On the Riesz Integral Representation of Additive Set-Valued Maps (II)

Anaté K. Lakmon
Department of Mathematics, Faculty of Sciences, University of Lomé, Togo davidlakmon@gmail.com
Kazimierz Musiał
Institute of Mathematics, Wroctaw University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
kazimierz.musial@math.uni.wroc.pl
In memory of Kenny K. Siggini.

Received: March 26, 2018
Revised manuscript received: October 30, 2018
Accepted: October 31, 2018
Let T be a compact topological space, and let $C_{+}(T)$ be the space of all non-negative continuous real-valued functions defined on T endowed with the topology of uniform convergence. We prove the Riesz integral representation for continuous additive and positive set-valued maps defined on $C_{+}(T)$ with values in the space $c c(E)$ of all weakly compact convex non-empty subsets of a Banach space E. As an application we give a generalization of Dunford-Schwartz's result on the Riesz integral representation for any continuous set-valued map (not necessary positive).

Keywords: Linear maps, set-valued maps, set-valued measures, topology.
2010 Mathematics Subject Classification: Primary 28B20; secondary 54C60.

1. Introduction

In [4], the Riesz integral representation for continuous linear maps associated with additive multifunctions defined from an algebra \mathfrak{A} of subsets of a non-empty set T to the space $c f b(E)$ of all bounded closed convex non-empty subsets of a Banach space E was developed. As an application theorems on representation were deduced for the multifunctions, for vector valued maps and for scalar valued maps. In this paper, T is a compact topological space and \mathfrak{B} is the σ-algebra of Borel subsets of T. We prove the Riesz integral representation for continuous additive and positive multifunctions defined from $C_{+}(T)$ to the space $c c(E)$ of all weakly compact convex non-empty subsets of E : any continuous additive, positive and positively homogeneous multifunction L from $C_{+}(T)$ to $c c(E)$ is of the form $L(f)=\int f d M$ for all $f \in C_{+}(T)$, where M is a positive regular multimeasure from \mathfrak{B} to $c c(E)$. The space $C_{+}(T)$ (resp. $c c(E)$) is endowed with the topology of uniform convergence (resp. the Hausdorff distance). This result is a generalization of Rupp's one (see [7], theorem 2) where the Banach space E is finite dimensional. That was also partially known to Pallu de la Barrière (see
[6], theorem 7-1, p. 3-26). We deduce from this result a representation theorem for any continuous additive multifunction (not necessary positive) defined from $C_{+}(T)$ to $c c(E)$.

2. Notations and definitions

The notations and definitions introduced in [4] are preserved here. Let T be a compact topological space, let $C(T)$ be the space of all continuous real-valued functions defined on T and let $C_{+}(T)$ be the subspace of $C(T)$ consisting of nonnegative functions. The space $C(T)$ is endowed with the topology of uniform convergence. Measures are always countably additive set functions. Let E be a Banach space, E^{\prime} its dual and $E^{\prime \prime}$ its bidual. $\sigma\left(E^{\prime}, E\right)$ and $\sigma\left(E^{\prime \prime}, E^{\prime}\right)$ are weak* topologies on E^{\prime} and $E^{\prime \prime}$, respectively and, $c c(E)$ is the family of all weakly compact convex non-empty subsets of E. Note that $c c(E)$ is a closed subset of the metric space $c f b(E)$ endowed with the Hausdorff distance δ (see [6]). $c c\left(E^{\prime \prime}, E^{\prime}\right)$ is the set of all $\sigma\left(E^{\prime \prime}, E^{\prime}\right)$-compact non-empty convex subsets of $E^{\prime \prime}$.
Definition 2.1. (1) Let M be a multifunction from \mathfrak{B} to $c c(E)$. We say that M is a multimeasure if M is additive and if

$$
M\left(\bigcup_{n=1}^{+\infty} A_{n}\right)=\sum_{n=1}^{+\infty} M\left(A_{n}\right)
$$

