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Approximation of functions and multifunctions by simple functions and multifunctions plays
an important role in the theory separable valued functions and multifunctions. Also in case of
Pettis integrable functions with values in non-separable Banach spaces there exists a satisfactory
approximation theory, but in case of Pettis integrable multifunctions with values in non-separable
Banach spaces no such a theory exists. It is the aim of this paper to fill in that gap.
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Introduction

One of the most exploited property of multifunctions taking as their values (weakly)
compact subsets of a separable Banach space is approximation of multifunctions
by simple multifunctions and by selections.

In case of multifunctions having their values in non-separable Banach spaces the
classical approximation is no more valid. First of all, multifunctions may be not
Effros measurable and the selections are in general not strongly measurable. This
excludes general approximation approach via simple functions. The second reason
is that the weak topology restricted to weakly compact sets may be now not
metrizable and this immediately eliminates some methods of proofs that used to
be applied in case of separable Banach spaces. Consequently, the technique applied
in this paper is closer to the methods used in the theory of Pettis integration of
functions with values in non-separable Banach spaces.

Following the existing approximation and convergence theory for Pettis integrable
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functions (see [24] and [26]) I prove the corresponding approximation and conver-
gence results for Pettis integrable multifunctions. The results are proved without
invoking the existence of any selections. The main tool applied in the convergence
part of the paper is a scalar equi-convergence in measure of a sequence of multi-
functions. In case of strongly measurable functions on a finite measure space it
is obvious that a.e. convergent sequence is convergent in measure. When func-
tions fail to be strongly measurable, it is clear only that each composition with
functionals is convergent in measure. Our approach shows that even in case of
non-measurable functions and multifunctions, the a.e. convergence in the norm
topology or in the Hausdorff metric yields a certain type of convergence in mea-
sure that is essentially stronger than the scalar convergence in measure. From a
formal point of view this is simply the convergence in measure that is uniform on
the unit ball of X∗, but it seems that that type of convergence has been totally
overlooked, so far.

Here are the most essential results of the paper.

A characterization of cb(X)-valued Pettis integrable multifunctions that can be
approximated in the Pettis metric by simple multifunctions (Theorems 2.3 and
4.6).

A characterization of cb(X)-valued Pettis integrable multifunctions that can be
approximated in the Hausdorff metric by simple multifunctions (Theorems 3.4,
3.7, 4.3 and 4.4).

A characterization of cb(X)-valued multifunctions that satisfy the strong law of
large numbers (Theorems 5.6 and 5.8).

1. Basic facts

This section contains definitions, notation and a few facts that are already mostly
known.

Throughout (Ω,Σ, µ) is a complete probability space, Σ+
µ is the collection of all

sets of positive measure, N (µ) := {E ∈ Σ : µ(E) = 0} and A∩Σ := {A∩E : E ∈
Σ}. σ(E) is the σ-algebra generated by a family E of sets. (Ω,Σ, µ) is said to be
separable, if it is separable in the Fréchet-Nikodým pseudometric. L denotes the
collection of all Lebesgue measurable subsets of the set of real numbers R or [0, 1]
and, N is the set of all positive integers. X is a Banach space with its dual X∗

and the closed unit ball of X is denoted by B(X).

c(X) denotes the collection of all nonempty closed convex subsets of X, cb(X)
is the collection of all bounded members of c(X), cwk(X) denotes the family of
all weakly compact elements of cb(X) and ck(X) is the collection of all compact
members of cb(X). For every C ∈ c(X) the support function of C is denoted by
s(·, C) and defined on X∗ by s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, for each x∗ ∈ X∗.

I assume that on cb(X) the Hausdorff metric dH is defined. It is known that cb(X)
endowed with dH is a complete metric space. If C,D ∈ cb(X), then we have
Hörmander’s formula dH(C,D) = sup‖x∗‖≤1 |s(x

∗, C)− s(x∗, D)| (cf. [7, Théorème
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II.18]). cb(X) is considered with the Minkowski addition: A ⊕ B := A+B. If
A,B,C,D ⊂ Ω are nonempty, then (cf. [19, Proposition I.1.17]) dH(A ⊕ B,C ⊕
D) ≤ dH(A,C) + dH(B,D).

Besides the metric convergence I will consider also the so called scalar convergence
(cf. [29]). A sequence of sets An ∈ cb(X) is scalarly convergent to A ∈ cb(X) if
limn s(x

∗, An) = s(x∗, A), for every x∗ ∈ X∗. A set ∅ 6= S ⊂ cb(X) is said to
be scalarly separable in cb(X), if there exists at most countable family {An : n ∈
N} ⊂ S such that for each A ∈ S there is a subsequence {Ank

: k ∈ N} that is
scalarly convergent to A.

The weak∗ topology of X∗ will be denoted by σ(X∗, X).

Any map Γ : Ω → c(X) is called a multifunction. I associate with each Γ the set

ZΓ := {s(x∗, Γ ) : ‖x∗‖ ≤ 1} ,

where I consider functions, not equivalence classes of a.e. equal functions. The set
of equivalence classes of functions scalarly equivalent will be denoted by ZΓ .

In the proofs I will often identify functions with their equivalence classes.

A function f : Ω → X is called a selection of Γ if f(ω) ∈ Γ (ω), for every ω ∈ Ω.
If A ⊂ X is nonempty, then I write |A| := sup{‖x‖ : x ∈ A}.

A map M : Σ → cb(X) is additive, if M(A ∪ B) = M(A) ⊕M(B) for every pair
of disjoint elements of Σ. An additive map M : Σ → cb(X) called a multimeasure
if s(x∗,M(·)) is a finite measure, for every x∗ ∈ X∗. If M is a point map, then
I talk about measure. If M : Σ → cb(X) is countably additive in the Hausdorff
metric, then it is called an h-multimeasure. It is known that if M : Σ → cwk(X),
then M is a multimeasure if and only if it is an h-multimeasure (cf. [19, Theorem
8.4.10]). A multimeasure M : Σ → c(X) is said to be µ-continuous if µ(E) = 0
yields M(E) = {0}, for every E ∈ Σ. M(Σ) will denote the set {M(E) : E ∈ Σ}
and

⋃
M(Σ) will denote the set

⋃
{M(E) : E ∈ Σ}. Let me point out here that

in my paper [27] the set
⋃
{M(E) : E ∈ Σ} was denoted by M(Σ). I think that

the just proposed notation is better. If m : Σ → X is a vector measure, then its
range {m(E) : E ∈ Σ} is denoted by m(Σ) and is identified with

⋃
m(Σ).

A vector measure m : Σ → X such that m(A) ∈M(A), for every A ∈ Σ, is called
a selection of M . S(M) will denote the set of all countably additive selections of
M .

SΓ denotes the family of all scalarly measurable selections of a multifunction Γ .

A family W ⊂ L1(µ) (or just a family W of integrable functions, not equivalence
classes) is uniformly integrable if W is bounded in L1(µ) and for each ε > 0 there
exists δ > 0 such that if µ(A) < δ, then supf∈W

∫
A
|f | dµ < ε. Equivalently, W is

uniformly integrable if and only if limC→0 supf∈W

∫
{|f |>C}

|f | dµ = 0.

I shall apply also the following fact (cf. [11, Theorem I.2.4]): Let {ft : t ∈ T} be a
bounded subset of L1(µ) and let µt : Σ → R be defined by µt(E) :=

∫
E
ft dµ, for

each E ∈ Σ and t ∈ T . Then {ft : t ∈ T} is uniformly integrable if and only if
{µt : t ∈ T} is uniformly σ-additive.
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Definition 1.1. A multifunction Γ : Ω → c(X) is said to be scalarly measurable if
for every x∗ ∈ X∗, the map s(x∗, Γ (·)) is measurable with respect to Σ. Sometimes
I shall consider also multifunctions that are scalarly measurable with respect to
a smaller σ-algebra. A multifunction is simple if it scalarly measurable and takes
finitely many values. Scalarly measurable multifunctions Γ,∆ : Ω → c(X) are
scalarly equivalent if s(x∗, Γ ) = s(x∗, ∆) a.e., for each x∗ ∈ X∗ separately. A
multifunction Γ : Ω → c(X) is scalarly integrable if s(x∗, Γ ) is integrable for every
x∗ ∈ X∗. Γ : Ω → c(X) is scalarly bounded if there is a constant M ≥ 0 such that
for every x∗ ∈ X∗

|s(x∗, Γ )| ≤M‖x∗‖ a.e.

I say that a space Y ⊂ X determines a multifunction Γ : Ω → c(X) (see [27,
Definition 2.1]) if s(x∗, Γ ) = 0 µ-a.e. for each x∗ ∈ Y ⊥ (the exceptional sets
depend on x∗).

It is known (cf. [27]) that each scalarly measurable multifunction Γ can be rep-
resented as Γ =

∑∞
n=1 ΓnχEn

, where Γn’s are scalarly bounded and Σ ∋ En’s are
pairwise disjoint.

Definition 1.2. Denote by C an arbitrary nonvoid subfamily of cb(X). A scalarly
integrable multifunction Γ : Ω → c(X) is Pettis µ-integrable in C, if for each A ∈ Σ
there exists a set MΓ (A) ∈ C such that

s(x∗,MΓ (A)) =

∫

A

s(x∗, Γ ) dµ for every x∗ ∈ X∗. (1)

I call MΓ (A) the Pettis integral of Γ over A and set (P )
∫
A
Γ dµ :=MΓ (A). If no

confusion is possible, I shall write simply
∫
A
Γ dµ.

It follows from (1) that MΓ is a µ-continuous multimeasure. Moreover,

sup
‖x∗‖≤1

∫

Ω

|s(x∗, Γ )| dµ <∞ . (2)

Indeed,

∫

Ω

|s(x∗, Γ )| dµ ≤ 2 sup
E∈Σ

∣∣∣∣
∫

E

s(x∗, Γ ) dµ

∣∣∣∣ = 2 sup
E∈Σ

|s(x∗,MΓ (E))| <∞,

where the last inequality follows from the fact that s(x∗,MΓ (·)) is for each x∗ a
scalar measure.

Hence, by the Banach–Steinhaus Theorem,
⋃
MΓ (Σ) is bounded. This yields

sup
‖x∗‖≤1

∫

Ω

|s(x∗, Γ )| dµ ≤ 2 sup
{
‖x‖ : x ∈

⋃
MΓ (Σ)

}
<∞ .

Definition 1.3. Denote by P(µ, C) the collection of all multifunctions Γ : Ω →
c(X) that are Pettis µ-integrable in C and by P(µ,X) the space of X-valued Pettis
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µ-integrable functions. I define in the usual way the multiplication by a number
and the addition by Γ (ω)⊕∆(ω) := Γ (ω) +∆(ω). Identifying scalarly equivalent
elements of P(µ, C), one gets the space P(µ, C). P(µ, cb(X)) can be endowed with
a (Pettis) metric (see [6, p. 392]) defined by:

dP (Γ,∆) := sup
x∗∈B(X∗)

∫

Ω

|s(x∗, Γ )− s(x∗, ∆)| dµ (3)

and P(µ,X) can be furnishedwith the norm defined by‖f‖P := sup‖x∗‖≤1

∫
Ω
|x∗f |dµ.

dP is properly defined due to (2). Let us notice also that (see [6, Lemme 7])

sup
E∈Σ

dH(MΓ (E),M∆(E)) ≤ dP (Γ,∆) ≤ 2 sup
E∈Σ

dH(MΓ (E),M∆(E)) . (4)

If Γ and ∆ are only scalarly integrable, then (3) defines a metric on the collection
of all scalarly integrable multifunctions (scalarly equivalent ones are identified).
The proof of this fact will be presented in Section 6 since it needs some additional
knowledge that is not in the main stream of the paper.

It is known that P(µ,X) is in general not complete. The same holds true also in
case of P(µ, cb(X)) and dP (sequences divergent in P(µ,X) remain divergent also
in P(µ, cb(X))).

One can also easily check (just applying Hörmander’s formula) that if Γ : Ω →
cb(X) is Pettis µ-integrable in cb(X), then MΓ is an h-multimeasure if and only if
the family {s(x∗,MΓ ) : ‖x

∗‖ ≤ 1} of scalar measures is uniformly σ-additivite. In
view of [11, Theorem I.2.4] this property is equivalent to the uniform integrability
of ZΓ with respect to µ. But one should remember that even in case of a function
the uniform integrability - in general - does not guarantee its Pettis integrability
(see [15]).

Let Ξ ⊂ Σ be a σ-algebra and let Γ and ∆ be two c(X)-valued multifunctions
such that Γ is scalarly measurable with respect to Σ and ∆ is scalarly measurable
with respect to Ξ. Assume also that Γ ∈ P(µ, cb(X)) and ∆ ∈ P(µ|Ξ, cb(X)). If∫
E
Γ dµ =

∫
E
∆dµ for every E ∈ Ξ, then ∆ is called the conditional expectation

of Γ with respect to Ξ and is denoted by E(Γ |Ξ). If {Σn : n ∈ N} is an increasing
sequence of σ-algebras Σn ⊂ Σ and {Γn : Ω → cb(X) : n ∈ N} are multifunctions
such that each Γn is scalarly measurable with respect to Σn and Pettis integrable
on Σn, then {(Γn, Σn) : n ∈ N} is called a martingale, if E(Γn+1|Σn) = Γn for
every E ∈ Σn and n ∈ N.

