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Introduction

Until 1968, there has been no significant progress in the theory of the Pettis integral since
Pettis’s (1938) original paper. The Pettis integral was known to be countably additive and
absolutely continuous. Due to Pettis (1938) it was also known that the space of Pettis
integrable functions defined on the unit interval, integrated with respect to the Lebesgue
measure may be non-complete in the semivariation norm. There were also known some
facts concerning Pettis integrability of strongly measurable functions and a few examples
of non-strongly measurable but Pettis integrable functions but almost nothing more. Then,
Rybakov (1968) proved that the Pettis integral is of o -finite variation. In 1975, Thomas pre-
sented some negative aspects of Pettis integrability. He proved that the space of Pettis inte-
grable functions with respect to a nonatomic measure in never complete if the range space
is infinite dimensional and that for each infinite dimensional Banach space X there exists
an X-valued function on [0, 1]* such that not almost all its section are Pettis integrable on
[0, 1]. Thomas also suggested that probably one could find a Pettis integrable function f
on [0, 1] such that limy ¢ H% f_\j‘+h f(t)dt| =20 on a set of positive Lebesgue measure.

Then started a series of papers developing the theory of Pettis integration.

Edgar (1979) investigated Banach spaces with the property that each scalarly integrable
function with values in the space is Pettis integrable (so-called PIP) and proved several
non-trivial facts about these spaces. He was also the first to consider the Lindolof property
(so-called (C) property) for closed convex sets in the context of Pettis integration.

Fremlin and Talagrand (1979) constructed an example of a Pettis integrable function
with non relatively norm compact range of its integral, answering a question of
Grothendieck formulated in the language of operators. The same paper contains a proof
of Stegall theorem saying that on perfect measure spaces the range of a Pettis integral is
always norm relatively compact.

Musiat (1979) (preprint version was published in 1976) called attention to the problem
of the existence of Pettis integrable Radon—Nikodym derivatives of Banach space valued
measures proving that there is a strong connection between conjugate spaces with all
measures of finite variation possessing Pettis integrable densities and Banach spaces not
containing any isomorphic copy of /;.

I have tried to include all papers concerning Pettis integrability, but the text presents
my own point of view on the subject. As a result some papers are only mentioned without
details. There are some topics completely absent in this survey. In particular I consider
only Banach spaces, in spite of several papers dealing with locally convex spaces, where
the notion of the Pettis integral is quite natural. I also left out of account the approach via
Stone transform due to D. Sentilles, for the benefit of liftings, which seem to be more
measure theoretical. That approach however was fully exploited by Talagrand (1984).
I skipped also some important geometric properties of Banach spaces possessing WRNP
type properties (containing trees, extreme points), mainly because of limited amount
of space. Totally overlooked is the theory of strongly measurable functions, which is
discussed in several other papers and books (cf. Diestel and Uhl (1977). I also decided do
not write anything about Fremlin’s generalization of McShane integral (Fremlin (1995)),
which is intermediate between Bochner and Pettis integral, in spite of thinking that the
integral of Fremlin may turn out to be more suitable for several applications than the Pettis
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integral. Also the approaches of Phillips (1940), Birkhoff (1935), Dobrakov (1970a) and
Erben and Grimeisen (1990) are beyond this paper. Most of the problems posed in the
survey paper Musial (1991) are still open, so I do not formulate new ones.

1. Preliminaries

Throughout (£2, X, ) is a finite complete measure space with u # 0. If not stated
differently, the conjectural measure space will always be denoted by (£2, X, ). X ;L
is the collection of all measurable sets of positive measure, A (u) is the o-ideal of
pu-null sets and p* is the outer measure generated by w. p will denote a lifting on
(£2, ¥, n) (for the detailed information concerning liftings see Strauss, Macheras and
Musiat (2002) in this Handbook). £(u) is the space of all real-valued measurable
functions on (£2, X, ), functions which coincide y-a.e. are not identified. 7, is the
topology of pointwise convergence in the space of all real-valued functions. £; (1) is the
space of all real-valued pu-integrable functions. A set Z C £(u) is uniformly integrable if
limy(a)»0supsez [, 1 fldi =0. L is the o-algebra of Lebesgue measurable sets on the
unit interval [0, 1] or on the real line and A is the Lebesgue measure on L. P(S) denotes
the collection of all subsets of S. If Q is a non-empty set with a topology 7, then the
o -algebra of Borel sets on Q is denoted by Bo(Q.T). Ba(Q.T) is the o -algebra of Baire
sets. Compact spaces are always assumed to be non-empty and Hausdorff. X is always an
infinite dimensional Banach space (unless otherwise stated), B(X) is its closed unit ball
and X* is the conjugate of X. If H C X then H* denotes the annihilator of H in X*.
If L € X then L** is the o (X**, X*)-closure of L in X** and lin L is the linear space
generated by L in X. If f:£2 — X, then the composition of f with a functional x* is
denoted as x* f or (x*, f).

We say that X has Mazur’s property if each sequentially weak*-continuous functional
on X* is in X. X has the property (C) or X is a Corson space if each family of closed
convex subsets of X with the countable intersection property has a nonempty intersection
(see Corson (1961), Pol (1980) and Drewnowski (1986)). X has the property (K) if
each sequence of points x, € X converging to zero contains a subsequence {(x,,) with
convergent series » ;- | X, .

By B.(X**) we denote the set of all x** € X** which are weak*-cluster points of
countable subsets of B(X).

If v: ¥ — X is a measure, then we say that v is y-continuous if lim,4)-¢ [[v(A)|| = 0.
v is dominated by p if there exists M > 0 such that |v(E)|| < Mu(E) forall E € X
As a rule we will assume in the proofs that M = 1. |v| denotes the variation of v and
cabv(i, X) is the Banach space of all u-continuous X-valued measures of finite variation
endowed with the variation norm. ca(u. X) is the Banach space of all p-continuous X-
valued measures equipped with the semivariation norm.

Ifv: ¥ — X is a u-continuous measure. then for every E € X1 the set

v(F)
u(F)

A (E) :={ cFeXand FCE

is said to be the average range of v on E.
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AXIOM L (cf. Fremlin and Talagrand (1979)). [0, 1] cannot be covered by less then the
continuum closed sets of the Lebesgue measure zero.

AXIOM K (¢f. Fremlin and Talagrand (1979)). There is a cardinal « possessing the
following properties:

(a) there is a set U C [0, 1] of cardinality « such that A*(U) = 1:

(b) [0, 1]1s not a union of x Lebesgue negligible sets.

It is known (cf. Fremlin and Talagrand (1979)) that Axiom L is a consequence of
Martin’s Axiom and Axiom K follows from the existence of real measurable cardinals.

2. Measurable functions

DEFINITION 2.1. Let I” be a linear total subset of X*. A function f:£2 — X is said
to be I'-scalarly p-measurable, if x* f is p-measurable for each x* e I'. If I = X*,
then f is called scalarly p-measurable. If X = Y* and I' = Y then f is called weak*
scalarly p-measurable. f is strongly measurable if there is a sequence of X -valued simple
functions f, = Zf(:"l) XniXE, With E, € X, which is u-a.e. converging to f. If p is
fixed the reference to it will be suppressed. This will concern also all further defini-
tions.

The following theorem, due to Pettis (1938), explains the relationship between the strong
and weak measurability.

THEOREM 2.2 (Pettis’s measurability theorem). A function f:2 — X is strongly
p-measurable if and only if
(1) f is scalarly p-measurable, and
(ii) f is u-essentially separably valued, i.e., there exists E € N'(u) such that f(§2\ E)
is a separable subset of X.

DEFINITION 2.3. We say that two I'-scalarly u-measurable functions f. g:£2 — X are
I'-scalarly p-equivalent if x* f = x*g p-ae. for each x* € I'. If I’ = X*, we say about
scalarly p-equivalent functions and, if X =Y* and I" =Y then f and g are said to be
weak* scalarly p-equivalent. Two strongly measurable functions f and g are u-equivalent
if f=g p-ae.

Below are presented some classical examples of I"-measurable functions.

EXAMPLE 2.4. A scalarly measurable function that is not strongly measurable but is
scalarly equivalent to a strongly measurable function. Let a : [0, 1] — [0, oo[ be a function
such that the set H :={r € [0, 1]: a(r) > 0} is of positive Lebesgue outer measure and let
{e;: 1 € [0, 17} be the canonical basis for the nonseparable Hilbert space />([0. 1]). Define
fo 110, 11— 12([0, 1]) by f, (1) =a(r)e,. It is a consequence of the Riesz Representation
Theorem that x* f = 0 A-a.e. for each x* € [5([0, 1])* (i.e., f is scalarly A-equivalent to
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the zero function). On the other hand, if E C H is of positive outer measure then fy (E)
is nonseparable. In virtue of Theorem 2.2, f, is not strongly A-measurable. If « is non-
measurable then also the function || fy || : 1 — || fo (£)|] is not measurable.

As a specific example one can take o = xv, where V is the Vitali set.

EXAMPLE 2.5 (Ryll-Nardzewski). A weak™ scalarly measurable function that is not
scalarly measurable and not weak* scalarly equivalent to any scalarly measurable
Sunction. Define f:[0, 1] — C*[0.1] by f(s) = é;. f is obviously weak*-A-measurable,
since for y € C[0, 1], we have {v. f(s)} = v(s). To see that f is not scalarly measurable
denote by p,, the atomic part of u € C*[0, 1], and let V be a non-A-measurable subset of
[0, 1]. Define x** € C**[0, 1] by x**(u) = (V). Since x**(f) = xv the function f is
not scalarly measurable with respect to A.

Since C[0, 1} is separable, f is not weak* scalarly equivalent to any scalarly (hence also
strongly) measurable function.

It is worth to notice that the norm of f is a measurable function.

EXAMPLE 2.6 (Hagler). A scalarly measurable function that is not scalarly equivalent
to a strongly measurable one. Let (A,) be a sequence of nonempty subintervals of [0.1],
such that:

1 A;=[0,1],

(i) Ay, = Ay, U A4 foreachn e N,

(i) AiNA;=0ifi+# jand2" <i, j <2"*,

(iv) lim, A(A,) =0.

Define f:[0, 11— Ioc by f(1) = (xa, (1)) fort € [0, 1]. Then f is scalarly measurable (cf.
Diestel and Uhl (1977)).

To prove that f is not scalarly equivalent to a strongly measurable function it is enough
to show that f itself is not strongly measurable (because [} is separable). This immediately
follows from Pettis’s Measurability Theorem. Indeed, if A(E) > 0 and ¢, s are two distinct
points of E then there is n such thatz € A, buts ¢ A,. Hence || f(r) — f(s)|| = 1.

One can ask when a scalarly measurable function is scalarly equivalent to a strongly
measurable one. The first global non-trivial result of this type is due to D.R. Lewis (see
Stegall (1975/76a, 1975/76b)), who proved that scalarly measurable functions taking their
values in a WCG space are scalarly equivalent to strongly measurable functions. Edgar
(1977) has undertaken an effort to characterize the Banach spaces with the property that
each X-valued scalarly measurable function is scalarly equivalent to a strongly measurable
function. In case of a single function we have

THEOREM 2.7 (Edgar (1977)). Let f:2 — X be a scalarly measurable function. Then,
[ is scalarly equivalent to a strongly measurable function if and only if the image measure
f(w):Ba(X,weak) — R is tight in the weak topology (i.e., for each ¢ > O there is a weakly
compact W C X with u*(W) > u(X) —¢).

As a direct consequence of the above theorem, one obtains:
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THEOREM 2.8 (Edgar (1977)). Let X be a Banach space. Given any (82, X', u), each
scalarly measurable f : 2 — X is scalarly equivalent to a strongly measurable function if
and only if (X,weak) is measure compact (i.e., each measure on (X,weak) is t-additive,
what in the case of the weak topology means the tightness of each measure, that is given
€ > 0 there is a norm compact K C X with u*(K) > p(X) — ¢).

DEFINITION 2.9. A function f:§2 — X is I'-scalarly p-bounded provided there is
M > 0 such that for each x* € I the inequality {x* f| < M{x*|| holds p-a.e. If I' = X*
then we say about scalarly p-bounded function, and in the case of X =Y* and ' =Y-
about weak™ scalarly p-bounded function.

An easy calculation proves that if f:£2 — X is strongly measurable and scalarly
bounded, then it is bounded (i.e., there is M > 0 such that sup{|| f(w)|: w € 2} < M
p-a.e.).

The following fact (usually presented in the context of a family of measurable scalar
functions) permits often to reduce the general situation to the case of scalarly bounded
functions.

PROPOSITION 2.10 (cf. Musiat (1979)). If f:22 — X is I"-measurable then there exists
a non-negative measurable function (p,r- with the following properties:

(i) Foreach x* € I" we have |{x*. f(0))| < (p./r-(a))llx*ll u-a.e.,
(i) ¢ (@) <If@)llr (=supllix™, f(@)]: x* € T NBX)}) p-ae,
(iti) If ¢p: 82 — [0, 00) is a measurable function satisfying (i) and (ii) (with <pf replaced
by ¢), then <pjr- < ¢ u-ae.

PROOF. Consider the set £2 x R endowed with the o-algebra o(X x L), and the
product measure p x k, where « is any probability measure on £ such that N(x) =
N(). Let S(x*) = {(w,5): [{(x*, f(w))] = s|x*||} for x* € I', and let a = sup{{u x
K)[U,O,O:l S(xM]: x} € TN B(X*), n € N}. Since a < oo there are x7, x5, ... € 'NB(X*)
such that @ = (u x K)[Uf;, S(x¥)]. Now, it is enough to put <pfr- = sup,, [x;} f1, where the
supremum is taken pointwise. " O

COROLLARY 2.11. [If f:2 — X is I"-scalarly measurable, then there exists a sequence
of pairwise disjoint sets E, € X covering §2 and such that for each n the function f is
I"-scalarly bounded on E,,.

