a type is the linear lifting  for £(u), i.e., a map
Y L) — L£%°(u) which is a positive linear map with the additional properties (11),
(12) and (n) (hence ¥(a) = « for all @ € R). Clearly A>(u) C G(u), where we write
G(p) for the class of all linear liftings and indeed A> (u) := Ay (u). Note that a linear
lifting is already a lifting if it is a lattice homomorphism of £>(u) into itself. In fact
for f := x4 — xac,if A € X follows Yy (fF)AY(f7)=0.Since y(f)=1—-9¥(f7),
the inequality 0 < ¥ (f~) < | implies 0 < ¥(f*) < 1, a contradiction. Hence ¥ (f) €
{0, 11%.

By a classical result of Lebesgue (1910) we have

fB fdu
f@) = lim 207 T foraax eR

oo (B (%))

for any sequence 0 < ri — 0 (k — o0), and any Lebesgue integrable f, if u is the
Lebesgue measure on RY, d € N. For ry := 1/k, x € R? and f € £>(u) writing

fB,-A (x) fdu

Wl = By

we get
lux(f,x)] <l fllc forallk € Nandall x € RY.
Therefore, if we choose a free ultrafilter I/ on N, then there exists

Yi(Hx):= }irlr}uk(f,x) forall f € £(u) and x € R?
&

and ¥ € G(u), since by Lebesgue’s result ¥ (f) = f a.e. (u), hence ¥ € L>(u) by
completeness of p while all the other properties of a linear lifting follow for ¥ by
definition. This result can be generalized to more general measure spaces with suitable
derivation bases. For d = 1, u the Lebesgue measure on ]—m, ] similar results are
obtained by Cesar6 and Abel summability for the Fourier series of a Lebesgue integrable
function f on ]—r, ]. In fact, if

T

1
Un(x)‘_-2 f(f)K,,(X—t)d[l(t)
T J-n

is the nth Cesaré-mean,

I /sin%t 2
Kp(x)=—| —=
n\ sin3
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the Fejér kernel, and
1 m
fr (@) =a= FOP@O—-t)du@t), 0<r<l1, -mr<0<n
-

is the harmonic of f, where P,(8) := (1 —r>)/(1 — 2rcos@ + r2) denotes the Poisson
kernel of f, then lim,_, 0, (x) = f(x) by a theorem of Lebesgue (1905) (see Zygmund
(1968, 3.9, p. 90)) and lim,_,; f,(x) = f(x) for a.a. x € ]—m, 7] by Fatou (1906) (see
Hoffmann (1965)). If f, := fi—y/u then again |o,(x)l, |fu()] < Ifllx for n € N,
x €l—n, ] for all f € £>2(u) and if the ultrafilter I{ is chosen as above, then by means
of

Ya(f)(x) :=limo,(x), ¥3(f)x):=lim f,(x), xe€l-mn, 7],
neld neld

can be defined ¥2, ¥3 € G(1).

There are two procedures (both due to A. and C. Ionescu Tulcea (1969a)) for converting
a linear lifting ¢ € G(u) into a lifting in A () provided the basic measure space is
complete. First note that by means of

v ={y(xa) =1}, ¥(A):={¥(xa)>0} fordeX

we can define ¥ € 9 (u), ¥ € Y(u) with ¥ = () (see (1969a, p. 36)), so a solution
is given by choosing a p € A(p) with ¥(A) C p(A) € ¥ (A) for A € X, according
to Theorem 2.1. Then apply Proposition 3.1 of this section. But according to A. and
C. Ionescu Tulcea (1969a, Chapter I1I, Section 2, Theorem 1), there is no need for resorting
to liftings for sets due to the following result paralleling Theorem 2.1.

THEOREM 3.3. Let be given a complete measure space ($2, X, ). For any ¥ € G(1)
the set Gy = {v € G(U): Xy(a) < U(xa) < X7y A € Z} is a non-empty, convex and
compact subset of the locally convex space RE™ W An element p € Gy is extremal in
Gy if and only if p is a lifting for L (n).

The existence of an extremal element in Gy follows now from the Krein—-Milman
theorem.

In general measure spaces there are no “natural” linear liftings at hand, a situation very
similar to that for densities. But again there is an inductive construction which parallels
that one for densities in Section 2.

LEMMA 3.4. If (2, X, 1), n, A and 7 are as in Lemma 2.3 of Section 2 then for each
_1/[_ € G(u | n) there exists a ¥ € G(u | 77) extending . For ¥ € A> (i | n) may be chosen
Ve AC(u| 7).
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First note that £(u [ 77) = {fxa + gxac: frg € LS | n)}, and if B,C € n are
defined as in Lemma 2.3 of Section 2 then put

Y(fxa+8gxa):=v(fxp+gxp)xa+y(fxce+gxc)xae

for f, g € L(u | n), a formula completely analogous to the corresponding formula for
densities in Lemma 2.3 of Section 2 (see Graf and von Weizsicker (1976, p. 156)).

LEMMA 3.5. If (82, X, i) is a complete probability space, (N )neN and N are as in
Lemma 2.4 of Section 2 then for all ¥, € G(u | ny) with Yy | 1y = Y if m < n € N there
exists a Yoo € G | o) satisfying Yo | ny = ¥y forn € N,

As in the above examples choose again a free ultrafilter { on N and put
Voo (@) 1= 113/1 Y (Ey, (N)(@) for fe L] nx), we 2.
n

(Here lim, ;4 could be replaced by any Banach limit, see Dunford and Schwartz (1958,
Chapter II, 4.22-23).) The existence of the limit is guaranteed by [, (E,, (f)(w)]| <
[fllo for n € N and w € 2. Now Doob’s martingale convergence theorem implies
Yoo(f) = f ae. (1] ns). Since (2, X, u) is assumed to be complete this implies
Yoo (f) € L(u | nc). All other properties of a linear lifting are immediate by the
definition of ¥ as a limit. Using Lemmata 3.4 and 3.5 for linear liftings in the same
way as for densities in Section 2 in an inductive proof taking exactly the same steps (A)
to (F) exhibited after Theorem 2.5 we get extension theorems for linear liftings and in the
same way as for densities the (non-empty) class AG(u) of admissible linear liftings. But
note that we need completeness of the basic measure space.

THEOREM 3.6. If (2, X, ) is a strictly localizable, complete measure space and 1 a
o -subalgebra of X with Xy C n then for any ¢ € G(u | n) there exists a § € G(u) with
vin=y.

If we take here n as the o-algebra generated by Xy then the existence of a linear
lifting follows. It should be however noted that according to Burke and Shelah (1992)
it is consistent with ZFC, the Zermelo-Fraenkel set theory including the axiom of choice,
that £%°(u) admits no linear lifting for many non-complete probability spaces including
Borel measure space on [0, 1]. For this reason there is no need for stating an existence
result for linear liftings on strictly localizable complete measure spaces, since there the
better result of the existence of liftings is available. In the context of extensions naturally
arises the problem of mapping of liftings and densities.

THEOREM 3.7. Let (2,X,u) and (@,T.v) be measure spaces together with a
measurable map f: 2 — © such that v = f(u) is the image measure of u under f. If
(2, X, w) is strictly localizable then for every { € $(v) there exists a § € ¥ () such that

s(fB) = (c(B) ©
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forall B eT. Ifinaddition (§2, X, 11) is complete then for given { € A(v) we may choose
§ € A(u) satisfying equation (C) and in that case we have

8Cho fY=¢%h)o f (C*)
forall h € L(v).

In fact, if 5 is the o-subalgebra of X generated by Xy and {f~"(B): B €T}, adensity
8o for p | n is defined by means of §p(A) := f”'({(B)) if Acnand A= f~Y(B) for
some B € T. By Theorem 2.5 we can extend 8 to a density § on X. If ¢ is a lifting then 8¢
is too and we can apply Theorem 2.6 to extend it to a lifting on X because (£2, X, u) is
assumed to be complete.

Since we have applied extension theorems for getting § from ¢ it it obvious that § is
not uniquely determined by ¢ via the equation (C). We call any § € ¢ (u) satisfying the
equation (C) an inverse density of { and write f~'(¢) for the class of all inverse densities
for {. On the other hand for a surjective map f any ¢ € #(v) satisfying (C) is uniquely
determined by & € ®(u) since then ¢(B) = f(8(f~'(B))) for B € T. For this reason we
call ¢ the direct density of § and write ¢ = f(§). In the same way we can define the inverse
lifting and the direct lifting. But note that for given p € A(u) in general no direct lifting
exists. Clearly |_J ceon | ~1(¢) is the class of all densities for u having a direct density, and
similarly for liftings, but no inner characterization for the elements in this class is known
and as yet very poor partial results can be given, e.g., if T :={B € ©: f“ (B)} and f
is injective then for any p € A(u) there exists a direct lifting, see Macheras and Strauss
(1992, Lemma 2.2). We refer to Kupka (1983) for his ‘projection’ Theorem 2.7 which gives
a positive result for the ‘projection’ of strong liftings in the presence of a disintegration.
Another way of projecting from products onto its factors is discussed by Macheras and
Strauss (2000).

For linear liftings similar results as for liftings can be obtained by an application of the
extension Theorem 3.6.

THEOREM 3.8. If (82, X, u) is a complete, strictly localizable measure space and the
map f is surjective then for each ¢ € G(v) exists a y € G(u) such that

Y(hof)=(pm)of (€>)
Sforall h € L (v). Again ¥ can be chosen as a lifting if ¢ is a lifting.

Starting from the last theorem the inverse and direct linear lifting can be defined in
analogy to the inverse and direct lifting. Note that the equation (C>) implies ¥ € f -! (¢)
and ¢ € f7' (@) if ¥ is the lower density defined by ¥ (A) := { (x4) = 1} and ¥ is the
upper density defined by the formula ¥ (A) 1= {¥/(x4) > 0} for A € X.

The above indicated construction of linear liftings by means of de Possel derivation has
some sort of converse. As a preparation we need the following result in which (i), (ii),
(iii) were given by Maharam (1958), Theorem 4 for lifted sets. It is remarkable in itself
since in general uncountable unions of measurable sets are no longer measurable, but it
has interesting consequences in addition.
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THEOREM 3.9. Let be given a c.l.d. measure space (£2, X, u) with a density § € 9 ().
Then for every non-empty collection B C X with B € 8(B) for B € B we have
i UBeZx;

(i) UB S Upepd(B) S 8(UB):

(ili) \/ gep B* = (UB)* (\/ denotes the upper bound of B in ¥ /);

(iv) £2¢:= UAe):f 3(A) € X and 20 = 2 a.e. (u);

(v) supgeg u(B) = u(lB) if B is directed upwards;

(vi) (82, X, ) is localizable.

There is a corresponding version for liftings of functions given by A. and C. Ionescu
Tulcea (1969a). J. Gapaillard asserts condition (i) of the last theorem for monotonous
liftings with a proof being convincing at least for finite measure spaces. As a first
consequence of Theorem 3.9 we get Vitali derivation bases (see Kolzow (1968, Section 12)

for definition) in c.l.d. measure spaces with lifting by means of the next result of Kdlzow
(1968).

THEOREM 3.10. For given c.l.d. measure space (2, X', u) with a lifting p € A(u) put
R := UAGEf p(A) and define g,(w) :={Ae X;: we ACp(A)} and ay(w) == {g: gis
a cofinal subset of g,(w)} for @ € R. Then (a,(w))wer is a strong Vitali derivation basis.

If conversely a weak Vitali derivation basis a = (a(@))wer. R € Xp is givenin a c.ld.
measure space (£2, X, u) we define the lower de Possel derivative with respect to a

d
Dy(f)@ = inf limingal
gealw) A€g 'u,(A)

for all locally integrable functions, i.e., all X-measurable functions such that f x4 is u-
integrable forall A € Xf, and w € 2. Put D,(A) :={ D ,(xa) = 1} for A € X'. Then D,
is a density for s which can be converted into a lifting by Theorem 2.1, i.e., we have the
converse of Theorem 3.10 which is also due to Kolzow (1968), see also C. Ionescu Tulcea
(1971) and Sion (1973).