for each sequence $\left(A_{n}\right)$ of pairwise disjoint elements of \mathfrak{B}; which amounts to saying that for all $y \in E^{\prime}$, the map $\delta^{*}(y \mid M): \mathfrak{B} \rightarrow \mathbb{R}\left(A \mapsto \delta^{*}(y \mid M(A))\right)$ is a real valued measure (see [6], corollary, p. 2-25).
(2) Let $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ be a positive measure. We say that μ is:
(i) inner regular if for all $A \in \mathfrak{B} \mu(A)=\sup \{\mu(K) ; K$ compact $K \subset A\}$.
(ii) outer regular if for all $A \in \mathfrak{B} \mu(A)=\inf \{\mu(O) ; O \subset T, O$ open $O \supset A\}$
(iii) regular if it is inner and outer regular.
(3) A signed measure $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ is regular if its total variation is regular.
(4) A multimeasure $M: \mathfrak{B} \rightarrow c c(E)$ is called regular if for each $y \in E^{\prime}$ the measure $\delta^{*}(y \mid M)$ is regular.

Let $M: \mathfrak{B} \rightarrow c c(E)$ be a multimeasure and let f be a nonnegative continuous function defined on T. Then the integral of f with respect to M is defined as in [4]. Since $c c(E)$ is closed in $c f b(E)$, it is a complete subspace of the space $(c f b(E), \delta)$. Note that if f and g are nonnegative continuous functions such that $f \leq g$, then $\int f d M \subset \int g d M$. Moreover for all $y \in E^{\prime} \delta^{*}\left(y \mid \int f d M\right)=\int f d \delta^{*}(y \mid M)$ and $\int f d M \in c c(E)$.
Let $L: C_{+}(T) \rightarrow c c(E)$ be an additive and positively homogeneous multifunction. We say that L is bounded (resp. positive) if $\cup\left\{L(f): f \in C_{+}(T),\|f\| \leq 1\right\}$ is a bounded subset of E (resp. $0 \in L(f)$ for all $f \in C_{+}(T)$). Note that a positive and positively homogeneous multifunction is bounded.

Definition 2.2. Let F be a real vector space and let s be a functional defined on F. We say that s is sublinear if $s(x+y) \leq s(x)+s(y)$ and $s(\alpha x)=\alpha s(x)$ for all $x, y \in F$ and for all $\alpha \geq 0$.

Definition 2.3. Let $L: C_{+}(T) \rightarrow c c(E)$ be an additive, positively homogeneous and continuous multifunction. A selection of L is a linear map $l: C(T) \rightarrow E$, which verifies $l(f) \in L(f)$ for all $f \in C_{+}(T)$.

Definition 2.4. Let E and F be two Banach spaces and let l be a linear map from E to F. Then l is said to be weakly compact if it maps the closed unit ball of E into a relatively weakly compact subset of F.
We denote by $\mathcal{M}^{r}(\mathfrak{B}, c c(E))\left(\right.$ resp. $\left.\mathcal{M}^{r}(\mathfrak{B}, E)\right)$ the set of all regular multimeasures (resp. vector measures) defined on \mathfrak{B} with values in $c c(E)$ (resp. in E) and by $\mathcal{L}^{c}\left(C_{+}(T), c c(E)\right)$ the set of all additive, positively homogeneous and continuous multifunctions from $C_{+}(T)$ to $c c(E)$.
If $E=\mathbb{R}$, then the space $\mathcal{M}^{r}(\mathfrak{B}, \mathbb{R})$ will be denoted by $\mathcal{M}^{r}(\mathfrak{B})$.
The following lemma is well-known (see [2, Theorem 5, p. 182]).
Lemma 2.5. Let E be a Banach space and E^{\prime} be its dual space endowed with the Mackey topology $\tau\left(E^{\prime}, E\right)$. Let s be a sublinear functional defined on E^{\prime}. Then s is Mackey continuous if and only if there is $C \in c c(E)$ such that $s=\delta^{*}(\cdot \mid C)$.