It is easy to give an example of a scalarly bounded function that is not bounded
(e.g., setting «(r) = ¢ in Example 2.4). It turns out however that the things can be more
complicated. Edgar (see Talagrand (1984)) proved that there exists a scalarly bounded
function which is even not scalarly equivalent to any bounded function. Weak™-scalarly
bounded functions behave much better. To formulate the result we will introduce a notion
that will be in constant use further.
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Let f be an X*-valued function which is weak* scalarly measurable and weak*-scalarly
bounded. If p is a lifting on L. () then we denote by pp(f) the unique X*-valued
function defined by

{x, po(F)@)): = p(xf) ().

where x and w run across X and £2, respectively.

It is known (see A. and C. Tonescu Tulcea (1969)) that oy ( f) is weak*-Borel measurable
(ie., p(f)“(B) e X for all weak*-Borel B C X™*) and the measure &) : = up()(f)_l s a
Radon measure on the completion & (f) of the o -algebra of weak*-Borel subsets of X* (see
von Weizsicker (1978) and Edgar (1978)). It is however totally not obvious whether po( f)

is in general scalarly measurable.

PROPOSITION 2.12. If f:82 — X* is weak*-scalarly bounded and weak*-scalarly
measurable, then for an arbitrary lifting p the function f is weak*-scalarly equivalent
to the bounded and weak* Borel measurable function py( f).

3. Scalar integrals, basic properties

DEFINITION 3.1. Let I" be a linear total subspace of X*. A function f:2 — X is I"-
scalarly p-integrable if x* f € L|(u) foreach x* € ' If I' = X*, then f is called scalarly
w-integrable, and in the case of f:£2 — X* and I' = X C X**, the function f is said to
be weak*-scalarly u-integrable.

DEFINITION 3.2. A @-scalarly p-integrable f:$2 — X is I'—pu-integrable if for each
E € X there exists vy (E) € X such that

x*vp(E)= /Ex*f du

for each x* € I'. The set function vy: X — X is called the indefinite I'-integral of f
with respect to ., and vy (E) is called the I'-integral of f over E € X' with respect to
. An X*-integrable function is called Pertis -integrable and an X-integrable function
(if f:2 — X* and I" = X) is called weak* p-integrable (or Gelfand u-integrable). The
Gelfand integral of f will be denoted by *v,. If f:£2 — X is considered as an X**-
valued function then its weak* integral in X** is called the Dunford integral and it is
denoted by v%*. It is clear that each I"-integral is uniquely determined and it is an additive
set function (provided it exists). The I'-integral is also a I"-measure, i.e., x*v; is o-ad-
ditive for each x* € I'. Sometimes, we shall use the following notations: P — fE fdu,
weak* — [ fdpand D — [, fdu.

If f:£2 - X is scalarly pu-integrable, then an operator Ty : X* — L(u) associated
with f is defined by Tr(x*) =x* f.

From the integral point of view, the functions with the same indefinite Pettis integrals
are non-distinguishable, they are scalarly equivalent. We shall denote by P(u, X) (or
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by P((£2, X, u), X) if necessary) the space of classes of scalarly u-equivalent Pettis
p-integrable X-valued functions. P(u. X) is a linear space with ordinary algebraic
operations. One defines a norm on P(u. X) by

|7 =sup[/g|<x*,f)‘du: x*e B(X*)] = sup{|x*v/[(2): x* € B(X*)}.

It is known that

ol 25

defines an equivalent norm on P(u, X).

We will investigate also the space of all Pettis integrable functions with norm relatively
compact range of their integrals: P.(u. X):= {f € P(u. X): v;(X) is norm relatively
compact}. Besides P(u, X) we will be often considering its subsets P(u. K') consisting of
functions taking their values in aset K C X.

It is one of the main problems in the theory of vector integration to find conditions
guaranteeing the existence of the Pettis integral. We shall start with two classical results.

PROPOSITION 3.3 (Gelfand (1936)). Each weak* scalarly p-integrable f:2 — X* is
weak™® [-integrable.

As an immediate corollary we get the following fact

PROPOSITION 3.4 (Dunford (1937)). Each scalarly i-integrable function f:§2 — X is
Dunford pi-integrable.

If X is reflexive then the Dunford and Pettis integrals coincide. When X is not reflexive,
this may not be the case.

EXAMPLE 3.5 (cf. Diestel and Uhl (1977)). A Dunford integrable function that is not
Pettis integrable. Define f: (0, 1] — ¢ by

f(l):(2X(z~1,11(t),22)((2*3.2*'](’)-'~-~2"X<2*".2*"*'I(’)*"')'
If x* = (), a2,...) €1} =c*, then

oc | x<
x*f= Za,,2”x(3-n_27"$|] and f [x* fldr < Z lan| < 0.
0

n=1 n=|

It follows from Proposition 3.4 that f is Dunford A-integrable. On the other hand, it is
easily seen that for each E € £

D —/ fdr={20En (27" 1]),....2°4(En (27" 27" ). ...}
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In particular

D—f fdr=(,1,1,....1...) F#co
(0.1]

and so f is not A-Pettis integrable.

At this place one should recall that such a phenomenon cannot happen if X is a separable
Banach space not containing any isomorphic copy of cy. Unfortunatelly, the result does not
extend in this form to non-separable Banach spaces (cf. Edgar (1979)).

THEOREM 3.6 (Dimitrov (1971), Diestel (1973)). If X is a separable Banach space
without an isomorphic copy of co, then each X -valued Dunford integrable function is Pettis
integrable.

The function f, considered in Example 2.4 is Pettis integrable with v, =0.
But there are also non-trivial examples of Pettis integrable functions.

EXAMPLE 3.7. Let f be the function considered in Example 2.6. Since || f(r)]] < 1
everywhere, f is Dunford integrable and foreach Ee Land n=m +mell = ® c(')L,
we have

/n(f)dk=/m(f)dk+/nz(f)dk:/bZXA,,m({n})dk
E E E A

n=1
e

=Y m({rHAEN A = (m. (ME N AD) = (n. (ME N A)).

n=1

The last equality follows from the fact that lim,, X(A,,) =0andso v(E)={(AENAp,)) €co.
But 7, considered as a functional on /.« belongs to cj and so n2v(E) =0foreach E € X.
It follows that f is Pettis A-integrable.

In case of a quite arbitrary I' nobody has been too much interested in describing the
properties of the I”-integral. The most interesting case is when I” = X*.

THEOREM 3.8. If f is Pettis ji-integrable, then v is a p-continuous measure of o -finite
variation. Moreover, |vi|(E) = [ ¢;du for each E € X (we put here ¢y instead ofwf
for simplicity). In particular, the collection {x* f: ||x*|| < 1} is uniformly u-integrable.

The o-additivity and continuity of v is due to Pettis (1938). The o -finiteness of the
variation was proved by Rybakov only in 1968.

REMARK 3.9. A result similar to that in Theorem 3.8 for an arbitrary total I" € X* is
false. If I' is norming (i.e., for each x € X the equality ||x|| = sup{[{x*, x){: lx*] <1,
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x* € I'} holds) and f is I'-integrable, then |vs| is a o-finite measure and |vs[(E) =
fE <pf du for all E € ¥ (see Musial (1979)). In particular, if f:§2 — X* is weak"-
bounded and satisfies for a lifting p the equations xf = p(xf) for all x € X, then
rl(E)= fE I flldu for all E € X. This clearly generalizes the well known equality for
the Bochner integral. It may however happen that v is not countably additive in the norm
topology of X, and it is not A-continuous.

It is so for the function presented in Example 3.5, when considered as an /,.-valued
function. vy : £ — [ is weak*-countably additive but not countably additive in the norm
topology and not A-continuous.

4. Pettis integral

We shall start describing conditions equivalent to the Pettis integrability with a classical
result that is always a starting point, when one wants to find conditions guaranteeing the
Pettis integrability of a single function.

THEOREM 4.1. Let f: 82 — X be scalarly integrable. Then f is Pettis y-integrable if and
only if Ty : X* — Li(u) is weak*-weakly continuous if and only if Ty : B(X*) — L(p) is
weak*-weakly continuous.

The following corollary is a simple consequence of Theorem 4.1.

COROLLARY 4.2. A scalarly integrable f :$2 — X is Pettis integrable if and only if the
set {x* € X*: x*f =0 u-a.e.} is weak* closed.

COROLLARY 4.3. If f:82 — X is Pettis p1-integrable, then Ty X* — Ly (1) is weakly
compact and the set Zy := {x* f: ||x*| < 1} is weakly closed in L (u).

To formulate the next characterization of Pettis integrable functions we are going to use
an idea which is a generalization of Huff’s (1986) conception of separable-like functions.

DEFINITION 4.4. A scalarly measurable function f:£2 — X is determined by a space
Y € X if for every x* € Y the equality x* f = 0 holds p-a.e.

The characterization presented below has been discovered by Drewnowski (1986)
(without (ii1)). Stefannson (1992) proved then the equivalence of (i) and (iii).

THEOREM 4.5. If f:§2 — X is scalarly integrable and the induced operator T : B(X™)
— L () is weakly compact, then the following conditions are equivalent:
@ feP(u, X)
(i) f is determined by a weakly compactly generated space Y C X;
(1) f is determined by a space Y C X possessing Mazur's property:
(iv) f is determined by a Corson space ¥ C X.
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PROOF (Sketch). If f € P(u, X), then one can take as Y the space generated by v, (X).
Since each WCG space has Mazur's property (cf. Diestel (1975, p. 148)) and is a Corson
space, we have (i1) = (iii) and (ii) = (iv). To prove (iii) = (i) we are going to use a
simple idea of Stefannson. Let f:§2 — X be scalarly measurable and determined by a
weakly compactly generated Y C X. First denote by Ty the operator Ty :Y* — Li(u)
defined by Ty (y*) := Ty (y%,), where y%, is an arbitrary extension of y* to the whole X.
In a standard way one proves that Ty is weak*-weakly continuous if and only if Ty is
weak*-weakly continuous if and only if 7y is o (X*. Y)-weakly continuous. Since T is
weakly compact and f is determined by Y, one can prove, applying Mazur’s theorem on
the equality of weak and norm closures of convex sets that T/ is sequentially o (X*, Y)-
weakly continuous. Hence Ty is sequentially o (X*. Y)-weakly continuous. Now, since
Y has Mazur’s property and Ty is sequentially o (X*.Y)-weakly continuous, we get the
weak*-weak continuity of Ty and hence the Pettis integrability of f. For the proof of
(iv) = (i) we refer to Drewnowski (1986). O

Notice that each of the conditions (ii)—(iv) of Theorem 4.5 can be equivalently written as
v}*(Z‘) C Y**, where Y is respectively WCG. Mazur or Corson. Example 3.5 shows that
the weak compactness of 7 in the above theorem is necessary.

To formulate more general result, we need a notion introduced by Drewnowski (1986).

DEFINITION 4.6. If Cy is the collection of all Corson subspaces of X then the Corson
envelope of X is defined by

=7

YeCy

Drewnowski (1986) strengthened the implication (iv) = (i) of the above theorem to the
following form:

THEOREM 4.7. If f: 22 — X is scalarly integrable, Ty : X* — Ly(u) is weakly compact
and v*;*(E) C X, then f e P(u. X).

Geitz (1981) introduced a notion related to Rieffel’s essential range of strongly meas-
urable function (Rieffel (1968)).

DEFINITION 4.8. Let f:£2 — X be a function and let E € X be an arbitrary set. The core
of f over E, denoted by cor ;(E), is the set defined by

corr(E) :=[){convf(E\ N): N e N}
Geitz (1981) also noticed that if f € P(u. X). then for each E € Zl‘f
cory(E) =convA,, (E).

The following lemma is quite useful:
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LEMMA 4.9. If f is weakly measurable and cor;(E) # ) for all E € ):/T, then x* f =0
p-a.e. if and only if x* = 0 on cor s (£2).

Then Andrews (1985) introduced the weak™-core of a weak* scalarly measurable
function f: 2 — X*:

corf(E) == |{Tonv* f(E\ N): N e N(w)}.

Drewnowski (1986) introduced the weak™*-core (he called it the weak*-core) setting

cor’ (E) =("){conv™ f(E\ N): N e N(1)}

and proved that if f € P(u, X), then

cor*(E) =cor/(E) " = A, (E) .

THEOREM 4.10 (Talagrand (1984)). Let f:22 — X be scalarly integrable. Then f is
Pettis integrable if and only if Ty : X* — Ly(p) is weakly compact and cory(E) # @ for
each E € ZF.

PROOF. Assume that Ty : X* — L () is weakly compact, cor (E) # ¥} foreach E € X}
and f ¢ P(u, X). Then, according to Lemma 5-1-2 of Talagrand (1984) (which remains
true for functions with weakly compact 7). there exist functionals y*. x* € B(X™) such
that u{w € £2: y* f(w) #z* f(w)} > 0 and ¥* f is in the pointwise closure of the set

We={x*feZp x*f=:"f pael.

Let {(x}) C Wy be pointwise convergent to v*f. Without loss of generality, we may
assume that x; — y* in o(X*. X). Since for every « we have x) f =" f p-ae., we
have x;lcor/(ﬂ) = Z*Icor/(.Q)- Hence .\'*|c0r/ 2y = :*lcnr, () and consequently ."*f = :*f
u-a.e.

This however contradicts our assumption, and so f € P(u. X). g

Another proofs of the above result were presented by Edgar (1982) and Huff (1986).
Certainly the above theorem has been inspired by earlier characterizations of Pettis
integrability obtained by Geitz (1982) in case of a perfect measure (that was a little bit
more technical) and by Sentilles’s (1981) characterization (also tor perfect measures only)
of Pettis integrability in terms of the Stonian transform.

