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Let T be a compact topological space, and let C (T') be the space of all non-negative continuous
real-valued functions defined on T endowed with the topology of uniform convergence. We prove
the Riesz integral representation for continuous additive and positive set-valued maps defined
on C4(T) with values in the space cc(E) of all weakly compact convex non-empty subsets of a
Banach space E. As an application we give a generalization of Dunford-Schwartz’s result on the
Riesz integral representation for any continuous set-valued map (not necessary positive).
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1. Introduction

In [4], the Riesz integral representation for continuous linear maps associated
with additive multifunctions defined from an algebra 2 of subsets of a non-empty
set T to the space cfb(FE) of all bounded closed convex non-empty subsets of a
Banach space E was developed. As an application theorems on representation
were deduced for the multifunctions, for vector valued maps and for scalar valued
maps. In this paper, T is a compact topological space and B is the o-algebra
of Borel subsets of T'. We prove the Riesz integral representation for continuous
additive and positive multifunctions defined from C,(T") to the space cc(E) of
all weakly compact convex non-empty subsets of £ : any continuous additive,
positive and positively homogeneous multifunction L from C.(T) to cc(E) is
of the form L(f) = [ fdM for all f € C(T), where M is a positive regular
multimeasure from B to cc(E). The space C(T) (resp. cc(E)) is endowed with
the topology of uniform convergence (resp. the Hausdorff distance). This result
is a generalization of Rupp’s one (see [7], theorem 2) where the Banach space F
is finite dimensional. That was also partially known to Pallu de la Barriere (see
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[6], theorem 7-1, p.3-26). We deduce from this result a representation theorem
for any continuous additive multifunction (not necessary positive) defined from
C(T) to cc(FE).

2. Notations and definitions

The notations and definitions introduced in [4] are preserved here. Let T" be a
compact topological space, let C(T') be the space of all continuous real-valued
functions defined on 7" and let C'(T") be the subspace of C(T) consisting of non-
negative functions. The space C(T') is endowed with the topology of uniform
convergence. Measures are always countably additive set functions. Let E be a
Banach space, £’ its dual and E” its bidual. o(F’, F) and o(E", E') are weak*
topologies on E’ and E”, respectively and, cc(F) is the family of all weakly com-
pact convex non-empty subsets of E. Note that cc(FE) is a closed subset of the
metric space cfb(E) endowed with the Hausdorff distance ¢ (see [6]). cc(E", E')
is the set of all o(E"”, E')-compact non-empty convex subsets of £”.

Definition 2.1. (1) Let M be a multifunction from B to cc(F). We say that
M is a multimeasure if M is additive and if

() - S

for each sequence (A,,) of pairwise disjoint elements of ®B; which amounts to
saying that for all y € E’, the map 0*(y|M) : B — R (A — 0*(y|M(A))) is
a real valued measure (see [6], corollary, p.2-25).

(2) Let p: B — R be a positive measure. We say that pu is:
(i) inner reqularif for all A € B u(A) = sup{u(K); K compact K C A}.
(i) outer regular if for all A € B pu(A) =inf{u(0);O0 C T, OopenO D A}
(iii) regular if it is inner and outer regular.

(3) A signed measure p : B — R is regular if its total variation is regular.

(4) A multimeasure M : B — cc(F) is called regular if for each y € E’ the
measure 0*(y|M) is regular.

Let M: B — cc(F) be a multimeasure and let f be a nonnegative continuous
function defined on T'. Then the integral of f with respect to M is defined as in [4].
Since cc(F) is closed in ¢fb(E), it is a complete subspace of the space (cfb(E), ).
Note that if f and ¢ are nonnegative continuous functions such that f < g, then
[ fdM C [gdM. Moreover for all y € E' §* (y}ffdM) = [ fdé*(y|M) and
[ fdM € ce(E).

Let L: C(T) — cc(E) be an additive and positively homogeneous multifunction.
We say that L is bounded (resp. positive) if U{L(f): f € C(T), ||f|| < 1} is a
bounded subset of E (resp. 0 € L(f) for all f € C(T)). Note that a positive
and positively homogeneous multifunction is bounded.
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Definition 2.2. Let F' be a real vector space and let s be a functional defined
on F'. We say that s is sublinear if s(z +y) < s(z) + s(y) and s(ax) = as(z) for
all z,y € F and for all a > 0.

Definition 2.3. Let L: C(T) — cc(F) be an additive, positively homogeneous
and continuous multifunction. A selection of L is a linear map : C(T) — E,

which verifies [(f) € L(f) for all f € C(T).