LetR : cb(X)→ l∞(B(X∗)) be the canonical R̊adström isometry given byR(C)(x∗)
:= s(x∗, C). IfM : Σ → cb(X) is an h-multimeasure, then R◦M : Σ → l∞(B(X∗))
is a vector measure. If M ≪ µ, then also R◦M ≪ µ. Following [3], I define
an embedding of X∗ into l∗∞(B(X∗)) by x∗ → ex∗ , where 〈ex∗ , g〉 := g(x∗), for
arbitrary g ∈ l∞(B(X∗)). Notice that s(x∗,W ) = 〈ex∗ , R(W )〉 for every W ∈
cb(X) and {ex∗ : ‖x∗‖ ≤ 1} is norming for l∞(B(X∗)).
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2. Approximation by simple multifunctions. Compactness

It is my aim to characterize those multifunctions that can be – in some sense
– approximated by sequences of simple multifunctions. First a lemma being a
particular case of [6, Corollaire 4].

Lemma 2.1. Let M : Σ → cb(X) be a µ-continuous multimeasure. If MΓ (Σ) is
relatively compact in the Hausdorff metric, then for each ε > 0 there exists a finite
partition π of Ω into pieces of positive measure such that the simple multifunction
Γ =

∑
E∈π

M(E)
µ(E)

χE satisfies the inequality

sup
E∈Σ

dH

(
M(E),

∫

E

Γ dµ

)
< ε. (5)

Equivalently, supE∈Σ sup‖x∗‖≤1

∣∣s(x∗,M(E))− s(x∗,
∫
E
Γ dµ)

∣∣ < ε.

More precisely, there exists a martingale of simple multifunctions Γn : Ω → cb(X)
such that

sup
E∈Σ

dH

(
M(E),

∫

E

Γn dµ

)
< 1/n for each n ∈ N.

If M is cwk(X) or ck(X)-valued, then the same holds true for Γ and Γn’s.

It is well known that each cwk(X)-valued multimeasure is an h-multimeasure (cf.
[19, Theorem 8.4.10]). I present another general example.

Corollary 2.2. If M : Σ → cb(X) is a multimeasure and M(Σ) is relatively
compact in the Hausdorff metric, then M is an h-multimeasure.

Proof. Let ε > 0 be arbitrary and Γ be a simple multifunction satisfying the
inequality (5). If

⋃
k Fk = F ∈ Σ is a decomposition of F into pairwise disjoint

elements of Σ, then

dH

(
M(F ),M

(
m⋃

k=1

Fk)

))

= dH

(
M

(
m⋃

k=1

Fk

)
⊕M

(
⋃

k>m

Fk

)
,M

(
m⋃

k=1

Fk

))

= dH

(
M

(
m⋃

k=1

Fk

)
+M

(
⋃

k>m

Fk

)
,M

(
m⋃

k=1

Fk

))
≤ dH

(
M

(
⋃

k>m

Fk

)
, {0}

)

≤ dH

(
M

(
⋃

k>m

Fk

)
,

∫
⋃

k>m Fk

Γ dµ

)
+ dH

(∫
⋃

k>m Fk

Γ dµ, {0}

)

< ε+ dH

(∫
⋃

k>m Fk

Γ dµ, {0}

)
< 2ε

for sufficiently large m, because Γ is a simple multifunction and so the map E −→∫
E
Γ dµ is an h-multimeasure.
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As a direct consequence one obtains the following approximation of multifunctions
by a sequence of simple multifunctions:

Theorem 2.3. Let Γ : Ω → c(X) be a scalarly integrable multifunction. Then
the following conditions are equivalent:

(i) Γ is Pettis integrable in cb(X) and MΓ (Σ) is relatively compact in the Haus-
dorff metric;

(ii) There exists a (martingale) sequence of simple multifunctions Γn : Ω →
cb(X) such that

lim
n
dP (Γ, Γn) = 0; (6)

(iii) Γ is Pettis integrable in cb(X) and ZΓ is norm relatively compact in L1(µ).

In (i) and (ii), if Γ is Pettis integrable in cwk(X) (or in ck(X)), then Γn’s can
be chosen to be also cwk(X) (or ck(X)) valued.

Proof. (i) ⇒ (ii). It is a direct consequence of Lemma 2.1 that there exists a
martingale of simple multifunctions Γn : Ω → cb(X) such that

sup
E∈Σ

dH

(
MΓ (E),

∫

E

Γn dµ

)
< 1/n, for every n ∈ N.

Hence

dP (Γ, Γn) = sup
‖x∗‖≤1

∫

Ω

|s(x∗, Γ )− s(x∗, Γn)| dµ < 2/n.

This yields the required result.

(ii) ⇒ (iii). It follows from (ii) that given ε > 0 there exists n ∈ N such that
ZΓ ⊂ εB(L1(µ)) + convZΓn

. Since ZΓn
is norm relatively compact, it follows that

also ZΓ is norm relatively compact in L1(µ). Moreover, it follows from (6) and (4)
that for each E ∈ Σ the sequence 〈MΓn

(E)〉n is Cauchy in the Hausdorff metric
dH . Consequently, it is dH-convergent to a set that is the Pettis integral of Γ on
E.

(iii) ⇒ (i). Assume that (iii) is fulfilled. Since ZΓ is separable in L1(µ), there
exists a sequence (x∗n) in B(X∗), such that {s(x∗n, Γ ) : n ∈ N} is dense in ZΓ .

If Σ̃ is the σ-algebra generated by all s(x∗n, Γ ) and by N (µ) then, clearly µ|Σ̃

is separable and each s(x∗, Γ ) is Σ̃–measurable. Assume that σ({En : n ∈ N})

is µ-dense in Σ̃. Moreover, let πn be the partition of Ω generated by the sets
E1, . . . , En .

Put for each n

Γn =
∑

E∈πn

MΓ (E)

µ(E)
χE with the convention {0}/0 = {0}.

One can easily check that {Γn, σ(πn), n ∈ N} is a cb(X)–valued martingale; in
particular, for each x∗ ∈ X∗, the sequence {s(x∗, Γn), σ(πn), n ∈ N} is a real valued
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uniformly integrable martingale. Moreover, E(s(x∗, Γ )|σ(πn)) = s(x∗, Γn) µ–a.e.

for every n ∈ N. Hence limn s(x
∗, Γn) = E(s(x∗, Γ )|Σ̃) = s(x∗, Γ ) in L1(µ|Σ̃) and

µ|Σ̃ –a.e. (cf. [11]).

Fix now ε > 0, x∗ ∈ B(X∗) and E ∈ Σ. By the assumption there exists a set
{z∗1 , . . . , z

∗
p} ⊂ B(X∗) such that {s(z∗i , Γ ) : i ≤ p} forms an ε-mesh in ZΓ . If

F ∈ Σ, i ≤ p and m ∈ N, then

|s(x∗,MΓ (E))− s(x∗,MΓ (F ))|

≤ |s(x∗,MΓ (E))− s(z∗i ,MΓ (E))|

+ |s(z∗i ,MΓ (E))− s(z∗i ,MΓ (F ))|+ |s(z∗i ,MΓ (F ))− s(x∗,MΓ (F ))|

≤ 2

∫

Ω

|s(x∗, Γ )− s(z∗i , Γ )| dµ+ |s(z∗i ,MΓ (E))− s(z∗i ,MΓm
(E))|

+ |s(z∗i ,MΓm
(E))− s(z∗i ,MΓm

(F ))|+ |s(z∗i ,MΓm
(F ))− s(z∗i ,MΓ (F ))|

≤ 2

∫

Ω

|s(x∗, Γ )− s(z∗i , Γ )| dµ+ 2

∫

Ω

|s(z∗i , Γ )− s(z∗i , Γm)| dµ

+ |s(z∗i ,MΓm
(E))− s(z∗i ,MΓm

(F ))|

The first part of the proof implies the existence of m ∈ N such that
∫
Ω
|s(z∗i , Γ )−

s(z∗i , Γm)| dµ < ε, for every i ≤ p. Moreover, there exists i ≤ p with
∫
Ω
|s(x∗, Γ )−

s(z∗i , Γ )| dµ < ε. For those i and m we have now the inequality

|s(x∗,MΓ (E))− s(x∗,MΓ (F ))| ≤ 4ε+ |s(z∗i ,MΓm
(E))− s(z∗i ,MΓm

(F ))|. (7)

But Γm is simple and so the set {MΓm
(F ) : F ∈ Σ} is dH relatively compact. If

{F1, . . . , Fq} is an ε-mesh in {MΓm
(F ) : F ∈ Σ}, then there exists j ≤ q with

|s(z∗i ,MΓm
(E))− s(z∗i ,MΓm

(Fj))| < dH(MΓm(E),MΓm(Fj)) < ε .

Thus, setting in (7) F = Fj, we have

|s(x∗,MΓ (E))− s(x∗,MΓ (Fj))| ≤ 5ε

and as the sets {F1, . . . , Fq} are chosen independently of E and x∗, we have the
required inequality

dH(MΓ (E),MΓ (Fj)) ≤ 5ε .

Corollary 2.4. If Γ : Ω → c(X) is Pettis integrable in cb(X), then MΓ (Σ) is
relatively compact in the Hausdorff metric if and only if Γ can be approximated in
dP by a sequence of simple multifunctions Γn : Ω → cb(X).

3. Approximation by simple multifunctions. Separability

Lemma 3.1. Let Γn : Ω → c(X), n ∈ N, be a sequence of scalarly integrable
multifunctions such that supn supx∗∈B(X∗)

∫
Ω
|s(x∗, Γn)| dµ <∞. Then

lim
C→+∞

sup
n

sup
x∗∈B(X∗)

µ{|s(x∗, Γn)| > C} = 0.
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In particular, if Γ : Ω → c(X) is an arbitrary scalarly integrable multifunction
fulfilling the inequality (2), then

lim
C→+∞

sup
x∗∈B(X∗)

µ{s(x∗, Γ )| > C} = 0. (8)

Proof. If L := supn supx∗∈B(X∗)

∫
Ω
|s(x∗, Γn)| dµ, then for each n ∈ N and x∗ ∈

B(X∗), we have

L ≥

∫

Ω

|s(x∗, Γn)| dµ ≥ Cµ{|s(x∗, Γn)| > C}.

It follows that

sup
n

sup
x∗∈B(X∗)

µ{|s(x∗, Γn)| > C} ≤ L/C

and so limC→+∞ supn supx∗∈B(X∗) µ{|s(x
∗, Γn)| > C} = 0.

Setting Γn = Γ , for all n, we obtain (8).

Proposition 3.2. Let (Γn, Σn)n∈N, be a martingale of multifunctions Γn : Ω →
c(X) that are Pettis integrable in cb(X), [cwk(X), ck(X)]. If the family

⋃
n ZΓn

is
uniformly integrable, then there exists an h-multimeasureM : σ (N (µ) ∪

⋃
nΣn) →

cb(X), [cwk(X), ck(X)] such that

lim
n
dH(MΓn

(E),M(E)) = 0, for every E ∈ σ

(
N (µ) ∪

⋃

n

Σn

)
. (9)

Proof. To prove (9) notice first that for every E ∈
⋃

nΣn and x∗ ∈ X∗ we have∫
E
s(x∗, Γn) dµ =

∫
E
s(x∗, Γ ) dµ, for sufficiently large n, depending only on E. This

follows from the equality
∫
E
Γn dµ =

∫
E
Γm dµ, valid for every E ∈ Σn and m ≥ n.

Let us fix ε > 0 and δ > 0 such that µ(F ) < δ yields
∫
F
|s(x∗, Γn)| dµ < ε, for

every n ∈ N, F ∈ Σ and x∗ ∈ B(X∗). If E ∈ σ(N (µ) ∪
⋃

nΣn) then there exist
n0 ∈ N and F ∈ Σn0

such that µ(E△F ) < δ. We have then for all m ≥ n ≥ n0

|s(x∗,MΓn
(E))− s(x∗,MΓm

(E))|

≤ |s(x∗,MΓn
(E))− s(x∗,MΓn

(F ))|+ |s(x∗,MΓn
(F ))− s(x∗,MΓm

(F ))|

+ |s(x∗,MΓm
(F ))− s(x∗,MΓm

(E))|

≤

∫

E△F

|s(x∗, Γn)| dµ+ |s(x∗,MΓn
(F ))− s(x∗,MΓm

(F ))|

+

∫

E△F

|s(x∗, Γm)| dµ < 2ε.

It follows that for each E ∈ σ (N (µ) ∪
⋃

nΣn) the sequence 〈MΓn
(E)〉n is Cauchy

in the metric dH . Consequently, it is convergent to a set M(E). It is obvious that
M is an h-multimeasure on σ (N (µ) ∪

⋃
nΣn).
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Proposition 3.3. Let (Γn, Σn)n∈N, be a martingale of multifunctions Γn : Ω →
c(X) that are Pettis integrable in cb(X), [cwk(X), ck(X)] and, let Γ : Ω → c(X) be
a multifunction that is also Pettis integrable in cb(X), [cwk(X), ck(X)]. Assume
moreover that for each n ∈ N and each x∗ ∈ B(X∗)

E(s(x∗, Γ )|Σn) = s(x∗, Γn) a.e.

If ZΓ is uniformly integrable, then the family
⋃

n ZΓn
is uniformly integrable and

lim
n
dH(MΓn

(E),MΓ (E)) = 0, for every E ∈ σ

(
N (µ) ∪

⋃

n

Σn

)
. (10)

If Γ is scalarly measurable with respect to σ (N (µ) ∪
⋃

nΣn), then (10) is valid for
every E ∈ Σ.