It follows that for each $f \in C_{+}(T)$ the map $y \mapsto \int f d \delta^{*}(y \mid M)$ from E^{\prime} to \mathbb{R}, is $\tau\left(E^{\prime}, E\right)$-continuous because $\int f d M \in c c(E)$.

Theorem 2.6. Let $L \in \mathcal{L}^{c}\left(C_{+}(T), c c(E)\right)$ be a positive multifunction. Then there exists a unique positive multimeasure $M \in \mathcal{M}^{r}(\mathfrak{B}, c c(E))$ such that $L(f)=\int f d M$ for all $f \in C_{+}(T)$.
Conversely, for each positive multimeasure $M \in \mathcal{M}^{r}(\mathfrak{B}, c c(E))$, the multifunction $f \mapsto \int f d M$ from $C_{+}(T)$ to $c c(E)$ is a positive element of $\mathcal{L}^{c}\left(C_{+}(T), c c(E)\right)$.
Proof. Let L be a positive element of $\mathcal{L}^{c}\left(C_{+}(T), c c(E)\right)$ and let $y \in E^{\prime}$. Then the functional $\delta^{*}(y \mid L)$ defined on $C_{+}(T)$ by $\delta^{*}(y \mid L)(f):=\delta^{*}(y \mid L(f))$ is additive, positively homogeneous and positive. Therefore $\delta^{*}(y \mid L)$ has a unique continuous linear extension on $C(T)$ denoted by $\delta^{*}(y \mid \bar{L})$. Simply, if $C(T) \ni f=f^{+}-f^{-}$, then $\delta^{*}(y \mid \bar{L}(f)):=\delta^{*}\left(y \mid L\left(f^{+}\right)\right)-\delta^{*}\left(y \mid L\left(f^{-}\right)\right)$.
Since $\delta^{*}(y \mid \bar{L})$ is linear, positive and continuous, by the Riesz representation theorem (cf. [1, Theorem IV.6.3, p. 265]) there exists a unique positive regular measure μ_{y} on \mathfrak{B} such that $\delta^{*}(y \mid \bar{L}(f))=\int f d \mu_{y}$ for all $f \in C(T)$.

Let O be an open subset of T and let S_{O} be the functional defined on E^{\prime} by $S_{O}(y)=\mu_{y}(O)$. We have

$$
\mu_{y}(O)=\sup \left\{\delta^{*}(y \mid L(f)) ; f \in C_{+}(T), f \leq 1_{O}\right\}
$$

If A is a member of \mathfrak{B}, we denote by S_{A} the functional defined on E^{\prime} by $S_{A}(y)=$ $\mu_{y}(A)$ for each $y \in E^{\prime}$. Since μ_{y} is regular, we have

$$
\begin{aligned}
S_{A}(y) & =\inf \left\{\mu_{y}(O) ; O \subset T, O \text { open, } O \supset A\right\} \\
& =\sup \left\{\mu_{y}(K): K \subset A, K \text { compact }\right\}
\end{aligned}
$$

An easy consequence of the second representation is the sublinearity of S_{A}. A standard calculation proves the $\tau\left(E^{\prime}, E\right)$-continuity of S_{A}, for each $A \in \mathfrak{B}$. Then, by Lemma 2.5, there exists an element C_{A} of $c c(E)$ such that $S_{A}(y)=\delta^{*}\left(y \mid C_{A}\right)$ for all $y \in E^{\prime}$. Let $M: \mathfrak{B} \rightarrow c c(E)$ be the multifunction defined by $M(A)=C_{A}$. Then we have $\delta^{*}(y \mid M(A))=S_{A}(y)=\mu_{y}(A)$ for all $A \in \mathfrak{B}$ and for all $y \in E^{\prime}$. Therefore the map $\delta^{*}(y \mid M): \mathfrak{B} \rightarrow \mathbb{R}$ is a positive regular measure. Hence $M \in$ $\mathcal{M}^{r}(\mathfrak{B}, c c(E))$ and

$$
\begin{equation*}
\delta^{*}(y \mid L(f))=\int f \mu_{y}=\int f \delta^{*}(y \mid M) \text { for all } f \in C_{+}(T), y \in E^{\prime} \tag{1}
\end{equation*}
$$