COROLLARY 3.11. For each c.l.d. measure space (§2, X, ) with u(§2) > 0 there exists
a lifting if and only if the measure space has a weak (strong) Vitali derivation basis.

In the situation of Theorem 3.10 the upper and lower de Possel derivatives with respect
to a,, are given by

_ d
D(f) () = limsup Jafdn D(f)(@) = liminf Jatfdr

A€a,(w) u(A) Aeaptw) p(A)

for all locally integrable functions, i.e., for all £ -measurable functions such that fxa is u-
integrable forall Ae X'y and all w € R := UAE):/_ p(A). If in addition R = §2 then they

satisfy D(f)=D(f) = p(f) for all f € L>(u), i.e., the lifting appears as a de Possel
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derivation. The assumption |, 5 p(A) = £2 is trivially satisfied for every probability
space and can be achieved for any o -finite measure space.

A linear lifting p for £”(u) is a positive linear map from £7(u) into L (u) satisfying
the basic properties (11) and (12) of liftings, where £”(u) is the Banach space of all finitely
real-valued functions f € £%(u) with flpy:= f1fldu < oo, for 1 < p < 00. A. and
C. Ionescu Tulcea (1969a, Chapter IV, Section 4, Theorem 6) noticed that there can’t
exist a linear lifting for £7(u), 1 < p < o0, if there exists a non-negligible measurable
set A which is diffuse, i.e., whose class A®* € X'/u does not contain any atom (a similar
conclusion holds true in case p = 0 under an obvious definition of the linear lifting for
Lo(uw)).

With a similar proof one can see that under the same assumption there can’t exist a lifting
p € A(u) satisfying the additional condition p((0)2, Ay) = [}, p(An) if Ay € £,
n € N, in fact only the properties (L1) and (L2) of a lifting are needed for this conclusion.

All these results are on the basis of ZFC, the Zermelo—Fraenkel set theory including the
axiom of choice. In Solovay’s model of Zermelo—Fraenkel set theory (where the axiom of
choice fails) the above mentioned proof for the non-existence of a linear lifting for £ (i)
in case 1 < p < oo carries over to the case p = 0o since (L>(u)) = L'(1) (a result of
Christensen (1974)), hence G(u) = @ for Lebesgue measure u, saying again that some
sort of non-constructive tool like the axiom of choice is needed for an existence proof of a
lifting even for Lebesgue measure (see Graf and von Weizsicker (1976)).

4. Liftings on topological spaces

Throughout this section (£2,7, X, u) is a pretopological measure space with (£2,7)
being Hausdorff. Theorem 3.9 gives raise to two classical “lifting topologies” of A. and
C. Ionescu Tulcea (1969a), which according to A. and C. Ionescu Tulcea (1964b, p. 445)
are partially tracing back to J.C. Oxtoby and which convert lifted functions into functions
continuous with respect to the lifting topology. For given measure space (£2, X, u) and
8 € ¥ () the collection D5 :={8(A): A € X'} is a basis for a topology 75 on £2. We don’t
assert t5 C X' at the moment, but it follows from Theorem 3.9 that s N 2 C 15 :={A €
X ACS(A)}.

The next theorem gives a collection of the basic properties of the densiry and lifting
topologies ts, 15, t,, and 7, taken from A. and C. Ionescu Tulcea (1969a) and A. Ionescu
Tulcea (1967a). Before we state it, we need a definition. If (§2, 7, X', u) is a pretopological
measure space, a density § € #(u) is called 7 -strong, if G C §(G) forall G e TN X, and
topologies 7 satisfying such a condition are called compatible with § by A. and C. lonescu
Tulcea (1969a). It is well known that the Lebesgue density D on the Lebesgue measure
space on RY is £4-strong for the euclidean topology £¢ on RY, and so is any lifting p
for the Lebesgue measure satisfying D(A) C p(A) for all A € X (such liftings exist by
Theorem 2.1).

THEOREM 4.1. For given c.l.d. measure spaces (2, X, p) with § € 9(u) and p € A(w)
we have the following results.
(IR 7 RN
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(it) 15 N Zp =0 and for all A € X there exists a G € 15 with AAG € Xy.
(iii) A subset K C §2 is of the st category with respect to the topology ts if and only
if K is closed and nowhere dense or equivalently if K € Xy.
(iv) The topologies t, and 1, are extremally disconnected and t,, C 7.
(v) The topology t, (hence t,,) is Hausdorff if the set {p(A): A € X} separates the
points of 2.
(vi) Cg(£2,1,) = Cg(£2,71p) = (0°(f): fe Lo} and p°(f) is the unique contin-
uous function with respect to t,, (respectively, 1,) in f*.
(iD) Cp(R2.1) = Ch(£2,7,) = (p¥(f): f € LX)},
(vii) Ift, is Hausdorff then the Stone space of the measure algebra X | Xy is the Stone
Cech compactification of (§2, t,).
If T € (ty, 15} we can add the following conditions:
(ix) We have clT(A)=p(A) forall AcT and X = B(£2, t,,).
(X) p is the unique T -strong lifting for the topological measure space (2,7, X, p1).
(x1) The topological measure space (2,7, X, i) is a quasi-Radon measure space.

Here (i) follows from Theorem 3.9 and (ii) and (iii) are from A. Ionescu Tulcea (1967a).
A proof for (iv) to (viii) is available in A. and C. Ionescu Tulcea (1969a, Chapter V,
Section 3), as well as the equation Cg(82,1,) = C5(£2,15) in (V).

If 6 is the Lebesgue density (see Section 2) of the Lebesgue measure space (£2, X, i)
on R and p is a lifting with §(A) € p(A) for A € X then 1, is completely regular and
t, =1, by A. and C. Ionescu Tulcea (1969a, Chapter V, Section 4, Theorem 2). But there
exists a pp € A(u) such that 7, is finer than the euclidean topology on R and t,, # 7y,.
For any A € A(u) with 7, finer than the euclidean topology on R the topology 73 is not
normal and every 1, -compact K C R is finite by A. Ionescu Tulcea (1967a).

It is now easy to see that generally the topological measure space (£2,7, %, u)
from (vii) will not be a Radon measure space. Take for instance as (£2, X', ) the Lebesgue
measure space with 7 := 1, for a lifting p € A(u) for which 7, is finer than the euclidean
topology £ on R. Since by the above remark any 7,-compact subset K of R is finite the
inner regularity u(A) = sup{u(K): K C A, K t,-compact} with respect to 7,-compact
subsets K of R can’t be true if u(A) > 0.

If (£2,2,u) and (@, T,v) are measure spaces, § € ¥(u), and ¢ € #(v) then a
X -T-measurable map f:2 — © is ts5—71,-continuous if and only if f’l({(B)) -
8(f~'(¢(B))) for all B € T. If moreover 8 € A(u), and ¢ € A(v) these conditions are
equivalent with f~'(¢(B)) =8(f~1(B)) forall B € T as well as with {(h) o f = 8(ho f)
forall h € L>(1).

PROPOSITION 4.2. If (2,7, X, u) and (@, S, T, v) are topological measure spaces, the
map f is a T-S-continuous surjection, and f(8) exists for § € 9 (i), then f(8) is T -strong
provided § is T -strong.

But note that under the assumptions of Proposition 4.2 for a strong lifting ¢ for v an
inverse lifting § € £ ~'(¢) needs not to be strong, see the example before Theorem 6.20.

As we state below, the last theorem gives in fact a topological characterization for ¢.1.d.
measure spaces having a lifting and there are again characterizations by weaker types of
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“liftings” in an abounding number, hence we can mention only the most spectacular ones.
We call a map ¢ from £°(u) into itself satisfying the properties (11), (12) a monotonous
lifting if in addition () < @(g) for f, g € L(u) and f < g, itis called a bounded linear
lifting if ¢ is a linear map with {j¢] := sup{lo()II/I fllx: O < [ flloc < 00} < 00, where
| £\ is the strict supremum and || f ||~ the essential supremum of a function f € £L>(w),
it is called a function lower respectively upper density if o(f A g) = ¢(f) A ¢(g) and
o(f Vg =¢(f)Ve(g), respectively for f, g € L>(u).

THEOREM 4.3. For given c.l.d. measure spaces ($2. X, 1) the following conditions are
all equivalent with the existence of a lifting for L (u).
(i) There exists a topology T < X such that the topological measure space
(82,7, X, u) is a category measure space.
(ii) There exists a topology T C X such that T N\ Xy =¥ and a set K C 2 is of first
category if and only if it is closed and nowhere dense in 2.

(iil) There exists a topology T < X such that card(f* N Cp(2)) =1 for any f €
L2°(u), where Cp(82) denotes the space of all T -continuous, bounded real-valued
functions on §2.

(iv) There exists a monotonous lifting for L (u).

(v) There exists a function lower respectively upper density for £ (u1).

(vi) There exists a linear lifting for L£L> (u).

(vil) There exists a bounded linear lifting ¢ for L= (u) of norm ||p| < 3.

For (i) and (ii) compare Graf (1973), for the sophisticated equivalence proof for (vii) see
Erben (1983), where an example is given that the bound 3 cannot be improved.

We call § € #(p) (and ¥ € G(u)) almost T -strong, if there exists a set N € Xy such
that for all G € 7T N X follows G \ N € §(G) (respectively ¢ (f) | N = f | N for all
f € Cp(§2) N L>¥(u)). § and v are called T -strong in case N = @. It is obvious that
3 € ¥(u) is T-strong if and only if 7 < 5.

If £, is the euclidean topology of R¢ then it is well known that the Lebesgue density D
and any lifting p for the Lebesgue measure with D(A) € p(A) for A € X' are &;-strong,
and so are the linear liftings v, ¥» from Section 3 obtained by L. Fejér’s theorem (see
Hoffmann (1965, pages 20 and 33)). Any hyperstonian space has a uniquely determined
strong lifting, which is given by choosing the unique continuous function from each
equivalence class of L?(u). For any complete measure space (£2, X, u) any p € A(u)
is 1,-strong as well as 1,-strong by the definition of 1, and 7,,.

PROPOSITION 4.4. If the topology T is T;1 then for each p € A(u) the following
conditions are equivalent. i
(1) p is almost T -strong.
(ii) p*™ is almost T -strong.
(iii) There exists a N € Xy such that p(F) € F UN forall closed F € X.
(iv) There exists a N € Xy such that po(f) [N = f|Nforall feC($2)N Lo,
where C(§2) denotes the space of all continuous functions from 2 into R.
(v) There existsa N € X such that p>*(f)| N = f | N forall f € Cp(R2)NL> (),
where Cp,(2) denotes the space of all bounded continuous functions from §2 into R.
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Here we can choose the same set N € Xy in (i) to (iv), where in particular N = @ for
T -strong p and remember that p, p>=, and p° are in biunique correspondence by means
of the equations p>°(x4) = p°(x4) = Xpia) for Ae X.

The implication (i) = (iv) is quickly achieved by observing % = po if po( =
sup{r € Q: w € p({f > r})} since then po(f) | N = f| N for f € C(£2) and po(— f) =
—po(f) hence po(f) | N® = f | N© if if p is almost 7 -strong with universal set N € X.
The implication (iv) = (ii) and the equivalence of (i) and (ii) are obvious.

Moreover (ii) = (i) works for almost 7 -strong ¥ € G(u), since for a T, 1 topology T
follows xc = sup{h € Cp(R2): h < xg} if G € T hence xg\~v < ¥(x6) |'N¢ therefore
G\NCy¥(G)forG e X NT if ¢ is defined by ¢ (A) = {¢(x4) =1} for A € X, where
for p € AT[,L) follows p=p.So we have in addition the following result.

PROPOSITION 4.5. [fthe topology T is T, and the measure space (2, X, j1) is complete

then the existence of a T -almost strong density for . is equivalent with the existence of a
T -almost strong (linear) lifting. Here we may replace “almost strong” by “strong”.