Proof. Since the conditional expectation operator is a contraction on L1(µ), we
have for every x∗ ∈ X∗ and n ∈ N

∫

E

|s(x∗, Γn)|dµ ≤

∫

E

|s(x∗, Γ )|dµ for every E ∈ Σn .

In particular

sup
n

sup
x∗∈B(X∗)

∫

Ω

|s(x∗, Γn)| dµ ≤ sup
x∗∈B(X∗)

∫

Ω

|s(x∗, Γ )| dµ <∞.

We have to prove that

lim
C→∞

sup
n

sup
x∗∈B(X∗)

∫

{|s(x∗,Γn)|>C}

|s(x∗, Γn)| dµ = 0.

But {|s(x∗, Γn)| > C} ∈ Σn, for every n ∈ N, x∗ ∈ X∗ and C ∈ R and consequently,
∫

{|s(x∗,Γn)|>C}

|s(x∗, Γn)| dµ ≤

∫

{|s(x∗,Γn)|>C}

|s(x∗, Γ )| dµ.

Let ε > be arbitrary and δ > 0 be adapted to ε in such a way that µ(E) < δ yields∫
E
|s(x∗, Γ )| dµ < ε, for every x∗ ∈ B(X∗).

We have then

sup
n

sup
x∗∈B(X∗)

∫

{|s(x∗,Γn)|>C}

|s(x∗, Γn)| dµ

≤ sup
n

sup
x∗∈B(X∗)

∫

{|s(x∗,Γn)|>C}

|s(x∗, Γ )| dµ ≤ ε

for sufficiently large C (in virtue of Lemma 3.1) and so the expected uniform
integrability takes place.

(10) is a consequence of Proposition 3.2.

Assume now that Γ is scalarly measurable with respect to Σ̃ := σ (N (µ) ∪
⋃

nΣn).
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Claim.

lim
n

sup
x∗∈B(X∗)

∣∣∣∣
∫

Ω

hs(x∗, Γn) dµ−

∫

Ω

hs(x∗, Γ ) dµ

∣∣∣∣ = 0 for each h ∈ L∞(µ|Σ̃).

(11)

Proof. It is a consequence of Proposition 3.2 that

lim
n

sup
x∗∈B(X∗)

∣∣∣∣
∫

E

s(x∗, Γ ) dµ−

∫

E

s(x∗, Γn) dµ

∣∣∣∣ = 0 for every E ∈ Σ̃ . (12)

Fix ε > 0 and h ∈ L∞(µ|Σ̃) and, let hε ∈ L∞(µ|Σ̃) be a simple function such that
‖h− hε‖∞ < ε. We have then

∣∣∣∣
∫

Ω

hs(x∗, Γn) dµ−

∫

Ω

hs(x∗, Γ ) dµ

∣∣∣∣

≤

∫

Ω

|h− hε| |s(x
∗, Γn)| dµ+

∣∣∣∣
∫

Ω

hεs(x
∗, Γn) dµ−

∫

Ω

hεs(x
∗, Γ ) dµ

∣∣∣∣

+

∫

Ω

|h− hε| |s(x
∗, Γ )| dµ

≤ ε sup
n

∫

Ω

|s(x∗, Γn)| dµ+

∣∣∣∣
∫

Ω

hεs(x
∗, Γn) dµ−

∫

Ω

hεs(x
∗, Γ ) dµ

∣∣∣∣

+ ε

∫

Ω

|s(x∗, Γ )| dµ

≤ 2ε

∫

Ω

|s(x∗, Γ )| dµ+

∣∣∣∣
∫

Ω

hεs(x
∗, Γn) dµ−

∫

Ω

hεs(x
∗, Γ ) dµ

∣∣∣∣

Since, in virtue of (12), the second term is as small as we need, for sufficiently
large n and independently of x∗ ∈ B(X∗), we have the required equality (11).

In order to obtain the convergence (10) for every E ∈ Σ, it suffices to notice that
if H ∈ Σ and n ∈ N, then

∫

H

s(x∗, Γn) dµ =

∫

Ω

χHs(x
∗, Γn) dµ =

∫

Ω

E

(
χHs(x

∗, Γn)|Σ̃
)
dµ

=

∫

Ω

E(χH |Σ̃)s(x∗, Γn) dµ.

Similarly, ∫

H

s(x∗, Γ ) dµ =

∫

Ω

E(χH |Σ̃)s(x∗, Γ ) dµ,

because Γ is scalarly measurable with respect to Σ̃. The Claim completes the
proof.
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It has been proven in [23, Theorem 10.1] that if f : Ω → X is a Pettis integrable
function, then Zf is separable in L1(µ) if and only if the range νf (Σ) of the
integral is separable in X. While investigating integrals of multifunctions one
meets a different situation. As long as the set ZΓ is weakly relatively compact,
there is a positive correlation between the separability of MΓ (Σ) and of ZΓ . In
general however, the separability of ZΓ is a weaker property.

Let us notice also that if Γ : Ω → c(X) is scalarly integrable and R◦Γ is Pettis
integrable, then ZR◦Γ is uniformly integrable (this is an elementary fact about
vector measures). But s(x∗, Γ (ω)) = 〈ex∗ , R◦Γ (ω)〉 (for every ω and x∗ ∈ X∗)
and so ZΓ ⊂ ZR◦Γ is also uniformly integrable.

Theorem 3.4. Let X be an arbitrary Banach space and let Γ : Ω → c(X) be a
multifunction that is Pettis integrable in cb(X), [cwk(X), ck(X)] and MΓ is an
h-multimeasure. Then the following conditions are equivalent:

(j) MΓ (Σ) is separable in the Hausdorff metric;

(jj) ZΓ is a separable subset of L1(µ);

(jjj) There exists a martingale (Γn, Σn)n∈N (or a sequence (Γn)n∈N) of cb(X)
[cwk(X), ck(X)]–valued simple multifunctions, such that one of the following
conditions is fulfilled, for each x∗ ∈ X∗:
(α) {s(x∗, Γn) : n ∈ N} is µ–a.e. convergent to s(x∗, Γ );
(β) {s(x∗, Γn) : n ∈ N} is convergent in µ–measure to s(x∗, Γ );
(γ) {s(x∗, Γn) : n ∈ N} is convergent to s(x∗, Γ ) in L1(µ);

(jv) There exists a martingale (Γn, Σn)n∈N (or a sequence (Γn)n∈N) of cb(X)
[cwk(X), ck(X)]–valued simple multifunctions, such that

lim
n
s(x∗,MΓn

(E)) = s(x∗,MΓ (E)) for every E ∈ Σ and x∗ ∈ X∗ ;

(v) There exists a σ–algebra Σ̃ ⊆ Σ such that (Ω, Σ̃, µ|Σ̃) is separable and Γ is

scalarly measurable with respect to Σ̃;

(vj) There exists a martingale (Γn, Σn)n∈N (or a sequence (Γn)n∈N) of cb(X)
[cwk(X), ck(X)]–valued simple multifunctions, such that

lim
n
dH(MΓ (E),MΓn

(E)) = 0, for every E ∈ Σ .

If Γ is Pettis integrable in ck(X), then the above conditions are equivalent to the
following one:

(vjj) MΓ (Σ) is scalarly separable in cb(X).

Proof. (j) ⇒ (jj). If R : cb(X) → l∞(B(X∗)) is the R̊adström embedding, then
ν : Σ → l∞(B(X∗)) defined by ν(E) = R◦MΓ (E) is countably additive in the
norm topology of l∞(B(X∗)) and ν(Σ) is a separable set.

It follows from [23, Theorem 3] (see also [30, Theorem 5-3-2], [24, Theorem 10.1]
and [26, Theorem 6.8]) that the set {dz∗ν

dµ
: z∗ ∈ l∗∞(B(X∗))} is separable in L1(µ)

(the original proof needs only obvious modifications).
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Notice that s(x∗, Γ (ω)) = 〈ex∗ , R◦Γ (ω)〉 for every ω and so the separability of ZΓ

follows from the separability of the set {dz∗ν
dµ

: z∗ ∈ l∗∞(B(X∗))} ⊃ ZΓ in L1(µ).

(jj) ⇒ (jjj)α. Assume, that the set ZΓ is separable. Then there exists a sequence

(x∗n) in B(X∗), such that {s(x∗n, Γ ) : n ∈ N} is dense in ZΓ . If Σ̃ is the σ–

algebra generated by all s(x∗n, Γ ) and by N (µ) then, clearly µ|Σ̃ is separable and

each s(x∗, Γ ) is Σ̃–measurable. Assume that σ({En : n ∈ N}) is µ-dense in Σ̃.
Moreover, let πn be the partition of Ω generated by the sets E1, . . . , En .

Put for each n

Γn =
∑

E∈πn

MΓ (E)

µ(E)
χE with the convention {0}/0 = {0}.

One can easily check that {(Γn, σ(πn)) : n ∈ N} is a cb(X)–valued martingale;
in particular, for each x∗ ∈ X∗, the sequence {(s(x∗, Γn), σ(πn)) : n ∈ N} is
a real valued uniformly integrable martingale. Moreover, E(s(x∗, Γ )|σ(πn)) =

s(x∗, Γn) µ–a.e. for every n ∈ N. Hence limn s(x
∗, Γn) = E(s(x∗, Γ )|Σ̃) = s(x∗, Γ )

in L1(µ|Σ̃) and µ|Σ̃ –a.e. (cf. [11]).

The implications (jjj)α⇒ (jjj)β ⇒ (jjj)γ ⇒ (jv) are obvious.

(jv) ⇒ (v). Let (Γn)
∞
n=1 be a sequence of simple multifunctions fulfilling the

condition (jv). If N (µ) ⊂ Σn ⊂ Σ is a separable σ-algebra such that Γn is
scalarly measurable with respect to Σn, then Γ is scalarly measurable with respect
to σ(

⋃
nΣn) that is also a separable σ-algebra.

(v) ⇒ (vj). Assume that Σ̃ is µ-complete and σ({En : n ∈ N}) is µ-dense in Σ̃.
Moreover, let πn be the partition of Ω generated by the sets E1, . . . , En .

Put for each n

Γn =
∑

E∈πn

MΓ (E)

µ(E)
χE with the convention {0}/0 = {0}.

One can easily check that {Γn, σ(πn), n ∈ N} is a cb(X)–valued martingale and
E(s(x∗, Γ )|σ(πn)) = s(x∗, Γn) a.e. We apply now Proposition 3.3.

(vj) ⇒ (j). Each family MΓn
(Σ) is separable and so also MΓ (Σ) is separable.

(vjj) ⇒ (j). We use the R̊adström embeddingR : cb(X) −→ C[B(X∗, σ(X∗, X))],
into the space of weak∗-continuous functions defined B(X∗). The required conclu-
sion follows then from [19, Theorem 7.2.11].

(j) ⇒ (vjj). is obvious.

Remark 3.5. According to a result of Bartle-Dunford-Schwartz [2] the range of
each Banach space valued measure is weakly relatively compact. Thus, the set
(R◦MΓ )(Σ) = MΓ (Σ) in Theorem 3.4 is a weakly relatively compact subset of
l∞(B(X∗)).
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The next example (taken from [16]) shows that there are ck(c0)-valued Pettis inte-
grable multifunctions such that ZΓ is separable without MΓ (Σ) being separable.
Since c0 is separable, also ck(c0) is separable in the Hausdorff metric. It is well
known (cf. [3]) that if X is separable, then each ck(X)-valued multifunction Γ
which is Pettis integrable in cwk(X) generates Pettis integrability of R◦Γ . In our
example Γ is Pettis integrable in cb(c0) and R◦Γ fails to be Pettis integrable.

It is worth to notice that Γ is generated by a Henstock-Kurzweil-Pettis integrable
function (see [13]).

Example 3.6. Consider a sequence of intervals An = [an, bn] ⊆ [0, 1] such that
a1 = 0, bn < an+1 for all n ∈ N and limn→∞ bn = 1 and define f : [0, 1] → c0 by

f(t) =

〈
1

|A2n−1|
χA2n−1

(t)−
1

|A2n|
χA2n

(t)

〉∞

n=1

.

The function f is scalarly integrable but it is not Pettis integrable (see [16]).
In particular, Zf is not uniformly integrable but being a subset of L1[0, 1] it is
separable. The Dunford integral of f over E ∈ L is given by

∫

E

f(t) dt =

〈
|E ∩ A2n−1|

|A2n−1|
−

|E ∩ A2n|

|A2n|

〉∞

n=1

.

Define Γ : [0, 1] → cb(c0) by Γ (t) := conv{0, f(t)}. Γ is scalarly integrable and as
the zero function is a Pettis integrable selection of Γ , it follows from [14, Theorem
3.7] that Γ is Pettis integrable in cb(c0). Being a subset of L1[0, 1] the set ZΓ is
a separable set. But ZΓ is not uniformly integrable and so MΓ : L → ck(c0) fails
to be an h-multimeasure. Since f is a non-Pettis integrable selection of Γ , the
multifunction Γ is not Pettis integrable in cwk(c0) (see [14, Theorem 5.4]). Hence,
it follows from [3, Proposition 3.5] that R◦Γ is a non-Pettis integrable function.
Thus, even in case of a separable Banach space, Pettis integrability of Γ in cb(X)
does not guarantee – in general – Pettis integrability of R◦Γ . On the other hand,
it is known that if X is separable, then also ck(X) is separable and so (cf. [3]) each
ck(X)-valued multifuncion that is Pettis integrable in cwk(X) generates Pettis
integrability of R◦Γ .