Hence $L(f)=\int f M$ for all $f \in C_{+}(T)$.
Let us prove the uniqueness. Assume that there exist two multifunctions M and M^{\prime} which verify (1). According to the inner regularity of the scalar measures $\delta^{*}(y \mid M)$ and $\delta^{*}\left(y \mid M^{\prime}\right)$ and the equality $\int f \delta^{*}(y \mid M)=\int f \delta^{*}\left(y \mid M^{\prime}\right)$ for all $f \in$ $C_{+}(T), y \in E^{\prime}$, we have $\delta^{*}(y \mid M(A))=\delta^{*}\left(y \mid M^{\prime}(A)\right)$ for all $A \in \mathfrak{B}, y \in E^{\prime}$ (due to the classical Riesz integral representation theorem). Since $M(A), M^{\prime}(A) \in c c(E)$, we have $M(A)=M^{\prime}(A)$ for all $A \in \mathfrak{B}$.
The second part follows from the properties of the integral with respect to the multimeasures and the inequality $\delta\left(\int f M, \int g M\right) \leq\|f-g\|\|M\|(T)$ for all $f, g \in$ $C_{+}(T)$. We recall that $\|f-g\|=\sup \{|f(t)-g(t)| ; t \in T\}$ and $\|M\|(T)=$ $\sup \left\{\left|\delta^{*}(y \mid M)\right|(T) ; y \in E^{\prime},\|y\| \leq 1\right\}$.

The following corollary generalizes partly the well-know theorem of DunfordSchwartz ([1, Theorem VI.7.2, p.492]).
Corollary 2.7. Let $L \in \mathcal{L}^{c}\left(C_{+}(T), c c(E)\right)$ be an arbitrary map. Then there is a unique multimeasure $M: \mathfrak{B} \rightarrow c c\left(E^{\prime \prime}, E^{\prime}\right)$, a positive multimeasure $M^{\prime}: \mathfrak{B} \rightarrow$ $c c(E)$ and a weak ${ }^{*}$ measure $m^{\prime}: \mathfrak{B} \rightarrow E^{\prime \prime}$ (that is $y \circ m^{\prime}$ is a scalar measure for every $y \in E^{\prime}$) such that:
(i) $\quad M=M^{\prime}+m^{\prime}$;
(ii) $\quad \delta^{*}(y \mid M), \delta^{*}\left(y \mid M^{\prime}\right)$ and $y \circ m^{\prime}$ are regular for each $y \in E^{\prime}$.
(iii) for each $f \in C_{+}(T)$ the mappings: $y \mapsto \int f d \delta^{*}(y \mid M), y \mapsto \int f d \delta^{*}\left(y \mid M^{\prime}\right)$, $y \mapsto \int f d y \circ m^{\prime}$ are $\tau\left(E^{\prime}, E\right)$-continuous on E^{\prime}.
(iv) $\quad \delta^{*}(y \mid L(f))=\int f d \delta^{*}(y \mid M)$ for each $f \in C_{+}(T)$ and $y \in E^{\prime}$.

Conversely, if M is a multifunction from \mathfrak{B} to $c c\left(E^{\prime \prime}, E^{\prime}\right)$ which satisfies (i)-(iii), then there exists a multifunction $L \in \mathcal{L}^{c}\left(C_{+}(T), c c\left(E^{\prime \prime}, E^{\prime}\right)\right)$ such that $\delta^{*}(y \mid L)=$ $\int f d \delta^{*}(y \mid M)$ for all $f \in C_{+}(T), y \in E^{\prime}$.

