On the Riesz Integral Representation of Additive Set-Valued Maps (II)

Anaté K. Lakmon

Department of Mathematics, Faculty of Sciences, University of Lomé, Togo davidlakmon@gmail.com

Kazimierz Musiał

Institute of Mathematics, Wrocław University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland kazimierz.musial@math.uni.wroc.pl

In memory of Kenny K. Siggini.

Received: March 26, 2018 Revised manuscript received: October 30, 2018 Accepted: October 31, 2018

Let T be a compact topological space, and let $C_+(T)$ be the space of all non-negative continuous real-valued functions defined on T endowed with the topology of uniform convergence. We prove the Riesz integral representation for continuous additive and positive set-valued maps defined on $C_+(T)$ with values in the space cc(E) of all weakly compact convex non-empty subsets of a Banach space E. As an application we give a generalization of Dunford-Schwartz's result on the Riesz integral representation for any continuous set-valued map (not necessary positive).

Keywords: Linear maps, set-valued maps, set-valued measures, topology.

2010 Mathematics Subject Classification: Primary 28B20; secondary 54C60.

1. Introduction

In [4], the Riesz integral representation for continuous linear maps associated with additive multifunctions defined from an algebra \mathfrak{A} of subsets of a non-empty set T to the space cfb(E) of all bounded closed convex non-empty subsets of a Banach space E was developed. As an application theorems on representation were deduced for the multifunctions, for vector valued maps and for scalar valued maps. In this paper, T is a compact topological space and \mathfrak{B} is the σ -algebra of Borel subsets of T. We prove the Riesz integral representation for continuous additive and positive multifunctions defined from $C_+(T)$ to the space cc(E) of all weakly compact convex non-empty subsets of E: any continuous additive, positive and positively homogeneous multifunction L from $C_+(T)$ to cc(E) is of the form $L(f) = \int f dM$ for all $f \in C_+(T)$, where M is a positive regular multimeasure from \mathfrak{B} to cc(E). The space $C_+(T)$ (resp. cc(E)) is endowed with the topology of uniform convergence (resp. the Hausdorff distance). This result is a generalization of Rupp's one (see [7], theorem 2) where the Banach space Eis finite dimensional. That was also partially known to Pallu de la Barrière (see

ISSN 0944-6532 / \$2.50 © Heldermann Verlag

[6], theorem 7-1, p. 3-26). We deduce from this result a representation theorem for any continuous additive multifunction (not necessary positive) defined from $C_+(T)$ to cc(E).

2. Notations and definitions

The notations and definitions introduced in [4] are preserved here. Let T be a compact topological space, let C(T) be the space of all continuous real-valued functions defined on T and let $C_+(T)$ be the subspace of C(T) consisting of non-negative functions. The space C(T) is endowed with the topology of uniform convergence. Measures are always countably additive set functions. Let E be a Banach space, E' its dual and E'' its bidual. $\sigma(E', E)$ and $\sigma(E'', E')$ are weak* topologies on E' and E'', respectively and, cc(E) is the family of all weakly compact convex non-empty subsets of E. Note that cc(E) is a closed subset of the metric space cfb(E) endowed with the Hausdorff distance δ (see [6]). cc(E'', E') is the set of all $\sigma(E'', E')$ -compact non-empty convex subsets of E''.

Definition 2.1. (1) Let M be a multifunction from \mathfrak{B} to cc(E). We say that M is a *multimeasure* if M is additive and if

$$M\left(\bigcup_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} M(A_n)$$

for each sequence (A_n) of pairwise disjoint elements of \mathfrak{B} ; which amounts to saying that for all $y \in E'$, the map $\delta^*(y|M) : \mathfrak{B} \to \mathbb{R}$ $(A \mapsto \delta^*(y|M(A)))$ is a real valued measure (see [6], corollary, p. 2-25).