If a topological measure space admits a 7 -strong density its measure has to be of full
support, i.e., supp(p) = §2, since then for all G € 7 follows G = from G € Xy. The
notion of the almost strong lifting allows us to cover in full generality the cases with
supp(u) # §2, for which the notion of strong lifting is inappropriate.

PROPOSITION 4.6. If (2, X, u) is a complete measure space with supp(u) = £2, then
Sfrom the existence of a T -almost strong lifting for u follows the existence of a T -strong

lifting.

This is easily achieved for p € A(u) with G\ N C p(G) for Ge TN X, N € X by
choosing an ultrafilter /(w) finer than the filter basis {G € T: w € G} for w € N and
putting

(A :=(p(A)NN)U{weN: AcU(w)} forAeX.

The space (2,7, X, ) (or just w) has the almost strong lifting property (ASLP for short),
if there exists an almost 7 -strong lifting for . Since for general spaces (2, 7, X, u) there
is no “natural” candidate for an almost strong lifting, one possible issue is to check whether
arbitrary liftings are almost strong. This leads to the stronger notion of universal strong
lifting property (USLP for short), which says that A(u) # ¥ and every p € A(u) is almost
T -strong. Results sufficient for applications (polish spaces) rely on the next result which is
a generalization of a result from Maher (1978), see also Fremlin (200?), and Macheras and
Strauss (1996a). Before we state it we need a modification of the purely topological notion
of network (see Gruenhage (1984)). A family F C X is called a measurable network for
the pretopological measure space (£2, 7, X, u) if for each G € 7 there exists a subfamily
G € F such that G = UG; we denote by mnw(u) the least cardinal of a measurable
network for (2,7, X, u).
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LEMMA 4.7. If (2,7, X, u) is a pretopological measure space with a measurable
network F then p € A(u) is almost T -strong if there exists N € Xy such that G\ N C
p(G) forall G € F.

The last lemma remains true if we replace liftings by monotonous liftings.

It follows that a complete topological measure space (£2. 7, X, ) has the USLP if there
exists a cardinal ® with mnw(u) < R and if for any family A C X with card(A) < 8 and
u(A) =20 for A € A follows UA € ¥ and u(UA) = 0. Indeed for given lifting p € A(n)
apply Lemma 4.7 for N := . (F \ p(F)) if F is a measurable network of cardinality
mnw{(u). For R = R this gives the next result of Fremlin (2007, 453F).

COROLLARY 4.8. A complete strictly localizable topological measure space (2.7, X, 1)
with a countable measurable network has the USLP.

In particular a complete strictly localizable topological measure spaces (§2,7, X, )
possesses the USLP if their topology 7 is second countable. This is an improvement
of a result of Graf (1975), see Maher (1978). In particular, polish as well as locally
compact metrizable measure spaces have the USLP (see A. and C. lonescu Tulcea
(1969a, Chapter VII, Theorem 8)). The next result is from Macheras, Musiat and Strauss
(2007a).

PROPOSITION 4.9. Let (2,7, X, 1) and (©, 8., T, v) be Borel probability spaces and
f 182 > © a measure preserving map. Suppose that v admits a strong lifting T which has
an almost strong inverse image lifting in A(u). Then there exists a strong inverse lifting
p € A(w) of T under f if and only if f~'(t(B)) NG # @ implies u(f~Y(B)YNG) > 0 for
allBeSandallGeT.

To sketch the proof of the above proposition, let ¢ € A(u) be an almost strong inverse
lifting of 7 under f. Then there exists a null set N € X such that

GC9(GYUN foreachGeT.
Foreachw € N, let

A(w):={A: Ae f7U(T), we pA)},
Ew):={f""(G): GeS, flw)eG}.

and
H(w):={ANG: Ac Aw), G €& (w)}
and F(w) € X be the filter defined by

F(w):={E € £: IF € H(w) with F € E ae. (u)}.
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Define a density 6 € ¢ (1) by means of
P(E) :=[@(E)NN]Up*(E) foreachE € X,

where p*(E) :={w e N: E € F(w)).

It can be shown that 5 € ®(u) N f~'(7) and that § is strong. By Theorem 2.1 there
exists a p € A(u) such that 5(E) C p(E) for each E € X. It follows that p is a strong
inverse lifting of 7 under f.

A measure p on a totally ordered space (2, <) is a measure defined on the Borel o-
algebra B($2) generated by the order topology, X is the completion of B5(£2) under u,
where we denote the extension of u to X again by u. Then the quadruple (£2, <, X', u)
is called a rotally ordered measure space. For such spaces Sapounakis (1983) proved the
existence of strong liftings.

THEOREM 4.10. Let (£2,<, X, ) be a totally ordered measure space such that its
measure is of full support. Then there exists a strong lifting for .

For Baire and Borel measure spaces necessary conditions for the ASLP are given by
Babiker and Strauss (1980a) as well as by K.P. Dalgas.

PROPOSITION 4.11. If (2,7, B, u) is a Baire measure space with finite measure and a
completely regular topology T then the ASLP implies that the measure [ is T-additive and
completion regular. For any topological measure space (2,7, B, i) with the ASLP the
measure [ is necessarily T-additive.

It follows, e.g., that the Wiener measure restricted to the completion of the Baire o-
algebra on RI%!l does not have the ASLP. But the Wiener measure considered on the
completion of the Borel o -algebra has the USLP (see, e.g., Macheras and Strauss (1996b)).

Clearly the last proposition raises the problem whether the necessary conditions for the
ASLP given there are sufficient? By Babiker and Knowles (1978), there exists a Baire
measure space (§2,7, B, u) with compact £2, finite and non-atomic p of full support,
that is t-additive but not completion regular. This space is an example of a compact Baire
measure space without the ASLP.

Fremlin (1979) has given an example of a Radon measure space on a compact set with
completion regular p of full support but without the ASLP, improving a result of Losert
(1979) which lacked completion regularity. The completion regularity is of interest here
because in important known cases where the ASLP holds true, the completion regularity is
also fulfilled. Mokobodzki (1975) and Fremlin (1977) gave a converse for Proposition 4.11.
It was noticed by Dalgas that this result is the main step towards a result on strong Borel
liftings improving the result of Mokobodzki and Fremlin. In the subsequent theorem of
Dalgas (1997?) ¢ stands for the cardinal of the set of reals. Different approaches have been
given by Musial (1973) and Lloyd (1974).

THEOREM 4.12 (CH). Let be given a topological measure space (2,7, X2, 1) with
finite measure p and T possessing a basis of the cardinality less or equal to ¢. Then,
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(82,7, X, 1) has a strong Borel lifting if and only if ¥ C B, supp(u) = 2, and p is
T-additive (B, is the completion of B($2) with respect to u|B(82)). The theorem remains
true for o-finite pu if wu is moderated or all finite Borel measures on (2,7, X, p) are
T-additive.

The proof of the last result relies on the following theorem of Fremlin (1977).

THEOREM 4.13. Let be given a topological measure space (2,7, X, u) with ¥ C B,
satisfying the following conditions.
(i) For any A€ ¥ and any G € T with uy(AN G) =0 for all G € G follows
n(ANUG) =0.
(ii) If « is the cardinal of the measure algebra X /i then the union of fewer than k sets
of measure zero is measurable and of measure zero.
(iii) supp(u) = £2.
Then there exists a strong Borel lifting for (2, 7. X, u).

Burke (1993a, Proposition 3.6) gives an elementary proof that the existence of a Borel
lifting for the Borel-Lebesgue measure space on [0, 1] implies already the existence of a
strong Borel lifting for this measure space. It follows from the example of Losert (1979)
that the Theorem 4.12 is no longer valid without the cardinality restriction. Dalgas gives
an example that for o-finite measures spaces additional hypotheses must be imposed
for a corresponding characterization. Mauldin (1978) gives related results, following the
original results of von Neumann (1931). The first one states that subject to the continuum
hypothesis, any Borel measure space (£2, 7, B, 1) has a Borel lifting if (£2, B(£2)) is Borel
isomorphic to a universally measurable subset of the unit interval [0, 1} of the reals, thus
generalizing a result of A. and C. Ionescu Tulcea (1969a, p. 182). The second one applies
Martin’s axiom to construct liftings ranging in the c-algebra B (§2) of the topological
space (§2,7), i.e., in the the smallest algebra containing the Borel o -algebra B(§2) and
being closed under unions of less than ¢ sets. If the continuum hypothesis does not hold
true the c-algebra may be much larger than the Borel o -algebra. This result is one of the
very few ones in lifting theory applying Martin’s axiom. For more results on Borel liftings
we refer to Section 5 on translation invariant liftings.

Assuming the continuum hypothesis, first existence results for strong Baire liftings have
been given by Losert (1980), see also Talagrand (1978a), for a restricted class of measures,
i.e., for any product of less than or equal to ®> Radon probability measures of full support,
each on a compact metric space. Grekas and Gryllakis (1992) improved this result as well
as a result of their own from 1991 by the following theorem.

THEOREM 4.14 (CH). Subject to the continuum hypothesis every product of less than or
equal to Ry many completion regular probability measures, each supported on a product
of less than or equal to X1 many compact metric spaces admits a strong Baire lifting.

The proof is based on a result for measures on product spaces satisfying a certain
condition which reduces in case of compact metric factor spaces to completion regularity.
The next theorem from Babiker and Strauss (1980a) gives necessary and sufficient
conditions for the USLP.
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THEOREM 4.15. Let (82,7 ) be a locally metrizable space. Then a Borel measure space
(2,7, X, p) with a finite measure i has the USLP if and only if p is T-additive, and a
Baire measure space (£2, T, B, u) with finite measure u and completely regular topology
T has the USLP if and only if u is t-additive and completion regular.

This theorem implies that under the mild set theoretic assumption of the non-existence

of measurable cardinals every metrizable space with finite Borel or Baire measure has the
USLP.

COROLLARY 4.16. Suppose that every closed discrete subspace of the metric space
(2, T) has non-measurable cardinality. Then every Baire (respectively Borel) measure
space (§2,T, B, i) with a finite measure y has the USLP.

For existence of strong liftings on products and projective limits, respectively we refer
to the Sections 6.2 and 6.3 below.

The interest in strong liftings comes from the following theorem of A. and C. Ionescu
Tulcea (1969a) on the existence of strict disintegrations (see the same book for terminol-

ogy).

THEOREM 4.17. A finite Radon measure space (2,7, X, u) over a compact set §2 with
supp(u) = $2 has the ASLP if and only if for each Radon measure space (X, S, A, v) over
a compact set X and each continuous surjection p: §2 — X with v = p(u) there exists a
strict disintegration of v with respect to p.

The notion of a strong lifting has been generalized to the so-called H-lifting, for which
we refer to Levin (1975) and for existence to Babiker and Strauss (1980a, 1980c¢). Bichteler
(1970, 1971) shows that the problem of the existence of strong liftings for Radon measures
on locally compact Hausdorff spaces can be reduced to the problem of the existence of
strong liftings for Radon measures on products of unit intervals. Bichteler (1972) shows
that the set of all signed Radon measures p on a locally compact Hausdorff space X such
that {u| admits an almost strong lifting is a band in the Dedekind complete lattice of all
Radon measures on X, see also Bichteler (1973) as well as C. Ionescu Tulcea and Maher
(1971).

For weakenings of the notion of strong lifting such as the so-called almost strong pre-
density, the idempotent lifting, and the almost t-continuous lifting, respectively we refer to
Bichteler (1972), Georgiou (1974), Grekas (1989), and Rinkewitz (1997), respectively.

5. Liftings on topological groups

Throughout this section a ropological group X carrying Haar measures together with its
o-algebra X' of Haar measurable sets (the common domain of all its left and right Haar
measures) and a left Haar measure ¢ on X' are given. Then (X, X, u) is called a Haar
measure space over X by Fremlin (200?). (The case of a right Haar measure can be reduced
to that of the left one.) The map x € X — x~! € X is the inversion operation. For s € X,
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AC X,and f: X — K we consider sA := {sx: x € A}, the left s-translate of A as well as
v (s) f, the left s-translate of f defined by means of

(y()f)(x):= f(s™'x) forallx € X.