For each t ∈ [0, 1] we have Γ (t) = conv{0, f(t)} = {α(t)f(t) : 0 ≤ α(t) ≤ 1}.
If h is a strongly measurable selection of Γ , then α(t) = ‖h(t)‖/‖f(t)‖ for each
t ∈

⋃
nAn and zero otherwise. It follows that α : [0, 1] → [0, 1] is a measurable

function. Thus, if a strongly measurable function h : [0, 1] → c0 is a selection
selection of Γ , then there exists a measurable function α : [0, 1] → [0, 1] such that
h = αf .

One can easily check that αf is a Pettis integrable selection of Γ if and only if

lim
n

1

|An|

∫

An

α(t) dt = 0.

Denote by A the collection of all α : [0, 1] → [0, 1] such that limn
1

|An|

∫
An
α(t) dt =
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0. Then

MΓ (E) =

∫

E

Γ (t) dt

=

{〈
1

|A2n−1|

∫

E∩A2n−1

α(t) dt−
1

|A2n|

∫

E∩A2n

α(t) dt

〉∞

n=1

: α ∈ A

}

e are going to prove that the set MΓ (L) is non-separable in the Hausdorff metric.
To show it, let us recall first that according to a result of Sierpiński [28] there exists
continuum infinite subsequences of N with the property that every two different
subsequences have only finitely many common terms. Denote the whole collection
by Ξ. If ∆ = {n1, n2, . . . , nk, . . .} ∈ Ξ, then E∆ :=

⋃∞
k=1A2nk−1. We have then

MΓ (E∆) =

{〈
1

|A2n−1|

∫

E∆∩A2n−1

α(t) dt

〉∞

n=1

: α ∈ A

}

If ∆1 6= ∆2 and α ∈ A, then

sup
α∈A

inf
β∈A

∥∥∥∥∥

〈
1

|A2n−1|

∫

E∆1
∩A2n−1

α(t) dt

〉∞

n=1

−

〈
1

|A2n−1|

∫

E∆2
∩A2n−1

β(t) dt

〉∞

n=1

∥∥∥∥∥
c0

= sup
α∈A

inf
β∈A

sup
n

∣∣∣∣∣
1

|A2n−1|

∫

E∆1
∩A2n−1

α(t) dt−
1

|A2n−1|

∫

E∆2
∩A2n−1

β(t) dt

∣∣∣∣∣

≥ sup
α∈A

sup
nk∈∆1\∆2

1

|A2nk−1|

∫

A2nk−1

α(t) dt = 1

It follows that dH(MΓ (E∆1
),MΓ (E∆2

)) ≥ 1 and so MΓ (Σ) is non-separable.

In the general case separability of ZΓ is equivalent to local separability of MΓ (Σ).

One should remember that in the next theorem, multifunctions that are
Pettis integrable in cwk(X) or ck(X) come under Theorem 3.4.

Theorem 3.7. Let X be an arbitrary Banach space and let Γ : Ω → c(X) be a
multifunction that is Pettis integrable in cb(X). Then the following conditions are
equivalent:

(i) ZΓ is a separable subset of L1(µ);

(ii) There exists a martingale (Γn, Σn)n∈N (or a sequence (Γn)n∈N) of cb(X)–
valued simple multifunctions, such that one of the following conditions is
fulfilled for each x∗ ∈ X∗:
(a) {s(x∗, Γn) : n ∈ N} is uniformly integrable and µ–a.e. convergent to

s(x∗, Γ );
(b) {s(x∗, Γn) : n ∈ N} is uniformly integrable and convergent in µ–measure

to s(x∗, Γ );
(c) {s(x∗, Γn) : n ∈ N} is convergent to s(x∗, Γ ) in L1(µ);
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(iii) There exists a martingale (Γn, Σn)n∈N (or a sequence (Γn)n∈N) of cb(X)–
valued simple multifunctions, such that

lim
n
s(x∗,MΓn

(E)) = s(x∗,MΓ (E)) for every E ∈ Σ and x∗ ∈ X∗ ;

(iv) There exists a σ–algebra Σ̃ ⊆ Σ such that (Ω, Σ̃, µ|Σ̃) is separable and Γ is

scalarly measurable with respect to Σ̃;

(v) There exists a decomposition Ω =
⋃

kHk of Ω into pairwise disjoint sets
of positive measure such that each family MΓ (Hk ∩ Σ) is separable in the
Hausdorff metric;

(vi) MΓ (Σ) is locally dH-separable, that is each set E ∈ Σ+
µ contains a subset

F ∈ Σ+
µ such that MΓ (F ∩Σ) is dH-separable.

Each of the above conditions yields scalar separability of MΓ (Σ) in cb(X).

Proof. The proofs of the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) coincide with the
corresponding proofs in Theorem 3.4.

(iv) ⇒ (v). Let Ω =
⋃

kHk be a decomposition of Ω into pairwise disjoint sets
of positive measure such that Γ is scalarly bounded on every Hk. Since MΓ is
an h-multimeasure on each set Hk, it follows from Theorem 3.4 that each family
MΓ (Hk ∩Σ) is dH-separable.

(v) ⇒ (i). It follows from Theorem 3.4 that each family ZΓ |Hk
is separable

in L1(µ|Hk). Hence ZΓ is also separable in L1(µ). Indeed, if x∗ ∈ X∗, then
limn

∫
Ω
|s(x∗, Γ ) − s(x∗, Γχ⋃n

i=1
Hi
)| dµ = 0 and s(x∗, Γχ⋃n

i=1
Hi
) can be approxi-

mated by a fixed countable subset of ZΓ |
⋃n

i=1
Hi
.

(v) ⇒ scalar separability of MΓ (Σ). Let the sets Hk, k ∈ N, be defined as in (iv).
By the assumption, for each k ∈ N there exists a countable family Fk := {Ekn :
n ∈ N} ⊂ Σ ∩Hk such that {MΓ (Ekn) : n ∈ N} is dH-dense in MΓ (Hk ∩Σ).

I claim that MΓ (Σ) is scalarly separable. Let E ∈ Σ and ε > 0 be arbitrary. For
each k ∈ N there exists Ek,nk

∈ Fk such that dH(MΓ (E ∩Hk),MΓ (Ek,nk
)) < ε/2k.

Hence, if ‖x∗‖ ≤ 1, then
∣∣∣∣∣s(x

∗,MΓ (E))− s

(
x∗,MΓ

(
m⋃

k=1

Ek,nk

))∣∣∣∣∣

≤ ε
m∑

k=1

2−k +
∞∑

k=m+1

|s(x∗,MΓ (E ∩Hk))| < ε

for sufficiently large m. Thus, limm s(x
∗,MΓ (

⋃m

k=1Ek,nk
)) = s(x∗,MΓ (E)).

The equivalence of (v) and (vi) is obvious.

The example below presents still another multifunction Γ : [0, 1] → ck(c0) that
is Pettis integrable in cb(c0), MΓ (L) is not dH-separable but ZΓ is separable. Its
idea is taken from [11], p. 53. Contrary to Example 3.6 the function generating Γ
is not Henstock-Kurzweil-Pettis integrable.
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Example 3.8. Consider a sequence of intervals Bn = (an, bn] ⊆ [0, 1] such that
b1 = 1, an+1 < bn+1 ≤ an for all n ∈ N and limn→∞ an = 0. Let f : [0, 1] → c0 be
given by

f(t) =

(
1

|B1|
χB1

(t),
1

|B2|
χB2

(t), . . . ,
1

|Bn|
χBn

(t), . . .

)

for each t ∈ [0, 1]. f is a scalarly integrable function (with respect to the Lebesgue
measure) and its Dunford integral over E ∈ L is given by

∫

E

f(t) dt =

(
|E ∩B1|

|B1|
,
|E ∩B2|

|B2|
, . . . ,

|E ∩Bn|

|Bn|
, . . .

)∞

n=1

.

The Pettis integral and the Henstock-Kurzweil-Pettis integral of f do not exist,
because the Dunford integral

∫ 1

0
f(t) dt = (1, 1, . . . , 1, . . .) /∈ c0 (compare with

[11], p. 53). In particular the set Zf is not uniformly integrable. It is however
separable as a subset of L1[0, 1]. Define a ck(c0)-valued multifunction by Γ (t) :=
conv{0, f(t)}, t ∈ [0, 1]. One can easily see that Γ is scalarly integrable and as the
zero function is a Pettis integrable selection of Γ , it follows from [14, Theorem 3.7]
that Γ is Pettis integrable in cb(c0) and if SP (Γ ) is the set of all Pettis integrable
selections of Γ , then

MΓ (E) =

{∫

E

f(t) dt : f ∈ SP (Γ )

}
.

Since ZΓ is not uniformly integrable, MΓ : L → ck(c0) fails to be an h-multi-
measure. Since f is a non-Pettis integrable selection of Γ , the multifunction Γ is
not Pettis integrable in cwk(c0) (see [14, Theorem 5.4]). Hence, it follows from [3,
Proposition 3.5] that R◦Γ is a non-Pettis integrable function.

For each t ∈ [0, 1] we have Γ (t) = conv{0, f(t)} = {α(t)f(t) : 0 ≤ α(t) ≤ 1}.
If h is a strongly measurable selection of Γ , then α(t) = ‖h(t)‖/‖f(t)‖ for each
t ∈

⋃
nBn. Without loss of generality, we may assume that α(t) = 0 if t /∈

⋃
nBn

and so α : [0, 1] → [0, 1] is a measurable function. Thus, if a strongly measurable
function h : [0, 1] → c0 is a selection of Γ , then there exists a measurable function
α : [0, 1] → [0, 1] such that h = αf .

It is clear that a selection αf is Pettis integrable if and only if limn
1

|Bn|

∫
Bn
α(t) dt =

0.

Let A := {α : [0, 1] → [0, 1] : αf is Pettis integrable }. As a direct consequence of
the above equality and the separable theory (cf. [14]) we have for each E ∈ L the
equality

∫

E

Γ (t) dt = conv

{∫

E

α(t)f(t) dt : α ∈ A

}
=

{∫

E

α(t)f(t) dt : α ∈ A

}

where the last equality is a consequence of the convexity of A.

Thus,

MΓ (E) =

{〈
1

|Bn|

∫

E∩Bn

α(t) dt

〉∞

n=1

: α ∈ A

}
,
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for every E ∈ L. Let us prove now that MΓ (L) is dH non-separable.

Denote by Ξ the collection of all increasing infinite subsequences of N such that
if ∆1 ∈ Ξ and ∆2 ∈ Ξ, then ∆1 and ∆2 have only finitely many common
terms. It is well known that the cardinality of Ξ equals continuum. If ∆ =
{n1, n2, . . . , nk, . . .} ∈ Ξ, then let F∆ :=

⋃∞
k=1Bnk

.

If ∆1 6= ∆2 and α ∈ A, then

sup
α∈A

inf
β∈A

∥∥∥∥∥

〈
1

|Bn|

∫

F∆1
∩Bn

α(t) dt

〉∞

n=1

−

〈
1

|Bn|

∫

F∆2
∩Bn

β(t) dt

〉∞

n=1

∥∥∥∥∥
c0

= sup
α∈A

inf
β∈A

sup
n

∣∣∣∣∣
1

|Bn|

∫

F∆1
∩Bn

α(t) dt−
1

|Bn|

∫

F∆2
∩Bn

β(t) dt

∣∣∣∣∣

≥ sup
α∈A

sup
nk∈∆1\∆2

1

|Bnk
|

∫

Bnk

α(t) dt = 1

Hence dH(MΓ (F∆1
),MΓ (F∆2

)) ≥ 1 and the range of R◦MΓ is non-separable.

Remark 3.9. Separability of ZΓ and the range of MΓ (Σ) are not hereditary pro-
perties. That is, there are multifunctions ∆ and Γ such that ∆(ω) ⊂ Γ (ω) for
every ω ∈ Ω, ZΓ is separable and Z∆ is not. Similarly, the range of MΓ is dH-
separable, whereas the range of M∆ is not.

As an example let V = B(l∞(W )), whereW is an uncountable set and let (Ω,Σ, µ)
be such that there exists a Pettis integrable function f : Ω → B(l∞(W )) with non-
separable range of its integral (see [15, 2D]). If Γ ≡ V , then ZΓ is compact in L1(µ)
and MΓ (Σ) is dH-compact, whereas Zf amd νf (Σ) are not separable in L1(µ) and
in X, respectively (see [24] or [26]).

Question 3.10. If V is a weakly compact set, then each V -valued scalarly mea-
surable function is scalarly equivalent to a strongly measurable function (see [20])
and so the above example does not work there. This leads to the following two
questions.

Let Γ and MΓ : Σ → cwk(X) be as in Theorem 3.7. Assume that f ∈ SΓ is
arbitrary and the condition (i) is fulfilled. Is the set Zf separable in L1(µ)?

Assume that m ∈ S(MΓ ) is arbitrary and the set MΓ (Σ) is separable in the
Hausdorff metric or it is scalarly separable. Is the set m(Σ) separable?

Question 3.11. Assume that Γ is cb(X) valued. Suppose that for each f ∈ SΓ

the set Zf is separable (or norm relatively compact) in L1(µ) (it is so if X has the
WRNP, for instance). Is ZΓ also separable (or norm relatively compact)?

Assume that M is a multimeasure such that M(Σ) is scalarly separable. When is
M(Σ) separable in the Hausdorff metric?