- (2) Let $\mu : \mathfrak{B} \to \mathbb{R}$ be a positive measure. We say that μ is:
 - (i) inner regular if for all $A \in \mathfrak{B} \mu(A) = \sup\{\mu(K); K \operatorname{compact} K \subset A\}.$
 - (ii) outer regular if for all $A \in \mathfrak{B} \mu(A) = \inf\{\mu(O); O \subset T, O \operatorname{open} O \supset A\}$
 - (iii) *regular* if it is inner and outer regular.
- (3) A signed measure $\mu : \mathfrak{B} \to \mathbb{R}$ is *regular* if its total variation is regular.
- (4) A multimeasure $M : \mathfrak{B} \to cc(E)$ is called *regular* if for each $y \in E'$ the measure $\delta^*(y|M)$ is regular.

Let $M: \mathfrak{B} \to cc(E)$ be a multimeasure and let f be a nonnegative continuous function defined on T. Then the integral of f with respect to M is defined as in [4]. Since cc(E) is closed in cfb(E), it is a complete subspace of the space $(cfb(E), \delta)$. Note that if f and g are nonnegative continuous functions such that $f \leq g$, then $\int f dM \subset \int g dM$. Moreover for all $y \in E' \ \delta^* \left(y \left| \int f dM \right) \right) = \int f d\delta^*(y|M)$ and $\int f dM \in cc(E)$.

Let $L: C_+(T) \to cc(E)$ be an additive and positively homogeneous multifunction. We say that L is bounded (resp. positive) if $\cup \{L(f): f \in C_+(T), \|f\| \le 1\}$ is a bounded subset of E (resp. $0 \in L(f)$ for all $f \in C_+(T)$). Note that a positive and positively homogeneous multifunction is bounded. **Definition 2.2.** Let F be a real vector space and let s be a functional defined on F. We say that s is *sublinear* if $s(x + y) \le s(x) + s(y)$ and $s(\alpha x) = \alpha s(x)$ for all $x, y \in F$ and for all $\alpha \ge 0$.

Definition 2.3. Let $L: C_+(T) \to cc(E)$ be an additive, positively homogeneous and continuous multifunction. A selection of L is a linear map $l: C(T) \to E$, which verifies $l(f) \in L(f)$ for all $f \in C_+(T)$.

Definition 2.4. Let E and F be two Banach spaces and let l be a linear map from E to F. Then l is said to be *weakly compact* if it maps the closed unit ball of E into a relatively weakly compact subset of F.

We denote by $\mathcal{M}^r(\mathfrak{B}, cc(E))$ (resp. $\mathcal{M}^r(\mathfrak{B}, E)$) the set of all regular multimeasures (resp. vector measures) defined on \mathfrak{B} with values in cc(E) (resp. in E) and by $\mathcal{L}^c(C_+(T), cc(E))$ the set of all additive, positively homogeneous and continuous multifunctions from $C_+(T)$ to cc(E).

If $E = \mathbb{R}$, then the space $\mathcal{M}^r(\mathfrak{B}, \mathbb{R})$ will be denoted by $\mathcal{M}^r(\mathfrak{B})$.

The following lemma is well-known (see [2, Theorem 5, p. 182]).

Lemma 2.5. Let E be a Banach space and E' be its dual space endowed with the Mackey topology $\tau(E', E)$. Let s be a sublinear functional defined on E'. Then s is Mackey continuous if and only if there is $C \in cc(E)$ such that $s = \delta^*(\cdot|C)$.

It follows that for each $f \in C_+(T)$ the map $y \mapsto \int f d\delta^*(y|M)$ from E' to \mathbb{R} , is $\tau(E', E)$ -continuous because $\int f dM \in cc(E)$.

Theorem 2.6. Let $L \in \mathcal{L}^{c}(C_{+}(T), cc(E))$ be a positive multifunction. Then there exists a unique positive multimeasure $M \in \mathcal{M}^{r}(\mathfrak{B}, cc(E))$ such that $L(f) = \int f \, dM$ for all $f \in C_{+}(T)$.

Conversely, for each positive multimeasure $M \in \mathcal{M}^r(\mathfrak{B}, cc(E))$, the multifunction $f \mapsto \int f \, dM$ from $C_+(T)$ to cc(E) is a positive element of $\mathcal{L}^c(C_+(T), cc(E))$.