Talagrand (1984) formulated also an equivalent condition guaranteeing Pettis integra-
bility of f, which has been then reformulated and reproved by Drewnowski (1986) in the
following form:

THEOREM 3.1 1 (Drewnowski (1986)). Let f:§2 — X be scalarly integrable. If
Cor*}*(E YNX #@ for each E € X7 and T is weakly compact, then f is Pettis integrable.
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DEFINITION 4.12 (Riddle, Saab and Uhl (1983)). A family H of real-valued functions on
(£2, X, u) has the Bourgain property if for each E € ¥ ;T and each £ > 0 there is a finite
collection F C P(E) N 2: such that for each function h € H one can find F € F with
suph(F) —infh(F) <¢.

In case of a uniformly bounded H an equivalent definition is as follows: for each
E e Z‘;{ and each pair a < b of reals, there is a finite collection F C P(E) N E:
such that for each function & € H one can find F € F with inf{h(w): w € F} 2 a or
sup{h{w): we F} < b.

It is easy to see that the Bourgain property of H yields the same property of the pointwise
closure of H. Moreover the Bourgain property of a function constrains its measurability.

PROPOSITION 4.13 (Riddle, Saab and Uhl (1983)). If H satisfies the Bourgain property,
then each function in H is measurable and each function in the pointwise closure of H is
the almost everywhere pointwise limit of a sequence from H.

PROOF. In order to prove the proposition take f € H™ and an ultrafilter I/ on H which
has f as a cluster point. Then, put for E € X “* ande >0

H(E,e)={h e H:suph(E) —infh(E) < ¢}.

Each E € £} contains F € £} with H(F.¢) € U. Using the Zorn-Kuratowski lemma,

one can find for each positive £ a maximal family P, of pairwise disjoint sets in X lf such
that H(F, ¢) € U for each F € P,. It is obvious that p(£2 \ Uf-en F) = 0. Moreover, if
R is the family of all finite subcollections of P, then

feN N HE.e) el

ReR: EER

Now let for each m € N the sequence {A,,,: n € N} be an enumeration of P/, and let
Wm.n € Ap . be arbitrary. Taking for each m € N a function

m m

fue ([ HAeai 1/K)

k=1n=1

such that
lf;n(wk,n) - f(wk.n)l <1/k
for each 1 < k, n < m, we get a sequence ( f,) € H that is u-a.e. convergent to f. g

DEFINITION 4.14. Let S be a topological space and let u be a positive finite measure
defined on a o -algebra B containing all Borel subsets of S. u is said to be selfsupporting,
if for each B € BZ there exists A € P(B) N B; such that u|A is strictly positive (i.e., for
eachopen U, wehave UNA=forUNA€ B;f).
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Itis easily seen that if u is selfsupporting, then for each B € Blf there exists A € P(B)N
B;“ such that i|A is strictly positive and p(A) = u(B). We shall write A = supp(u|B).

It is well known that Radon measures are selfsupporting. Also if p is alifting on X, 7,
is the topology defined by taking as its basis, the family {A € £: A € p(A)} (cf. A. and
C. Ionescu Tulcea (1969, p. 59)), then u is selfsupporting with respect to 7,.

PROPOSITION 4.15. Let S be a topological space and let H be a uniformly bounded
family of real-valued continuous functions on S. Moreover, let u be a selfsupporting
measure on a o-algebra B 2 Bo(S). Then, if H does not contain any sequence equivalent
to the standard unit vector basis of 1| (in the sup norm), then H has the Bourgain property.

PROOF. Suppose that H does not have the Bourgain property. Then, there exists T € B,T
such that T = supp(u|T) and there exist @ < b such that for each finite collection
RCP(T)YN B,f there is f € H withinf f(R) < a and sup f(R) > b, forevery Re R.

We shall now construct inductively a collection {A, ,: m =1....,2"; n € N} of sets
from B;L and a sequence ( f,,) C H satisfying the following properties:

An+1.2m—l U An+l.2m - Aan-

fori(8) <a ifse A, 1oma.

Sur1(s) > b ifse Apt1.om-

Assume, we have already constructed {f,;: m = 1,...,k} and {A, p: m =1....,2%;
n=1,...,k}. By the assumption, we can find for each m € {1, .. 2M aset

Tim € BZ_ NP(Ak.m)

such that Ty, = supp{it|T;. ) (for the first inductive step set Ty = To2 = T). Moreover,
there is fr+] € H with

inf fr 1 (Thw) <a and  sup fig1 (Tim) > b

forevery m € {1, ...,2%}.
Put now
Appr.2m—1 = {S € Tim: frr1(s5) <(1].

Arvlom = {S €Tim: frr1(s) > b}

It follows that A1 € B, for every m € {1,..., 2%+1} Rosenthal’s argument (1974)
shows that the sequence (f,) is equivalent to the standard basis of /; in the sup norm. [

DEFINITION 4.16. Let K C X* be a nonvoid set. A set W C X is weakly precompact
with respect to K (or weakly K -precompact) if each bounded sequence in (x,) C W has
a subsequence (x,,) such that for each x* € K the sequence (x*, x,,) is convergent. If
K = B(X*), then W is called weakly precompact (equivalently, no bounded sequence
in W is equivalent, in the norm topology, to the unit vector basis of /1).
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As particular instances of Proposition 4.15 we get the following results:

COROLLARY 4.17. Let p be a lifting on L (82, X, 1) and let H be a uniformly bounded
family of real-valued functions defined on 2 and such that H is weakly precompact in
Lo (). Then p(H) has the Bourgain property.

COROLLARY 4.18 (Riddle and Saab (1985)). If{xf: |x|| < 1} has the Bourgain property,
then f € P(u, X*) and the range of v, is norm relatively compact.

PROOF. Fix ¢ >0, E € X and x** € B(X**). Then put
H:{(x,f): x € B(X). l(.\‘**——,\'. *v‘,-(E))| <e}.

Clearly H has the Bourgain property.

It follows from the Goldstine theorem that (x**, f) is in the pointwise closure of H
and so (Proposition 4.13) there are x,, € X, n € N, such that (x,. f) € H for each n and
limy, (xyr, ) = (x**, f) p-ae.

Hence, we get

(x**, *v(E)) - /_(x**. f)du‘ < 2¢

E

by the Lebesgue Convergence Theorem, and this proves that f € P(u, X*). The norm
relative compactness of v, (X) = *v,(X) follows from the properties of Ty: if (x,) is
weakly convergent, then {Tr(xy)) is a.e. convergent (cf. Riddle, Saab and Uhl (1983)). O

COROLLARY 4.19 (Haydon (1976)). Let X be a Banach space containing no isomorphic
copy of I. If pu is a complete finite Radon measure on B(X*) equipped with the weak*
topology, then the identity function on B(X*) is u-Pettis integrable.

PROOF. In view of Proposition 4.15 the family H = B(X) has the Bourgain property.
Hence Corollary 4.18 yields the Pettis integrability of the identity function. [

Among several questions concerning Pettis integrability the following seems to be quite
interesting: assume that f € P(u. X*) is weak*-scalarly bounded and p is a lifting on
Lo (). When is the function po( f): 2 — X* Pettis integrable?

The next result is due to Talagrand (1984) but his proof is different from that presented
here.

PROPOSITION 4.20. Let f:$2 — X* be a weak*-scalarly bounded and weak*-scalarly
measurable function. Assume that for each 8§ > 0 there is F € X with u($2 \ E) <
8 and such that the set {{f.x)xg: Wx|| < 1} is weakly precompact in L~ (u). Then
po(f) € P(u, X*). In particular, if X does not contain any isomorphic copy of 1|, then

po(f) € P(u, X*).

PROOF. The assertion is an immediate consequence of Corollaries 4.17 and 4.18. ]
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As a consequence we get a result due to Riddle, Saab and Uhl (1983) and deduced by
them from Theorem 9.10 via Theorem 9.7.

COROLLARY 4.21. Let X be a separable Banach space and let f:$2 — X* be a weak*-
scalarly bounded and weak*-scalarly measurable function. Assume that for each § > 0
there is E € X with u(2 \ E) < 8 and such that the set {{f.x)xe: x|} < 1} is weakly
precompact in L. (u). Then f € P(u. X*).

THEOREM 4.22 (Macheras and Musiat (2000)). Let f:$2 — X* be a scalarly bounded
Pettis integrable function. If each x** € X** is &y-measurable, then po( f) € P(u. X™).

PROOF. According to Theorem 4.5 and the weak*-Borel measurability of pp(f) we have
only to show that for an arbitrary ; € v‘,~(2)L the equality (z, po(f)) = 0 holds true u-
a.e. Suppose that there exists £ € v, (X)" such that u{w € £2: (z. po( f){w)) > 0} > 0 and
IIlz)l = I and let K(}- be the the weak*-closure of po( f)($2) in X*. Then, since & is a Radon

measure and EQ(K(;-) = 1(§2), there exist a weak*-compactset L C {x* € K?: (z.x*) >0}
and a positive real number a such that

&(L) >0, ziscontinuousonL and (z.x*)>aforeachx™€L.

Take now an arbitrary net (x4)qca in B(X) that is T(X**, X*)-convergent to z. Then, the
convergence to 7 is uniform on v, (X’). To avoid unnecessary complications, we assume
at once that the initial net (x,)qyea is Mackey convergent to 2. Then, for each n € N there
exists «,, € A such that

|{xa, ve(E))| < 1/n forall E € X and all a > a.

If A, :={o € A o > a,}, then for each collection of points x}....,. v € L there is an
index Uer v € Ay such that

|(z.xf) = (xa. ..x})|<1/n foreachi <n.

Nty

Equivalently,

L"C U {x*: |(:.x*> —(x(,,x*ﬂ < l/n}”.

aceA,

Now, as a consequence of the compactness of L and the continuity of z|L, there exists a
finite set B,, C A, such that the inclusion

L"c U {x* (o x*) = {xan x¥)| < 1/n}"

a€B,

holds true. It follows that z|L is a pointwise cluster point of the countable set {x,|L: x4 €
U,= B.}. Consequently, there exists x;* € X** that is a weak”-cluster point of the
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set {xo: a € 32, By} and x3*IL = z|L. It follows from the construction of xg* that
x*€vp(X)t and so

/p (f>—‘<L)(X3*’p0(f)) dp > ap(po( )1 (L)) > 0= {xg* vy (oo ()7 (D))).
0

On the other hand, one can easily show that if f:§2 — X* is a scalarly bounded Pettis
integrable function, then

(x**,vf(E))=/E(x**,po<f))du

for each x** € B.(X**) and each F € X.
This gives the required contradiction. g

The next corollary is part of Proposition 4.20 but can be also derived from Theorem 4.22
if one takes into account Haydon (1976) who proved that if /| ¢ X isomorphically,
then each functional x* € X* is universally measurable with respect to the weak™ Borel
structure of X™* (this is in fact contained in the assertion of Corollary 4.19).

COROLLARY 4.23. If I\ ¢ X isomorphically and f:$2 — X* is weak* scalarly
measurable and weak® scalarly bounded, then for each lifting p the function po(f) is
Pettis integrable.

Trying to overcome difficulties met while characterizing Pettis integrable functions
Fremlin imposed an additional requirement besides the scalar integrability. The property

was called by him “proper relative compactness” (Fremlin (1982)) and then “stability” by
Talagrand (1984).

DEFINITION 4.24. Let H be a collection of real valued functions defined on £2. H is said
to be stable if for each A € E,f and arbitrary reals o < B there exist k, [ € N satisfying the
inequality

ui”( U (f <ot x{f >}3}10Ak+l> < u(AkH,
fer

where g4/ is the direct product of k + [ copies of u.

One may assume in the above definition that k = /. Moreover (Talagrand (1984)), if H
is stable and pointwise bounded then it is pointwise relatively compact in Lo(u) and its
pointwise closure is also stable.

DEFINITION 4.25 (Talagrand (1984)). A function f:§2 — X is properly measurable if
the set

Zr={x"f ) <

is stable.
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THEOREM 4.26 (Talagrand (1984)). If f:2 — X is properly measurable and Z; is
uniformly integrable, then f € P(u., X) and the range of vy is norm relatively compact.

If p is perfect, Axiom L holds and B(X*) is weak*-separable, then each scalarly
measurable f:$2 — X is properly measurable (and hence it is Pettis integrable if Zj
is uniformly integrable).

PROOF (Sketch). We have to prove only that the map x* — x* f from the unit ball of X*
into L (u) is weak*-norm continuous. Let (x* f),cs be a net that is pointwise convergent
to xj f and |x7|| <1 for all s € S. According to Talagrand (1984, Theorem 9-5-2), the
net (x{ f)ses is convergent to x/ f in p-measure. Because of the boundedness of the net
in Loo(u) the Lebesgue dominated convergence theorem may be applied, yielding the
convergence in the norm of L (u).

The second assertion is a direct consequence of Axiom L (Talagrand (1984, Theorem
9-3-3)). o

In case of a weak*-scalarly bounded and weak*-scalarly measurable function
f 182 — X* we have the following two results:

THEOREM 4.27. Let A C X be a bounded norming subset of X andlet 2 — X* bea
Sunction. If each countable subset of the set {xf: x € A} is stable then for each lifting p on
Loc (1) the function po(f) is an element of P(u. X*) and the range of its Pettis integral is
norm relatively compact. If p is consistent, then py( f) is properly measurable.

PROOF. If p is a lifting, then each countable subfamily of {xpo(f): x € A} is stable. If
moreover p is consistent, then the whole collection {xpn(f): x € A} is stable (see Musiat
(2000)). The Pettis integration of py(f) and the norm relative compactness of its Pettis
integral are now consequences of Theorem 4.26.