Definition 2.4. Let F and F be two Banach spaces and let [ be a linear map
from E to F. Then [ is said to be weakly compact if it maps the closed unit ball
of F into a relatively weakly compact subset of F'.

We denote by M" (B, cc(E))(resp. M" (B, E)) the set of all regular multimeasures
(resp. vector measures) defined on B with values in cc(E) (resp. in E) and by
L(CL(T),ce(E)) the set of all additive, positively homogeneous and continuous
multifunctions from C(7T) to cc(E).

If =R, then the space M"(B,R) will be denoted by M"(B).

The following lemma is well-known (see [2, Theorem 5, p. 182]).

Lemma 2.5. Let E be a Banach space and E' be its dual space endowed with the
Mackey topology T(E', E). Let s be a sublinear functional defined on E'. Then s
is Mackey continuous if and only if there is C € cc(F) such that s = 6*(:|C).

It follows that for each f € C(T) the map y — [ fdé*(y|M) from E' to R, is
7(E', E)-continuous because [ fdM € cc(E).

Theorem 2.6. Let L€ L(C(T),cc(E)) be a positive multifunction. Then there
exists a unique positive multimeasure M € M" (B, cc(E)) such that L(f)= [ fdM
for all f € CL(T).

Conversely, for each positive multimeasure M € M" (B, cc(E)), the multifunction
[ [ fdM from CL(T) to cc(E) is a positive element of L(C4(T),cc(E)).

Proof. Let L be a positive element of L(C(T),cc(E)) and let y € E’. Then
the functional 6*(y|L) defined on C(T") by 6*(y|L)(f) := 0*(y|L(f)) is additive,
positively homogeneous and positive. Therefore §*(y|L) has a unique continuous
linear extension on C(7T') denoted by §*(y|L). Simply, if C(T) > f = f+ — f~,
then 6" (y|L(f)) := 0" (y|L(fT)) = 6" (y|L(f7)).

Since §*(y|L) is linear, positive and continuous, by the Riesz representation theo-

rem (cf. [1, Theorem IV.6.3, p. 265]) there exists a unique positive regular measure
fiy on B such that 6*(y|L(f)) = [ fdu, for all f € C(T).

Let O be an open subset of T and let Sp be the functional defined on E’ by
So(y) = py(O). We have

py(0) = sup{0*(y[|L(f)); f € C(T), f <1o}.

If A is a member of B, we denote by S4 the functional defined on E’ by S4(y) =
py(A) for each y € E'. Since p, is regular, we have
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Sa(y) = inf{u,(0); O C T, O open, O D A}
= sup{p,(K) : K C A, K compact}.

An easy consequence of the second representation is the sublinearity of Sa. A
standard calculation proves the 7(E’, E)-continuity of Sy, for each A € B. Then,
by Lemma 2.5, there exists an element C4 of cc(E) such that Sy(y) = 0*(y|Ca)
forally € E'. Let M: B — cc(FE) be the multifunction defined by M(A) = Cjy.
Then we have 6*(y|M(A)) = Sa(y) = py(A) for all A € B and for all y € E'.
Therefore the map 6*(y|M): B — R is a positive regular measure. Hence M €
M (B, cc(FE)) and

L) = [ fn = [ £ foral f e CUT) ye B ()

Hence L(f) = [ fM for all f € C(T).

Let us prove the uniqueness. Assume that there exist two multifunctions M and
M'" which verify (1). According to the inner regularity of the scalar measures
§*(y|M) and 6*(y|M’) and the equality [ fo*(y|M) = [ fé*(y|M’) for all f €
C(T),y € E', we have 6*(y|M(A)) = 6*(y|M'(A)) for all A € B,y € E' (due to
the classical Riesz integral representation theorem). Since M (A), M'(A) € cc(E),
we have M(A) = M'(A) for all A € B.

The second part follows from the properties of the integral with respect to the
multimeasures and the inequality 6 ([ fM, [ gM) < || f —g|||M||(T) for all f,g €
Ci(T). We recall that ||f — gl| = sup{|f(t) — g(t)]; t € T} and [[M|(T) =
sup{|0*(y|M)|(T);y € E', [ly| < 1}. O

The following corollary generalizes partly the well-know theorem of Dunford-
Schwartz ([1, Theorem VI.7.2, p.492]).