4. Convergence theorems

The following theorem has been proven in [27, Theorem 5.1].
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Theorem 4.1. Let Γ : Ω → cwk(X) be scalarly integrable and let {Γn : Ω →
cwk(X) : n ∈ N} be a sequence of multifunctions Pettis integrable in cwk(X).
If the family

⋃
n ZΓn

is uniformly integrable and limn s(x
∗, Γn) = s(x∗, Γ ) in µ–

measure, for each x∗ ∈ X∗ (or weakly in L1(µ), for each x∗ ∈ X∗), then Γ is
Pettis integrable in cwk(X) and,

(SC) lim
n
s(x∗,MΓn

E) = s(x∗,MΓ (E)) for every x∗ ∈ X∗ and E ∈ Σ.

If Γn’s are assumed to be c(X)-valued, determined by a WCG space and Pettis
integrable in cb(X), then Γ is Pettis integrable in cb(X) and (SC) holds true.

One may ask if the scalar convergence (SC) can be replaced by a stronger one. In
general the answer is negative even for Pettis integrable functions (see [27, Remark
5.4]). It is my aim to show that assuming stronger properties of the multifunctions
one may obtain also a stronger convergence of the corresponding integrals. Our
first proposition is to assume that (Γn)n is a martingale. Then we will replace the
scalar convergence s(x∗, Γn) → s(x∗, Γ ) in measure by the uniform convergence in
measure.

Theorem 4.2. Let Γ : Ω → cwk(X) be scalarly integrable and let (Γn, Σn)n∈N be a
martingale of multifunctions Γn : Ω → cwk(X), n ∈ N, that are Pettis integrable in
cwk(X). If the family

⋃
n ZΓn

is uniformly integrable and limn s(x
∗, Γn) = s(x∗, Γ )

in µ–measure, for each x∗ ∈ X∗ (or weakly in L1(µ), for each x∗ ∈ X∗), then
Γ is Pettis integrable in cwk(X), E(Γ |Σn) = Γn, n ∈ N, in the sense of scalar
equivalence, and

(HC) lim
n
dH(MΓ (E),MΓn

(E)) = 0 for every E ∈ Σ .

If Γn’s are assumed to be c(X)-valued, determined by a WCG space and Pettis
integrable in cb(X), then Γ is Pettis integrable in cb(X) and (HC) holds true.

Proof. In virtue of Theorem 4.1 Γ is Pettis integrable in cwk(X) (or in cb(X)).
For each x∗ the sequence {(s(x∗, Γn), σ(Γn)) : n ∈ N} is a scalar martingale con-
verging in measure to s(x∗, Γ ). Being uniformly integrable, it is convergent in
L1(µ). Hence ZΓ is contained in the weak closure of the relatively weakly com-
pact set

⋃
n ZΓn

⊂ L1(µ). Consequently, ZΓ is uniformly integrable and MΓ is
an h-multimeasure. At this stage we apply (11) that holds true for arbitrary
martingale.

As a direct consequence of Theorems 3.4, 4.1 and 3.7 we obtain the following
characterizations of multifunctions approximated by simple multifunctions:

Theorem 4.3. Let Γ : Ω → c(X) be a scalarly integrable multifunction. Then Γ
is Pettis integrable in cwk(X) and MΓ (Σ) is separable in the Hausdorff metric if
and only if there exists a (martingale) sequence (Γn)n∈N of cwk(X)–valued simple
multifunctions, such that

⋃
n ZΓn

is uniformly integrable and, one of the following
conditions is satisfied for each x∗ ∈ X∗:
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(α) {s(x∗, Γn) : n ∈ N} is µ–a.e. convergent to s(x∗, Γ );

(β) {s(x∗, Γn) : n ∈ N} is convergent in µ–measure to s(x∗, Γ );

(γ) {s(x∗, Γn) : n ∈ N} is convergent to s(x∗, Γ ) in L1(µ);

(δ) {s(x∗, Γn) : n ∈ N} is convergent to s(x∗, Γ ) weakly in L1(µ).

Proof. ⇐. It follows from Theorems 4.1 that Γ is Pettis integrable in cwk(X)
and so MΓ is an h-multimeasure, what is equivalent to the uniform integrability
of the set ZΓ . Theorem 3.4 yields the dH-separability of MΓ (Σ).

⇒. If Γ : Ω → c(X) is Pettis integrable in cwk(X), then ZΓ is uniformly integrable
(see [27, Proposition 2.2]) and soMΓ is an h-multimeasure. According to Theorem
3.4 there exists a martingale (Γn, Σn)

∞
n=1 satisfying the conditions (α)–(δ). It

follows from Proposition 3.3 that the family
⋃

n ZΓn
is uniformly integrable.

Theorem 4.4. Let Γ : Ω → c(X) be a scalarly integrable multifunction. As-
sume that there exists a (martingale) sequence (Γn)n∈N of cb(X)–valued simple
multifunctions, such that

⋃
n ZΓn

is uniformly integrable and, one of the following
conditions is satisfied for each x∗ ∈ X∗:

(α) {s(x∗, Γn) : n ∈ N} is µ–a.e. convergent to s(x∗, Γ );

(β) {s(x∗, Γn) : n ∈ N} is convergent in µ–measure to s(x∗, Γ );

(γ) {s(x∗, Γn) : n ∈ N} is convergent to s(x∗, Γ ) in L1(µ);

(δ) {s(x∗, Γn) : n ∈ N} is convergent to s(x∗, Γ ) weakly in L1(µ).

Then Γ is Pettis integrable in cb(X) and MΓ (Σ) is locally separable in the Haus-
dorff metric.

Proof. The proof is similar to the proof of Theorem 4.3 but instead of Theorem
3.4 we apply now Theorem 3.7.

I say that a sequence of scalarly measurable multifunctions Γn : Ω → cb(X), n ∈
N, is scalarly equi-convergent in measure to a scalarly measurable multifunction
Γ : Ω → cb(X) if for every δ > 0

lim
n

sup
‖x∗‖≤1

µ{ω ∈ Ω : |s(x∗, Γn(ω))− s(x∗, Γ (ω))| > δ} = 0.

If Γ : Ω → cb(X) and ∆ : Ω → cb(X) are scalarly measurable, then let

ρ(Γ,∆) := inf

{
λ : sup

‖x∗‖≤1

µ{|s(x∗, Γ )− s(x∗, ∆)| ≥ λ} ≤ λ

}
.

One can check that ρ is a pseudometric on P(µ, cb(X)) such that ρ(Γ,∆) = 0 if
and only if Γ and ∆ are scalarly equivalent.Thus, ρ is a metric on P(µ, cb(X)).
Moreover, ρ(Γn, Γ ) → 0 if and only if the sequence Γn : Ω → cb(X), n ∈ N, is
scalarly equi-convergent in measure to Γ : Ω → cb(X).

If Γ : Ω → cb(X) and ∆ : Ω → cb(X) are scalarly integrable then, ρ(Γ,∆) ≤
dP (∆,Γ ).
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It is also easy to see that if fn’s are strongly measurable functions, then it may
happen that fn → f in the sense of scalar equi-convergence in measure, but
fn 9 f in measure. But in the non-separable case, where in general the func-
tions ω −→ ‖f(ω)‖ are non-measurable, the scalar equi-convergence in measure is
a very convenient substitute of the convergence in measure.

Lemma 4.5. Let Γn : Ω → cb(X), n ∈ N, and Γ : Ω → cb(X) be scalarly mea-
surable multifunctions. Consider the following conditions:

(A) limn dH(Γn, Γ ) = 0, µ-a.e.;

(B) ∀ δ > 0 limn µ∗{dH(Γn, Γ ) > δ} = 0 (µ∗ is the inner measure induced by µ);

(C) limn ρ(Γn, Γ ) = 0.

Then (A) ⇒ (B) ⇒ (C).

Proof. (A) ⇒ (B). Given δ > 0 and n ∈ N let

Aδ
n := {ω ∈ Ω : dH(Γn(ω), Γ (ω)) > δ}.

Suppose that there exists δ > 0 with lim supn µ∗(A
δ
n) = a > 0. If Bδ

n ⊆ Aδ
n is a

measurable kernel of Aδ
n, then there is an increasing sequence (nk) of integers such

that µ(Bδ
nk
) > a/2, for all k ∈ N. Let

Bδ := lim sup
k

Bδ
nk

=
∞⋂

m=1

∞⋃

k=m

Bδ
nk
.

Then µ(Bδ) = limm µ
(⋃∞

k=mB
δ
nk

)
≥ a/2. It follows that if ω ∈ Bδ, then the ine-

quality dH(Γnk
(ω), Γ (ω)) > δ holds true for infinitely many k’s. That contradicts

the µ-a.e. convergence of the sequence (Γn)n∈N to Γ in the Hausdorff metric.

(B) ⇒ (C). Let Aδ
n be defined as before. Then

Aδ
n =

⋃

‖x∗‖≤1

{ω : |s(x∗, Γn(ω))− s(x∗, Γ (ω))| > δ}

and so

µ∗(A
δ
n) ≥ µ{|s(x∗, Γn)− s(x∗, Γ )| > δ} for each x∗ ∈ B(X∗).

Consequently,
µ∗(A

δ
n) ≥ sup

‖x∗‖≤1

µ{|s(x∗, Γn)− s(x∗, Γ )| > δ}

what yields the scalar equi-convergence of (Γn) in measure to Γ .

The next result is a generalization of [27, Theorem 5.2].

Theorem 4.6. Let Γn : Ω → cwk(X) [ck(X)], n ∈ N, be Pettis integrable in
cwk(X) [ck(X)] and satisfying the following two conditions:

(a) The set
⋃

n ZΓn
is uniformly integrable,
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(b) The sequence {Γn : n ∈ N} is scalarly equi-convergent in measure to a scalarly
integrable Γ : Ω → c(X).

Then Γ is Pettis integrable in cwk(X) [ck(X)] and limn dP (Γn, Γ ) = 0. In partic-
ular

(PC) lim
n
dH(MΓn

(E),MΓ (E)) = 0 uniformly on Σ .

If Γn’s are assumed to be c(X)-valued, determined by a WCG space and Pettis
integrable in cb(X), then Γ is Pettis integrable in cb(X) and limn dP (Γn, Γ ) = 0.

Proof. Assume that Γn’s are c(X)-valued. It follows from Theorem 4.1 that Γ
is Pettis integrable in cb(X). Due to the classical Vitali convergence theorem,
the set ZΓ is a subset of the norm closure of the set

⋃
n ZΓn

. Consequently, ZΓ

is uniformly integrable. Together with the condition (a) this yields the uniform
integrability of the family {s(x∗, Γn)− s(x∗, Γ ) : ‖x∗‖ ≤ 1, n ∈ N}. We have then
for arbitrary E ∈ Σ and δ > 0

dH(MΓn
(E),MΓ (E))= sup

‖x∗‖≤1

|s(x∗,MΓn
(E))− s(x∗,MΓ (E))|

≤ dP (Γn, Γ ) = sup
‖x∗‖≤1

∫

Ω

|s(x∗, Γn)− s(x∗, Γ )| dµ

≤ sup
‖x∗‖≤1

∫

{|s(x∗,Γn)−s(x∗,Γ )|≤δ}

|s(x∗, Γn)− s(x∗, Γ )| dµ

+ sup
‖x∗‖≤1

∫

{|s(x∗,Γn)−s(x∗,Γ )|>δ}

|s(x∗, Γn)− s(x∗, Γ )|dµ

≤ δ+ sup
‖x∗‖≤1

∫

{|s(x∗,Γn)−s(x∗,Γ )|>δ}

|s(x∗, Γn)− s(x∗, Γ )|dµ (13)

Due to the scalar equi-convergence of {Γn : n ∈ N} to Γ and the uniform integra-
bility of {s(x∗, Γn)−s(x

∗, Γ ) : ‖x∗‖ ≤ 1, n ∈ N}, the second term of the inequality
(13) is arbitrarily small for sufficiently large n’s. The required convergence rela-
tions are consequences of the above inequalities.

Since metric spaces P(µ, cwk(X)) and P(µ, ck(X)) are complete, in case of cwk(X)
and ck(X)-valued multifunctions Γn, n ∈ N, it follows from (PC) that also MΓ

takes its values in cwk(X) or ck(X), respectively.

Corollary 4.7. Let Γ : Ω → c(X) be scalarly integrable and let {Γn : Ω → cb(X) :
n ∈ N} be a sequence of simple multifunctions satisfying the following two condi-
tions:

(a) The set
⋃

n ZΓn
is uniformly integrable,

(b) The sequence {Γn : n ∈ N} is scalarly equi-convergent in measure to Γ .

Then Γ is Pettis integrable in cb(X) and MΓ (Σ) is relatively compact in the Haus-
dorff metric.
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If Γn’s are functions, then we get the following result, that is a generalization of
[27, Corollary 5.3]:

Theorem 4.8 ([1]). Let fn : Ω → X, n ∈ N, be a sequence of Pettis inte-
grable functions scalarly equi-convergent in measure to a function f : Ω → X (e.g.
‖fn − f‖ → 0 a.e.). If the family

⋃
n Zfn is uniformly integrable, then f is Pettis

integrable and
lim
n

‖fn − f‖P = 0.

In particular

lim
n

sup
E∈Σ

∥∥∥∥
∫

E

fn dµ−

∫

E

f dµ

∥∥∥∥ = 0 .