Proof. Let L be a multifunction of $\mathcal{L}^{c}\left(C_{+}(T), c c(E)\right)$ and let l be a continuous, additive and positively homogenous selection of L (see [6, Theorem 4.2, p.314]). Let us put $L^{\prime}=L-l$. Then $L^{\prime} \in \mathcal{L}^{c}\left(C_{+}(T), c c(E)\right)$ and is positive. By

Theorem 2.6, there exists a positive multimeasure $M^{\prime} \in \mathcal{M}^{r}(\mathfrak{B}, c c(E))$ such that $L^{\prime}(f)=\int f d M^{\prime}$ for all $f \in C_{+}(T)$. We obtain also the $\tau\left(E^{\prime}, E\right)$-continuity of the map $y \mapsto \int f d \delta^{*}\left(y \mid M^{\prime}\right)$.

Moreover, by the theorem of Dunford-Schwartz ([1, Theorem VI.7.2, p. 492]) there exists a unique set function m^{\prime} from \mathfrak{B} to $E^{\prime \prime}$ such that
(1) $y \circ m^{\prime} \in \mathcal{M}^{r}(\mathfrak{B})$ for each $y \in E^{\prime}$;
(2) for each $f \in C_{+}(T)$, the mapping $y \mapsto \int f d y \circ m^{\prime}$ of E^{\prime} into \mathbb{R} is continuous for the topology $\sigma\left(E^{\prime}, E\right)$;
$y \circ l(f)=\int f d y \circ m^{\prime}$ for all $f \in C(T), y \in E^{\prime}$.
Let us put $M(A)=M^{\prime}(A)+m^{\prime}(A)$, for all $A \in \mathfrak{B}$. We have then $M(A) \in$ $c c\left(E^{\prime \prime}, E^{\prime}\right)$ and $\delta^{*}(y \mid M(A))=\delta^{*}\left(y \mid M^{\prime}(A)\right)+y \circ m^{\prime}(A)$. Therefore $\delta^{*}(y \mid M) \in$ $\mathcal{M}^{r}(\mathfrak{B})$.
If $f \in C_{+}(T)$, then the mapping $y \mapsto \int f d y \circ m^{\prime}$ from E^{\prime} to \mathbb{R} is continuous for the Mackey topology $\tau\left(E^{\prime}, E\right)$ because it is continuous for the weak* topology $\sigma\left(E^{\prime}, E\right)$. Therefore for each fixed $f \in C_{+}(T)$, also the mapping $y \mapsto \int f d \delta^{*}(y \mid M)$ from E^{\prime} to \mathbb{R} is $\tau\left(E^{\prime}, E\right)$-continuous on E^{\prime}.

Let $y \in E^{\prime}$ and let $f \in C_{+}(T)$. We have

$$
\begin{aligned}
& \delta^{*}(y \mid L(f))=\delta^{*}\left(y \mid L^{\prime}(f)+\{l(f)\}\right) \\
& \quad=\delta^{*}\left(y \mid L^{\prime}(f)\right)+y \circ m^{\prime}(f)=\int f d \delta^{*}\left(y \mid M^{\prime}\right)+\int f d y \circ m^{\prime} \\
& \quad=\int f d\left(\delta^{*}\left(y \mid M^{\prime}\right)+y \circ m^{\prime}\right)=\int f d \delta^{*}\left(y \mid M^{\prime}+y \circ m^{\prime}\right)=\int f d \delta^{*}(y \mid M) .
\end{aligned}
$$

The uniqueness of M can be proved in the same way as in Theorem 2.6. M^{\prime} and m^{\prime} are uniquely determined by l.