Corollary 2.7. Let L € L(C(T),cc(E)) be an arbitrary map. Then there is

a unique multimeasure M: B — cc(E", E'), a positive multimeasure M': B —

cc(E) and a weak® measure m': B — E" (that is y om' is a scalar measure for

every y € E') such that:

@) M=M+m

(il)  o0*(y|M), 0*(y|M') and y om’ are reqular for each y € F'.

(iii) for each f € C+(T) the mappings: y > [ fdé*(y|M), y— [ fdé*(y|M'),
y— [ fdyom are 7(E', E)-continuous on E'.

(iv) o (y|L(f)) = [ fdé*(y|M) for each f € C(T) andy € E'.

Conversely, if M is a multifunction from B to cc(E", E") which satisfies (i)—(iii),

then there exists a multifunction L € L(CL(T),cc(E", E")) such that 6*(y|L) =

[ fdé*(y|M) forall f € CL(T),y € E'.

Proof. Let L be a multifunction of £°(C(T),cc(E)) and let [ be a continuous,
additive and positively homogenous selection of L (see [6, Theorem 4.2, p.3-
14]). Let us put L/ = L — 1. Then L' € L(C(T),cc(F)) and is positive. By
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Theorem 2.6, there exists a positive multimeasure M’ € M" (8, cc(E)) such that
L'(f)= [ fdM for all f € C(T). We obtain also the 7(E’, E)-continuity of the

map y — [ fdo*(y|M").

Moreover, by the theorem of Dunford-Schwartz ([1, Theorem VI.7.2, p. 492]) there

exists a unique set function m’ from B to E” such that

(1) yom' e M"(B) for each y € E';

(2) foreach f € C(T), the mapping y — [ fdyom’ of E’ into R is continuous
for the topology o(F', E);

(3) yol(f)=[fdyom' forall feC(T),ycFE.

Let us put M(A) = M'(A) + m/(A), for all A € B. We have then M(A) €
cc(E",E") and 6*(y|M(A)) = §*(y|M'(A)) + y o m'(A). Therefore §*(y|M) €
M (%B).

If f € C.(T), then the mapping y — [ fdy om' from E' to R is continuous

for the Mackey topology 7(E’, E') because it is continuous for the weak* topology
o(E', E). Therefore for each fixed f € C;(T'), also the mapping y — [ f d6*(y|M)
from E' to R is 7(E’, E)-continuous on E’.

Let y € E' and let f € C(T). We have

5 (yIL() = 5 WIL(F) + {U(F)))
= S +yom(f) = / fd8* (| M) + / fdyomn

_ /fd(5*(y|M’)+yom’)=/fd5* (y|M’+yom’)=/fd5*(y!M)~

The uniqueness of M can be proved in the same way as in Theorem 2.6. M’ and
m’ are uniquely determined by [.

Conversely let M: B — cc(E", E') be a multifunction which verifies (i), (ii) and
(iii). Let f € C(T). The mapping y — [ fdé*(y|M’) from E’ to R is sub-
linear.Then by (iii) and Lemma 2.5, there is C; € cc(E) such that 6*(y|Cy) =
J fdor(y|pr).

Let L': C4(T) — cc(E) be the multifunction defined by L'(f) = Cy. Then L' is
additive and positively homogeneous. Moreover, if € > 0, then

sup {10 GIL(F))s £ € C(T), ] < )
_ sup{\ / fd5*(y|M)‘ e D), Ifl < } < e5* (yIM)I(T)

(see [4]). This shows that L’ is continuous.

According to [1, Theorem VI.7.2, p. 492] the weak* measure m’: 8 — E” uniquely
defines a linear operator I: C(T') — E” such that y o I(f) = [ fdyom/ for every
feC(T). We define L := L' +1. O
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Corollary 2.8. Let L € LY(C(T),cc(E)). If L has a weakly compact linear
selection then there is a unique multimeasure M € M" (B, cc(E)) such that L(f) =

[ fdM forall f € C(T). Moreover, the selection uniquely determines a positive
multimeasure M' € M" (B, cc(E)) and m' € M"(B, E) such that M = M’ + m/.

Proof. Let [ be a weakly compact linear selection of L. Then L = L’ + [ where
L' = L—1. Therefore, there exists m’ € M" (B, E) such that [(f) = [ fdm/ for all
f € C(T) (see [1, Theorem VI.7.3, p.493]). In virtue of Theorem 2.6 there exists a
positive multimeasure M’ € M"(B, cc(E)) which verifies L'(f) = [ fdM’ for all
f € CL(T). The multimeasure M = M’ + m/ defined by M(A) = M'(A) +m/(A)
for all A € B satisfies the required conditions. [
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