
Journal of Convex Analysis
Volume 26 (2019), No. 4, 1053–1058

On the Riesz Integral Representation
of Additive Set-Valued Maps (II)

Anaté K. Lakmon
Department of Mathematics, Faculty of Sciences, University of Lomé, Togo

davidlakmon@gmail.com

Kazimierz Musiał
Institute of Mathematics, Wrocław University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

kazimierz.musial@math.uni.wroc.pl

In memory of Kenny K. Siggini.

Received: March 26, 2018
Revised manuscript received: October 30, 2018
Accepted: October 31, 2018

Let T be a compact topological space, and let C+(T ) be the space of all non-negative continuous
real-valued functions defined on T endowed with the topology of uniform convergence. We prove
the Riesz integral representation for continuous additive and positive set-valued maps defined
on C+(T ) with values in the space cc(E) of all weakly compact convex non-empty subsets of a
Banach space E. As an application we give a generalization of Dunford-Schwartz’s result on the
Riesz integral representation for any continuous set-valued map (not necessary positive).
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1. Introduction

In [4], the Riesz integral representation for continuous linear maps associated
with additive multifunctions defined from an algebra A of subsets of a non-empty
set T to the space cfb(E) of all bounded closed convex non-empty subsets of a
Banach space E was developed. As an application theorems on representation
were deduced for the multifunctions, for vector valued maps and for scalar valued
maps. In this paper, T is a compact topological space and B is the σ-algebra
of Borel subsets of T . We prove the Riesz integral representation for continuous
additive and positive multifunctions defined from C+(T ) to the space cc(E) of
all weakly compact convex non-empty subsets of E : any continuous additive,
positive and positively homogeneous multifunction L from C+(T ) to cc(E) is
of the form L(f) =

∫
f dM for all f ∈ C+(T ), where M is a positive regular

multimeasure from B to cc(E). The space C+(T ) (resp. cc(E)) is endowed with
the topology of uniform convergence (resp. the Hausdorff distance). This result
is a generalization of Rupp’s one (see [7], theorem 2) where the Banach space E
is finite dimensional. That was also partially known to Pallu de la Barrière (see
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[6], theorem 7-1, p. 3-26). We deduce from this result a representation theorem
for any continuous additive multifunction (not necessary positive) defined from
C+(T ) to cc(E).

2. Notations and definitions

The notations and definitions introduced in [4] are preserved here. Let T be a
compact topological space, let C(T ) be the space of all continuous real-valued
functions defined on T and let C+(T ) be the subspace of C(T ) consisting of non-
negative functions. The space C(T ) is endowed with the topology of uniform
convergence. Measures are always countably additive set functions. Let E be a
Banach space, E ′ its dual and E ′′ its bidual. σ(E ′, E) and σ(E ′′, E ′) are weak∗

topologies on E ′ and E ′′, respectively and, cc(E) is the family of all weakly com-
pact convex non-empty subsets of E. Note that cc(E) is a closed subset of the
metric space cfb(E) endowed with the Hausdorff distance δ (see [6]). cc(E ′′, E ′)
is the set of all σ(E ′′, E ′)-compact non-empty convex subsets of E ′′.
Definition 2.1. (1) Let M be a multifunction from B to cc(E). We say that

M is a multimeasure if M is additive and if

M

(
+∞⋃
n=1

An

)
=

+∞∑
n=1

M(An)

for each sequence (An) of pairwise disjoint elements of B; which amounts to
saying that for all y ∈ E ′, the map δ∗(y|M) : B → R (A 7→ δ∗(y|M(A))) is
a real valued measure (see [6], corollary, p. 2-25).

(2) Let µ : B → R be a positive measure. We say that µ is:
(i) inner regular if for all A ∈ Bµ(A) = sup{µ(K);K compactK ⊂ A}.
(ii) outer regular if for all A ∈ Bµ(A) = inf{µ(O);O ⊂ T, O openO ⊃ A}
(iii) regular if it is inner and outer regular.

(3) A signed measure µ : B → R is regular if its total variation is regular.
(4) A multimeasure M : B → cc(E) is called regular if for each y ∈ E ′ the

measure δ∗(y|M) is regular.