A density § € ¥ (i) and a linear lifting ¢ € G(u), respectively is called left-translation
invariant if

8(sA)=s56(A) forall Ae Y andallse X

and

Y(y)f) =y)(¥(f)) forall f e LX(u)andalls € X,

respectively. If again (see Section 3) p> and p° are the liftings for functions in L ()
and [:%(/L) uniquely generated by a lifting o € A(u), then p is left-translation invariant if

and only if o> and p° are such.

In the above definition we have fixed explicitly a Haar measure u on X for easier
reference. But the definition of a left-translation invariant density and (linear) lifting is
completely independent of this choice, since all left (and right) Haar measures produce
the same domain X and the same null sets X. For this reason we can speak of Haar
densities and Haar (linear) liftings. In Abelian groups we simply speak on translation
invariant densities and (linear) liftings. For the next proposition compare A. and C. lonescu
Tulcea (1967, Section 3, Proposition 1) and Fremlin (200?, 448C).

PROPOSITION 5.1. Any left-translation invariant linear lifting is strong. The same holds
true for translation invariant densities.

The Lebesgue density D defined in Section 2 for the Lebesgue measure space on R, de
N, is translation invariant and similarly the examples ¥, ¥3 quoted in Section 3 provide
translation invariant linear liftings on the circle group. A. and C. Ionescu Tulcea (1967,
p. 90), show that in contrast to the uniqueness of the Haar measure, Haar densities are by
no means uniquely determined even in case of the Lebesgue measure on the real line. By
the next two theorems (which are the analogues of the Theorems 2.1 and 3.3, respectively)
translation invariant densities and linear liftings can be converted into translation invariant
liftings.

THEOREM 5.2. For any left-translation invariant density 8 for u there exists a left-
translation invariant lifting p for u with 6(A) C p(A) forall A € X.

In fact by Theorem 2.1 we may first choose a T € A(u) with §(A) S 7(A) forallAe X
and then take

p(A) :={x e X: eer(x_‘A)] forall A e X,

where e denotes the identity of X.
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THEOREM 5.3. For any left-translation invariant linear lifting  for u there exists an
extremal element p € Gy, (see Theorem 3.3 for the definition) which is a left-translation
invariant lifting for u.

Compare A. and C. Ionescu Tulcea (1967, Section 6, Corollary 3) for the last theorem.

The construction of left-translation invariant densities and linear liftings goes through
the induction steps (A) to (E) lined out for Theorem 2.5. But these steps become now more
complicated since the construction has to run through translation invariant o -subalgebras.
In particular, in the step from an ordinal « to its successor ordinal @ + 1 the extra difficulties
are a consequence of the fact that translation invariant o -subalgebra for o+ 1 is much larger
than that one generated by the o-subalgebra for o and the new element which enters.
A. and C. Ionescu Tulcea (1967) had overcome these difficulties by exploiting special
structural properties of locally compact groups, in particular of Lie groups, getting the
next fundamental result.

THEOREM 5.4. For each Haar measure space (X, X, i) on a locally compact group X
there exists a left-translation invariant lifting.

The last step from a locally compact group to a group X carrying Haar measures which
we are going to state now has been done by Fremlin (200?) using the fact that for a Haar
measure space (X, X, u) on X there exists a Haar measure space (Z, T, v) on a locally
compact group Z and a continuous map f: X — Z suchthatv= f(u) and forall Ee€ ¥
there exists aset F € T with f "' (F)C Eand E\ f~'(F) € Xy.

COROLLARY 5.5. For any topological group carrying a Haar measure there exists a left-
translation invariant lifting adequate for all its Haar measures.

For the special group X = {0, 1}/ for a non-empty index set / with its “usual Haar
measure” the proof of the existence of a Haar density from Fremlin (2007, 345C), can be
modified to give a proof of the existence of an admissible translation invariant density and a
translation invariant admissible linear lifting being in particular a strong admissible density
and strong linear lifting, respectively.

By Theorem 5.2 there exists an admissibly generated translation invariant lifting, hence
by Proposition 5.1 an admissibly generated strong lifting.

Concerning translation invariant Borel liftings for Haar measure spaces Johnson (1980)
proved that in ZFC no translation invariant lifting for the Haar measure on the circle group
R/Z can be a Borel lifting. This result was extended by Talagrand (1982) to non discrete
compact Abelian groups. While R.A. Johnson used results from topological dynamics
on the circle group M. Talagrand’s proof is simpler since it is based on the well known
construction of the Cantor set. Generalizing Johnson’s procedure Kupka and Prikry (1983)
succeeded to extend M. Talagrand’s result to non-discrete (possibly non-Abelian) locally
compact groups replacing also Borel liftings by more general liftings p with Baire property,
i.e., p(A) is a set with Baire property for any A € X (note that every Borel set has this
property). M. Talagrand’s simpler method was developed for the non-Abelian case first by
Losert (1983) and subsequently by Burke (1993) who succeeded in the next stated theorem
to improve the result of J. Kupka and K. Prikry.
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THEOREM 5.6. In each non-discrete locally compact group X there exists a Borel set E
such that for an arbitrary left-translation invariant lifting p for the Haar measure space
(X, X, ), the set p(E) is not universally measurable and does not have the Baire property.

Here a set A C X is called universally measurable if A is p-measurable for every Radon
measure i on X.
Fremlin (1989) gives a list of open problems.

QUESTIONS 5.7. (1) Is there a cardinal « such that the Haar measure on {0, 1}* has no
Baire lifting?

This problem is connected with the next unsolved one about the existence of product
liftings (see Section 6 for the definition) in incomplete probability spaces.

(2) Do there exist product liftings for the Borel measure space on [0, 1]3?

(3) Does {0, 1}** possess a Borel lifting?

By Mokobodzki’s Theorem 2.7, subject to CH, the spaces {0, 1} fori =0, 1,2 have
Baire liftings.

According to Burke and Shelah (1992) it is consistently true with ZFC that there is no
Borel lifting on {0, 1}* for any «.

(4) Is the existence of a Borel lifting for {0, 1}* consistent with 2%0 5 Ry?

The problem of existence of translation invariant liftings has been generalized to the
problem of the existence of G-invariant (linear) liftings for a given set G of bi-measurable
maps s:£2 — $2 over a measure space (§2, X, i) by A. and C. Ionescu Tulcea (1969a,
p. 182) and Maher (1974, p. 69). Besides the positive solution for the group of left
translations in topological groups carrying Haar measures from above (see Corollary 5.5)
another positive solution was given by A. Ionescu Tulcea (1965) for the existence of a G-
invariant linear lifting if (£2, X, ) is strictly localizable and G is a countable amenable
group. On the other hand von Weizsidcker (1977) proved on the basis of a lemma on
automorphisms for complete Boolean algebras criteria for the non-existence of G-invariant
liftings. In particular he gives a maximality argument for the set of left translations
in the situation of Theorem 5.4, more precisely he showed in von Weizsicker (1976),
Corollary A.3. on the basis of his fixed-point result the next theorem.

THEOREM 5.8. If X is a connected locally compact group with left Haar measure then for
every set G of continuous bi-measurable and null-set preserving bijections on X which is
strictly larger than the set of all left translations there exists no lifting commuting with G.

6. Permanence of liftings

6.1. Liftings in products

We denote by ([T;¢; 21, Ric; Tir Rics i) or by &, (82i, Zi, i) or by (24, Zp, uy)
the product probability space of the probability spaces (2;, i, ;) (i € I) and ([];; $2:,

Ricr Zir Qjcrti) or Q¢ (82, Xy, ui) denotes its (Carathéodory) completion. For each
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@ # J C 1 we denote by (82, X, us) the product measure space ®iej(9,-, DTN
For any ¥ # J C I the canonical projection of £2; onto §2; is denoted by p;, where
pi := piy if i € I and the o -algebra p]l (X;) € X is written X'} For a probability space
(©, T, v) and a non-empty set I we write (@, T!,v!) for the product probability space
;s (82, Zi, ui) with all its factors (£2;, Z;, u;) equal to (@, T, v) fori € I.

If f is a function defined on [],.,; £22; and (w;,, ..., w;,) € [[i=1 2, are fixed, then
f(‘”il i) is the function on H,-e,\m ..... il £2; obtained from f by fixing (wi,, ..., ®;,).
In a similar way the sets E(,, ..., ) being sections of a set E C [[;; $2; are defined. In

case of the product of two spaces, we shall be using the notation f,, f ¢ and E,,, E? rather.

During the last fifteen years a good deal of research in lifting theory concentrated on the
problem of the existence of liftings compatible with the product structure of probability
spaces leading to different types of compatibility of increasing complication, starting from
Talagrand (1989).

Throughout what follows let be given a family {(§2;, X\, ii))ies of probability spaces
with index set [ # @ and a probability space (2, X, u) with 2 =2;,, XD Xy, u | &y =
pur-X@#£J C 1, then LY :={fopy: feL*(uy)} is the set of functions, determined
by coordinates in J. Moreover,

E 3
) A ;=p;‘(]'[A,-) forA; e Xi, iel

ied ied

and

®f,-:=(nf,~)opj for fi € LX(ui), i€l

iel iel

are the cylinder sets and functions, respectively. We call § € #(u) a product-density for u
if for all i € I exists §; € ¢ (u;) such that

* *
5(® A,-) =i (A) forall A;e X, i e F CI, Ffinite. (P)

ieF ieF

The &;, i € I are uniquely determined by § via (P) but conversely § is only uniquely
determined on the cylinder sets by the family (§;);; via (P). We therefore write § €
®;c; 8 and call &; the ith marginal of §. ¥,(p) is the class of all product-densities, and
Ap(u) :=0,() N A(u) is the class of all product-liftings for 1. Clearly the marginals of
any p € A,(p) arein A(u;) for i € I.In the same way we can define the class G, () of all
product linear liftings and the class Aff(p,) :=Gp(u) N A (u) of all product (function-)
liftings, where indeed p € A, () if and only if p> € A7 (1) and in that case the marginals
satisfy the equation (p;)>° = (p>); if i € I. The product-lifting was first investigated
in A. and C. Ionescu Tulcea (1969a, Chapter VIII). Then Talagrand (1982) introduced
a consistent lifting. A lifting p for a complete probability space (6, 7', v) is said to be
consistent if for each n € N there exists a product lifting p" € A(® v} with all its ith
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marginals equal to p for i = 1,...,n. Consistent densities can be defined in the same
way. The existence problem for consistent liftings has been definitely solved by Talagrand
(1989).

THEOREM 6.1. For each complete probability space (©.T.v) there exists a consistent
lifting p € A(v).

It is however not true that each lifting is consistent. Talagrand (1988) assuming (CH)
constructed such a Borel lifting p on [0, 1] with respect to Lebesgue measure that its
product p? defined on Borel rectangles by p2(A x B) = p(A) x p(B) cannot be extended
to a lifting on Lebesgue measurable subsets of the unit square (in particular it cannot be
also extended to a Borel lifting).

QUESTION 6.2 (cf. Burke (1993)). Can one produce in ZFC a lifting for Lebesgue measure
on [0, 1] such that ,02 does not extend to a lifting on [0, 1]3?

QUESTION 6.3 (¢f. Burke (1993)). Is it a theorem of ZFC that there is no Borel lifting p
on [0, 1] such that p> extends to a Borel lifting on [0, 1122

QUESTION 6.4 (A.H. Stone). Is there consistently a Borel lifting on [0, 1] of bounded
Borel class?

The existence of a product lifting in case of a product of arbitrary complete probability
spaces was solved by Macheras and Strauss (1996d). For an improvement of this result see
Theorem 6.11 below.

8 € ®(u) and ¥ € G(u) will be called respecting coordinates for y if §(X7}) € X7
and w(ﬁj) - /.I’j for all # £ J C I. The notion traces back to works of Burke (1995)
and Fremlin (2007?). For finite index set [ all the above concepts make sense for o -finite
measure spaces (£2;, X, u;), i € I, instead of probability spaces, since in that case there
exists a unique product measure. But again it is only a matter of technique to carry over
the results. So we are going to consider probability spaces only. The first essential result
concerning liftings respecting coordinates is due to Burke (1995). It has been obtained by
an application of a theorem of Erdés—Rado.