Let now ¢ be an arbitrary lifting on L,.(u). Then again each countable subfamily
of {xon(f): x € A} is stable. Due to the countability of the set we may apply Lemma
9-3-2 of Talagrand (1984) to get the stability of each countable subset of A with
respect to pog(f y~! defined on the completion of weak*-Borel subsets of X* with
respect to pop(f)~'. But as all elements of A are weak*-continuous, we may apply
Theorem 9-4-2 of Talagrand (1984) obtaining the uoo(f)~ ! -measurability of all elements
of X** (notice that in the proof of the implication (¢) = (a) of 9-4-2 Axiom F is not
applied). Since op( f) is weak*-scalarly measurable, we get the weak scalar measurability
of og(f). The Pettis integrability of oy( f) follows now from Theorem 4.22. Since the
Pettis integral of oo (f) coincides with that of py( ). this completes the whole proof. [

THEOREM 4.28 (Talagrand (1984)). (Axiom L) Let (2. X, 1) be perfect, f:2 — X*
be a function and let A C X be a bounded norming set. Moreover, let A 5 be the union of
the weak*-closures in X** of countable subsets of A. Then the following conditions are
equivalent:

{(a) For each x** € A 4 the function x** f is measurable:.

(b) If p is a consistent lifting on L~ (), then py(f) is properly measurable:
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{c) If pisalifting on L (), then po( f) € P(u. X*) and the range of its Pettis integral
is norm relatively compact.
(d) If p is a lifting on L (), then py( f) is scalarly measurable.

PROOF. If i is perfect, Axiom L holds true and (a) is satisfied, then each countable subset
of {xf: x € A} is stable by Talagrand (1984, Theorem 9-3-3). O

5. Limit theorems

It is the purpose of this section to prove the convergence theorems of Vitali and Lebesgue
type for the Pettis integral. The theorems had been proved first by Geitz (1981) under
the assumption of perfectness of the basic measure space and then they were proved in
full generality by Musiat (1985). Geitz’s proofs were based on a James’s characterization
of weakly compact subsets of a Banach space (see James (1964)) and on Fremlin’s
subsequence theorem (see Fremlin (1975). Applying the classical Mazur theorem on the
equality of weak and norm closures of convex sets instead of Fremlin’s theorem I was able
to get rid of perfectness of the measure space (Musial (1985)). Below I am presenting still
another proof based on a Grothendieck characterization of weakly compact sets that seems
to be more elementary than James’s characterization (cf. Holmes (1975, p. 157 for a simple
proof)). In fact one can obtain the result directly from Theorem 4.5 but the proof presented
here seems to be more exciting.

PROPOSITION 5.1 (Grothendieck (1952)). A bounded nonvoid set W C X is relatively
weakly compact if and only if for every nvo sequences (x,) C W and (x}) C B(X™) the
equality

Hmlim{x*, x,) =limlim{x*. x
n m ( m n) m " < m ”)

holds true, provided all the limits exist.

The theorem we are going to present is an analogue of Vitali’s convergence theorem.
Conditions (a) and (b) of this theorem guarantee that for each x* € X* and E € X the
sequence { [ x* f,du: n € N} is convergent to [, x*fdyu . and that the set {x* f: x* €
B(X*)} is weakly relatively compact in L(u). They may be replaced by any others
guaranteeing the above weak compactness and the convergence of the appropriate sequence
of scalar integrals.

THEOREM 5.2 (Geitz, Musial). Ler f:$2 — X be a function. If there exists a sequence
of Pettis integrable functions f, : 2 — X such that:

(@) The set {x* fy: |x*|| < 1, n € N} is uniformly u-integrable,

(b) lim, x* f, = x* f in p-measure, for each x* € X*,
then f is Pettis jp-integrable and,

lim/ f,,du:/fdu
m JE E

weakly in X, for each E € X.
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PROOF. Fix E € X'. Since the classical Vitali convergence theorem yields the convergence
lim, [ x*fudp = [ x* fdu, for each x € X*. we see that the sequence ([, f, du) is
weakly Cauchy.

In order to prove our assertion, it is sufficient to show that given (f,, )m and (x)x C
B(X*), we have

o :=1imlim<xf,/ Fm du>:ﬂ :_—_limlim<x,f./ S du>.
kK m E m k E

provided all the limits exist.

It follows from (a) and (b) that the sequence (x;. f); is uniformly integrable and
bounded in L;(u). Hence it is weakly relatively compact. This yields the existence of a
subsequence (z; )¢ of (x") and a function h € L;(u) such that 2} f — h weakly in L ().
Mazur’s theorem yields now the existence of functionals u';\k e conv{z": i 2 k} such that

li{n/‘w,’ff—h|du.:0 and limuw; f=h p-ae.
- Ja

If wg is a weak™*-cluster point of (w;});, then h = w(} f u-a.e. Consequently,

a:/w(’jfdu.
E

On the other hand, we have

1im<x;%. f Fotm du>=1im<:2f. f o du>=lim<w2- f Fom d“>
k E k E k E
- <UV:;, / ﬁ’lr: dﬂ) - ,/[«<uy(};. ﬁl,,,}dll'
E &

It follows from the classical Vitali theorem that

B =lim (wg,ﬁz,,,)du=/<w?§~f)d#-

m E E

This proves the required equality o = S. U

As an immediate consequence of Theorem 5.2, we get the following generalization of
the classical Lebesgue Dominated Convergence Theorem.

THEOREM 5.3 (Geitz, Musial). Ler f:$2 — X be a function satisfying the following two
conditions:
(&) There exists a sequence of Pettis p-integrable functions f,:$2 — X such that
lim, x* f,, = x* f in u-measure, for each x* € X*,
(B) There exists h € L\(y) such that for each x* € B(X*) and each n € N, the
inequality |x* f,| < h holds pi-a.e. (the exceptional sets depend on x*).
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Then f € P(u, X) and

im [ frdu= [ rau
" JE E
weakly in X, for all E € X,

PROPOSITION 5.4. Assume that the assumptions of Theorem 5.2 or 5.3 are satisfied.
Assume moreover that | is perfect and the functions f, are scalarly bounded. Then
limy 00 fn = f weakly in P(u, X).

PROOF. According to Collins and Ruess (1983)if [ x* fdu — [px*fduforallEe X
and all x* being extreme points of B(X*), then the sequence (f,) is weakly convergent
to f in P(u, X). O

It would be interesting to know whether the unit ball of X* in the assumptions of
Theorems 5.2 or 5.3 may be replaced by its extreme points.

It is natural to ask when the condition («) of Theorem 5.3 is sufficient for the Pettis
integrability of a function. If X contains an isomorphic copy of co, then (a) is too weak to
guarantee the integrability. Indeed, let f be the function considered in Example 3.5. With
the same notation, we have

o
X*f = Za,lzknx(z—n‘z—nvl |-

n=1

If

ﬁ;(t) = (2X(2—1_1](f), ey 2”)((2711.2—:1‘[](1), O, 0, 0. .- )

then clearly

lim/x*f,,duzfx*fd,u
n E E

forallx* € X*and E € X', but f ¢ P(u. X)
It turns out however that cg is the only exceptional Banach space.

THEOREM 5.5. Let X be without any isomorphic copy of co. If f:§2 — X is scalarly
wu-integrable and there are functions f, € P(u, X) such that

limfx*f,,d,uzfx*fdu
n E E

forall E € X and x* € X*, then f € P(u. X) and

limf f,,due/fdu
T JE E

weakly in X forall E € X,
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PROOF. In virtue of Corollary 2.10 the set £2 can be decomposed into pairwise disjoint
set £2, € X, such that for each n € N and x* € X* the inequality |x* f x,] < nllx*|| holds
u-a.e. It follows from the comments preceding Theorem 5.2 that f is Pettis integrable on
each £2,,. Now it is sufficient to apply the series characterization of a Banach space not
containing cg (Bessaga and Petczynski (1958)). U

Notice that if X is separable, then the assumption of scalar integrability itself yields the
required assertion (Theorem 3.6).

6. The range of the Pettis integral

For several years it has been an open question of Pettis whether for each Pettis integrable
function the range of v is always norm relatively compact.
Fremlin and Talagrand (1979) gave a negative answer to that question. Before providing

their example let us first present a positive result of Stegall (see Fremlin and Talagrand
(1979)).

THEOREM 6.1 (Stegall). If u is perfect then for each scalarly integrable f : 2 — X such
that Ty is weakly compact, the range v3*(X) of the Dunford integral of f in X** is norm
relatively compact. ’

PROOF. We may assume that f is scalarly bounded. It is obvious that for each £ € X
the equality ij XE = v‘;*(E ) holds, so in order to prove the norm relative compactness of
vr(X) itis sufficient to show the compactness of 7. To do it, choose any sequence (x,) S
B(X*). Since f is scalarly measurable, (x;} f) has a subsequence (x,;, f) that converges
a.e. Otherwise, we could apply Fremlin’s subsequence theorem (Fremlin (1975)), to get a
subsequence without measurable cluster points, in the space of all real-valued functions
endowed with the topology of pointwise convergence.

If x* is a weak* cluster point of ((x )), then x; f — x*f pointwise, and hence in

Li(u), because of the Lebesgue theorem.
Thus, T is compact, and the assertion is proved. a

Since perfectness of the basic measure space in not necessary for a Pettis integral to have
norm relatively compact range there is an obvious question when it can happen. It turns
out that the answer depends on approximation of Pettis integrable functions by simple
functions.

THEOREM 6.2 (Musiat (1985)). If f € P(u. X), then vy (X)) is norm relatively compact
ifand only if f is a limit of a sequence of X -valued simple functions, in the norm topology
of P(u, X).

We say that X has the pu-PCP (Pettis compacmess property) if for each f € P(u, X)
the set vs(X) is norm relatively compact. If this property is satisfied for an arbitrary
(£2, X, n), then X has the PCP. No general description of PCP is known but there are
interesting partial solutions. In particular we have the following result of Talagrand:



554 K. Musiat

THEOREM 6.3 (Talagrand (1980)). (MA) If [ is not a quotient of X, then X has the
PCP.

Talagrand (1980) presents also an example of X possessing PCP and having /.. among
its quotients.
More can be said about the following stronger property.

DEFINITION 6.4. A set # £ K C X has the u-Compact Range Property (CRP) if every
X-valued p-continuous measure of finite variation with its average range contained in K
has norm relatively compact range.

The global property in this context (i.e., CRP of X or, equivalently, of B(X)) has been
studied by Musial (1979). Then it was localized by Riddle, Saab and Uhl (1983). They
called K to be a ser of complete continuiry.

DEFINITION 6.5 (Riddle, Saab and Uhl (1983)). A subset K # ¢} of a Banach space X
is called a u-weak Radon—Nikodym set (respectively, a u-weak™ -RN set) if for every u-
continuous measure of finite variation v: £ — X satisfying for all sets E € X the inclusion
A, (E) C K there exists a K-valued (respectively, a K**-valued) Pettis integrable density
of v with respect to u. In the above definitions the u-continuity may be replaced by u-
domination. If K is a u-weak Radon-Nikodym set for all finite complete u, then it is
called a weak Radon-Nikodym set. Similarly for u-weak**-RN set. Sometimes we will
say also that K has the weak (or weak**) Radon-Nikodym property. If K = B(X) then we
say about the weak RNP (or weak™* RNP) of X.

WRNP was introduced in Musiat (1979) and W**RNP by Janicka (see Musiat (1980)). It
is an immediate consequence of the complementability of X* in X*** that X* has WRNP
if and only if it has W**RNP.

REMARK 6.6. L [0, 1] is an example of a Banach space without the W**RNP. Indeed,
L]0, 1] is complementable in L**{0, 1], so the W**RNP of L[0, 1] would imply the
RNP of the space, and it is well known that L{0. 1] does not enjoy the last property.

Since each measure space can be embedded as a thick subset of a perfect measure space
(cf. Musiat (1979)), we get the following conclusion from Theorem 6.1:

THEOREM 6.7 (Musiatl (1979) in case of K = X). If K has the W**RNP (in particular
WRNP), then K has also the CRP.

In case of the separable range of v, the complete characterization is given by the
following theorem that has been obtained independently by Talagrand (1984) and Musiat
(1985):

THEOREM 6.8. If f € P(u, X), then the following are equivalent:
(i) {x*f: x* € B(X™)} is a separable subset of L|(u):
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(i1) There exists a o-algebra > C X such that (82, 5. ,ulf) is separable, and f is
scalarly measurable with respect to z

(i1i) There exists a sequence { f,) of X -valued simple functions, such that {x* f,: n e N,
|x*\| < 1} is uniformly integrable and for each x* € X* the sequence {x* f,) e is
i-a.e. convergent to x* f:

(iv) There exists a sequence (fn) of X-valued simple functions, such that for each
X* € X* the sequence {x* f,) v is convergent to x* f weakly in L|(p):

(V) vy (X) is a separable subset ofX.

PROOF. (i) => (i1) Assume that the set {x* f: x* € B(X*)} is separable Then there exists

a sequence (x;;) in B(X™), such that {x} f: n € N} is dense in {x*f x*e B(X"H}.If X is

the o - algebra generated by all x) f and by N(u) then, clearly ul L s separable and each
x*fis ' -measurable.

(ii) = (ii1) Assume that f is scalarly measurable with respect to a separable measure
space (§2, Xo, u|Xp) and let s= o{(E,: n € N})) C X, be a countably generated o-
algebra that is ;| Xp-dense in Xy. Moreover, let 7, be the partition of £2 generated by the
sets Ey, ..., E,.

Put for each n

vi(E)
fn = Z W(E) XE

Eem,

with the convention 0/0 = 0.

Since {x* f: |lx*|| < 1} is uniformly integrable, this yields the uniform integrability of
{x* fu: n € N, |Ix*|| < 1}. As by the assumption 5 is dense in X, we have E(r*flE)
x*f u-ae., and so lim, x* f,, = x* f u-ae..

(iv) = (v) The condition (iv) means that for each E € X the sequence (v, (E)) is
weakly convergent to vs(E). Hence, v (X) is contained in the weak closure of the
set [ J7—, v., (%) and the last set is separable, since the ranges of all vy,-s are finite
dimensional.

(v) = (1) Suppose that {x*f: x* € B(X*) is non-separable and take an arbitrary
xi € S(X*) and hy € Loc(u) such that (h.x]f) = 1. Assume then that we have
already constructed for an ordinal 8 < w a family {(x}. hs): @ < B} with the following
properties:

(o) x}e Sk,

(B) ha € L),

(v) xy f €lin{xy f: @ <y} foreachy < B,

* 1 fa=y<§,

©) {hy, xq >={0 ife <y <8B.