Remark 4.9. In [22] Banach spaces possessing the weak Radon-Nikodým pro-
perty are characterized in terms of martingales convergent in the Pettis norm. As
a consequence, if X is without WRNP and µ is non-atomic, then there exists a
scalarly bounded X-valued martingale which is divergent in P(µ,X). In virtue of
Theorem 4.8 that martingale cannot be scalarly equi-convergent in measure. But if
X has WRNP, then it suffices to assume in Theorem 4.8 the uniform integrability
of
⋃

n Zfn only.

5. The strong law of large numbers

I shall start with a simple but useful fact concerning Pettis integrability on larger
σ-algebra than the initial one. To prove it, we need to know how to integrate
bounded non-negative real functions with respect to multifunctions, but such a
theory is well known.

Lemma 5.1. Assume that Ξ is a sub-σ-algebra of Σ and that Γ : Ω → cb(X) is
scalarly measurable with respect to Ξ. If Γ ∈ P(µ|Ξ, cb(X)), then we have also
Γ ∈ P(µ, cb(X)).

Proof. If F ∈ Σ, then we set M̃Γ (F ) :=
∫
Ω
E(χF |Ξ) dMΓ . Hence, if x∗ ∈ X∗,

then

s(x∗, M̃Γ (F )) =

∫

Ω

E(χF |Ξ) ds(x
∗,MΓ ) =

∫

Ω

E(χF |Ξ)s(x
∗, Γ ) dµ

=

∫

Ω

E(s(x∗, Γ )χF |Ξ) dµ =

∫

Ω

s(x∗, Γ )χF dµ =

∫

F

s(x∗, Γ ) dµ

For each j ∈ N let Ωj := Ω and πj be the canonical projection of Ω∞ =
∏∞

n=1Ωn

onto Ωj. Moreover, let µ∞ be the countable direct product of µ on Ω∞. Following
Talagrand [31] (see also [25]), I say that a function f : Ω → X satisfies the strong
law of large numbers (briefly SLLN) if there exists af ∈ X such that

lim
n→∞

∥∥∥∥∥af −
1

n

n∑

j=1

f(πj)

∥∥∥∥∥ = 0 µ∞ − a.e.
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Hoffmann-Jørgensen proved (see [17]) that if f satisfies the SLLN, then f is scalarly
integrable and af =

∫
Ω
f dµ, where the integral is the Gelfand integral taking its

value in X on the set Ω. Then Talagrand strengthened that result, proving (see
[31]) that if f satisfies the SLLN, then f is Pettis integrable. Consequently Zf is
uniformly integrable.

By analogy, I formulate the corresponding property for multifunctions.

Definition 5.2. A multifunction Γ : Ω → cb(X) satisfies the strong law of large
numbers if there exists AΓ ∈ cb(X) such that

lim
n→∞

dH

(
AΓ ,

1

n

n⊕

j=1

Γ (πj)

)
= 0 µ∞ − a.e.

It should be observed that if Γ takes its values in cwk(X) or in ck(X), then also
AΓ ∈ cwk(X) or AΓ ∈ ck(X), respectively.

Proposition 5.3. If Γ : Ω → cb(X) satisfies the strong law of large numbers,
then Γ is scalarly integrable and

∫
Ω
s(x∗, Γ ) dµ = s(x∗, AΓ ), for every x∗ ∈ X∗.

Proof. If x∗ ∈ X∗, then limn→∞ |s(x∗, AΓ ) −
1
n

∑n

j=1 s(x
∗, Γ (πj))| = 0 µ∞ − a.e.

Consequently, it follows from the classical theory that Γ is scalarly integrable and∫
Ω
s(x∗, Γ ) dµ = s(x∗, AΓ ).

Before we prove the main characterization of multifunctions that satisfy the SLLN,
we have to recall the definition of a stable set of functions.

Definition 5.4 (Fremlin, Talagrand [30]). LetH be a collection of real valued
functions defined on Ω. H is said to be stable if for each A ∈ Σ+

µ and arbitrary
reals α < β there exist k, l ∈ N satisfying the inequality

µ∗
k+l

(
Ak+l ∩

⋃

f∈H

{f < α}k × {f > β}l

)
< µ(A)k+l,

where µk+l is the direct product of k + l copies of µ.

If Γ : Ω → cb(X) is such that ZΓ is stable, then we say that Γ is properly
measurable (see [30] for functions).

If H is stable then all elements of H are measurable functions. If H is stable and
pointwise bounded, then its pointwise closure is also stable (see [30, 9-1]).

Now I can formulate a result that partially generalizes Theorem 1.10 from [27],
proved for multifunctions with weakly compact values, to arbitrary cb(X)-valued
multifunctions. In that case it was assumed that ZΓ is uniformly integrable. In
the following theorem I assume that Γ is locally integrably bounded, what simply
means that if A ∈ Σ+

µ , then there is A ⊃ B ∈ Σ+
µ such that |Γ | is pointwise

dominated on B by an integrable function.



K. Musiał / Approximation of Pettis Integrable Multifunctions with ... 857

Theorem 5.5. Let Γ : Ω → cb(X)[cwk(X), ck(X)] be properly measurable and
locally integrably bounded. If ZΓ is uniformly integrable, then Γ is Pettis integrable
in cb(X)[cwk(X), ck(X)], R ◦Γ is Pettis integrable and MΓ (Σ) is relatively com-
pact in the Hausdorff metric.

Proof. Assume first that Γ is integrably bounded and let h ∈ L1(µ) be such that
|s(x∗, Γ (ω))| ≤ h(ω) for all x∗ ∈ B(X∗) and ω ∈ Ω. We have s(x∗, Γ (ω)) =
〈ex∗ , R◦Γ (ω)〉 for every ω and x∗ ∈ X∗. Thus, the set ZR◦Γ is also order bounded
by h. Since {ex∗ : ‖x∗‖ ≤ 1} is norming for l∞(B(X∗)), its absolutely convex
hull is weak∗-dense in B(l∗∞(B(X∗)). This means that ZR◦Γ is contained in the
pointwise closure of the absolutely convex hull of ZΓ , which is a stable set (see [30,
Theorem 11-2-1]). Hence ZR◦Γ is stable. Consequently R◦Γ is Pettis integrable
and MR◦Γ (Σ) is norm relatively compact([30, Theorem 6-1-2]).

Then, we can argue exactly as in the proof of Proposition 4.4 in [4]. Since
∫

E

R◦Γ dµ ∈ µ(E) convR◦Γ (E) for every E ∈ Σ

and R(cb(X)) is a closed convex cone, there exists a set M(E) ∈ cb(X) with
R(M(E)) =

∫
E
R◦Γ dµ. If x∗ ∈ X∗ is arbitrary, then
∫

E

s(x∗, Γ ) dµ =

∫

E

〈ex∗ , R◦Γ 〉 dµ = 〈ex∗ ,

∫

E

R◦Γ dµ〉

= 〈ex∗ , R(M(E))〉 = s(x∗,M(E)).

This proves the Pettis integrability of Γ in cb(X). Since R is an isometry the set
MΓ (Σ) is dH-relatively compact.

Taking into account that cwk(X) and ck(X) are also closed cones, we obtain the
other two conclusions.

If Γ is cwk(X)-valued, then its Pettis integrability in cwk(X) follows also from
[27, Theorem 1.10]. If Γ is ck(X)-valued, then its Pettis integrability in ck(X)
follows also from [27, Theorem 3.16]

Consider now the general situation. Let Ω =
⋃

nΩn be a partition of Ω into
pairwise disjoint measurable sets in such a way that Γ is integrably bounded on
each Ωn. For each n ∈ N let Mn : Σ → cb(X) be defined by Mn(E) =

∫
E∩Ωn

Γ dµ.

Since Γ is scalarly integrable we have for all x∗ ∈ X∗ and E ∈ Σ

∑

n

|s(x∗,Mn(E ∩Ωn))| ≤
∑

n

∫

E∩Ωn

|s(x∗, Γ )| dµ =

∫

Ω

|s(x∗, Γ )| dµ <∞ .

Due to uniform integrability of ZΓ , given ε > 0 there exists n0 ∈ N such that

sup
‖x∗‖≤1

∫
⋃

n>n0
Ωn

|s(x∗, Γ )| dµ < ε.

It follows that the series
∑∞

n=1

∫
E∩Ωn

Γ dµ is Cauchy in the metric dH , hence it is
convergent.
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Theorem 5.6. For a multifunction Γ : Ω → cb(X) the following conditions are
equivalent:

(i) Γ satisfies the strong law of large numbers;

(ii) Γ is properly measurable and integrably bounded.

Proof. (i) ⇒ (ii). Let us notice first that if Γ : Ω → cb(X) satisfies the strong
law of large numbers, then also the function R◦Γ : Ω → Y = l∞(B(X∗)) does.
According to [31] R◦Γ satisfies the SLLN if and only if R◦Γ is properly measurable
and

∫ ∗

Ω
‖R◦Γ‖Y dµ <∞.

Notice that s(x∗, Γ (ω)) = 〈ex∗ , R◦Γ (ω)〉 for every ω and x∗ ∈ X∗. Thus, if the
set ZR◦Γ is stable the same holds true also for ZΓ . We have also the equality
‖R◦Γ‖Y = |Γ | pointwise and so (ii) is fulfilled.

(ii) ⇒ (i). Exactly as in the proof of Theorem 5.5 we conclude that ZR◦Γ is stable
and

∫ ∗

Ω
‖R◦Γ‖Y dµ < ∞. Consequently R◦Γ satisfies the SLLN and is Pettis

integrable. But that means the existence of a point aR◦Γ ∈ Y such that

lim
n

∥∥∥∥∥aR◦Γ −
1

n

n∑

j=1

R◦Γ (πj)

∥∥∥∥∥ = 0 µ∞ − a.e. (14)

Invoking once again to the proof of Theorem 5.5 we obtain a set AΓ ∈ cb(X) with
R(AΓ ) = aR◦Γ =

∫
Ω
R◦Γ dµ and

∫
Ω
s(x∗, Γ ) dµ = s(x∗, AΓ ). The equality (14)

turns now into

lim
n
dH

(
AΓ ,

1

n

n⊕

j=1

Γ (πj)

)
= 0 µ∞ − a.e.

As a consequence of Theorems 2.3, 5.5 and 5.6, we have the following

Corollary 5.7. If Γ : Ω → cb(X) [cwk(X), ck(X)] satisfies the SLLN, then Γ
is Pettis integrable in cb(X) [cwk(X), ck(X)], MΓ (Σ) is relatively compact in dH
and there exist simple multifunctions Γn : Ω → cb(X) [cwk(X), ck(X)], n ∈ N,
such that limn dP (Γ, Γn) = 0.

It is our aim now to prove that Cesaro averages of the multifunctions Γ (πj), j ∈ N,
are convergent not only a.e. but also in the Pettis norm.

Theorem 5.8. If Γ : Ω → cb(X) satisfies the strong law of large numbers, then

lim
n
dP

(
AΓ ,

1

n

n⊕

j=1

Γ (πj)

)

= sup
x∗∈B(X∗)

∫

Ω

∣∣∣∣∣s(x
∗, AΓ )−

1

n

n∑

i=1

s(x∗, Γ (πi))

∣∣∣∣∣ dµ∞ = 0 .

Proof. Notice first that each multifunction Γ (πj) : Ω
∞ → cb(X) is scalarly mea-

surable with respect to the σ-algebra π−1
j (Σ) and is Pettis integrable on π−1

j (Σ).
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The measurability is obvious and the integrability is a simple consequence of the
equality

∫
π−1

j (B)
s(x∗, Γ (πj)) dµ∞ =

∫
B
s(x∗, Γ ) dµ = s(x∗,MΓ (B)), valid for arbi-

trary B ∈ Σ and x∗ ∈ X∗.

It follows from Lemma 5.1 that each Γ (πj) is Pettis integrable on the product
σ-algebra. Moreover, Theorem 5.6 yields the uniform integrability of ZΓ and so
each ZΓ (πj) is uniformly integrable with respect to µ∞.

It follows from Lemma 4.5 that the sequence { 1
n

⊕n

j=1 Γ (πj) : n ∈ N} is scalarly
equi-convergent in measure µ∞ to AΓ . Taking into account the uniform integra-
bility of ZΓ (πj) we are able to prove that the set

⋃∞
n=1 Z 1

n
⊕n

j=1
Γ (πj)

is also uniformly

integrable with respect to µ∞. To show it, given ε > 0 let δ > 0 be fixed in such
a way that µ∞(A) < δ yields

sup

{∫

A

|s(x∗, Γ (π1))| dµ∞ : x∗ ∈ B(X∗)

}
< ε .

Moreover, let η > 0 be arbitrary. Then

lim
n

sup
x∗∈B(X∗)

µ∞

{∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)∣∣∣∣∣ > η + |AΓ |

}

≤ lim
n

sup
x∗∈B(X∗)

µ∞

{∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)∣∣∣∣∣ > η + |s(x∗, AΓ )|

}

= lim
n

sup
x∗∈B(X∗)

µ∞

{∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)∣∣∣∣∣− |s(x∗, AΓ )| > η

}

≤ lim
n

sup
x∗∈B(X∗)

µ∞

{∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)
− s(x∗, AΓ )

∣∣∣∣∣ > η

}
= 0.

If C1 > |AΓ |, then we have for η = C1 − |AΓ |

lim
n

sup
x∗∈B(X∗)

µ∞

{∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)∣∣∣∣∣ > C1

}
= 0.