THEOREM 6.5. For any finite family (($2;, X;, u;))?_, of complete probability spaces

. .y S . .
there exists a lifting for @;_, ju; respecting coordinates.

Fremlin (200?, 345G), attempting to prove an infinite version of Theorem 6.5 took first
into account densities respecting coordinates. Applying D. Maharam’s theorem on the
structure of measure algebras (cf. Fremlin (1989, 3.9)) Fremlin (200?) has got the following
result.

THEOREM 6.6. For any family {($2;. X;, iti))ie: of complete probability spaces there
exists a separately additive density § for [i; respecting coordinates.
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Separate additivity above (D.H. Fremlin called it the (*) property) means that
8(AUB)=68(A)US(B) foranyAe Xjand Be X (%)

for all disjoint J, K C I.

It seems that the proof procedure applied above is restricted to complete probability
spaces and gives no information about the marginals. Probably without the completeness
assumptions one cannot obtain the separate additivity above. The admissible densities have
convenient properties from the product point of view and for this reason they are the
natural candidates for marginals in the existence results below. The next result of Macheras,
Musiat and Strauss (1999) gives not only a solution of the existence problem for densities
respecting coordinates and arbitrary probability spaces but at the same time it produces
a unifying approach to all former existence results for existence of product densities and
liftings as well as to those respecting coordinates. The conclusion of this result is on one
side weaker since it can not be shown that the density which is respecting coordinates
is separately additive in addition but on the other hand its proof is quite elementary (in
particular D. Maharam’s theorem is not applied there) and the product probability needs
no completion.

THEOREM 6.7. Ler {($2;, Xi, 4:))ict be a family of probability spaces. If ig € I is fixed,
then for each 8;, € O(ui,) and for arbitrary §; € A% (u;) with i € I\ {ip} there exists
a 8 € 9(u) such that § respects coordinates and § € Q) 8i. In particular the theorem
holds true if all the densities §;, i € 1, are identical and admissible. As a consequence, it
Sfollows that each admissible density is a consistent density.

Since A¥(u;) # @ if i € I the above result is a generalization of Macheras and Strauss
(1995). The proof of Theorem 6.7 is based in principle on the inductive steps exhibited
before Theorem 2.6, but this time the induction is more complicated (see Macheras, Musiat
and Strauss (1999) for details). Applying Theorem 6.6 Fremlin (200?) proved the following
nice result.

THEOREM 6.8. For any family {(£2;, Xi, ui))ic1 of complete Maharam homogeneous
probability spaces there exists a lifting for Q),.; ii respecting coordinates.

The proof of Theorem 6.8 has been reduced to the next Theorem 6.9 of Fremlin (200?)
which is of an even more special nature by using the fact that the measure algebra of any
Maharam homogeneous probability space is isomorphic to some {0, 1}% with its usual
measure v; fori e I.

THEOREM 6.9. For any set I any translation invariant lifting for the usual measure p on
{0, 1}y respects coordinates.

Then Macheras, Musial and Strauss (2007¢) applying Theorem 6.22 to the conclusion
of Theorem 6.8 were able to generalize Theorem 6.8 to the following form:
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THEOREM 6.10. For an arbitrary family {(§2;, i, it;))ieir of complete Maharam homo-
geneous probability spaces and arbitrary finite collection {(©;,T;,v;))jcs of complete
probability spaces there exists a lifting for (Q);¢; i) ® (&® jes Vi) respecting coordinates.

In case when I = ) one gets Burke’s theorem with a completely new proof. It is as
yet an open problem whether for arbitrary families of complete probability spaces there
exist liftings respecting coordinates. Only partial results are known. The next result seem
to be the most far reaching for general complete probability spaces at the moment. (See
Macheras, Musiat and Strauss (1999) as well as Fremtin (200?) for this result.)

THEOREM 6.11. Let x be an ordinal and (24, X, o)) <x be a family of complete
probability spaces. Then for each py € A(ug) and each collection {py, € AG A{uy): 0 <
o <k} there exists a lifting m € Q) _, pa respecting coordinates of each initial segment

of k.

Considering linear liftings a general existence theorem was given by Macheras, Musiat
and Strauss (2000). The proof is based on the extension Lemmata 3.4 and 3.5.

THEOREM 6.12. {(£2;, X;, ui)ies be a family of complete probability spaces with
product probability space (2, X, u). If ig € 1 is fixed, then for each 1, € G(u;,) and
Sor arbitrary tj € AG(u;) with i € I\ {iy} there exists a ¢ € G({X) such that ¢ respects
coordinates and ¢ € K, ;.

The above result gives also an alternative proof of Theorem 6.6.

It seems however that the extreme point method of Theorem 3.3 does not work while
trying to convert a linear lifting respecting coordinates found in Theorem 6.12 into a lifting
respecting coordinates.

6.2. Strong liftings in products

Though weaker than liftings respecting coordinates, product liftings are useful for
transporting strong liftings from the factors onto the product as well as for attacking
a problem posed by Kupka (1983), whether the product of two topological (especially
Radon) probability spaces has the ASLP if the factors have this property. In particular it is
natural to ask, whether the product of hyperstonian spaces has the ASLP. It is known from
Macheras and Strauss (1996c¢) that the only possible candidate for a strong lifting on the
ordinary completed product (X x X, 7 x 7. H® H, v & v) of a hyperstonian probability
space (X, 7, H, v) with itself is necessarily a product lifting of the canonical strong liftings
in the factors. If (X, 7', H, v) is the hyperstonian space of, e.g., the Lebesgue probability
space on [0, 1], it follows from the next theorem that there exists no strong lifting for v ®v
since T x T € H ® H, the latter a result of Fremlin (1976). But let us remark that subject
to the continuum-hypothesis the Radon product of (X, 7, H. v) with itself has the ASLP
by Theorem 4.12 (see Macheras and Strauss (1996¢, Section 3, Remark 5) for details).
It remains an open problem, whether the Radon product of two Radon probability spaces
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with the ASLP has the ASLP, in particular it is unknown, whether the Radon product of
two hyperstonian measure spaces has the ASLP.

Let us remark that the existence result for product liftings, Theorem 6.11, can be stated in

an equivalent form in terms of products of lifting topologies which implies Theorem 6.13, a
permanence result for strong liftings on products. For the proofs of the next three theorems
see Macheras and Strauss (1996d) as well as (1996¢). If (($2;,7;))ies 1s a family of
topological spaces we write [ |, 7; for the product topology on [];¢; £2i.
THEOREM 6.13. Let be given a family {(£2;,7;, X, pi))ier (I a non-empty set) of
complete topological probability spaces, p; € A(ui) for each i €1, let ($2,%, ) be a
complete probability space such that 2 =[], 2, ®Z; € Z, u|®,€12 R is
and let m € A(u) satisfy m € Q;; pi- Then we have that [[;c; T; € ¥ and & is strong
with respect to [ [;.; T; if and only if all p; are strong fori € 1.

If (X, T, H,v) is again the hyperstonian space of the Lebesgue probability space on
[0, 11 then it follows from Theorem 6.13 the surprising fact that the unique strong lifting
o for v is neither consistent nor admissible and any consistent lifting p for v is not strong.
In particular, v has the ASLP but not the USLP and the lifting topologies ¢, and 7, satisfy
ty X ts, Tg XtUgH®H.

Under a mild set-theoretic assumption, i.e., assuming the non-existence of measurable
cardinals, a purely topological result of P.C. Curtis, M. Hendricksen, and J.R. Isbell
(see Gillman (1960, p. 53)) says that a product of two topological spaces is extremally
disconnected if and only if one factor is extremally disconnected and the other one is
discrete. This implies the following result whose assumptions are satisfied, e.g., by the
Lebesgue measure space on [0, 1]. It answers the question, whether the product of lifting
topologies is a lifting topology to the negative.

THEOREM 6.14. If we assume the non-existence of measurable cardinals then for
two complete probability spaces ($2;, X;, it;) and p; € A(u;) with non-discrete lifting
topologies ty,, 1, (i =1, 2) the product topologies t,, X tp,, Tp, X Tp, are not extremally
disconnected. If (.Ql x §27, X, 1) is a complete probability space such that X, ®>,CZx,
u|x, ® 3y = ® W2, o, X tpy, Tp, X Tpy © X, then in particular we have

toy Xtpy # g, Tp  and Ty X Tp, Flx, Ty

for each € A(w), and if 7 is strong with respect to t,, X tp, respectively T, X 5, (for
example if 1 € p; @ p2) then

toy X1py Cty and T, X Tp, C Ty, but not equality.
The next result is an analogue of Theorem 6.11 for strong liftings.
THEOREM 6.15. Let k be an ordinal, ((24, Ty, Zo, tha))a<x any family of complete

topological probability spaces with completed product space (§2, X, ) and product
topology T. Suppose that all measures py (@ < k) have full support and that po has
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the ASLP while all other measures py for 0 < a < k have the USLP. Then for any strong
lifting po € A(po) there exist strong liftings py € A(iy) for 0 < a < k and a strong lifting
7€ A(n) suchthatm € Q, ., Po. T C X and

H(Ax I gy)=(®pg)<mx 1 2

ay <k E<a ay <k

forall A € ®E<a X: and all a < «, that is 7w is a strong lifting respecting individual
coordinates and initial segments of coordinates. R

In particular, if Xy = g(Qa)for all a < k then 3 = B($2) and if all the measures (14
(a < k) are completion regular then u is also completion regular.

The last theorem together with Corollary 4.8 imply the next classical result of Maharam
(1958) and Kakutani (1943).

COROLLARY 6.16. For every ordinal « there exists a strong lifting for the usual
measure 1t on {0, 1},

Another consequence of the last theorem together with Corollary 4.8 is the next one
given by Fremlin (2007, 453H).

COROLLARY 6.17. Let {(24, Ty, Zo. tha))aci be a family of complete topological
probability spaces with completed product measure space (2, X, ) and product topology
T. Suppose that all measures py (a € 1) have full support and that every 1y has a
countable measurable network. Then 1 is a t-additive topological measure and has a
T -strong lifting.

6.3. Liftings on projective limits

Throughout what follows (£2,, Xy, ia. fop. I} denotes a projective system of probability
spaces which will be assumed complete if liftings are involved. If I = «, where « is an
infinite cardinal, we say that the projective system (2, Xy, o, fap, k) of probability
spaces is continuous, if for every limit ordinal & < x we have that (£2¢, X¢, e, (fo)a<t)
is the projective limit of the projective system {24, Lo, ta, fup. &). For projective systems
of topological probability spaces a similar definition can be posed.

As for products and inductive limits suitable notions of compatibility of projective
systems and liftings or densities are crucial. A family {0y )aecs Of densities py € P {(q)
is called self-consistent, if

8(fag (D)) = ! (P (A)) (P)

forall A € ¥y andalla, B € I witha < B. Forliftings py € A(pe). o € I this is equivalent
to the 7,,—7,, -continuity of the maps fus as well as with the equations

pg (h o fap) = (03" () o fup (P>)
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for all & € £>(u,) and all &, 8 € I with a < B by Section 3. The latter equation can be
taken as a definition of a self-consistent family of linear liftings for the above projective
system. If (£2, X, i, {fa)aes) is the projective limit of the above projective system a
density p € A(p) is called a projective limit of the self-consistent family (py)aes if

p(fy ' (W) = £ (pa(A)

for all A € X and all « € /. Again for liftings (where we take the completed projective
limit) this is equivalent to the 7, —7,-continuity of the maps f, as well as with the validity
of the equations

P> (ho fo) = (05" (M) o fa

for all h € L (1) and all @ € I and this equation can be taken as the definition of the
projective limit of linear liftings. In symbols we write p € proj, <, lim p, for densities and
(linear) liftings. We assume throughout that all canonical projections f, of a projective
limit (2, X, u, {(fa)acr) of probability spaces are surjections.