Since {x* f: x* € B(X™)} is non-separable, one can find x;‘, € S(X*) such that x;‘,f ¢

lin{x} f: o < B}. Then, applying the Hahn-Banach theorem we get iz € L~ (1) such that
(hﬁ,x;;f) =land (hg.x} f)=1foralla < B.

Consequently, we get a net {(x}. hy): o < w1} satisfying (a)—(8) for all o, . y less
than ;.
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It follows that
|TFthe) = TFho) | > 1

whenever o < 8, and so the set T;*(Lx(u)) is non-separable in X**. But lin{xg: F € X'}
is norm dense in L. (y) and so linv(X) is norm dense in T;*-(Lx(,u)). It follows that
v(X) is non-separable. » U

Stefansson (1992) noticed that one can add an additional equivalent condition to
Theorem 6.8:

[ is determined by a separable space.

Combining Theorem 5.2 with Theorem 6.8 we get the following characterization of
Pettis integrability:

THEOREM 6.9 (Geitz, Musial). Let f:§2 — X be a function. Then, f € P(u, X) and
vy(X) is a separable set if and only if there exists a sequence (f,) of X-valued simple
Sfunctions, such that:

() The family {x* f,: n € N, x* € B(X*)} is uniformly integrable,

(4j) For each x* € X* we have lim, x* f,, = x* f u-a.e.
If [ is scalarly bounded, then (f,) can be taken to be bounded (i.e., sup, || fu(w}|| < M
u-a.e.).

The first result of the above type was obtained by Geitz (1981) who proved it in case of
a perfect measure u. It was then generalized by Musiat (1985).

Plebanek (1993) introduced the following notion: a weak Baire measure ¢ on X (i.e.,
a measure on the o -algebra of Baire sets in the weak topology of a Banach space X) is
scalarly concentrated on a subspace ¥ of X if x*|¥Y =0 implies x* =0 pu-a.e., for all
functionals x* € X*. Then he proved the following characterization of Pettis integrable
functions with separable range of their integrals:

PROPOSITION 6.10. If f : 2 — X is scalarly bounded and scalarly measurable then f €
P(u, X) and vy (X) is separable if and only if the measure f(u) is scalarly concentrated
on a separable subspace of X.

In the particular case of spaces of continuous functions on compact spaces a few further
results are known. Rosenthal (1970, Theorem 4.5) proved that if (and only if) a compact
space K satisfies the countable chain condition (CCC), then all weakly compact subsets of
C(K) are separable. Hence all C(K)-valued Pettis integrals have then norm separable
ranges. In particular it is so in case of K carrying a strictly positive Radon measure.
Another type of a sufficient condition was formulated by Plebanek (1993).

PROPOSITION 6.11. [f every sequentially continuous function f: K — R is continuous,
then every Pettis integral of a C(K)-valued function has a separable range.
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EXAMPLE 6.12 (Fremlin and Talagrand (1979)). Let I be an arbitrary nonvoid set and
let p be the product measure on K; := {0. 1}/ of the measure 1/28ig; + 1/28(1). If X is
the completion of the product o-algebra, then let X be the o-algebra on K defined in the
following way: E € X if and only if there exists a free non-measurable filter W on / and a
set F € X suchthat EN'W = F N W. It can be proved then that there is a unique extension
of i to a complete measure i on X (cf. Talagrand (1984, Theorem 13-2-1)). Let ¢ be the
canonical injection of K, into [ (). Then, ¢ is scalarly z-integrable but it is not 11-Pettis
integrable.

The detailed proof of these facts can be found in Fremlin and Talagrand (1979) or in
Talagrand (1984, Chapter 13).

EXAMPLE 6.13 (Fremlin and Talagrand (1979)). Let I be the measure described in
Example 6.12 and let k = 71 ® 7 be its complete producton K; x K;. If f:K; x K; —
I (1) is defined by

fl,y)=¢x) =)

then f € Pk, I (1)), but vy (F® X)is not relatively compact if / is infinite, and non-
separable if I is uncountable.

7. Universal integrability

DEFINITION 7.1. Let K # ¢ be a compact space. A function #: K — R is said to
be universally measurable if it is measurable with respect to the completion of each
Radon measure defined on K. f: K — X is I'-universally scalarly measurable if x* f
is universally measurable for every x* € I" C X*.

THEOREM 7.2 (Riddle, Saab and Uhl (1983)). Let i be a Radon measure on a compact
space K and let f: K — X* be a scalarly bounded and scalarly universally measurable
Sunction. If X is weakly compactly generated and [ takes its values in a weak*-separable
subspace of X*, then f € P(u, X*).

PROOF. Assume first the separability of X and let § > O be arbitrary. Since X is separable,
there exists a compact set L C K such that (K \ L) < § and (. x) is continuous on L for
each x € X. Let

A={(fix)e: lIx) <1}

and M, (L) be the set of all real-valued universally measurable functions on L equipped
with the pointwise convergence topology. As f is universally measurable, the set A
is relatively compact in M, (L). According to Theorem 2F of Bourgain, Fremlin and
Talagrand (1978), every sequence in A has a pointwise convergent subsequence and so,
it is weakly precompact in C(L). A direct application of Rosenthal’s theorem (Rosenthal
(1974)) says that A contains no copy of the standard unit vector basis of /. Since,



558 K. Musial

the canonical embedding of C(L) into L. (K.p) is a contraction, the set {{f, x)x.:
lx || < 1} contains no copy of the /;-basis in the L (K, pt)-norm either. Thus, it is weakly
precompact and Lemma 4.20 completes the proof. The non-separable case is a consequence
of separable complementability of X. u

Assuming the continuum hypothesis, Plebanek (1998) proved that the weak* separa-
bility of the range cannot be omitted. He proved namely that if y is the Haar mea-
sure on 2!, then Li(u) is a non-separable WCG space and there is a bounded function
f:10,1] - Lo (u) such that (x*, f) is Borel measurable for every x* € L..(u)* and
f ¢ P, Loc(p)).

Applying some consequences of Proposition 4.20 Bator (1988a) and Stefansson (1995)
have got the following decomposition properties of universally measurable functions:

PROPOSITION 7.3. Let K # @ be a compact space and let f: K — X* be bounded and
universally scalarly measurable. Then:
(a) (Bator) for each Radon measure p on K there exist functions g and h such that g
has the Bourgain property for u, h is weak™ scalarly p-null and f = g + h;
(b) (Stefansson) if X is a WCG space, then for each Radon measure i on K there exist
Sfunctions f1 and f> such that fy is universally Pettis integrable, f> is weak* scalarly
equivalent to zero and f = f1 + f>.

As an immediate consequence of Proposition 7.3 and Corollary 4.17 we get the follow-
ing result:

COROLLARY 7.4. Let yu be a Radon measure on a compact space K and let f: K — X*
be bounded and universally scalarly measurable. Then for each lifting p on Lo (u) the
Sunction py(f) is Pettis u-integrable.

The following result of E. Saag generalizes Corollary 4.19 of Haydon (1976).

PROPOSITION 7.5. Let ¥ £ K C X* be a convex weak™-compact set equipped with the
weak* topology. If B(X) is weakly precompact with respect to K, then the identity function
on K is universally Pettis integrable and the integrals take their values in K.

PROOF. In view of Proposition 4.15 if u is a Radon measure on K, then the family
‘H = B(X) has the Bourgain property. Hence Corollary 4.18 yields the Pettis integrability
of the identity function. The Hahn-Banach theorem applied to the weak* topology of X*
proves that the integral takes its valuesin K.

8. Pettis integral property
DEFINITION 8.1. X has the u-Pettis integral property if each X-valued, scalarly bounded

and scalarly p-measurable function is u-Pettis integrable. If such a property holds true
for all complete measures, then X is said to have the Pettis Integral Property (PIP). If u
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is the Lebesgue measure on the unit interval, then we say about the Lebesgue PIP. If X
has the p-PIP with respect to all Radon measures, then it is said to have the universal PIP.
A measure space (§2, X', i) has PIP if for every Banach space X each bounded scalarly
u-measurable X -valued function is Pettis integrable.

X has the universal PIP if for every compact K each bounded universally scalarly
measurable function f: K — X is universally Pettis integrable.

The first example of a Banach space without the Lebesgue PIP was given by Pettis
(1938). He constructed an example of a bounded scalarly Borel measurable f:[0, 1] —
1[0, 1] that is not A-Pettis integrable. Then, Edgar (1979), assuming (CH), published an
example of C[0, w,]-valued function, which is also not A-Pettis integrable.

No complete characterization of Banach spaces possessing PIP is known, but there are
several partial answers.

THEOREM 8.2 (Fremlin and Talagrand (1979)). If Axiom K is true, then every Banach
space has the Lebesgue PIP. If either Axiom K or Axiom L is true, then I has the p-PIP
for every perfect .

As observed by Plebanek (1993) the original proof of the first part of the above result
gives in fact more. To formulate it let us assume that u is non-atomic and denote by
non(/,,) the minimal cardinality of a set ® C £ which is notin \V,,. Then, let cov(N,,) be
the minimal cardinality of a subfamily of AV, covering 2. Moreover, let A, be the standard
product measure on 2*.

THEOREM 8.3. Ifnon(\N,, ) < cov(N;,), then the measure i, has PIP.
The main positive result is an immediate consequence of Theorem 4.10.
THEOREM 8.4 (Talagrand (1984)). If X is Corson, then X has PIP.

As a direct consequence of Theorem 2.8 we get PIP of measure compact spaces (Edgar
(1979)). Since each weakly countably determined space X (see VaSik (1981)) (in particular
every K-analytic or WCG) is Lindelsf in the weak topology of X (Vasak (1981)), and
every Lindelsf space is measure compact (see Varadarajan (1961)), all such spaces have
PIP (Edgar (1979)). If card I = R, then, /{(I") is measure compact, hence it has PIP. On
the other hand, /(X)) is not Corson (see Edgar (1979), where several other important
observations concerning PIP can be found).

It turns out also that there is a strong connection between PIP and real-valued measurable
cardinals.

THEOREM 8.5 (Edgar (1979)). [(I") has PIP if and only if card I" is not a real-valued
measurable cardinal.

THEOREM 8.6 (Andrews (1985)). If the least real-measurable cardinal is not less than
the continuum, then ly(I") has UPIP for all I
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Andrews (1985) presented also a few other conditions guaranteeing UPIP of conjugate
Banach spaces with metrizable weak™* compact and separable subsets.

Edgar (1979) observed also that Mazur’s property implies PIP, and since each X with
angelic (X*, weak™) is Mazur, also such spaces possesses PIP. As noticed by Plebanek
(1993), if K is a first countable compact space, then C(K) is Mazur. Consequently, we get
the following result.

THEOREM 8.7 (Plebanek (1993)). If K is a first countable compact space, then C(K)
has PIP and every C (K )-valued Pettis integral has a separable range.

In case of UPIP certainly the most important result has been obtained by Riddle, Saab
and Uhl and it is simply a reformulation of the main part of Theorem 7.2.

THEOREM 8.8 (Riddle, Saab and Uhl (1983)). If X is separable, then X* has UPIP.

No general characterization of UPIP even for conjugate spaces is known.

9. Weak Radon-Nikod§m property and related properties

The following two results due, independently, to Dinculeanu (1967) in case of Banach
space valued measures of finite variation and Rybakov (1968) in case of o -finite variation
are the starting points of all non-separable Radon-Nikodym type theorems.

THEOREM 9.1. Let v:X — X* be a weak® measure. If |v| is a o-finite measure, such
that N (i) S N(Iv)), then there exists a weak* scalarly integrable function f:§2 — X*
such that

f(2)cconv*A,(2) and (x'v(E))=/(qu>dll
E

foreach x € X and each E € X.
If u dominates v and p is a lifting on L () then f can be chosen to satisfy also the
equality (x, )= p({x, f)) forall x € X.

PROOF. Assume first that v satisfies the inequality [v[(E) < Mu(E) forall E € X'. Denote
for x € X by f, the Radon-Nikodym derivative of the measure (x, v) with respect to p.
Clearly, | f| < M p-a.e., and so |p( fi)| < M everywhere.

Defining f: 2 — X* by

(x, f(@) = p(f) ()

for each w € 2 and x € X we get the equality

[ srdu= [ otrodu= [ fidu=(x.0®)

foreach F € X andeach x € X.
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Consider now the family /7 of all finite partitions 7 of §2 such that if 7 = {E, ..., E,}
then p(E;) = E; for all i < n. We say that 7y < m if each element of 71 is a union of
elements of 7. Then, let

. v(E)
fri= ELE{ W(E) XE.

Applying Lemma VI.8.3 of Dunford and Schwartz (1958), we see that xf(w) =
lim_ 7 xfr (@) forall w € §2 and all x € X (cf. Kupka (1972)).

The general case follows by decomposing of §2 into pairwise disjoint sequence of sets
2, € X, suchthat W(ENR,) <nu(ENS2,), forall Ee X andn e N. d

The property saying that for each X*-valued measure v of o-finite variation that is u-
continuous there is a weak* measurable f: 2 — X* such that

(x,v(E)):]E(x,f)du (1

for each E € X and x € X, may be called the u-weak* Radon—-Nikodym Property
(1-W*RNP). Without loss of generality one may assume that v is u dominated. So it is
a consequence of Theorem 9.1 that each conjugate Banach space has the W*RNP (please
notice that we use this name in a different meaning than it is used in Talagrand (1984)).
f will be called a weak™ density (or a weak* Radon-Nikodym derivative) of v with respect
to u.

More generally, a set # # K C X* has weak* RNP if for each (£2, Z, u) and each
v: X — X* satisfying v(E) € u(E) - K forevery E € X thereis f:£2 — K such that (1)
is satisfied. Then weak* compact convex subsets of X* have W*RNP.