Let n0 ∈ N be such that

∀ n > n0 sup
x∗∈B(X∗)

µ∞

{∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)∣∣∣∣∣ > C1

}
< δ.

Since the family
{

1
n
s
(
x∗,
⊕n

j=1 Γ (πj)
)
: x∗ ∈ B(X∗) & n ≤ n0

}
is uniformly

integrable, there exists C2 > 0 such that

∀ n ≤ n0 sup
x∗∈B(X∗)

µ∞

{∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)∣∣∣∣∣ > C2

}
< δ.
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Thus,

∀ C > max{C1, C2} sup
n

sup
x∗∈B(X∗)

µ∞

{∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)∣∣∣∣∣ > C

}
< δ. (15)

To prove the required uniform integrability we have to show that

lim
C→∞

sup
x∗∈B(X∗)

sup
n

∫

{|s(x∗, 1
n
⊕n

j=1
Γ (πj))|>C}

∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)∣∣∣∣∣ dµ∞ = 0.

But notice that for each n ∈ N and x∗ ∈ B(X∗) the set
{∣∣s
(
x∗, 1

n

⊕n

j=1 Γ (πj)
)∣∣ >

C
}
and the expression

∑n

j=1 |s(x
∗, Γ (πj)| are permutation invariant with respect

to {π1, . . . , πn}. Consequently, if C > max{C1, C2}, then

∫

{|s(x∗, 1
n
⊕n

j=1
Γ (πj))|>C}

∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)∣∣∣∣∣ dµ∞

≤
1

n

∫

{|s(x∗, 1
n
⊕n

j=1
Γ (πj))|>C}

n∑

j=1

|s(x∗, Γ (πj))| dµ∞

=

∫

{|s(x∗, 1
n
⊕n

j=1
Γ (πj))|>C}

|s(x∗, Γ (π1))| dµ∞ .

Applying (15) and the uniform integrability of ZΓ (π1), we obtain the inequality

∫

{|s(x∗, 1
n
⊕n

j=1
Γ (πj))|>C}

∣∣∣∣∣s
(
x∗,

1

n

n⊕

j=1

Γ (πj)

)∣∣∣∣∣ dµ∞ < ε.

which proves the uniform integrability of
⋃∞

n=1 Z 1

n
⊕n

j=1
Γ (πj)

.

Now the convergence limn dP
(
AΓ ,

1
n

⊕n

j=1 Γ (πj)
)
= 0 is a direct consequence of

Theorem 4.6.

As a particular case of Theorem 5.8, we have

Theorem 5.9. Let f : Ω → X be a function. If f satisfies the strong law of large
numbers, then

lim
n

∥∥∥∥∥af −
1

n

n∑

j=1

f(πj)

∥∥∥∥∥
P

= 0 .

6. Gelfand and Dunford integrable multifunctions

It is the purpose of this section to prove that formula (3) produces a metric also
in case of scalarly integrable multifunctions. To this aim I need a few basic facts
concerning the Gelfand and the Dunford integrals for multifunctions.
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A multifunction Γ : Ω → c(X∗) is said to be weak∗ scalarly measurable, if for every
x ∈ X, the support function s(x, Γ (·)) is measurable. Γ : Ω → c(X∗) is said to be
weak∗ scalarly integrable, if for every x ∈ X, the function s(x, Γ (·)) is integrable.
A multifunction Γ : Ω → c(X∗) is weak∗ scalarly bounded, if there is a constant
M > 0 such that for every x ∈ X |s(x, Γ )| ≤M‖x‖ a.e.

A function f : Ω → X∗ is said to be a weak∗ quasi-selection of a multifunction
Γ : Ω → c(X∗), if f is weak∗ scalarly measurable and we have xf(ω) ∈ xΓ (ω) for
µ-almost every ω ∈ Ω (the exceptional sets depend on x). The collection of all
weak∗ quasi-selections of Γ will be denoted by W∗QS(Γ ).

If moreover f(ω) ∈ Γ (ω), for every ω ∈ Ω, then f is called a weak∗ selection of Γ .

cw∗k(X∗) denotes the family of all weak∗-compact members of cb(X∗). H
∗
denotes

the closure of H in the weak∗ topology.

If Γ : Ω → cw∗k(X∗) is weak∗ scalarly integrable, then Γ can be represented in
the form

Γ (ω) =
∑

n

Γn(ω)χEn
(ω) (16)

where the sets En ∈ Σ are pairwise disjoint, µ (
⋃

nEn) = µ(Ω) and each Γn : Ω →
cw∗k(X∗) is weak∗ scalarly bounded.

M : Σ → cw∗k(X∗) is additive, if M(A ∪ B) = M(A) + M(B). An additive
map M : Σ → cw∗k(X∗) is called a weak∗ multimeasure, if s(x,M(·)) is a finite
measure, for every x ∈ X. IfM is a point map, then we talk about weak∗ measure.
If m : Σ → X∗ is a weak∗ measure such that m(A) ∈ M(A), for every A ∈ Σ,
then m is called a weak∗ selection of M . W∗S(M) will denote the set of all weak∗

selections of M .

If M : Σ → cw∗k(X∗) is a weak∗ multimeasure, then the weak∗ semivariation of
M on a set E ∈ Σ is defined by ‖M‖∗(E) := sup{|s(x,M)|(E) : x ∈ B(X)},
where |s(x,M)|(E) is the ordinary variation of the measure s(x,M) on the set E.

If M : Σ → cb(X) is a multimeasure, then the semivariation of M on a set E ∈ Σ
is defined by ‖M‖(E) := sup{|s(x∗,M)|(E) : x∗ ∈ B(X∗)}.

Proposition 6.1. If M : Σ → cw∗k(X∗) is a weak∗ multimeasure, then ‖M‖∗(Ω)
<∞. If M : Σ → cb(X) is a multimeasure, then ‖M‖(Ω) <∞. In particular the
set
⋃
M(Σ) is bounded.

Proof. Assume that M : Σ → cw∗k(X∗) is a weak∗ multimeasure. If x ∈
B(X), then it follows from the classical measure theory that |s(x,M)|(Ω) ≤
2 sup{|s(x,M(E))| : E ∈ Σ} < ∞. It follows that the set

⋃
M(Σ) =

⋃
{M(E) :

E ∈ Σ} is weak∗ bounded and since X is a Banach space, it is norm bounded.
Hence, sup{|s(x,M)|(Ω) : x ∈ B(X)} ≤ 2|

⋃
M(Σ)| < ∞. The second part can

be proved in a similar way.

IfM is a weak∗ multimeasure or a multimeasure, then the variation ofM is defined
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by

|M |(E) : = sup
P

{
∑

A∈P

|M(A)| : P is a finite measurable partition of E

}
.

It turns out that sometimes a weak∗ multimeasure is an h-multimeasure.

Proposition 6.2. If M : Σ → cw∗k(X∗) is a weak∗ multimeasure (or M : Σ →
cb(X) is a multimeasure) of finite variation, then it is an h-multimeasure.

Proof. Let {Ai : i ∈ N} be a sequence of pairwise disjoint elements of Σ+
µ . We

have then

dH

(
∑

i≤k

M(Ai)
∗

,M

(
∞⋃

j=1

Aj

))

= sup
‖x‖≤1

∣∣∣∣∣∣
s

(
x,
∑

i≤k

M(Ai)
∗
)

− s


x,M

(
⋃

i≤k

Ai

)
+M

(
⋃

j>k

Aj

)∗

∣∣∣∣∣∣

= sup
‖x‖≤1

∣∣∣∣∣s
(
x,
∑

i≤k

M(Ai)

)
− s

(
x,M

(
⋃

i≤k

Ai

)
+M

(
⋃

j>k

Aj

))∣∣∣∣∣

= sup
‖x‖≤1

s

(
x,M

(
⋃

j>k

Aj

))
≤ sup

‖x‖≤1

∑

j>k

|s(x,M(Aj))|

≤
∑

j>k

|M |(Aj).

Since the variation of M is finite the last term tends to zero as k → ∞ and that
proves the required σ-additivity of M .

The next result proved by Costé [8] shows that weak∗ multimeasures are rich with
weak∗ measures, being selections of the initial weak∗ multimeasure.

Proposition 6.3. If M : Σ → cw∗k(X∗) is an arbitrary weak∗ multimeasure,
then W∗S(M) 6= ∅ and for each E ∈ Σ

M(E) = {m(E) : m ∈ W∗S(M)}
∗
.

Proof. I shall recall the proof of the second part only. Suppose there is E ∈ Σ
such that

M(E) \ {m(E) : m ∈ W∗S(M)}
∗
6= ∅.

Then, due to the Hahn-Banach theorem, there are x0 ∈ X and α ∈ R such that

s(x0,M(E)) > α > 〈x0,m(E)〉 for every m ∈ W∗S(M). (17)

Define M ′
x0

: Σ → cw∗k(X∗) by

M ′
x0
(A) := {x∗ ∈M(A) : x0(x

∗) = s(x0,M(A))}.
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Notice that (17) yields

M ′
x0
(E) ∩ {m(E) : m ∈ W∗S(M)}

∗
= ∅. (18)

According to [10, Theorem 2.3] M ′
x0

is a weak∗ multimeasure and, by the first
part of the current proposition, it has a selectiom m̃ : Σ → X∗ that is a weak∗

measure. Clearly we have m̃(E) ∈M ′
x0
(E). But m̃ is also a selection of M and so

m̃(E) ∈ {m(E) : m ∈ W∗S(M)}
∗
. This however contradicts (18).

Definition 6.4. Denote by C an arbitrary family of nonempty convex subsets of
X∗. A weak∗ scalarly integrable multifunction Γ : Ω → c(X∗) is Gelfand integrable
in C, if for each set A ∈ Σ there exists a set MG

Γ (A) ∈ C such that

s(x,MG
Γ (A)) =

∫

A

s(x, Γ ) dµ, for every x ∈ X.

MG
Γ (A) is called the Gelfand integral of Γ on A and we write (G)

∫
A
Γ dµ :=

MG
Γ (A).

One can immediately see that if C ∈ {cw∗k(X∗), cwk(X∗), ck(X∗)}, then MG
Γ is

a weak∗ multimeasure. By Proposition 6.1 ‖MG
Γ ‖

∗(Ω) <∞.

One can easily check that |MG
Γ | is always a measure. Indeed, if {Ai : i ∈ N} are

pairwise disjoint elements of Σ, then

|MG
Γ |

(
∞⋃

i=1

Ai

)
≥ |MG

Γ |

(
n⋃

i=1

Ai

)
≥

n∑

i=1

|MG
Γ |(Ai),

for every n ∈ N. Consequently,

|MG
Γ |

(
∞⋃

i=1

Ai

)
≥

∞∑

i=1

|MG
Γ |(Ai) .

And conversely, if B1, . . . , Bk are pairwise disjoint measurable subsets of
⋃∞

n=1An

and xi ∈ B(X), i = 1, . . . , k, are arbitrary, then

k∑

j=1

∣∣s(xj,MG
Γ (Bj))

∣∣

=
k∑

j=1

∣∣∣∣∣s
(
xj,M

G
Γ

(
Bj ∩

∞⋃

i=1

Ai

))∣∣∣∣∣ =
k∑

j=1

∣∣∣∣∣s
(
xj,

∞∑

i=1

MG
Γ (Bj ∩ Ai)

)∣∣∣∣∣

≤
∞∑

i=1

k∑

j=1

∣∣s(xj,MG
Γ (Bj ∩ Ai))

∣∣ ≤
∞∑

i=1

k∑

j=1

∣∣MG
Γ (Bj ∩ Ai)

∣∣

≤
∞∑

i=1

|MG
Γ |(Ai).
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Given ε > 0 one can always find xj ∈ B(X) such that |MG
Γ (Bj)| ≤ s(xj,M

G
Γ (Bj))+

ε/k. Hence we have

k∑

j=1

∣∣MG
Γ (Bj)

∣∣ ≤
k∑

j=1

∣∣s(xj,MG
Γ (Bj))

∣∣+ ε ≤
∞∑

i=1

|MG
Γ |(Ai) + ε.

It follows that

|MG
Γ |

(
∞⋃

i=1

Ai

)
≤

∞∑

i=1

|MG
Γ |(Ai).

The following fact is essential for our further investigations:

Proposition 6.5. If Γ : Ω → cw∗k(X∗) is Gelfand integrable in cw∗k(X∗), then
|MG

Γ | is a σ-finite measure and

|MG
Γ |(E) =

∫

E

ψΓ dµ, for every E ∈ Σ,

where ψΓ is a non-negative measurable function satisfying the following properties:

(α) |s(x, Γ (ω))| ≤ ψΓ (ω)‖x‖ for every x and almost every ω;

(β) ψΓ (ω) ≤ |Γ (ω)| for every ω;

(γ) If ϕ is another measurable function satisfying the conditions (α) and (β)
(with ψΓ replaced by ϕ), then ψΓ ≤ ϕ a.e.

Proof. The existence of ψΓ is well known (cf. [27] or [24]).

Then, if En : = {ω : n − 1 ≤ ψΓ (ω) < n} and Γn(ω) = Γ (ω) whenever ω ∈ En,
then we get the representation (16). If Γ is Gelfand integrable and E ∈ Σ, then

|s(x,MG
Γ (E ∩ En))| ≤

∫

E∩En

|s(x, Γ )| dµ ≤ ‖x‖

∫

E∩En

ψΓ dµ ≤ n‖x‖µ(E ∩ En).