Suppose we have a projective system (£2, X, i, { fu)a<«)- In general, it is not obvious
whether there exists at all a self-consistent family of densities or liftings associated with
the system. By Macheras, Musial and Strauss (200?a) there is an answer to the positive in
the next result.

THEOREM 6.18. Let k be an infinite ordinal and (24, Xy, t, fup. k) a continuous
projective system of probability spaces with projective limit (2, X, pt, { fa)a<x). Then
there exist a self-consistent family (84 )y <, of densities 8, € ¥ (o) and a density § € V¥ ()
such that § is a projective limit of the system {8y ) <x-

If all probability spaces of the projective system are complete and the projective limit is
taken completed, then we may in the above replace the word “density” by “linear lifting”
and “lifting”, respectively, throughout.

We will give examples below showing the existence of self-consistent families over non
well ordered index set without projective limit. Necessary and sufficient conditions for the
existence of projective limit liftings are given by Macheras and Strauss (1994).

THEOREM 6.19. Let be given a projective system ($2q, Xy, la, fop. 1) of complete
probability spaces with completed projective limit (2, X, i, {fa)act), a self-consistent
SJamily {py)acy of strong liftings py € A(ia) and a lifting p € A(i). Then the following
conditions are all equivalent:
(i) the projective limit topology T of {T,,)aci is contained in X and p is strong w.r.t.
T,
(ii) the projective limit topology T of (1, )act is contained in X and p is strong w.r.t.
T;
(iii) p is a projective limit of (p)uct:
(iv) T C1p;
W) T Ctp.
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For projective systems of (complete) topological probability spaces we may ask for the
existence of self-consistent families of strong liftings and densities and of strong projective
liftings. In general self-consistent families of strong liftings do not have any projective limit
lifting as shown in the next example.

Let X := {0, 1}, whe/rg I is an index set with card(/) = R», and let u be the
probability measure on Bo(X) constructed by Fremlin (1979). Denote by F(/) the
system of all finite subsets of /. For any o € F(I) put X, = {0,1}* and p, :=
foa(u), where fy is the canonical projection from X onto X,, and denote by 7, the
discrete topology on X,. For any a. 8 € F(I) with ¢ < B denote by fus the canonical
projection from Xg onto Xq. If by 7 is denoted the projective limit topology of the
family (7o )ac 7 (1), then (X, Bo(X), i, (fa) «cF(1y) is the projective limit of the system
(Xa,Bo(X ), Mo fop, F(I)). For any « € F(I) the map p, from BU(X ) onto itself
defined by

pa{A)=A forany A € a)(Xa)

is a strong lifting in A(u,) and the family {pu)ac () is self-consistent. Since u does
not admit a strong lifting, in particular there cannot exist any lifting p € A(u), which is a
projective limit of {0y )qeF(7)» because in such a case we should have G = p(G) for any
element G of the family

={£7"(Go): Ga € To 0 € F(D)}.

But since G is a basis for the topology 7, it follows from Lemma 4.7 that o should be
strong; this yields a contradiction. The same example shows also that an inverse lifting of
a strong one under a continuous and measure preserving map is not in general strong. In
fact, for each & € F (1) there exists by Theorem 3.7 a 5, € A(u) which is an inverse lifting
of py under f,. But according to Fremlin (1979) g, cannot be strong. But for well ordered
index set there is always a positive solution due to Macheras, Musiat and Strauss (200%a).

THEOREM 6.20. Let k be an infinite ordinal and (X, Ty, Ly, la, fap, k) be a projective
system of complete topological probability spaces. Suppose that (X, X, pt, { fa)a <« ) is the
projective limit of the above projective system and (Qy)q <« 1S a self-consistent family of
strong densities gy € ¥ (iLa). Then for the projective limit topology T of (1y)a<« follows
T C ¥ and there exists a strong density ¢ € $( 1) such that ¢ is a projective limit of the
System (‘/)or)a<)(

In particular, if for every a < k we have o = B(Xy) then £ = B(X) and, if in addition
T = By(X) and all the measures p are completion regular, then [ is also completion
regular. The same is true if we replace “densities” by “liftings” throughout.

The last result raises the problem of the existence of a self-consistent family of strong
liftings for projective systems of complete topological probability spaces. Even for well
ordered index set the answer is to the negative in general as witnessed by the following
example. Take Fremlin's Radon probability measure x4 on X := {0, 1}™ which has no
strong lifting and is supported by X (cf. Fremlin (1979)). If « is the smallest ordinal of
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cardir}glity N7, then (X, g(X), W, {fa)a<x) 1s the projective limit of the projective system
(Xa, B(Xa), o, fap. k) of probability spaces, where X, := {0, 1}, fus (respectively fy)
is the canonical projection  from Xz onto X, (respectively from X onto X,), and pq is the
image measure f, () on B(X,) for @ < B < k. Assume that there exists a self-consistent
family {0y )y <« Of strong liftings py € A(pty). Then by Theorem 6.20 there exists a strong
lifting p € A(u); this yields a contradiction.

On the other hand we know two classes of spaces with projective systems admitting
a self-consistent family of strong liftings even for arbitrary index set. These are the
hyperstonian spaces with measure of full support and the extremally disconnected Baire
spaces where each set of the first category is closed, endowed with a category measure
(cf. Macheras and Strauss (1994, Remark 2.2(iii) (b) and (c)), which includes also the
definitions of the above notions).

6.4. Various Fubini products

The most difficult type of lifting in products arises if we ask for lifted functions with
measurable respectively lifted sections or even for Fubini-like formulas. There is still a
comparatively satisfactory answer for densities in the next theorem. All results in this
subsection are taken from the paper Musial, Strauss and Macheras (2001) if not otherwise
indicated.

THEOREM 6.21. Let (®,T,v) be an arbitrary probability space. If T € AD(v) then
Sfor each (2, X, 1) and each § € ¥(u) there exists ¢ € 9 (u ® v) with the following
propetrties:

(i) ped®r;

(i) [@(E)lo =t([@(E)lo) forallwe Qand E€ E & T

(iii) {@(E))’ is fi-measurable forall0 € ® and Ec X @ T.
Admitting the completeness of both measure spaces one can find ¢ € ¥ (1 ® v) satisfying
the properties (ii), (iil), and the following two properties:

(iv) ¢(A X B)C8{(A) x t(B) forall Ac X and Be T

W) v([9(E)]wUl9(E))) =1foralloe 2 and E€ X ®T.

The condition (iii) cannot be improved essentially. More precisely, if 6 € #(u), 7 €
AV (v) and p € O (u ® v) are such that (ii) is satisfied and

[0E)]’ =5([p(E)]") forallo6c©@and Ec E&T
then either u or v is purely atomic.

For liftings a corresponding result looks as follows:

THEOREM 6.22. Let (2, X, u) and (@, T, v) be complete probability spaces. For each
o € AGAW) and each p € A(u), there exists m € A(u & v) such that the following
conditions are satisfied:

(@ mep®o;

() [7(E)lo=0(n(E)y) foral we 2 and E€c ZQT.
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Equivalently,
n*ep®®c™ and [*(f)] =o>([r*(N],)
foreach f € L(u ® v) and each w € £2.
The above result is in a sense the best possible, as it follows from the next theorem.

THEOREM 6.23. Let (2, X, u) be a complete non-atomic and perfect probability space
and let (©,T,v) be a complete non-atomic probability space. There exist no liftings
o€ A(v)yand g € A(u ® v) satisfying the following two conditions:

(j) there exists 8 € O such that for each E € ¥ T

8
[e(E)] e X:
()) foreachE e ¥ & T there exists a set Np € Xy such that

[<P(E)]w = 0([(/7(E)L)) foreachw ¢ NE.
In particular, no ¢ € A(v) is an admissible density.

So we are left with the following problem for given complete probability spaces
(£2, %, ) and (O, T, v).

QUESTION 6.24.
(1) Does there exist a lifting ¢ € A>X(u &® v) such that [o=(f)lw € L(v) and
[0>()]Y € £L2(u) forall f € £L2(u ® v) and for all (v.6) € 2 x OF
(i) Can we choose in addition ¢ € Aff(u & v) in (i) for some marginal liftings?

In case both these complete probability spaces coincide with the Lebesgue probability
space over [0, 1] subject to the continuum hypothesis we get an answer to the positive
for Question 6.24(i) just by choosing a Borel lifting according to Theorem 4.12 for
the 2-dimensional Lebesgue probability on [0, 1]°. But what is the position without the
continuum hypothesis?

In case of linear liftings Macheras, Musial and Strauss (200?d) proved the following:

THEOREM 6.25. Let (©. T, v) be a complete separable probability space and (2, ¥, u)
a complete probability space. Then for each p € G(11) and each T € AG(v) there exists a
¢ € G(i ® v) such that

(i) (g ®h) =p(g) ®t(h) forall g € L(u) and h € L (v):

(i) foreach f € L(u ® v) and each w € 2

[e(H], =7([e(N],)-
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It remains an open question whether the separability assumption is necessary. However
again there is no hope for a linear product lifting with all sections being lifting invariant.
The subsequent theorem of Macheras, Musiat and Strauss (2007d) is a direct consequence
of the appropriate part of Theorem 6.21.

THEOREM 6.26. Let (©,T,v) be a complete probability space and (2, X, u) be an
arbitrary complete probability space. Assume that there are p € G(u), o € G(v) and
¢ € G(u ® v) such that the inequalities

[e(N],® =0([e(H],) @ and [o(NH] @) =p([e()]")@

hold true for all (w, 8) and all f € L (u & v). Then at least one of the measures is purely
atomic.

QUESTION 6.27. Does there exist ¢ € G(u ® v), p € G(u) and & € G(v) such that
PeEPRa, [X(]w e LX) and [>*(f)]¥ € LX(u) forall f € L>(u ® v) and for all
(w,0) e 2 xO7

QUESTION 6.28. Does there exist a ¢ € G(u ® v) and a T € G(v) such that for all
f e L%u & v) exists Ny € Zo with 1([¢(H)w) = [@(f)]e € L2(v) for all v ¢ Ny
and [p(f)) € L®(u) forall § € @7

For general complete probability spaces these problems are open as far as we know.
The next two results are related to the topic of this section since they also concern
some measurability properties of liftings from a different point of view. They are due to
Christensen (1974).

THEOREM 6.29 (CH). Let X be a separable o -algebra on $2 (i.e., generated by countably
many sets and containing all points) and let p be a probability on X. Let T be the
weak™-topology on the space L>(u). Then there exists p € G(u) such that for each
probability measure v defined on the product o-algebra B(L>(11)) ® X the function
(f*, w) = p(f)(w) is measurable with respect to the completion of v. In particular each
functional f* — p(f)(w) is universally measurable on L> (u).

THEOREM 6.30. We keep the notation of Theorem 6.29. Assume that p is non-atomic and
let Ba() be the o -algebra of sets possessing the Baire property with respect to the weak* -
topology of L°(u). If p € A(w), then for almost every w € §2 there exists a measure Vv,
on Ba(u) such that the functional f* — p(f)(w) is not measurable with respect to the
completion of v,,.

6.5. Applications of Fubini products to stochastic processes

Theorem 6.22 has applications to functions of two variables and stochastic processes.
All results in this subsection are taken from Musial, Macheras and Strauss (2001). Let
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(82,2, 1), (@,T,v) be complete probability spaces and let {Xy}yco be an arbitrary
real-valued stochastic process on (£2, X, u). If {Ya}see is another stochastic process
then it is called to be equivalent to {Xy}yew if for each 6 € @ we have Xy = Yy ae.
() (the exceptional set may depend on #) according to Talagrand (1987). {Xs}eew is
said to be measurable if the map (w,8) — Xgo(w) is measurable with respect to the
product o-algebra ¥ & T. {Xs}yee is bounded if the family {X4: 6 € @} is bounded
in L*°(u). There are several papers concerning the existence of measurable (or separable)
processes that are equivalent to a given process (cf. Cohn (1978), Talagrand (1987, 1988)).
Sometimes a measurable process equivalent to a bounded {Xo}oeco can be defined by
setting Yy = p(Xp), where p € A(u) and the initial process X or (&, T, v) satisfy some
additional conditions. In particular, the lifting p in Cohn (1978) is assumed to be strong
and §2 is taken to be an interval. In general however, a strong lifting might not exist on
an investigated topological measure space. With the help of Theorem 6.22 we get, — by
a different method —, the following two results stated in Cohn (1978) under additional
topological assumptions.

