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1. Introduction

In the last decades, many researchers have investigated properties of measur-
able and integrable multifunctions and all this has been done, both because
it has applications in Control Theory, Multivalued Image Reconstruction and
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Mathematical Economics and because this study is also interesting from the
point of view of the measure and integration theories, as shown in the arti-
cles [1, 4–10, 16, 18, 19, 23–29,36, 42].
In particular, we believe that comparison among different generalizations of Lebe-
sgue integral is one of the most fruitful areas of research in the modern theory of
integration.
The choice to introduce these weaker types of integrals is motivated moreover by
the fact that the well known Kuratowski and Ryll-Nardzewski Theorem requires
the separability of the range space X, to guarante the existence of measurable
selectors. Extensions of this theorem for weaker integrals are found for example
in the articles [17–19, 39] for the Pettis multivalued integral with values in non
separable Banach spaces and [11–15, 28], where the existence of integrable selec-
tions in the same sense of the corresponding multifunctions has been considered
for some gauge integrals in the hyperspace cwk(X) (ck(X)) of convex and weakly
compact (compact) subsets of a general Banach space X.
The connection between Aumann-Pettis integral and Pettis integral is well pre-
sented in [31]. If a multifunction takes as its values closed convex and bounded
sets, then it is unknown whether is has a Pettis integrable selection. Consequently,
whether it is Aumann-Pettis integrable. If a multifunction is Aumann-Pettis in-
tegrable, then it is Pettis integrable in a more general sense (see [31]). More
precisely, instead of integrability of the support functions of the multifunction
one requires only integrability of the negative components of the support func-
tions. Some comments are placed after Proposition 3.8. Moreover, results in this
direction could be found in [5, 11, 17, 20, 21, 29, 41].
In this work, inspired by [11–13,16,32–35,38], we study the topic of closed convex
multifunctions and we examine two groups of integrals: those functionally deter-
mined (we call them “scalarly defined integrals”), as Pettis, Henstock-Kurzweil-
Pettis, Denjoy-Pettis integrals, and those identified by gauges (we call them
“gauge defined integrals”) as Henstock, McShane and Birkhoff integrals. The
last class also includes versions of Henstock and McShane integrals (the H and
M integrals, respectively), when only measurable gauges are allowed, and the
variational Henstock integral.
In Section 3 we study properties of scalarly defined integrals. The main results of
this section are Theorem 3.3 and Theorem 3.5. The first one is a multivalued ver-
sion of the well known fact that each non negative real-valued Henstock-Kurzweil
integrable function is Lebesgue integrable.
In Section 4 we study properties of gauge integrals. The main results are The-
orems 4.2, 4.4 and 4.5, where we prove that a multifunction is McShane (resp.
Birkhoff) integrable in cb(X) if and only if it is strongly Pettis integrable and
Henstock (resp. H) integrable. If c0  X, then strong Pettis integrability may
be replaced by ordinary Pettis integrability. These results completely describe
the relation between Pettis and Henstock integrability and generalize our earlier
achievements in this direction, when integrable multifunctions were assumed to
take compact [29] or weakly compact values [12].
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2. Definitions, terminology

Throughout X is a Banach space with its dual X∗. The closed unit ball of X is
denoted by BX . The symbol c(X) denotes the collection of all nonempty closed
convex subsets of X and cb(X), cwk(X) and ck(X) denote respectively the fam-
ily of all bounded, weakly compact and compact members of c(X). For every
C ∈ c(X) the support function of C is denoted by s(·, C) and defined on X∗ by
s(x∗, C) = sup{⟨x∗, x⟩ : x ∈ C}, for each x∗ ∈ X∗. |C| := sup{∥x∥ : x ∈ C}
and dH is the Hausdorff metric on the hyperspace cb(X). σ(X∗, X) is the weak∗