Moreover,

|MG
Γ (E ∩ En)| = sup{‖x∗‖ : x∗ ∈MG

Γ (E ∩ En)} = sup
x∗∈MG

Γ (E∩En)

sup
‖x‖≤1

|x(x∗)|

= sup
‖x‖≤1

|s(x,MG
Γ (E ∩ En))| ≤

∫

E∩En

ψΓ dµ

and so |MG
Γ |(E ∩En) ≤

∫
E∩En

ψΓ dµ ≤ nµ(E ∩En) <∞. Thus, MG
Γ is of σ-finite

variation and

|MG
Γ |(E) ≤

∫

E

ψΓ dµ .

By the classical Radon–Nikodým theorem there exists a nonnegative measurable
function h on Ω such that

|MG
Γ |(E) =

∫

E

h dµ for each E ∈ Σ.
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The inequality |MG
Γ |(E) ≤

∫
E
ψΓdµ yields now the relation h ≤ ψΓ µ–a.e.. If

‖x‖ ≤ 1, then

|s(x,MG
Γ )|(E) =

∫

E

|s(x, Γ )|dµ ≤ |MG
Γ |(E) =

∫

E

h dµ .

Hence |s(x, Γ )| ≤ h µ–a.e.. It follows from the properties of ψΓ that ψΓ ≤ h
µ–a.e., and this completes the proof of the equality

|MG
Γ |(E) =

∫

E

ψΓ dµ, for every E ∈ Σ .

Proposition 6.6. Let Γ : Ω → cw∗k(X∗) be Gelfand integrable in cw∗k(X∗).
Then W∗QS(Γ ) 6= ∅ and a weak∗ scalarly integrable γ : Ω → X∗ is a Gelfand
integrable weak∗ quasi-selection of Γ if and only if for every x ∈ X 〈x, γ〉 ≤ s(x, Γ )
a.e., if and only if Σ ∋ A −→

∫
A
γ dµ is a weak∗ selection of MG

Γ .

Proof. It is quite obvious that a weak∗ scalarly integrable γ : Ω → X∗ is a Gelfand
integrable weak∗ quasi-selection of Γ if and only if for every x ∈ X 〈x, γ〉 ≤ s(x, Γ )
a.e. so I will prove only that W∗QS(Γ ) 6= ∅.

Let MG
Γ : Σ → cw∗k(X∗) be the Gelfand integral of Γ . Then, according to

Propositions 6.3 and 6.5 there exists a weak∗ selection m : Σ → X∗ of MG
Γ that

is of σ-finite variation. Moreover s(x,MG
Γ (·)) ≪ µ for every x and so (see [24],

Theorem 11.1) for every m ∈ W∗S(M) there is a Gelfand integrable function
γ : Ω → X∗ satisfying for every x and every A ∈ Σ the equality

〈x,m(A)〉 =

∫

A

〈x, γ〉 dµ.

Thus, we have for every x and every A ∈ Σ the relation

∫

A

〈x, γ〉 dµ ≤ s(x,MG
Γ (A)) =

∫

A

s(x, Γ )

and so 〈x, γ〉 ≤ s(x, Γ ) a.e., for every x separately. This means that γ ∈
W∗QS(Γ ).

The rest of the proof is also easy.

The following theorem has been independently proven in [5]. I present a simpler
proof.

Theorem 6.7. If Γ : Ω → cw∗k(X∗) is weak∗ scalarly integrable, then Γ is
Gelfand integrable in cw∗k(X∗) and for every E ∈ Σ

MG
Γ (E) =

{
(G)

∫

E

γ dµ : γ ∈ W∗QS(Γ )

}∗

. (19)
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Proof. Assume at the beginning that Γ is scalarly bounded. Let us fix A ∈ Σ
and define a sublinear functional on X setting

ϕ(x) : =

∫

A

s(x, Γ ) dµ.

Denote by X ′ the space X∗ endowed with the topology σ(X∗, X). Then X ′∗ = X.
In order to prove the existence of a weak∗-closed convex set MA ⊂ X∗ with

s(x,MG
Γ (A)) =

∫

A

s(x, Γ ) dµ for every x ∈ X,

we have to show first, according to the Hörmander theorem [18], that the functional
is σ(X ′∗, X ′)-lower semicontinuous (cf. [7], p. 48). That is we need the σ(X,X∗)-
lower semicontinuity of ϕ. Equivalently, we have to prove that for each real α

Q(α) := {x ∈ X : ϕ(x) ≤ α}

is weakly closed. As it is convex it is enough to show that it is norm closed. So let
{xn : n ∈ N} ⊂ Q(α) be such that ‖xn − x‖ → 0. Since for each ω the set Γ (ω)
is norm bounded, the support function s(·, Γ (ω)) is norm-continuous for every ω.
Consequently,

s(xn, Γ (ω)) → s(x, Γ (ω)) for every ω .

Consequently, due to the Lebesgue dominated convergence theorem,

∫

A

s(x, Γ ) dµ =

∫

A

lim
n
s(xn, Γ ) dµ = lim

n

∫

A

s(xn, Γ ) dµ ≤ α.

This proves the Gelfand integrability of Γ in the family of weak∗-closed convex
subsets of X∗. Since Γ is weak∗ scalarly integrable, the set MG

Γ (A) is also weak∗

bounded. Thus, Γ is Gelfand integrable in cw∗k(X∗).

If Γ is arbitrary, then according to (16) Γ (ω) =
∑

n Γn(ω)χEn
(ω), where all Γn’s

are weak∗ scalarly bounded and En’s are pairwise disjoint. As we have just proven
each Γn is Gelfand integrable in cw∗k(X∗). By Proposition 6.6, each ΓnχEn

has
a weak∗ quasi-selection δn. Then δ :=

∑
n δn is a Gelfand integrable weak∗ quasi-

selection of Γ .

Let ∆(ω) := Γ (ω)− δ(ω). We have now s(x,∆) ≥ 0 a.e., for each x ∈ X. In order
to prove the Gelfand integrability of ∆ in cw∗k(X∗), we follow exactly as in the
first part of the proof, proving the weak∗ lower semicontinuity of the functional

ψ(x) : =

∫

A

s(x,∆) dµ.

But now we apply the Fatou lemma instead of the Lebesgue dominated convergence
theorem.
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The Gelfand integrability of Γ in cw∗k(X∗) is a simple consequence of the equalities
(for each x ∈ X and each E ∈ Σ)

∫

E

s(x, Γ ) dµ =

∫

E

s(x,∆) dµ+

∫

E

xδ dµ

= s

(
x, (G)

∫

E

∆dµ

)
+ x

(
(G)

∫

E

δ dµ

)

= s

(
x, (G)

∫

E

∆dµ+ (G)

∫

E

δ dµ

)
.

We are going to prove now the equality (19). According to Propositions 6.3 and
6.5 for each E ∈ Σ+

µ

MG
Γ (E) = {m(E) : m ∈ W∗S(MG

Γ )}
∗

(20)

and each weak∗ countably additive selection m : Σ → X∗ is of σ-finite variation.
Moreover s(x,MG

Γ (·)) ≪ µ for every x and so (see [24], Theorem 11.1) for every
m ∈ W∗S(MG

Γ ) there is a Gelfand integrable function γ : Ω → X∗ satisfying for
every x and every A ∈ Σ the relations

∫

A

〈x, γ〉 dµ = 〈x,m(A)〉 ≤ s(x,MG
Γ (A)) =

∫

A

s(x, Γ ) dµ , (21)

what means that γ is a weak∗ quasi-selection of Γ . (19) is a direct consequence of
(20) and (21).

Definition 6.8. Denote by C an arbitrary family of nonempty convex subsets of
X∗∗. A scalarly integrable multifunction Γ : Ω → c(X) is Dunford integrable in C,
if for every set A ∈ Σ there exists a set MD

Γ (A) ∈ C such that

s(x∗,MD
Γ (A)) =

∫

A

s(x∗, Γ ) dµ, for every x∗ ∈ X∗.

MD
Γ (A) is called the Dunford integral of Γ on A.

As a consequence of Theorem 6.7 we obtain

Theorem 6.9. Each scalarly integrable multifunction Γ : Ω → cb(X) is Dunford
integrable in cw∗k(X∗∗).

Proof. We want to apply Theorem 6.7 but Γ is not necessarily cw∗k(X∗∗)-valued.

So we define a cw∗k(X∗∗)-valued multifunction Γ̃ by setting Γ̃ (ω) := Γ (ω)
∗
, ω ∈

Ω, where the closure is taken with respect to the weak∗ topology of X∗∗. We have
then s(x∗, Γ̃ (ω)) = s(x∗, Γ (ω)), for each x∗ ∈ X∗ and each ω ∈ Ω. According to

Theorem 6.7, Γ̃ is Gelfand integrable in cw∗k(X∗∗) and so for each A ∈ Σ there
exists MD

Γ̃
(A) ∈ cw∗k(X∗∗) satisfying the equality

s(x∗,MD

Γ̃
(A)) =

∫

A

s(x∗, Γ̃ ) dµ =

∫

A

s(x∗, Γ ) dµ for every x∗ ∈ X∗.
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This proves the required Dunford integrability of Γ .

Proof of the correctness of the definition of dP for scalarly integrable
multifunctions. Setting in Proposition 6.1M =MD

Γ̃
one obtains sup{

∫
Ω
|s(x, Γ )|

dµ : ‖x‖ ≤ 1} <∞ and that proves that the definition of dP by (3) is proper.

I am going to take the opportunity and present yet a result that is not connected
with the main topic of this paper but generalizes [5, Theorem 6.8 and Remark 6.9]
that described Gelfand integrability of compact valued multifunctions.

Theorem 6.10. Let Γ : Ω → ck(X∗) be a weak∗ scalarly integrable multifunction
and let the set {s(x, Γ ) : x ∈ B(X)} be uniformly integrable. Then Γ is Gelfand
integrable in cwk(X∗) and

⋃
MG

Γ (Σ) is a weakly relatively compact set. If the zero
function is a weak∗ quasi-selection of Γ , then

⋃
MG

Γ (Σ) is a weakly compact set.

Proof. Consider a partition of Ω of the form Ω =
⋃

nΩn such that (n− 1)‖x‖ ≤
|s(x, Γ )| < n‖x‖ a.e., for every x ∈ X and n ∈ N separately. According to [5]
each multifunction Γn defined by Γn(E) := Γ (E ∩ Ωn) is Gelfand integrable in
cwk(X∗).

Let ε > be fixed and δ > 0 be adapted to ε in such a way that µ(E) < δ yields∫
E
s(x, Γ ) dµ < ε, for every x ∈ B(X) and E ∈ Σ. Let m ∈ N be such that

µ
(⋃

n≥mΩn

)
< δ and let E ∈ Σ be fixed.

According to [5] Γ is Gelfand integrable in cwk(X∗) on
⋃

i<mΩi, so let W ∈
cwk(X∗) be such that MG

Γ (E ∩
⋃

i<mΩi) ⊂ W . We have then for each x ∈ X and
m > n0

s(x,MG
Γ (E)) = s

(
x,MG

Γ

(
E ∩

⋃

i<m

Ωi

))
+ s

(
x,MG

Γ

(
E ∩

⋃

i≥m

Ωi

))

≤ s

(
x,MG

Γ

(
E ∩

⋃

i<m

Ωi

))
+

∫
⋃

i≥m Ωi∩E

|s(x, Γ )| dµ

≤ s

(
x,MG

Γ

(
E ∩

⋃

i<m

Ωi

))
+ ε ≤ s(x,W ) + ε‖x‖

= s(x,W + εB(X∗)).

It follows that
MG

Γ (E) ⊆W + εB(X∗).

Due to Grothendieck’s characterization of weak compactness (cf. [12, Lemma
XIII.2]) the set MG

Γ (E) is weakly relatively compact.

Now, let f : Ω → X∗ be a weak∗ quasi-selection of Γ and G := Γ − f .

According to the first part of the proof the multifunction G is Gelfand integrable
in cwk(X∗) and since

⋃
MG

G (Σ) = MG
G (Ω), the total range of MG

G is weakly
compact. As a weak∗ quasi-selection of Γ the function f satisfies for each x ∈ X the
inequality xf ≤ s(x, Γ ) and so the set {xf : ‖x‖ ≤ 1} is weakly relatively compact.
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It is known, and easily seen, that MG
f (Σ) is a weakly relatively compact set.

Consequently the set MG
Γ (Σ) ⊂ MG

G (Σ) +MG
f (Σ) is weakly relatively compact.

This completes the proof.
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[10] A. Costé, R. Pallu de la Berriére: Radon-Nikodým theorems for set-valued measures
whose values are convex and closed, Ann. Soc. Math. Pol., Ser. I, Commentat. Math.
(1978) 283–309.

[11] J. Diestel, J. J. Uhl: Vector Measures, Math. Surveys 15, Amer. Math. Soc., Provi-
dence (1977).

[12] J. Diestel: Sequences and Series in a Banach Space, Graduate Texts in Math. 92,
Springer, Berlin (1984).

[13] L. Di Piazza, K. Musiał: Set-Valued Kurzweil-Henstock-Pettis integral, Set-Valued
Anal. 13 (2005) 167–179.

[14] K. El Amri, C. Hess: On the Pettis integral of closed valued multifunctions, Set-
Valued Anal. 8 (2000) 329–360.

[15] D. H. Fremlin, M. Talagrand: A decomposition theorem for additive set-functions
with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979) 117–
142.
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