THEOREM 6.31. For each ¢ € AGA(v) and each bounded measurable stochastic
process {Xglpew on a space (2, X, u) there is a collection of measurable functions
{Yoloco on (2, X, ) satisfying the following conditions:
(i) Y (w) =0(Y (w)) foreach w € $2.
(ii) There is My € Ty such that for every 8 ¢ Mx we have Xy = Yy a.e. (1) and
{Yologmy is a measurable stochastic process on (2, X, u).
(iii) There is Nx € X such that for every w ¢ Nx

X (w)y=Y(w) a.e (v).

(iv) If © is a separable metric space and (Xo)ugm, is continuous in probability, then
(Yo)ogmy is separable. Furthermore, every countable dense subset of © \ Mx is a
separating set for (Yo)ugm -

In the terminology of Cohn (1978) the process {Ys}uew is called o-canonical. Another
application of Theorem 6.22 is the next result.

THEOREM 6.32. For each p € AGA(u) and each bounded measurable stochastic
process {Xolgeo on a space (82, %, ) there is a measurable process {Yploce on
(82, X, u) that is equivalent to {Xs e and satisfies the following conditions:

(1) Yo = p(Yy) foreach b,

(1i) There exists a set Ny € X such that for each o ¢ Nx we have

X (@)=Y (w) ae (v).

Notice that in Theorem 6.32 we had to use properties of 7 (X) in order to assure the plane
measurability of ¥, where 7 is given by Theorem 6.22. Direct defining of the process Y
by setting Yy = p(X4) for quite an arbitrary lifting might destroy the plane measurability
properties of the process X (cf. Cohn (1978)).
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One of the important problems in the theory of functions of two variables is pointing out
of conditions guaranteeing the plane measurability of a separately measurable function.
A notion of a stable set investigated by D.H. Fremiin and M. Talagrand (see Talagrand
(1984)) turned out to be very fruitful in this field. In particular, Talagrand (1984, 10-2-1)
proved that if & is a compact set, v is a Radon measure on @, f:2 x ® — R is
measurable as a function of the first variable and continuous as a function of the second
variable, then f is measurable, provided the family { f?: 6 € ©} is a stable set. Applying a
result of Fremlin (1983) on stable sets together with Theorem 6.22, we get a similar result
for functions that have lifting invariant sections. It may be considered as a strengthening of
M. Talagrand’s method from Talagrand (1988) of modification of a stochastic process with
the help of consistent liftings.

THEOREM 6.33. Ler (£2, X, ), (®,T,v) be complete probability spaces and, and
{Xo}ocw be an arbitrary real-valued bounded stochastic process on ($2, X, u) with
measurable paths (i.e., all functions X, are v-measurable). If the set {Xy: 0 € O} is
stable then for each p € AG A(u) the process {Ys}yee given for each 0 by Yy = p(Xag) is
X & T-measurable and equivalent to {Xg}pew-

COROLLARY 6.34. Ler (2, X, ), (®,T,v) be complete probability spaces and let
f:82 x @ — R be a separately measurable function such that the set {f?: 6 € O} is
stable. If there exists p € AG A(u) such that for each 6 € ©® the equality p(f% = fH
holds true, then f is ¥ @ T-measurable.

7. Liftings for abstract valued functions

Throughout let be given complete probability spaces (§2. X, u) and a completely regular
Hausdorff space T. For any lifting p € A(u) a Baire-measurable function f:2 — T
induces a Borel-measurable map p7 (f) from £2 into BT, the Stone—Cech compactification
of T, defined via the formula

hopr(fy=pho f) forhe Cp(T).

According to Bellow (1980) the map f is called lifting compact if for every p € A(u)
we have pr(f)(w) € T for p-aa. w € 2. This implies Ao pr(f)=ho f ae. (1)
for every h € Cp(T), where the null-set involved depends on h € Cp(T). If for lifting
compact f the stronger equivalence pr(f) = f u-a.e. holds true for any p € A(u),
then f is called strongly lifting compact by Babiker et al. (1986), and a completely
regular Hausdorff topological space T is (strongly) lifting compact by definition, if for
any complete probability space (§2, X, i) every Baire-measurable map f:$2 — T is
(strongly) lifting compact. Lifting compactness of completely regular Hausdorff spaces is a
property lying strictly in between strong measure compactness and measure compactness
by Bellow (1980, 6.1) as well as Edgar and Talagrand (1980, Theorem 1). By Bellow
(1980) lifting compactness has good stability properties.
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THEOREM 7.1.
(1) An arbitrary subspace of a compact metrizable space is lifting compact.
(ii) Every Baire set in a lifting compact space is lifting compact.
(iii) Any continuous bijection between completely regular spaces with Baire measurable
inverse transforms a lifting compact space into a lifting compact one.
(iv) A countable product of lifting compact spaces is lifting compact.

The results (ii) to (iv) are analogs of results proved by Moran (1969) for (strongly)
measure compact spaces. A Banach space E under its weak topology is lifting compact if
and only if every E -valued scalarly measurable function is scalarly equivalent to a Bochner
measurable function by Bellow (1980, Section 6, Remark 2). Every subspace of a compact
metric space is strongly lifting compact. Moreover, this holds true for every strongly lifting
compact space. The next three theorems are taken from Babiker et al. (1986).

THEOREM 7.2.
(i) An arbitrary subset of a strongly lifting compact space is strongly lifting compact.
(iiy Countable unions of strongly lifting compact Baire subsets of a completely regular
Hausdorff space are strongly lifting compact.
(iii) A countable product of strongly lifting compact spaces is strongly lifting compact.
(iv) The image of a strongly lifting compact space under a continuous surjection with
Baire measurable section is strongly lifting compact.
(v) A measure compact space is strongly lifting compact if every point has a strongly
measure compact neighborhood.

The next result states a relation between strong lifting compactness and the USLP. Its
proof relies on Theorem 3.7.

THEOREM 7.3. If the map f:§2 — T is strongly lifting compact and v is the image
measure of u under f on the o-algebra B:={B C T: f~'(B) € X}, then the topological
measure space (T, T, B, v) has the USLP. if T denotes the completely regular Hausdorff
topology of T.

From the last theorem together with the existence of a compact Radon probability
space without strong lifting (see Section 4) follows that neither lifting compactness nor
strong measure compactness imply strong lifting compactness, nor does strong lifting
compactness imply strong measure compactness, as witnessed by the standard Lebesgue
non-measurable subset of [0, 1]. For general metric spaces strong lifting compactness is
equivalent with measure compactness, which means in that case that every closed discrete
subspace has non-measurable cardinal.

It is an open problem, whether the converse of Theorem 7.3 is true, compare Macheras
and Strauss (1992). The next result gives among other equivalent conditions an answer to
the positive for (E, weak), a metrizable locally convex spaces E under its weak topology.
An essential tool for its proof is A. Tortrat’s Theorem 8, from Tortrat (1975).

THEOREM 7.4. For a metrizable locally convex space E the following conditions are all
equivalent.



1172 W. Strauss et al.

(1) (E,weak) is strongly lifting compact.
(ii) Every Baire probability measure space based on (E, weak) has the USLP.
(iii) Every Baire probability measure space based on (E, weak) has the ASLP.
(iv) (E,weak) is completion regular and measure compact.
(v) Every Baire probability measure p on (E, weak) is supported by a p-measurable
closed linear subspace of E which is separable with respect to the metric of E.
(vi) (E,weak) is measure compact and every Borel subset of (E, metric) is measur-
able with respect to any Baire probability measure on (E, weak).
(vii) Every scalarly measurable function from a complete probability space into E
agrees a.e. with a Bochner measurable function.
(viii) (E, weak) is measure compact and {0} is a Baire subset of E with respect to
(E, weak).
(ix) (E,weak) is measure compact and there exists a sequence in E', the topological
conjugate of E, which separates the points of E.
(x) (E,weak) is measure compact and there is a continuous linear injection from
(E, metric) into RN,
(xi) (E,weak) is measure compact and submetrizable.
If the locally convex space E is normable, we may add the following condition.
(xi1) (E,weak) is measure compact and there is a continuous linear injection from
(E, norm) into I*°(N).

It can be seen from the last theorem that within the class of all metrizable locally convex
spaces strongly lifting compact spaces can be characterized in a purely topological way.
In Strauss (1992) the strong lifting compactness of conjugate Banach spaces under their
weak™ topology has been discussed. In this class the equivalence of the condition (vii) in the
last theorem with strong lifting compactness as well as with the conditions corresponding
to conditions (ii) respectively (iii) of the last theorem breaks down. There are similar
characterizations for strongly lifting compact functions in Babiker et al. (1986). The
conjugate M ([0, 1]) of Cp([0, 1]) is a non-separable Banach space which is submetrizable
under its weak topology. The mild set-theoretic assumption that the continuum is measure
compact implies that (M ([0, 1]), weak) is measure compact. Therefore by the last theorem
M([0, 1]) is an example of a non-separable strongly lifting compact space.

In connection with the definition at the beginning of this section one should mention the
following construction of a lifting of Banach space valued functions, which is commonly
used in the context of differentiation of vector measures and integration of vector functions.
If X is a Banach space and X' is the space of continuous functionals on X then for
given function f:§2 — X', satisfying (x, f) € L> (i), where by definition (x, f)(w) :=
(f (@))(x) for every w € 2 and for every x € X, we can for each p € A(u) define a
function p(f): 2 — X' by setting (x, p(f ) w)) := p({x, f))(w) where x € X for all
w € £2. Von Weizsicker (1978) proved that p( f) is measurable when X' is equipped with
its weak*-topology. This function is an essential tool in investigating several aspects of
integration. More details and abandon references can be found in Musiat (2002).

In fact we have the following result equivalent to the existence of a lifting (compare
A. and C. Ionescu Tulcea (1962, 1969a) and Kolzow (1968)):
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THEOREM 7.5. For given c.l.d. measure spaces (£2, X, i) the following conditions are
all equivalent:
(1) There exists a lifting on L°°(u);
(ii) For any normed space X and any bounded linear operator u from Ll(u) into
X' (the topological dual space of X) there exists a map f from 2 into X' with
{x, f) € LX) for all x € X and || f|| < |lull such that [{x, flgdu = (x,u(g"))
forallx e X and all g € L' ().

8. Liftings and densities with respect to ideals of sets

The notion of measure-theoretical lifting and density is a particular case of more general
notions of lifting and density with respect to an ideal of sets. One may call them
respectively by J-lifting and 7-density. Given a measurable space (£2, 2') and an ideal
J C X one says that a Boolean homomorphism p: ¥ — X is an J-lifting if p(A) = A
forall A € ¥ and p(A) = p(B) whenever A = B in the sense of 7. Similarly 7-density
is introduced.

As in the case of measure spaces there is also an equivalent formulation for the Boolean
algebra X'/ 7. In fact the original paper of von Neumann and Stone (1935) has been written
in the language of ideals. In spite of this, the theory of J-liftings is much less developed
than the theory of measure liftings. Here are some known facts. Maharam (1977) noticed
that the following result follows easily from Graf (1973):

THEOREM 8.1. If 2 is a Baire space (i.e., no non-empty subset of §2 is of the first category
in itself or, equivalently, in 2), and X is the o -algebra generated by Borel subsets and the
o-ideal C of sets of the first category, then there is a strong lifting on X /C.

For some time there has been an open question whether each Boolean algebra of the
form ¥/J which additionally satisfies the countable chain condition has a lifting. Shelah
(1998) answered it negatively.