Conversely let $M: \mathfrak{B} \rightarrow c c\left(E^{\prime \prime}, E^{\prime}\right)$ be a multifunction which verifies (i), (ii) and (iii). Let $f \in C_{+}(T)$. The mapping $y \mapsto \int f d \delta^{*}\left(y \mid M^{\prime}\right)$ from E^{\prime} to \mathbb{R} is sublinear.Then by (iii) and Lemma 2.5, there is $C_{f} \in c c(E)$ such that $\delta^{*}\left(y \mid C_{f}\right)=$ $\int f d \delta^{*}\left(y \mid M^{\prime}\right)$.
Let $L^{\prime}: C_{+}(T) \rightarrow c c(E)$ be the multifunction defined by $L^{\prime}(f)=C_{f}$. Then L^{\prime} is additive and positively homogeneous. Moreover, if $\varepsilon>0$, then

$$
\begin{aligned}
& \sup \left\{\left|\delta^{*}(y \mid L(f))\right| ; f \in C_{+}(T),\|f\| \leq \varepsilon\right\} \\
& \quad=\sup \left\{\left|\int f d \delta^{*}(y \mid M)\right| ; f \in C_{+}(T),\|f\| \leq \varepsilon\right\} \leq \varepsilon\left|\delta^{*}(y \mid M)\right|(T)
\end{aligned}
$$

(see [4]). This shows that L^{\prime} is continuous.
According to [1, Theorem VI.7.2, p. 492] the weak* measure $m^{\prime}: \mathfrak{B} \rightarrow E^{\prime \prime}$ uniquely defines a linear operator $l: C(T) \rightarrow E^{\prime \prime}$ such that $y \circ l(f)=\int f d y \circ m^{\prime}$ for every $f \in C(T)$. We define $L:=L^{\prime}+l$.

Corollary 2.8. Let $L \in \mathcal{L}^{c}(C(T), c c(E))$. If L has a weakly compact linear selection then there is a unique multimeasure $M \in \mathcal{M}^{r}(\mathfrak{B}, c c(E))$ such that $L(f)=$ $\int f d M$ for all $f \in C_{+}(T)$. Moreover, the selection uniquely determines a positive multimeasure $M^{\prime} \in \mathcal{M}^{r}(\mathfrak{B}, c c(E))$ and $m^{\prime} \in \mathcal{M}^{r}(\mathfrak{B}, E)$ such that $M=M^{\prime}+m^{\prime}$.

Proof. Let l be a weakly compact linear selection of L. Then $L=L^{\prime}+l$ where $L^{\prime}=L-l$. Therefore, there exists $m^{\prime} \in \mathcal{M}^{r}(\mathfrak{B}, E)$ such that $l(f)=\int f d m^{\prime}$ for all $f \in C(T)$ (see [1, Theorem VI.7.3, p. 493]). In virtue of Theorem 2.6 there exists a positive multimeasure $M^{\prime} \in \mathcal{M}^{r}(\mathfrak{B}, c c(E))$ which verifies $L^{\prime}(f)=\int f d M^{\prime}$ for all $f \in C_{+}(T)$. The multimeasure $M=M^{\prime}+m^{\prime}$ defined by $M(A)=M^{\prime}(A)+m^{\prime}(A)$ for all $A \in \mathfrak{B}$ satisfies the required conditions.

References

[1] N. Dunford, J. Schwartz: Linear Operators. Part I, Interscience, New York (1958).
[2] L. Hörmander: Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Arkiv För Matematik 3(12) (1954).
[3] G. Köthe: Topological Vector Spaces I, 2nd edition, Spinger, New York (1983).
[4] A.K.Lakmon, K. K.Siggini, E. Ayassou, K. Tchariè: On the Riesz integral representation of additive set-valued maps (I), Current J. Appl. Sci. Technology 19(4) (2017) 1-7.
[5] A.K.Lakmon, K. K. Siggini: On the integral representation of strictly continuous multifunctions, Int. J. Analysis Appl. 9(2) (2015) 114-120.
[6] R. Pallu De La Barrière: Vector and Set-Valued Measures I, II, III, Pub. Math. de l'Université P. et M. Curie No. 33 (1977).
[7] W. Rupp: Riesz-presentation of additive and σ-additive set-valued measures, Math. Ann. 239 (1979) 111-118.