Let M : B → cc(E) be a multimeasure and let f be a nonnegative continuous
function defined on T . Then the integral of f with respect to M is defined as in [4].
Since cc(E) is closed in cfb(E), it is a complete subspace of the space (cfb(E), δ).
Note that if f and g are nonnegative continuous functions such that f ≤ g, then∫
f dM ⊂

∫
g dM . Moreover for all y ∈ E ′ δ∗

(
y
∣∣∫ f dM

)
=
∫
f dδ∗(y|M) and∫

f dM ∈ cc(E).
Let L : C+(T ) → cc(E) be an additive and positively homogeneous multifunction.
We say that L is bounded (resp. positive) if ∪{L(f) : f ∈ C+(T ), ‖f‖ ≤ 1} is a
bounded subset of E (resp. 0 ∈ L(f) for all f ∈ C+(T )). Note that a positive
and positively homogeneous multifunction is bounded.
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Definition 2.2. Let F be a real vector space and let s be a functional defined
on F . We say that s is sublinear if s(x+ y) ≤ s(x) + s(y) and s(αx) = αs(x) for
all x, y ∈ F and for all α ≥ 0.

Definition 2.3. Let L : C+(T ) → cc(E) be an additive, positively homogeneous
and continuous multifunction. A selection of L is a linear map l : C(T ) → E,
which verifies l(f) ∈ L(f) for all f ∈ C+(T ).

Definition 2.4. Let E and F be two Banach spaces and let l be a linear map
from E to F . Then l is said to be weakly compact if it maps the closed unit ball
of E into a relatively weakly compact subset of F .
We denote by Mr (B, cc(E))(resp.Mr(B, E)) the set of all regular multimeasures
(resp. vector measures) defined on B with values in cc(E) (resp. in E) and by
Lc(C+(T ), cc(E)) the set of all additive, positively homogeneous and continuous
multifunctions from C+(T ) to cc(E).
If E = R, then the space Mr(B,R) will be denoted by Mr(B).

The following lemma is well-known (see [2, Theorem 5, p. 182]).
Lemma 2.5. Let E be a Banach space and E ′ be its dual space endowed with the
Mackey topology τ(E ′, E). Let s be a sublinear functional defined on E ′. Then s
is Mackey continuous if and only if there is C ∈ cc(E) such that s = δ∗(·|C).

It follows that for each f ∈ C+(T ) the map y 7→
∫
f dδ∗(y|M) from E ′ to R, is

τ(E ′, E)-continuous because
∫
f dM ∈ cc(E).

Theorem 2.6. Let L∈Lc(C+(T ), cc(E)) be a positive multifunction. Then there
exists a unique positive multimeasure M ∈Mr(B, cc(E)) such that L(f)=

∫
f dM

for all f ∈ C+(T ).
Conversely, for each positive multimeasure M ∈ Mr(B, cc(E)), the multifunction
f 7→

∫
f dM from C+(T ) to cc(E) is a positive element of Lc(C+(T ), cc(E)).

Proof. Let L be a positive element of Lc(C+(T ), cc(E)) and let y ∈ E ′. Then
the functional δ∗(y|L) defined on C+(T ) by δ∗(y|L)(f) := δ∗(y|L(f)) is additive,
positively homogeneous and positive. Therefore δ∗(y|L) has a unique continuous
linear extension on C(T ) denoted by δ∗(y|L). Simply, if C(T ) 3 f = f+ − f−,
then δ∗(y|L(f)) := δ∗(y|L(f+))− δ∗(y|L(f−)).
Since δ∗(y|L) is linear, positive and continuous, by the Riesz representation theo-
rem (cf. [1, Theorem IV.6.3, p. 265]) there exists a unique positive regular measure
µy on B such that δ∗(y|L(f)) =

∫
f dµy for all f ∈ C(T ).

Let O be an open subset of T and let SO be the functional defined on E ′ by
SO(y) = µy(O). We have

µy(O) = sup{δ∗(y|L(f)); f ∈ C+(T ), f ≤ 1O} .