Proof. Let *L* be a positive element of $\mathcal{L}^{c}(C_{+}(T), cc(E))$ and let $y \in E'$. Then the functional $\delta^{*}(y|L)$ defined on $C_{+}(T)$ by $\delta^{*}(y|L)(f) := \delta^{*}(y|L(f))$ is additive, positively homogeneous and positive. Therefore $\delta^{*}(y|L)$ has a unique continuous linear extension on C(T) denoted by $\delta^{*}(y|\overline{L})$. Simply, if $C(T) \ni f = f^{+} - f^{-}$, then $\delta^{*}(y|\overline{L}(f)) := \delta^{*}(y|L(f^{+})) - \delta^{*}(y|L(f^{-}))$.

Since $\delta^*(y|\overline{L})$ is linear, positive and continuous, by the Riesz representation theorem (cf. [1, Theorem IV.6.3, p. 265]) there exists a unique positive regular measure μ_y on \mathfrak{B} such that $\delta^*(y|\overline{L}(f)) = \int f d\mu_y$ for all $f \in C(T)$.

Let O be an open subset of T and let S_O be the functional defined on E' by $S_O(y) = \mu_y(O)$. We have

$$\mu_y(O) = \sup\{\delta^*(y|L(f)); \ f \in C_+(T), \ f \le 1_O\}.$$

If A is a member of \mathfrak{B} , we denote by S_A the functional defined on E' by $S_A(y) = \mu_y(A)$ for each $y \in E'$. Since μ_y is regular, we have

1056 A. K. Lakmon, K. Musiał / On the Riesz Integral Representation ...

$$S_A(y) = \inf \{ \mu_y(O); O \subset T, O \text{ open, } O \supset A \}$$
$$= \sup \{ \mu_y(K) : K \subset A, K \text{ compact} \}.$$

An easy consequence of the second representation is the sublinearity of S_A . A standard calculation proves the $\tau(E', E)$ -continuity of S_A , for each $A \in \mathfrak{B}$. Then, by Lemma 2.5, there exists an element C_A of cc(E) such that $S_A(y) = \delta^*(y|C_A)$ for all $y \in E'$. Let $M: \mathfrak{B} \to cc(E)$ be the multifunction defined by $M(A) = C_A$. Then we have $\delta^*(y|M(A)) = S_A(y) = \mu_y(A)$ for all $A \in \mathfrak{B}$ and for all $y \in E'$. Therefore the map $\delta^*(y|M): \mathfrak{B} \to \mathbb{R}$ is a positive regular measure. Hence $M \in \mathcal{M}^r(\mathfrak{B}, cc(E))$ and

$$\delta^*(y|L(f)) = \int f\mu_y = \int f\delta^*(y|M) \text{ for all } f \in C_+(T), \ y \in E'.$$
(1)

Hence $L(f) = \int fM$ for all $f \in C_+(T)$.

Let us prove the uniqueness. Assume that there exist two multifunctions M and M' which verify (1). According to the inner regularity of the scalar measures $\delta^*(y|M)$ and $\delta^*(y|M')$ and the equality $\int f \delta^*(y|M) = \int f \delta^*(y|M')$ for all $f \in C_+(T), y \in E'$, we have $\delta^*(y|M(A)) = \delta^*(y|M'(A))$ for all $A \in \mathfrak{B}, y \in E'$ (due to the classical Riesz integral representation theorem). Since $M(A), M'(A) \in cc(E)$, we have M(A) = M'(A) for all $A \in \mathfrak{B}$.

The second part follows from the properties of the integral with respect to the multimeasures and the inequality $\delta\left(\int fM, \int gM\right) \leq \|f-g\|\|M\|(T)$ for all $f, g \in C_+(T)$. We recall that $\|f-g\| = \sup\{|f(t)-g(t)|; t \in T\}$ and $\|M\|(T) = \sup\{|\delta^*(y|M)|(T); y \in E', \|y\| \leq 1\}$.