As a consequence of Theorem 9.1 we obtain the following result:

THEOREM 9.2. Let v: X — X be a u-continuous measure of o -finite variation. Then,
there exists a weak* measurable f:$2 — X** such that

f(R2) Cconv** A4,(2) and (x*,V(E))=/(X*-f)d/1
E

foreach x* € X* and E € X. If u dominates v and p is a lifting on L (u) then f can be
chosen to satisfy also the equality (x*. f) = p({x*. f)) forall x* € X*.

It is interesting and useful to know that the W**RNP and the WRNP are determined by
a single measure space.

THEOREM 9.3 (Musiat (1982) if K = B(X)). Let K =conv K # {} be a bounded subset
of X. If K has the A-W**RNP (respectively A-WRNP), then it has also the W**RNP
(respectively WRNP).
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PROOF. Let (2, X, u) be an arbitrary complete probability measure space and let v: ¥ —
X be a nonatomic measure satisfying for every E € X' the relation v(E) € u(E) - K.

(A) Assume first that X is the completion of a countably generated o -algebra X' € X
with respect to u|§ .

Let (E;) € X be a sequence generating X and let x : £2 — [0, 1] be its Marczewski
function:

X(@)=2)"37"xg, ().

n=I

It can be easily checked that x~': £ N x(£2) — P(£2) is a Boolean o-isomorphism of

Bio.1; N x($2) onto 5. Let L — [0, 1] be the image of u under x and, let 6 :[0. 1] —

[0, 1] be the function defined by A([0.6(z)]) = i ([0.1]). If § =60 x, then foreach E € L,

we have u[f" (E)] = A(E) and the measure algebras of y and A are isomorphic.
Letnow v: £ — X be given by

v(B)=v[~"(B)].

We have ||V(B)|| < A(B) foreach B € L. Hence. by the assumption, there is [ € P(A, K**)
(respectively P(A, K)), such that v(B) = f,. f dx.
It follows that for each E € 5

v(E):P—/EfoEdu.

Moreover, in view of Theorem 6.7, the set v(f ) is norm relatively compact.

(B) Assume now that X' is arbitrary and notice that v(X') is a norm relatively compact
subset of X** (respectively X). Denote by = the collection of all complete measure spaces
(£2, A, n|A) with A C X being the completion of a countably generated o-algebra X4
with respect to | X' 4 and order = upwards by inclusion.

In view of (A), for each A there is fa € P(u|A. K**) (respectively P(u|A, K)), such
that

V(E)=P—f fadu
E

foreach E € A.
We shall prove that the net (f) is Cauchy in the norm of P(u, X**) (respectively

P(u, X)).
To prove i, fix € > 0 and take a simple function k. : 2 — X , such that

sup
EeX

v(E) —~f hgdu“ <e
E

(cf. Musiat (1980)).
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Now fix A € E such that &, is A-measurable. Then, for each A > A

V(E) ——/ hedu
£

It follows that for A}, A> > A the inequality Ile - fJ:l < 2¢ holds, and so the net is
Cauchy, as required.

But Z is countably directed, so there exists Aq such that for each A > Ay we have
|fA - fAnI =0.

It follows that each such f, is scalarly u-equivalentto fa, and so foreach E € X', we
get the equality

<E€.

|fa—he] <4sup
EeX

v(E)=P ——/ fa,du.
E
This completes the proof. u

DEFINITION 9.4. Given a directed set (/1. <), a family of o-algebras X; € X, and
functions fr € P((£2, X, 1| X+); X) with 7w € IT, the system {f-. X7z:m € I} is a
martingale if & < p yields X, C ¥, and E(f,|X;) = fr. The martingale is bounded
if there is M > 0 such, that for each x* € X* and each 7 € IT the inequality [{(x*, f)| <
M ||x*|| holds u-a.e. The martingale is convergentin P(u. X) if there is f € P(u, X) such
that lim,, I fr—f l = 0. The collection of all finite X -partitions of 2 into sets of positive
measure is denoted by ITy. We order it in the following way: ) < m2 if each element
of m; is, except for a null set, a union of element of 7>.

The following theorem is a martingale characterization of the WRNP and the W**RNP.

THEOREM 9.5 (Musiat (1980) for K = B(X)). For a bounded set K =¢convK # 4 C X
the following conditions are equivalent:
(1) K has the WRNP (respectively W**RNP),
(ii) Given any (2, X, u) and any bounded martingale { f,, X,. n € N} of K-valued
Pettis p-integrable (simple) functions, then {f,, X, n € N} is convergent in
P(u, K) (respectively P(u, K**)).

PROOF. Assume (i) is satisfied and take a bounded martingale {f,, X,: n € N} in
P(u, K). Assume, that M > 0 is such that |(x*. f,)| < M|lx*|| u-a.e. (the exceptional
sets depend on x*).

Let $o = U, X, and let v: Xy — X be given by

n=1

B(E) =limf frdu
n E

for each F € So.
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We have ||V(E)|| < M u(E) andj(E) € u(E) - K for all E € ¥. The set function ¥
extends gniquely to a measure vy : X = o (Xy) — X satisfying the similar conditions for
all E € X' Setting foreach E € X

v(E) =fEE(xE|§)dv1

(where the integral is in the sense of Bartle, Dunford and Schwartz (1955)) we get an
extension of v; to the whole X' satisfying for all E € X the relations

[v(E)| < Mu(E) and w(E)eu(E)-K.

Since K has the WRNP (or W**RNP), we get f € P(u, K) (respectively P, K**))
being the density of v with respect to u.

Since K has the W**RNP, it has the CRP (by Theorem 6.7). Thus, in a similar way, as
it has been done in the proof of Theorem 9.3, one can show that {(f,, Z,); n € N} is a
Cauchy martingale in P(u, K **).

Since (V| X, (E) = fE fndu for each n € N, we have for each x* € X* (x*, f,) =
E({x*, f}| X,) and this gives

lim/ |E(x*fIZ) —x* fu|du=0.

n 0

Together with the Cauchy condition, this yields
lim |5 = f] =o0.

Assume now that (ii) is satisfied and take a measure v: ¥ — X satisfying foreach E € ¥
the relations

[v(E)| <u(E) and v(E)epu(E)-K.
Define for each w € ITx the function f; by

- V(E) -
fr = Z W(E) XE

Fem

andlet X, = o (). {(fx, £;); m € 15} is abounded martingale in P(u, K). If my < 12 <

-+ then, by the assumption, {(fx,. Xx,); n € N} is convergent in P(u, K) (respectively
P(u, K**)).
Let f:$2 — X*™ be a weak* density of v with respect to u:

(x*,v(E)):/(x*,f) du

E

foreachx* e X*, Ee€ X.
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One can easily see that there exists in [Ty a sequence ;] < 72 < -- - such that

li’{nsup{[gl(x*,f—f,,”) du: x* € B(X*)1 =0

and so, in particular

h]l;n E(x*’f”n)duz(x*’v(E)}
foreachx* e X*and E€ X.

Hence, if g =lim, f;, € P(u, K) (respectively P(u. K**)), then for each E € X, we
get the required equality

v(E) :/ gdu. 0
E
PROPOSITION 9.6 (C. Ryll-Nardzewski, see Musiat (1979)). [ does not have the WRNF.

PROOE. Let 7, be the dyadic partition of [0, 1] into 2" intervals and, let 7, be the
collection of all possible unions of elements taken from m,. If (4,) is an enumeration
of U;‘:’;, 7y, then clearly lim,, A(A,) = 0. Define a measure v: L — ¢y C I by setting
V(E)=(MENA) .
Then, v(L£) is a norm relatively compact subset of cq, ||v(E)|| < A(E) foreach E € Land v
is without Pettis A-integrable derivative in /. Indeed, let f:[0, 1] — I =[] be a weak”

density of v with respect to A. It means in particular that if (e,) is the standard basis in [,
then

A(EﬂA,,):(e,,,v(E)):/(e,,,f)dk

E
foreachn e N.
But the sequence (x4,) is pointwise dense in {0, 1}%!). Thus, if x4 is a non-i-
measurable cluster point of (x4, ), then x4 is A-a.e. equal to a pointwise cluster point of
({en, f)). Such a point is of the form (x*, f) for a functional x* € /%_. This means that f is

not scalarly measurable and hence it cannot be a Pettis integrable density of v with respect
to A. ]

The next theorem has been first proved by Musiat (1976) (see also (1979)) for separably
complementable X. Then, in full generality the necessity has been proved by Musial
and Ryll-Nardzewski (1978) and the sufficiency by Janicka (1979), Musiat (1979) and
J. Bourgain.

THEOREM 9.7. X* has the weak Radon—Nikodym property if and only if X contains no
isomorphic copy of 1.
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Assume that X contains no copy of /. If v: ¥ — X is a u-dominated measure and p
is a lifting on Lo (i), then by the weak* Radon-Nikodym property of X*, there exists a
weak™ density f:£2 — X* of v with respect to u such that

p((x, f))=(x, f) foreachxeX.

Since X contains no isomorphic copy of /;, it follows from Corollaries 4.17 and 4.18 that

(% w(E)) = / (x**. f)du

E

by the Lebesgue Convergence Theorem, and this proves the WRNP of X*.

Assume now that X contains a subspace that is isomorphic to /) andlet T :/; — X be an
isomorphic embedding. Then T*: X* — I is a surjection. If v: £ — [, is the measure
constructed in the proof of Proposition 9.6, then according to Musiat and Ryll-Nardzewski
(1978), there is a A-dominated measure x : £ — X* suchthat T*x = v. Since v is not Pettis
differentiable, also x cannot have a Pettis integrable density.

At this place it is also worth to recall a characterization of WRNP of X* in terms of
functions. The result is a direct consequence of the W*RNP of conjugate spaces.

COROLLARY 9.8 (Musiat (1979)). X* has WRNP if and only if for every complete
(82, X, u) and each weak*-bounded and weak*-scalarly measurable f:$2 — X* there
exists g € P(u, X*) and a weak*-scalarly null h: 2 — X* with f =g+ h.

More or less at the same time Rybakov (1977) presented another characterization of
Banach spaces not containing /| (see also Musiat (1979)).

THEOREM 9.9. X does not contain any isomorphic copy of I if and only if X* has CRP.

The next result is a generalization of Theorems 9.7 and 9.9. It was also an essential step
towards localizing of the weak RNP.

THEOREM 9.10 (Riddle, Saab and Uhl (1983)). For a given operator T :X — Y the
following conditions are equivalent:
(1) The set T (B(X)) is weakly precompact.
(1) T factors through a Banach space containing no isomorphic copy of Iy
(iii) The set T*(B(Y*)) has WRNP;
(iv) The set T*(B(Y*)) has CRP;
(v) T* factors through a Banach space with the WRNP.

The most general description of sets possessing WRNP will be given in Theorem 9.15.
In order to present an idea of its proof we need however yet a few additional facts.

LEMMA 9.11 (Rosenthal (1974)). Let (x,,) be a pointwise bounded sequence of real-valued
Sunctions defined on a set S and having no pointwise convergent subsequence. Then there
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exists a subsequence (x,, ) of (x,), a real number r and & > 0 such that for every infinite
subset M of {ny: k > 1}, there is a point 5 € S with

xm(s)>r 48 forinfinitely manyme M
and
xm(s) <r forinfinitely many m € M.

THEOREM 9.12 (Rosenthal (1978)). Let Q be an uncountable Polish space and let
(An, By)uz1 be a sequence of pairs of closed and disjoint subsets of Z. Assume that the
sequence (A, , By)y>1 has no convergent subsequence. Then, there exists a compact subset
L of Q, a homeomorphism h from L onto the Cantor set A = {0, 1}”, and an increasing
sequence {(ny) such that

A NL=h"" (V) and B, NL=h""(V)
Jorall k (here Vi, = {t = (t;) € A: 1;, =0}).
The next lemma is taken from Matsuda (1985).

LEMMA 9.13. Let X be separable and let Q # ) be a weak*-compact convex subset
of X*. If B(X) is not Q-weakly precompact, then there is a Radon measure on (Q, weak™)
and a measure v: X — X* such that

(@) W(E)e u(E)- Q foreach E € X;

(b) v(X) is not relatively compact in the norm topology.

PROOF (Sketch). Let (x,) be a sequence in B(X) without subsequence pointwise
convergent on Q. Without loss of generality we may assume that (x,), r and § > O satisfy
the conclusion of Lemma 9.11. Setting A, :={x*€ Q: (x*.x,) 2r+4}and B, :={x* €
Q: (x*,x;) < r} we get a sequence (Ay, By),> that has no convergent subsequences. In
virtue of Theorem 9.12 there exists a compact subset L of Q. a homeomorphism / from L
onto the Cantor set A = {0, 1}, and an increasing sequence (rn;) such that

Ay NL=h""(V) and B, NL=h""(V)
for all k (here V; ={t = (1,) € A: t; =0}).

Let n be the normalized Haar measure on A and let 77 be the Radon measure on L such
that h(n) = n. If £ is the extension of 7 to the whole Q. Then

E(An) =7(h~" (V) = n(Ve) = 1 /2 =£(By)
and

§(Ay, ﬂBn,-)=77(Vi N Vj() =1/4
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whenever i # j. Let v be the weak*-integral of the identity function on Q with respect
to £. v is a vector measure on the o -algebra of weak*-Borel subsets of Q.

The conclusion (a) of the lemma is an easy consequence of the separation theorem. To
see that (b) is also fulfilled notice that if i < j then

HV(An,-) - V(An,-)“ 2 (V(An,) - V(An, )\ -"n,)
>(r+5)E(An,anJ)‘_rS(An,nBrl;)=5/4~ 4

DEFINITION 9.14 (Talagrand (1984)). A weak* compact subset K of X* is a Pettis set
if the identity function is universally scalarly measurable (with respect to Radon measures
on (K, weak™)).

The next theorem summarizes most of the results presented earlier in this paper and
concerning WRNP.