If A is a member of B, we denote by SA the functional defined on E ′ by SA(y) =
µy(A) for each y ∈ E ′. Since µy is regular, we have
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SA(y) = inf{µy(O);O ⊂ T, O open, O ⊃ A}
= sup{µy(K) : K ⊂ A, K compact} .

An easy consequence of the second representation is the sublinearity of SA. A
standard calculation proves the τ(E ′, E)-continuity of SA, for each A ∈ B. Then,
by Lemma 2.5, there exists an element CA of cc(E) such that SA(y) = δ∗(y|CA)
for all y ∈ E ′. Let M : B → cc(E) be the multifunction defined by M(A) = CA.
Then we have δ∗(y|M(A)) = SA(y) = µy(A) for all A ∈ B and for all y ∈ E ′.
Therefore the map δ∗(y|M) : B → R is a positive regular measure. Hence M ∈
Mr(B, cc(E)) and

δ∗(y|L(f)) =
∫

fµy =

∫
fδ∗(y|M) for all f ∈ C+(T ), y ∈ E ′ . (1)

Hence L(f) =
∫
fM for all f ∈ C+(T ).

Let us prove the uniqueness. Assume that there exist two multifunctions M and
M ′ which verify (1). According to the inner regularity of the scalar measures
δ∗(y|M) and δ∗(y|M ′) and the equality

∫
fδ∗(y|M) =

∫
fδ∗(y|M ′) for all f ∈

C+(T ), y ∈ E ′, we have δ∗(y|M(A)) = δ∗(y|M ′(A)) for all A ∈ B, y ∈ E ′ (due to
the classical Riesz integral representation theorem). Since M(A),M ′(A) ∈ cc(E),
we have M(A) = M ′(A) for all A ∈ B.
The second part follows from the properties of the integral with respect to the
multimeasures and the inequality δ

(∫
fM,

∫
gM
)
≤ ‖f−g‖‖M‖(T ) for all f, g ∈

C+(T ). We recall that ‖f − g‖ = sup{|f(t) − g(t)|; t ∈ T} and ‖M‖(T ) =
sup{|δ∗(y|M)|(T ); y ∈ E ′, ‖y‖ ≤ 1}.

The following corollary generalizes partly the well-know theorem of Dunford-
Schwartz ([1, Theorem VI.7.2, p.492]).
Corollary 2.7. Let L ∈ Lc(C+(T ), cc(E)) be an arbitrary map. Then there is
a unique multimeasure M : B → cc(E ′′, E ′), a positive multimeasure M ′ : B →
cc(E) and a weak∗ measure m′ : B → E ′′ (that is y ◦m′ is a scalar measure for
every y ∈ E ′) such that:
(i) M = M ′ +m′;
(ii) δ∗(y|M), δ∗(y|M ′) and y ◦m′ are regular for each y ∈ E ′.
(iii) for each f ∈ C+(T ) the mappings: y 7→

∫
f dδ∗(y|M), y 7→

∫
f dδ∗(y|M ′),

y 7→
∫
f dy ◦m′ are τ(E ′, E)-continuous on E ′.

(iv) δ∗(y|L(f)) =
∫
f dδ∗(y|M) for each f ∈ C+(T ) and y ∈ E ′.

Conversely, if M is a multifunction from B to cc(E ′′, E ′) which satisfies (i)–(iii),
then there exists a multifunction L ∈ Lc(C+(T ), cc(E

′′, E ′)) such that δ∗(y|L) =∫
f dδ∗(y|M) for all f ∈ C+(T ), y ∈ E ′.

Proof. Let L be a multifunction of Lc(C+(T ), cc(E)) and let l be a continuous,
additive and positively homogenous selection of L (see [6, Theorem 4.2, p. 3-
14]). Let us put L′ = L − l. Then L′ ∈ Lc(C+(T ), cc(E)) and is positive. By
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Theorem 2.6, there exists a positive multimeasure M ′ ∈ Mr(B, cc(E)) such that
L′(f) =

∫
f dM ′ for all f ∈ C+(T ). We obtain also the τ(E ′, E)-continuity of the

map y 7→
∫
f dδ∗(y|M ′).