The following corollary generalizes partly the well-know theorem of Dunford-Schwartz ([1, Theorem VI.7.2, p.492]).

Corollary 2.7. Let $L \in \mathcal{L}^{c}(C_{+}(T), cc(E))$ be an arbitrary map. Then there is a unique multimeasure $M: \mathfrak{B} \to cc(E'', E')$, a positive multimeasure $M': \mathfrak{B} \to cc(E)$ and a weak^{*} measure $m': \mathfrak{B} \to E''$ (that is $y \circ m'$ is a scalar measure for every $y \in E'$) such that:

- (i) M = M' + m';
- (ii) $\delta^*(y|M)$, $\delta^*(y|M')$ and $y \circ m'$ are regular for each $y \in E'$.
- (iii) for each $f \in C_+(T)$ the mappings: $y \mapsto \int f d\delta^*(y|M), \ y \mapsto \int f d\delta^*(y|M'), \ y \mapsto \int f dy \circ m' \text{ are } \tau(E', E) \text{-continuous on } E'.$
- (iv) $\delta^*(y|L(f)) = \int f d\delta^*(y|M)$ for each $f \in C_+(T)$ and $y \in E'$.

Conversely, if M is a multifunction from \mathfrak{B} to cc(E'', E') which satisfies (i)–(iii), then there exists a multifunction $L \in \mathcal{L}^c(C_+(T), cc(E'', E'))$ such that $\delta^*(y|L) = \int f d\delta^*(y|M)$ for all $f \in C_+(T), y \in E'$.

Proof. Let *L* be a multifunction of $\mathcal{L}^{c}(C_{+}(T), cc(E))$ and let *l* be a continuous, additive and positively homogenous selection of *L* (see [6, Theorem 4.2, p. 3-14]). Let us put L' = L - l. Then $L' \in \mathcal{L}^{c}(C_{+}(T), cc(E))$ and is positive. By

Theorem 2.6, there exists a positive multimeasure $M' \in \mathcal{M}^r(\mathfrak{B}, cc(E))$ such that $L'(f) = \int f \, dM'$ for all $f \in C_+(T)$. We obtain also the $\tau(E', E)$ -continuity of the map $y \mapsto \int f d\delta^*(y|M')$.

Moreover, by the theorem of Dunford-Schwartz ([1, Theorem VI.7.2, p. 492]) there exists a unique set function m' from \mathfrak{B} to E'' such that

- $y \circ m' \in \mathcal{M}^r(\mathfrak{B})$ for each $y \in E'$; (1)
- for each $f \in C_+(T)$, the mapping $y \mapsto \int f \, dy \circ m'$ of E' into \mathbb{R} is continuous (2)for the topology $\sigma(E', E)$;
- $y \circ l(f) = \int f \, dy \circ m'$ for all $f \in C(T), y \in E'$. (3)

Let us put M(A) = M'(A) + m'(A), for all $A \in \mathfrak{B}$. We have then $M(A) \in \mathfrak{B}$ cc(E'',E') and $\delta^*(y|M(A)) = \delta^*(y|M'(A)) + y \circ m'(A)$. Therefore $\delta^*(y|M) \in$ $\mathcal{M}^r(\mathfrak{B}).$

If $f \in C_+(T)$, then the mapping $y \mapsto \int f \, dy \circ m'$ from E' to \mathbb{R} is continuous for the Mackey topology $\tau(E', E)$ because it is continuous for the weak^{*} topology $\sigma(E', E)$. Therefore for each fixed $f \in C_+(T)$, also the mapping $y \mapsto \int f d\delta^*(y|M)$ from E' to \mathbb{R} is $\tau(E', E)$ -continuous on E'.