THEOREM 9.15. Let K # () be a weak™*-compact convex subset of X*. Then the following
conditions are equivalent:
(1} B(X) is weakly precompact with respect to K ;
(11) the identity function is universally Pettis integrable on K
(i) K is a Pettis set;
(iv) K has WRNP;
(v) K has A-WRNP;
(vi) K has CRP;
(vii) K has 1-CRP.

PROOF (Sketch). (i) = (ii) follows from Proposition 7.5. (iil) = (i) is a consequence of
Bourgain, Fremlin and Talagrand (1978). (i) = (iv) follows from Corollaries 4.17 and 4.18.
(iv) = (vi) follows from Theorem 6.7 and (vii) = (i) from Lemma 9.13. O

Applying the result of Talagrand (1984) which says that if K C X* is a Pettis set then
its weak™ closure has WRNP, one gets further generalizations of Theorem 9.15.
10. Conditional expectation

Let & C X be a o-algebra. If f € P(u. X), then a function E(f|Z):2 — X is a
conditional expectation of f with respectto & if E(f|Z) e P(u, &, X) and

f E(f18)du =/ fdu @)
E E

forall E € =Z.

The first example of a Pettis integrable function without conditional expectation was
published by Rybakov (1971). It was an [;-valued function. Heinich (1973) published
then an example of /{-valued Pettis integrable function on [0, 1]3, which does not admit
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the conditional expectation with respect to a sub-o -algebra of the o -algebra of Lebesgue
measurable sets. These examples can be classed in the following pattern: If f € P(u, X)
has infinite variation |vs| and o-algebra & C X is such that |v|E] is not o-finite then
the existence of E(f]&) would contradict Theorem 3.8. Since for each non-atomic u
and infinite dimensional X there is f € P(u, X) with infinite |vy|, there are a lot of such
examples.

The following global result is an obvious consequence of the above considerations:

PROPOSITION 10.1 (Musiat, (1976) for K = B(X)). Let K C X be a closed and convex
set with WRNP. If f € P(u, K) and Z is a u| = -complete sub-o -algebra of X, then f has
the conditional expectation with respect to E if and only if the measure v¢|E is of o -finite
variation.

First examples of scalarly bounded Pettis integrable functions without conditional
expectations were presented by Talagrand (1984, 6-4). One of them is f € P(x, [ (1))
defined in Example 6.13 (see also Musiat (1985)). Indeed, if Z is the completion of the
Borel algebra of K; x K; with respect to y @ u, then Z is k-dense in Z®Z. If there
existed a Pettis integrable E( f|Z), then the equality (2) would be true for all x-measurable
sets. This is however impossible in case of infinite /, since according to Stegall’s result
(Theorem 6.1) the range of vg s z) is norm relatively compact.

Talagrand (1984) obtained the following interesting result covering the particular case
of the conditional expectations:

THEOREM 10.2. (Axiom L) Let (@,7,v) be a complete probability space and let
T:Li(n) = Li(v) be a bounded operator. Then, let f:§2 — X* be a weak*-scalarly
bounded function such that each countable subset of {xf: ||x|| < 1} is stable. Then there
exists a properly measurable function g:© — X* such that T(xf) = xg v-a.e. for all
xeX.If feP(u, X*), theng=Tf € P(v, X*).

Riddle and Saab (1985) proved another sufficient condition guaranteeing the existence
of conditional expectations.

THEOREM 10.3. If f € P(u, X™*) is scalarly bounded and the set {x f: ||x|| < 1} is weakly
precompact in L. (u), then f has conditional expectation with respect to all sub-o-
algebras of X.

PROOF. Assume that f € P(u, X*) satisfies the above assumptions, let & be a sub-o-
algebra of X and let p be a lifting on L. (u). Define g:£2 — X* by setting xg =
p(Ez(xf)), for each x € X. Since {xf: |x]| < 1} is weakly precompact in L (1) and
the conditional expectation operator Ez : L. (1) — L (u|Z) is a contraction, the set
{xg: ljx|] < 1} is weakly precompact in L (u|Z). In view of Corollaries 4.17 and 4.18
we have g € P(u|Z, X*). Now, since the equality fE xgdu = fE xfdp forall x € X and
the functions f and g are Pettis integrable, we get the same equality for all x € X**. ]
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11. Differentiation

Already Pettis (1938) noticed that if f € P(A. X) then for each x* € X* there exists a set
A(x*) € £ of measure one, such that the equality

h—0

t+h
lim A~ / (. f@))du=x"fa)
t

holds true for all 1 € A(x*). Pettis asked then whether in case of a strongly measurable
f € P(A, X) the sets A(x*) could be replaced by a single set of full measure, i.e., whether
the Pettis integral of f is a.e. weakly differentiable.

The answer is negative in case X = [> (Phillips (1940)) and X = C[O0, 1] (Munroe
(1946a)). Thomas (1976) conjectured that such a counterexample could be constructed
in every infinite dimensional X.

In (1994) Kadets proved that for every infinite dimensional Banach space X there is
a strongly measurable and Pettis integrable function f:[0.1] — X for which g(t) :=
f(; f(s)ds is non-differentiable on a set of positive measure.

Then Dilworth and Girardi (1995) generalized the above result proving that always there
exist functions that have nowhere weakly differentiable Pettis integrals. To formulate the
main result more precisely let ¥ be the collection of all increasing functions v : [0, oc) —
[0, oo) satistying the growth condition

oc

D ov(2 )V < . 3)

n=I1

for some increasing sequence (p, )<, of integers and such that y(0) = 0.

THEOREM 11.1 (Dilworth and Girardi (1995)). For each X and € W there exists a
strongly measurable f € P(), X) such that

[rar]zvem)

/

for every non-degenerated interval 1 C [0, 1].
If moreover

o

D oy(2r)2r = o,

n=1

then f ¢ L\(A, X).

PROOF (Sketch). Let {(Il:n=012....k=1, 2,....2"} be the dyadic intervals on
[0,1],i.e.,

k-1 &k
el
2n n
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Define inductively a collection {A}: n =0, 1,2....; k=1,2,....2"} of pairwise disjoint
sets of positive measure such that A} C /.

Fix K > 1. By a theorem of Mazur there is a basic sequence {x,} in X with basis constant
at most K. Take a blocking { F,,} of {x,} with each subspace F,, of large enough dimension
to find (using the finite-dimensional version of Dvoretzky’s Theorem (Dvoretzky, 1961))
a 2"-dimensional subspace E, of F, such that the Banach-Mazur distance between E),
and l%n is less than 2. Let T;, :123" — E, be for each n an operator such that |7, <2
and [|T, ' = 1. If {ul: k=1,2..... 2"} are the standard unit vectors in 15”, then let
ep = Thuy.

Let {p,) be an increasing sequence of integers, with py = 0 satisfying

o

Y Y4272 < oo

n=1
Define f:[0,1]— X by

am

>
F@)=2KY (42770 Y wma(af) el
k=1

n=I
One can easily check that foreach E € £

I

x
dh=2K 4.2 P LAl “/ w drel™ .
/Ef Z‘l’( )g (a:") EXA{ k

n=|

Since (E,) form a finite-dimensional decomposition there is a projection of @, E,, onto
Ep, of norm not exceeding 2K.
Now, if / is an arbitrary interval in [0, 1] one can find first /7" C I such that 42(/ "2z
A(I) and then n satisfying p,—1 <m < p,,.
It follows that
2} t/2

arn

frol> W'2""‘-1>{D<Af~>-‘ JRTE

k=1

and so since Af” cl"C Ij’-" C I we have

/IfdAU >y (427,

But y is increasing and 4 - 277-1 > 4.27" > A([) and so

flfdA” > ¥ (M(D)).
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If Z/Ozil 1!/(2_I7n——1)2[’n = 00, then Zl:;czl 1!/'(4 N 2l 25 ) Zizll ”e/{»)” ” = 00 and so f ¢
L (A, X) (according to Diestel and Uhl (1977, p. 55)). ]

As a corollary we get an answer to the original Pettis’s question.

COROLLARY 11.2 (Dilworth and Girardi (1995)). There exists a strongly measurable
f € P(u, X) that has nowhere weakly differentiable integral.

PROOF. Taking in Theorem 11.1 ¥(z) = +¥/* we get a function f satisfying for each
t € [0, 1] the equality

If the Pettis integral of f were weakly differentiable at some r, then the above limit would
be finite. d

As noticed in Dilworth and Girardi (1995)) it follows from Theorem 11.1 the existence
of a Pettis integrable function such that its integral is of infinite variation on every
subinterval of [0, 1]. This generalizes earlier result of Janicka and Kalton (1977) where
the Banach space valued measure possessing that property could not be represented as a
Pettis integral (A good reference to the circle of problems concerning vector measures of
infinite variation on all sets of positive measure is the work of Drewnowski and Lipecki
(1995)).

With some further effort one can get other results connecting the differentiability

problem with absolutely summing operators and cotype of X (see Dilworth and Girardi
(1995)).

12. Fubini theorem

The classical Fubini theorem holds true not only for real functions but also for Bochner
integrable functions on an arbitrary measure space. Thomas (1976) observed that for
every infinite dimensional Banach space X does exist a strongly measurable and A7-Pettis
integrable function f: [0, 1]> — X with the property that for every x € [0, 1] the function
y — f{x, y) is not A-Pettis integrable. Recently Michalak (2000) attempted to resolve the
problem in case of arbitrary bounded Pettis integrable functions.

THEOREM 12.1 (Michalak (2000)). Ler (£2. X, ) and (®. T, v) be complete probability
spaces and let X be a WCG space not containing any isomorphic copy of 1. If f €
P(u®v, X*) is such that the set {lxfl: x € B(X)} is order bounded in L1 (u®v), then
there exists a function g:§2 X © — X* which is scalarly equivalent to f and

(1) the function g(-,6) € P(u. X*) for v-a.e. 6 € ©;

(i) the function g(w, -) € P(v, X*) for pi-a.e. w € £2:



Pettis integral 573

(i) [, pgdu®v= Jalf5 8(@.0)dv(@)) du(w) = [4(f, glw, ) du(w)) dv(8) for
alAec X and BeT.

The above theorem cannot however be extended to all Banach spaces. If [o(£2, X) is
the space of all functions f:£2 — X such that 3 o | f(w)||> < o0, then one gets the
following result:

THEOREM 12.2 (Michalak (2000)). Let (£2, X . u) and (&. T, v) be complete probability
spaces and let X be a Banach space. Assume that y vanishes on points and there
is a nonmeasurable subset of ©. Then for every bounded Pettis integrable function
182 x © - (82, X) there exists a bounded function g:§2 x @ — [>(§2, X) which is
scalarly equivalent to f and

u({a) € 2: g(w, ) is not scalarly v-measurable}) > 1/2.

13. Spaces of Pettis integrable functions
13.1. Space of all Pettis integrable functions

Pettis (1938) noticed that P(A, L2(A)) is non-complete. Rybakov (1970) proved that
P(X, cg) is non-complete. Then Thomas (1976) proved that P(u, X) is non-complete in
case of an arbitrary not purely atomic p and infinite dimensional X. Janicka and Kalton
(1977) proved the same in case of the Lebesgue measure on [0, 1].

Modifying the example of Pettis, Drewnowski, Florencio and Paiil (1992) showed that
P(x, L2(A)) does not have property (K). Then, Drewnowski and Lipecki (1995) proved
that P(u, X) is never ultrabarrelled if u is non-atomic, and so it is neither Baire nor has
property (K). However, the following holds true:

THEOREM 13.1 (Drewnowski, Florencio and Padl (1992)). P(u. X) is always barrelled.

PROOF (Sketch). Let us say that a locally convex space Z admits an (§2, X', u)-Boolean
algebra of projections (see Drewnowski et al. (1992) for details) if there exists a set
{P4: A € X} of linear projections in Z such that:
(1) Pg is the identity on Z, Pang = P4 - Pg forall A, B € X, and Paup = Pa + Pg
for all disjoint A, B € X,
(2) P4 is continuous for every A € X;
(3) for every x € Z, the vector measure Fy:X — Z defined by F,(A) := Pa(x) is
p-continuous (that is P4 (x) =0if u(A) =0).
Now we need the following

PROPOSITION. Let Z be a metrizable locally convex space admitting an (§2, X, p)-
Boolean algebra of projections {Psy: A € X}. Assume also that the projections satisfy
the following condition:
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(4) If (A,) is a sequence of pairwise disjoint elements of X' and (x,) is a null sequence
in Z such that Pa, (x;) =x,. n=1.2..... then there exists a sequence {n;) in N
such that the series y_, x,, is convergent.
If W is a closed subspace of Z such that PA(W) C W forall Ae ¥ and (2, %, ) is
atomless, then W is barrelled.

Now we are ready to present the proof. Assume first that (§2. X, u) is atomless. For
A€ X and f e P(u, X), define P4(f):= x4 - f.One can easily check that the conditions
(1)-(3) are fulfilled. We have to check yet the condition (4) of the just formulated
proposition. So let {A,} be a pairwise disjoint sequence in X and let { f,;) be a null sequence
in P(u, X). Without loss of generality, we may assume that M := Z” |f,,| < 00. Let
fw):= Z" fu(w) be defined for all w € 2. Then, for every x* € X* we have

[t s@llan= [ Sl swlan < sty

and so f is scalarly integrable. Since for every A € £, wehave }_, || f, fudul < oo, the
series Y, [, f,du is convergent to an element v(A) € X. One easily see now that

o)=L f)du =/;(.\'*. f)dp.

ANA,

This completes the proof in case of an atomless y.

If 1 1s atomic, then P(u, X) is a Banach space. In the general case one decomposes
the measure space into atomless and atomic parts obtaining P(x, X) as a direct sum of a
barrelled space and a Banach space, which is again barrelled. g

The above result has been then generalized by Diaz et al. (1995) to the following form:
THEOREM 13.2. P(u, X) is always ultrabornological.