THEOREM 8.2. There is a cardinal k (k = 2807+ suffices) a o-ideal J C P(k) and
a o-algebra ¥ C P(k) containing J and such that X /J satisfies the countable chain
condition but X/ J has no lifting.

The next theorem of von Neumann and Stone (1935) is a classical tool for converting a
density into a lifting in the situation of this section. Let R, be a fixed infinite cardinal. Let
us remember that a lattice V is called (conditionally) k-complete for some cardinal «, if
every subset W of V having cardinality < « (with lower and upper bounds in V) has an
infimum and a supremum in V.

THEOREM 8.3. Let J be an ideal in a Boolean algebra B which is conditionally -
complete for all k < Ry. If card(B/J) < Ry, then for any [J-density ¢ there exists a
J-lifting p with ¢p(B) < p{(B) forall B € B.
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Von Weizsicker (1976, Theorem B.3) shows that the condition card(55/.7) < Ry in the
last theorem cannot be weakened to card(8/.7) < Ry 41, even if one is interested only in
the existence of linear liftings.

THEOREM 8.4. Assume supI” < Ry for all families I of cardinals with card(I") < Ry
andy <R, for all y € I. Then there exist set algebras B;, ideals J; in B;, J;-densities
@; for i = 1,2 such that the following conditions hold true.
(1) Ji is k-complete for all k <R, fori=1,2.
(i1) By1/J1 and B2/ J> are isomorphic with card(B;/J;) = Ro41 fori =1,2.
(iil) There exists no linear lifting py : L>*(B1) — L>(By) satisfying p1(X8) 2 Xoy(8)
forall B € B;.
(iv) There exists a linear lifting p> : L7 (B2) — L£>(B2) satisfying p2(XB) = X¢v(B) JOr
all B € By, but there is no Jx-lifting > for B> satisfying ¢1(B) € p2(B) for all
BeB,.

At last we formulate a few facts concerning liftings on the set of natural numbers.

It is well known that if 7 is the ideal of all finite subsets of N, then there is no J-lifting
on P(N).

To formulate the next result denote by #A the cardinality of A C N. Then, define a
density measure pu: P(N) — [0, 1] by setting for each A C N

Ay = Lim 2AOL 201D

n—oc n

where Lim is a Banach limit on /.
With this concept, we have the following result of D. Maharam and P. ErdSs (see
Maharam (1976)):

THEOREM 8.5. Let u be a density measure on N and let J :={A C N: u(A)=0}. Then
there is no J -lifting on P(N).

9. Beyond £ (u)

As we have mentioned at the end of Section 3 it has been proved already by A. and
C. Ionescu Tulcea (1969a) that there is no lifting on £7(u) if 1 < p < 00 and u is non-
atomic. It turns out however that each lifting can be extended far beyond £>(u), as the
following result of Monakov-Rogozkin (1974) shows

THEOREM 9.1. Given p € A(u) there exists an ideal K(p) in the lattice E% () with the
following properties:
(i) L=(n) C K(p).
(ii) There is a lifting p on K(p) which is an extension of p.
(iii) K(p) is the largest ideal in E% (i) possessing the above two properties.
(iv) The extension of p onto K(p) is unique.
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More precisely, f € K(p) if and only if f/g € £L>(u) for a function g € C(}e(u)
such that g > I and p(1/g) = 1/g. One can also say that K(p) = n(C(£2,7T)) where
7 identifies functions u-equivalent, 7 is one of the lifting topologies and C(£2, T is the
space of 7 -continuous real-valued functions.

Monakov-Rogozkin (1974) proves also that if p € G(u) \ A(u) then a counterpart of
K(p) for p does not exist.

10. Further applications

Lifting theory has so many applications in mathematical analysis that it is impossible to
give a detailed account for all within this article since this would afford too much additional
terminology. But we want to give references now for some of the applications which could
not be mentioned as yet.

Jirina (1959) proved the existence of disintegrations for measures under separability
assumptions. The most common procedure taken now is to eliminate separability by an
application of liftings, see C. Ionescu Tulcea (1965b), A. and C. Tonescu Tulcea (1969a),
Hoffmann-Jorgensen (1971), Pellaumail (1972), Chatterji (1973), Valadier (1973), Saint-
Pierre (1975), Pachl (1978), Heller (1983), Babiker and Strauss (1982), Choksi and Duncan
(unpublished), and Rinkewitz (1997). In A. and C. Ionescu Tulcea (1969a) and Babiker
and Strauss (1982), the application of a lifting comes indirectly in via the Dunford
Pettis theorem. Heller (1983) determined the class of all Baire measures which can be
disintegrated with the help of liftings. Corresponding results are given by Rinkewitz
(1997).

We are going to recall two particular applications of liftings to disintegration. Let (@, T)
be a measurable space and let p:$2 — @ be a measurable map (i.e., p~NT)C ).
P:X x & — [0, 1] is a regular conditional probability it

(cpl) Py is a probability measure on X for all 6 € &;

(cp2) 8 — Py(A) is v := p(u)-measurable forall A € X;

(cp3) (AN p~ Y (B)) = fB Py(A)ydv(@) forallAe X andall BeT.

The next result was given by Hoffmann-Jgrgensen (1971).

THEOREM 10.1. Let 2 be a Hausdorff space, i1 is a regular probability on B(§2) (i.e.,
is inner regular with respect to compact sets), (©.T) is a measurable space, p: 2 — ©
is a measurable function and v = p(u). Then there exists a regular conditional probability
P:B(£2) x © — [0, 1] such that for every 8 € ® the measure Py is regular.

PROOF (Sketch). We assume for the simplicity that £2 is compact. If f € C(§2) then we
define a v-continuous finite signed measure v on T by setting for every B€ T

uf(B)=j fdu.
PUB)

Let p(6, f) be a Radon-Nikodym derivative of v, with respect to v. One easily sees that
p(9, f) is bounded in L>(v) by || fl~. Take an arbitrary p € A(v) and set for every
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feC($2)

It follows from the properties of v that p(6, -) is for each # a positive continuous linear
functional on C(£2). Moreover, for every 8 and f € C(£2) we have

PO, x2)=1 and |p®, )| < flx-

Hence, for every 6 there is a regular probability Py on B(£2) such that for all f € C(£2)
'5(9,f)=/ fdPy.
o’

The rest of the proof is a matter of calculations. O

The second application of liftings we are going to present here is an application to
disintegration of compact measures. We follow the terminology of Pachi (1978).

DEFINITION 10.2. Let (£2, X) be a measurable space and let (©, T, v) be a probability
space. Let « be a probability on ¥ ® T such that «($2 x B) = v(B) for every Be T.
Suppose that for every 6 € © there is a o-algebra Xy on £2 and a probability Py on Xy
such that the following two conditions are satisfied:
(a) for each A € X there exists N € N'(v) such that A € X for all 6 € ® \ N and the
function ® \ N 30 — Py(A) is T{(©@ \ N)-measurable;
(b) if Ae X and B €T then

k(A x B) =[ Py(A)dv(B).
B

The collection {(Xy, Py)}oce is called a v-disintegration of k.
Here is the main result of Pachl (1978).

THEOREM 10.3. Let (2, X, 1) and (®,T,v) be probability spaces and let k be a
probability on ¥ ® T with marginals u and v. Assume that v is complete and |
is approximated by an w-compact lattice K C X which is closed under countable
intersections. Then there is a v-disintegration {(Zy, Py)}seo of k such that Xy O K and
K approximates Py for every 6.

BASIC IDEA OF THE PROOF. Let p be a lifting on L>(v). By the Radon-Nikodym

theorem, for each A € ¥ there exists a T-measurable function &4 such that for every
B €T, we have

k(A X B):f hadv.
B
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For each 6 € ©@ define a function By on K by B, (K) := p(hg (8)). It needs some work to
show that for each 6 there exists a probability y» on ¢ (K) such that y» > By on K and its

completion Py gives a g-algebra Xy satisfying the requirements of the theorem (see Pachl
(1978) for details). g

It should be mentioned here that using the above result J.K. Pachl proved that a
restriction of a compact measure (in the sense of Marczewski (1953)) to a sub-o-algebra
is also a compact measure, thus answering a question of E. Marczewski.

For applications to the realization of homomorphisms see A. and C. Ionescu Tulcea
(1969a, Chapter X), Graf (1980a), Babiker and Graf (1983), Vesterstrgm and Wils (1969),
Fremlin (1989, 4.12 and 4.14), and Fremlin (2007?).

Strongly connected with the above are applications of liftings to the existence of
measurable selections and sections discussed by Edgar (1976), Talagrand (1978), Losert
(1980), Graf (1980, 1982), and Kupka (1983). The results are too technical to be presented
here so we mention only two of them, taken from Graf (1980a).

THEOREM 10.4. Let © # @ be a Hausdorff space. Let u be a non-trivial complete strictly
localizable measure which is locally determined and semifinite. Then, let @ : B(©) — X/
be a Boolean o -homomorphism such that p o ® is a Radon measure on ©. Then there is
a T-B(®)-measurablemap f: 2 — O with f~1(B) € ®(B) forall B B(®), i.e, ¥ is
induced by f.

PROOF (Skerch). If p € A(u) then p o @ : B(®) — X is a homomorphism. Let X(&) be
the collection of all compact subsets of @. Then, for each w let K, := {K € K(©): w €
p o @(K)}. One can easily see that NK,, # #. In fact for almost all w the set NK,, is a
singleton. Consequently we can define f: 2 — © by taking f(w) € NK,,. f satisfies the
conclusion of the theorem. O

The next result is related to the extension of measures. & # ¢ is Hausdorff, (£2, X, u)
is a finite measure space and p:® -> £2 is a measurable map. Denote by M (u, p) the
collection of all positive measures v on B(®) such that 4 = p(v).

THEOREM 10.5. vaAe M{uw, p) is Radon, then v is an extreme point of M(u, p) if and
only if there exists a X-B{®) measurable weak section f:§2 — © for p with v = f(u)
(i.e, W(AAf ' p~ 1 (A)) =0forall Ac X).

The separable modifications of stochastic processes and the domination of measures
are treated by A. and C. Ionescu Tulcea (1969b; 1969a, Chapter VII, Section 7 as
well as Chapter IX, Section 7). Here again the lifting eliminates restrictive hypotheses
(metrizability, for example) needed previously. For separable measurable modifications of
empirical processes and regularizations of stochastic processes see in addition Talagrand
(1987, 1988), respectively. Schreiber et al. (1971), use liftings for the construction of
probability measures corresponding to stochastic processes. This construction applies
algebraic models for probability spaces introduced before by Dinculeanu and Foiag (1968).
In these models liftings apply as well.
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A. and C. Ionescu Tulcea (cf. (1969a)) applied lifting in order to describe the space of
functionals on the space of Bochner integrable functions. Further applications of that type
can be found in Dinculeanu (1967) and several papers concerning vectorial integration. For
applications of the consistent lifting to the Pettis integral see Talagrand (1984).

C. Ionescu Tulcea (1965b) applies the strong lifting property and linear liftings for the
decomposition of measures into its ergodic parts and in (1965) he uses the translation
invariant lifting (see Theorem 5.4) to solve a problem on almost stable sets in locally
compact groups posed by A.B. Simon.

Maréchal (1969) gives a definition of a measurable field of Hilbert spaces over a
Hausdortf space based on the almost strong lifting property and shows that isomorphisms
between measurable fields can be induced by pointwise isomorphisms. She gives
decompositions of operators on Hilbert space by means of liftings in Maréchal (1968,
1969).

Von Weizsicker (1978) applies liftings to the regularization of functions with Radon
image measures and arbitrary completely regular range. Applications to subdifferentials
and convex functions are given by Levin (1975).

Graf (1995) gives an application of the lifting to self-similar measures. A similar
procedure was taken by Schief in an unpublished note.

Another application of the lifting theory is the existence and uniqueness of preimages of
a given measure (see, e.g., Edgar (1976) as well Graf (1980a, 1982)). Also Lipecki (1998)
used liftings for the extension of measures.
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