Let $y \in E'$ and let $f \in C_+(T)$. We have

$$\begin{split} \delta^*(y|L(f)) &= \delta^*(y|L'(f) + \{l(f)\}) \\ &= \delta^*(y|L'(f)) + y \circ m'(f) = \int f \, d\delta^*(y|M') + \int f \, dy \circ m' \\ &= \int f \, d \left(\delta^*(y|M') + y \circ m'\right) = \int f \, d\delta^* \left(y|M' + y \circ m'\right) = \int f \, d\delta^*(y|M) \,. \end{split}$$

The uniqueness of M can be proved in the same way as in Theorem 2.6. M' and m' are uniquely determined by l.

Conversely let $M: \mathfrak{B} \to cc(E'', E')$ be a multifunction which verifies (i), (ii) and (iii). Let $f \in C_+(T)$. The mapping $y \mapsto \int f d\delta^*(y|M')$ from E' to \mathbb{R} is sublinear. Then by (iii) and Lemma 2.5, there is $C_f \in cc(E)$ such that $\delta^*(y|C_f) =$ $\int f d\delta^*(y|M').$

Let $L': C_+(T) \to cc(E)$ be the multifunction defined by $L'(f) = C_f$. Then L' is additive and positively homogeneous. Moreover, if $\varepsilon > 0$, then

$$\sup \left\{ |\delta^*(y|L(f))|; f \in C_+(T), ||f|| \le \varepsilon \right\}$$
$$= \sup \left\{ \left| \int f \, d\delta^*(y|M) \right|; f \in C_+(T), ||f|| \le \varepsilon \right\} \le \varepsilon |\delta^*(y|M)|(T)$$

(see [4]). This shows that L' is continuous.

According to [1, Theorem VI.7.2, p. 492] the weak* measure $m': \mathfrak{B} \to E''$ uniquely defines a linear operator $l: C(T) \to E''$ such that $y \circ l(f) = \int f \, dy \circ m'$ for every $f \in C(T)$. We define L := L' + l. **Corollary 2.8.** Let $L \in \mathcal{L}^{c}(C(T), cc(E))$. If L has a weakly compact linear selection then there is a unique multimeasure $M \in \mathcal{M}^{r}(\mathfrak{B}, cc(E))$ such that $L(f) = \int f \, dM$ for all $f \in C_{+}(T)$. Moreover, the selection uniquely determines a positive multimeasure $M' \in \mathcal{M}^{r}(\mathfrak{B}, cc(E))$ and $m' \in \mathcal{M}^{r}(\mathfrak{B}, E)$ such that M = M' + m'.

Proof. Let l be a weakly compact linear selection of L. Then L = L' + l where L' = L - l. Therefore, there exists $m' \in \mathcal{M}^r(\mathfrak{B}, E)$ such that $l(f) = \int f \, dm'$ for all $f \in C(T)$ (see [1, Theorem VI.7.3, p. 493]). In virtue of Theorem 2.6 there exists a positive multimeasure $M' \in \mathcal{M}^r(\mathfrak{B}, cc(E))$ which verifies $L'(f) = \int f \, dM'$ for all $f \in C_+(T)$. The multimeasure M = M' + m' defined by M(A) = M'(A) + m'(A) for all $A \in \mathfrak{B}$ satisfies the required conditions. \Box

References

- [1] N. Dunford, J. Schwartz: *Linear Operators. Part I*, Interscience, New York (1958).
- [2] L. Hörmander: Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Arkiv För Matematik 3(12) (1954).
- [3] G. Köthe: Topological Vector Spaces I, 2nd edition, Spinger, New York (1983).
- [4] A. K. Lakmon, K. K. Siggini, E. Ayassou, K. Tchariè: On the Riesz integral representation of additive set-valued maps (I), Current J. Appl. Sci. Technology 19(4) (2017) 1–7.
- [5] A. K. Lakmon, K. K. Siggini: On the integral representation of strictly continuous multifunctions, Int. J. Analysis Appl. 9(2) (2015) 114–120.
- [6] R. Pallu De La Barrière: Vector and Set-Valued Measures I, II, III, Pub. Math. de l'Université P. et M. Curie No. 33 (1977).
- [7] W. Rupp: Riesz-presentation of additive and σ-additive set-valued measures, Math. Ann. 239 (1979) 111–118.