PROOF (Skerch). The proof is based on the following fact (see Diaz et al. (1995) for
details).

PROPOSITION. Let {Ps: A € X} be an (£2. . u)-Boolean algebra of projections in a
metrizable locally convex space Z. Assume that {P4: A € X} is an equicontinuous family
of operators and satisfies the following condition:
(5) If (82,) is a decreasing sequence in X with u([$2,) =0, (x,,) is a bounded
sequence in Z such that Pg (x,) = x, for all n, and {a,) € |\, then the series
Y, QnXy is convergent in Z.
If PA(Z) is ultrabornological for each pi-atom A, then Z is also ultrabornological.

The rest of the proof is similar to the previous one. Ps(f) = xa - f with f € P(u, X)
and A € X' This is an equicontinuous family of projections forming an (£2. X', u)-Boolean
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algebra of projections in P(u, X). One can easily check the validity of the condition (5).
If A is an atom then P4(P(u. X)) is isomorphic to X. Hence the assumptions of the
proposition are satisfied and so P(u. X) is ultrabornological. O

There was also an attempt to introduce a complete metric on P(u. X) (necessarily not
equivalent to the original one). Heilio (1988) defined such a topology composing the
original semivariation norm with the convergence in measure. Setting for an arbitrary X-
valued function f

|flu =infla: u*{we 2: | flw)]| >a} <a}.
Heilio set then for each scalarly integrable f

Wr:= 7] + 171,

and proved that P(u, X, || - ) is complete. One of the consequences of this fact is another
proof of the incompleteness of P(u. X).

There is a wide class of problems concerning the possibility of embedding of a
space Y into P(u, X) provided Y is an isomorphic subspace of X. Diestel proved in 1988
(unpublished) that if the range of u is infinite and X contains an isomorphic copy of ¢y,
then the completion of P.(1, X) contains a complemented copy of cy. Emmanuele (1992)
generalized it to P(u, X). Diaz et al. (1993) proved that if X contains an isomorphic copy
of cg and p is non-atomic and perfect, then P(u. X) contains a complemented copy of cg.
This has been then generalized by Freniche.

THEOREM 13.3 (Freniche (1998)). If the range of u is infinite, then the following are
equivalent:
(i) X contains a copy of cy:;
(i) P(u, X) contains a copy of cy:
(ii1) P(u, X) contains a complemented copy of cy.

The next result concerns P(A, X) as a subspace of the space ca(L. 1. X) of all X-valued
A-continuous measures equipped with the semivariation norm.

THEOREM 13.4 (Drewnowski and Lipecki (1995)). If X is separable then P(1. X) is an
Fos but not Fiy subset of ca(L, A, X).

13.2. Functions satisfying the strong law of large numbers

Hoffmann-Jgrgensen (1985) and Talagrand (1987) introduced the space LLN (. X) of X-
valued functions satisfying the law of large numbers.

LLN(u, X)

=1f:2— X: 3ay€X lim =0 for u™>-ae. (w;) € 2>
) H—x

1 n
ap— ;; flw)

where 14> is the countable direct product of 2 on §2™ — the countable product of £2.
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Talagrand (1987) defined the Glivenko—Cantelli seminorm on LLN (i, X) setting for an
arbitrary function f: 2 — X

*
I fllge =1imSup/ by dp

n

where

1
hp(w)= sup - x*(f(wi))]-
@)= s gl (f @)]
It has been proved by Beck (1963) that Bochner integrable functions satisfy the strong
law of large numbers. If X is separable and a function f:£2 — X satisfies the strong law
of large numbers, then f € Li(u, X), i.e., f is Bochner integrable (Hoffmann-Jgrgensen
(1985)).
Talagrand (1987) described completely the class of functions satisfying the law of large
numbers. His proof is however too long to be presented here.

THEOREM 13.5 (Talagrand (1987)). For a function f:2 — X and @ = {wy) € 27 set
$n (@) = (1/n) Y"1, f(w;). Then the following conditions are equivalent:

(a) f satisfies the strong law of large numbers:.

(b) f is properly measurable and f;; I flldu < oc:

(c) For almostall @ € 27, the sequence (1/n)S, (@) converges in norm,

(d) Foreach ¢ > O there is a simple function g : 2 — X such that || f — gllcc < e.

It easily follows from the above theorem that the Glivenko—Cantelli norm coincides on
LLN(u, X) with the ordinary | . I norm and each function satistying the law of large
numbers is Pettis integrable. Functions in LLN (¢, X) that are scalarly equivalent are not
distinguishable by the GC-norm. This permits us to identify scalarly equivalent elements
of LLN(u, X) and investigate the quotient space (denoted also by LLN (i, X)).

In the context of LLN (t, X) Talagrand (1987) successfully applied the concept of stable
sets to description of the so called Glivenko—Cantelli classes of functions.

Dobric (1990) posed a question about completeness of LLN (i, X). It turned out that the
space is almost never complete and in general it is even not barrelled.

THEOREM 13.6 (Musial (2001a)). Assume that u is not purely atomic. Then the space
LLN(u, X) is non-complete. If moreover LLN (i, X, var) is complete, then LLN(w, X) is
even not barrelled.

PROOF. P (i, X) endowed with the Pettis norm is non-complete (see Thomas (1976)).
Let (f,) be a Cauchy sequence in P.(u.X) that is not convergent in P.(u, X). It
follows from Musial (1979, Proposition 3) that for each n € N there exists a simple
function h,:2 — X with | fn - h,,| < 1/n. Since simple functions are properly
measurable and LLN(p, X) € P.(u. X). the sequence (h,) is also Cauchy in LLN(u, X).
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Clearly, the sequence (h,) is divergent in LLN(u, X). This completes the proof of the
noncompleteness.

If LLN (1, X) were barrelled then applying the closed graph theorem to the identity map
from LLN(u, X) to LLN(u, X, var) one would get its continuity. Hence the two norms
would be equivalent. This is however impossible if X is infinite dimensional and g is not
purely atomic. O

If each X-valued Pettis integrable function is weakly equivalent to a strongly measurable
function (it is in case of X possessing RNP or in case of a measure compact X), then
LLN(u, X, var) = Li(u, X) and so LLN (. X) 1s not barrelled.

13.3. Functions with integrals of bounded variation

We denote by PV (u, X) the set of those f € P(u. X) for which |v/| is finite. PV (u. X)
can be considered as a subspace of cabv(u. X). endowed with the variation norm. We
define a ||-{|ynorm on PV (i, X) by setting

iy =1vri(£2).

Clearly |f] <IIfllv foreach f € P(u. X).
Exactly as in the proof of Theorem 13.1 one can obtain

THEOREM 3.7 (Musiat (2001a)). PV (u. X) is barrelled.

PROPOSITION 13.8 (Musiat (2001a)). If X has the weak Radon—Nikodym property, then
PV (u, X) is a Banach space. In particular if Y is a Banach space not containing any
isomorphic copy of 1, then PV (u, Y™) is complere.

It is not known whether the space PV (u. X*) is always complete. Assuming the validity
of Axiom L, one can prove however the completeness of PV (p. X*) for an arbitrary perfect
measure (.

THEOREM 13.9 (Musiat (2001a)). (Axiom L) If it is perfect then PV (i, X*) is complete.
PROOF (Skerch). Let ( f,,) be a Cauchy sequence in PV (i, X*)) and let v be the limit of

(vy,) in cabv(u, X*). The classical Radon-Nikodym theorem guarantees the existence for
each n € N of a function h,, € L(u) such that

|V—Vf,,|(E)=/ hndp. 4)
E

for each E € ¥. Moreover, since X* has the W*RNP, there exists a weak™ measurable
function f:§2 — X* such that foreach x € X and each E € ¥

xv(E) =/ xfdu.
E
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The theorem will be proved if we show that there exists a Pettis integrable function f that
is weak*-equivalent to f. To do it let us notice first that for each x from the closed unit
ball of X and for each n € N the equality (4) yields the relation

[ f = f)| Sha w-ae. (5)

It follows that for each n € N and each x** € B.(X**) we have

](X**’ f - ﬁl)' < hn H-a.c.

Since the sequence (h,) is convergent to zero in the norm of L(u), we obtain the
measurability of all functions x** f, with x** € B.(X**). If f is weak*-scalarly bound~ed,
then the Pettis integrability of po(f) follows from Theorem 4.28 and we may put f =
po(f). If f is arbitrary, we apply the decomposition Corollary 2.11. This completes the
proof. 0

The next result shows that sometimes the assumptions concerning Axiom L and the
measure space are superfluous. We omit a direct and easy proof.

PROPOSITION 13.10 (Musiat (2001a)). Let X be a separable Banach space and let Y be
a closed linear subspace of X*. Then PV (1. Y) is complete for an arbitrary p.

It is not known whether the space PV (i, X*) is always complete. There is however an
example due to D. Fremlin of a non-conjugate X, such that PV (A. X) is non-complete.
Since X is perfect, it follows that in general the structure of the Banach space X is more
important, than the properties of 1.

EXAMPLE 13.11 (Fremlin, see Musiat (2001a)). For each t €]0. 1] let ¢, € [ [0. 1] be the

unit vector at 7: e;(s) =0 if s # ¢ and ¢,(s) = 1 if s =t. Consider o) as an element of
L [0, 1] and set for each t €10, 1]

X(0) = xjo.) + e /17

Then, let X be the closed linear subspace of L.[0. 1] x /[0, 1] generated by all x(r),
1 €]0, 1] and all (w, 0) with w € C[0. 1].

THEOREM 13.12 (Musiat (2001a)). The space PV (A, X) does not have the (K) property.

13.4. LLN(u, X) equipped with the variation norm of integrals

It has been proved in Talagrand (1987) that Pettis integrals of functions from LLN(u, X)
are measures of finite variation. Thus, it makes sense to equip the space LLN(u. X) with
the variation norm of the integrals. It will be denoted by LLN(u. X.var). Contrary to
PV (u, X*), the space LLN(u. X*. var) behaves quite well.
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THEOREM 13.13 (Musiat (2001a)). LLN(u. X*. var) is a Banach space.

PROOF (Sketch). Let p be a consistent lifting on (£2, ¥, 1) and, let (f,) be a Cauchy
sequence in LLN (i, X*, var). Moreover, let v be the limit of (v,) in cabv(u, X*) and, let
f 182 — X* be a weak*-density of v with respect to p. We shall split the proof into two
parts. Assume first that f is weak*-scalarly bounded. Without loss of generality, we may
assume then that f = po(f). Moreover, let for each n a function ¥, € L1(u) be the RN-
density of the measure [v;, | and let £2,, ,, := p({w € $2: ¥, (w) <m}). Since ¥, € Ly(u),
there exists for each n € N a number m,, such that u(£25 , ) < 1/n.

Since fi.xg,, is scalarly bounded and properly measurable, it follows from the
consistency of p that g, := po(fu x2,.,,) is bounded and properly measurable, for each
n € N. Hence, g, € LLN(u., X*, var) and since f — g, = po(f — gu), we see that for each
n € Nand some M >0

”f - gﬂ ”GC g IV - vfu I(Q) + M/'L(‘Q;Ilm,,)'
That is f is approximated in the Glivenko—Cantelli norm by elements of LLN(u. X*). In

virtue of Theorem 13.5, f satisfies the law of large numbers.
The general case follows by an appropriate decomposition of £2. |

13.5. Bounded Pettis integrable functions

We denote by P~ (i, X) the linear space

[£ €0t 171 = sup ¥ fllx < 20},
st

where ||x* f ||« is the L (u)-norm of x* f. One can easily check that | - [[p, is a norm.
Then, let PS_(u, X) :={f € P (., X): v; (X)) is norm relatively compact}.
Identifying weakly equivalent functions — we denote by LLN o (i X) the linear space

[ €LNGL X0 1 py o= sup i fil < o).
lafist

PROPOSITION 13.14. If X has the WRNP, then Py (u. X) is complete.

THEOREM 13.15 (Musiat (2001b)). (Axiom L) If u is perfect, then P(u.X*) is
complete.

PROOF. Let (f,)> | be a Cauchy sequence in P~ (1. X*). Then foreachm.n e N

n=1

sup ”X**fn —x** fin ”,\: = sup |lxfu —xfmllx

ol i<t
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and

sup {1xfu — X furllc = sup|| po( fi) (@) — po( fu) (@) (6)

el

where p is a lifting on L. (u). Consequently, the sequence (po(f,)) is uniformly
convergent to a function 4 : £2 — X* such that h = po(h). Since for each x** € B.(X**)
the functions pp( f;;) are measurable, according to Talagrand (1984, Theorem 6-2-1) (where
the Axiom L is used), the functions po(f;) are in Px(u, X*) and so h is scalarly
measurable. Then, it is a consequence of Theorem 5.2 that h € Psc (1, X*).

Thus, using (6), with A rather then f,,, we get

lim| f, — Allp,, =1lim sup |Ixf, —xh|lx
" sl

= limsup o fi) (@) — po(h)(@)]| =0.

This proves the completeness of Px (1. X*). a

The above proof makes it obvious that in fact the following more general result holds
true:

THEOREM 13.16 (Musial (2001b)). Ler i and X be arbitrary. If for each countable family
F C Px(u, X*) there exists a lifting p such that po(f) is u-Pettis-integrable for each
f eF, then Px(u, X*) and PS_(p. X*) are complete.

COROLLARY 13.17. If X is separable, then for each p the spaces P5 (u,X*) and
P (e, X*) are complete.

Analysis of the proof of Theorem 13.15 when p is consistent shows the validity of the
next result.

THEOREM 13.18 (Musiat (2001b)). The space LLN ~ (i, X*) is complete.

Considering each X-valued function as an X**-valued function we get the following
result in case of an arbitrary Banach space X:

THEOREM 13.19 (Musial (2001b)). The completion of the space LLN.(u.X) is a
subspace of LLN 5. (i1, X**). If Axiom L is satisfied and u is perfect then the completion of
P (1, X) is a subspace of P~ (11, X**).
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