Moreover, by the theorem of Dunford-Schwartz ([1, Theorem VI.7.2, p. 492]) there
exists a unique set function m′ from B to E ′′ such that
(1) y ◦m′ ∈ Mr(B) for each y ∈ E ′;
(2) for each f ∈ C+(T ), the mapping y 7→

∫
f dy ◦m′ of E ′ into R is continuous

for the topology σ(E ′, E);
(3) y ◦ l(f) =

∫
f dy ◦m′ for all f ∈ C(T ), y ∈ E ′.

Let us put M(A) = M ′(A) + m′(A), for all A ∈ B. We have then M(A) ∈
cc(E ′′, E ′) and δ∗(y|M(A)) = δ∗(y|M ′(A)) + y ◦ m′(A). Therefore δ∗(y|M) ∈
Mr(B).
If f ∈ C+(T ), then the mapping y 7→

∫
f dy ◦ m′ from E ′ to R is continuous

for the Mackey topology τ(E ′, E) because it is continuous for the weak∗ topology
σ(E ′, E). Therefore for each fixed f ∈ C+(T ), also the mapping y 7→

∫
f dδ∗(y|M)

from E ′ to R is τ(E ′, E)-continuous on E ′.
Let y ∈ E ′ and let f ∈ C+(T ). We have

δ∗(y|L(f)) = δ∗(y|L′(f) + {l(f)})

= δ∗(y|L′(f)) + y ◦m′(f) =

∫
f dδ∗(y|M ′) +

∫
f dy ◦m′

=

∫
f d (δ∗(y|M ′) + y ◦m′) =

∫
f dδ∗ (y|M ′ + y ◦m′) =

∫
f dδ∗(y|M) .

The uniqueness of M can be proved in the same way as in Theorem 2.6. M ′ and
m′ are uniquely determined by l.
Conversely let M : B → cc(E ′′, E ′) be a multifunction which verifies (i), (ii) and
(iii). Let f ∈ C+(T ). The mapping y 7→

∫
f dδ∗(y|M ′) from E ′ to R is sub-

linear.Then by (iii) and Lemma 2.5, there is Cf ∈ cc(E) such that δ∗(y|Cf ) =∫
f dδ∗(y|M ′).

Let L′ : C+(T ) → cc(E) be the multifunction defined by L′(f) = Cf . Then L′ is
additive and positively homogeneous. Moreover, if ε > 0, then

sup {|δ∗(y|L(f))|; f ∈ C+(T ), ‖f‖ ≤ ε}

= sup

{∣∣∣∣∫ f dδ∗(y|M)

∣∣∣∣ ; f ∈ C+(T ), ‖f‖ ≤ ε

}
≤ ε|δ∗(y|M)|(T )

(see [4]). This shows that L′ is continuous.
According to [1, Theorem VI.7.2, p. 492] the weak∗ measure m′ : B → E ′′ uniquely
defines a linear operator l : C(T ) → E ′′ such that y ◦ l(f) =

∫
f dy ◦m′ for every

f ∈ C(T ). We define L := L′ + l.
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Corollary 2.8. Let L ∈ Lc(C(T ), cc(E)). If L has a weakly compact linear
selection then there is a unique multimeasure M ∈ Mr(B, cc(E)) such that L(f) =∫
f dM for all f ∈ C+(T ). Moreover, the selection uniquely determines a positive

multimeasure M ′ ∈ Mr(B, cc(E)) and m′ ∈ Mr(B, E) such that M = M ′ +m′.

Proof. Let l be a weakly compact linear selection of L. Then L = L′ + l where
L′ = L−l. Therefore, there exists m′ ∈ Mr(B, E) such that l(f) =

∫
f dm′ for all

f ∈ C(T ) (see [1, Theorem VI.7.3, p. 493]). In virtue of Theorem 2.6 there exists a
positive multimeasure M ′ ∈ Mr(B, cc(E)) which verifies L′(f) =

∫
f dM ′ for all

f ∈ C+(T ). The multimeasure M = M ′ +m′ defined by M(A) = M ′(A) +m′(A)
for all A ∈ B satisfies the required conditions.
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