topology on X∗ and τ(X∗, X) is the Mackey topology on X∗. I is the collection
of all closed subintervals of the unit interval [0, 1]. The sup norm in the space of
bounded real-valued functions is denoted by ∥ · ∥∞. All functions investigated are
defined on the unit interval [0, 1] endowed with Lebesgue measure λ. The family
of all Lebesgue measurable subsets of [0, 1] is denoted by L.
A map Γ : [0, 1] → c(X) is called a multifunction. Γ is simple if there exists a
finite decomposition {A1, ..., Ap} of [0, 1] into measurable pairwise disjoint subsets
of [0, 1] such that Γ is constant on each Aj.
Γ : [0, 1] → ck(X) is determined by a function f : [0, 1] → X if Γ (t)=conv{0, f(t)}
for every t ∈ [0, 1].
Γ : [0, 1] → c(X) is positive if s(x∗, Γ ) ≥ 0 a.e. for each x∗ ∈ X∗ separately.
Γ : [0, 1] → c(X) is said to be scalarly measurable (resp. scalarly integrable) if for
every x∗ ∈ X∗, the map s(x∗, Γ (·)) is measurable (resp. integrable).
If a multifunction is a function, then we use the traditional name of strong mea-
surability instead of Bochner measurability (for the definition see e.g. [37] or [12]).
A map M : L → cb(X) is additive, if M(A∪B) = M(A)⊕M(B) for every pair of
disjoint elements of Σ. An additive map M : L → cb(X) is called a multimeasure
if s(x∗,M(·)) is a finite measure, for every x∗ ∈ X∗. If M is a point map, then
we talk about measure. If M : L → cb(X) is countably additive in the Hausdorff
metric (that is, if En, n ∈ N, are pairwise disjoint measurable subsets of [0, 1],
then

lim
n

dH

( n∑
k=1

MΓ (Ek),MΓ

( ∞⋃
k=1

Ek

))
= 0),

then it is called an h-multimeasure.
It is known that if M : L → cwk(X), then M is a multimeasure if and only if it
is an h-multimeasure (cf. [37, Chapter 8, Theorem 4.10]).
We divide multiintegrals into two groups: functionally (or scalarly) defined inte-
grals (Pettis, weakly McShane, Henstock-Kurzweil-Pettis and Denjoy-Pettis) and
gauge integrals (Bochner, Birkhoff, McShane, Henstock, H and variationally Hen-
stock).
We remind that a scalarly integrable multifunction Γ : [0, 1] → c(X) is Dunford
integrable in a non-empty family C ⊂ c(X∗∗), if for every set A ∈ L there exists a
set MD

Γ (A) ∈ C such that
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s(x∗,MD
Γ (A)) =

∫
A

s(x∗, Γ ) dλ , for every x∗ ∈ X∗. (1)

Then MD
Γ (A) is called the Dunford integral of Γ on A.

If MD
Γ (A) ⊂ X for every A ∈ L, then Γ is called Pettis integrable in C. We write

then MΓ (A) instead of MD
Γ (A), and set (P )

∫
A
Γ dµ := MΓ (A). We call MΓ (A) the

Pettis integral of Γ over A. It follows from the definition that MΓ is a multimeasure
that is µ-continuous. We say that a Pettis integrable Γ : Ω → c(X) is strongly
Pettis integrable, if MΓ is an h-multimeasure. P(C) denotes multifunctions that
are Pettis integrable in C, while PS(C) denotes multifunctions strongly Pettis
integrable in C.
We recall moreover the definition of the Denjoy integral in the wide sense ( [35,
Definition 11]), called also the Denjoy-Khintchine integral, for a real valued func-
tion. Namely, a function f : [0, 1] → R is Denjoy integrable in the wide sense,
if there exists an ACG function (cf. [36]) F such that its approximate derivative
is almost everywhere equal to f . For simplicity, we call such a function Denjoy
integrable and use the symbol (D)

∫
f .

A multifunction Γ : [0, 1] → c(X) is said to be Denjoy-Pettis (or DP) integrable
in C ⊂ c(X), if it is scalarly Denjoy integrable and for each I ∈ I there exists a
set NΓ (I) ∈ C such that

s(x∗, NΓ (I)) = (D)

∫
I

s(x∗, Γ ) for every x∗ ∈ X∗. (2)

If in the previous definition, the multifunction Γ is scalarly Henstock-Kurzweil
(or HK) integrable we say that the multifunction Γ is Henstock-Kurzweil-Pettis
(or HKP) integrable in C. The family of all DP-integrable (resp. HKP-integrable)
multifunctions in C is denoted by DP(C) (resp. HKP(C)).
If an HKP-integrable multifunction Γ is also scalarly integrable, then it is called
weakly McShane (or wMS) integrable. The family of all wMS-integrable functions
in C is denoted by wMS(C).
Moreover, a weak∗ scalarly integrable multifunction Γ : [0, 1] → c(X∗) is Gelfand
integrable in C ⊂ c(X∗), if for each set A ∈ L there exists a set MG

Γ (A) ∈ C such
that

s(x,MG
Γ (A)) =

∫
A

s(x, Γ ) dλ , for every x ∈ X. (3)

MG
Γ (A) is called the Gelfand integral of Γ on A.

For the gauge integrals we need some preliminary definitions and to avoid mis-
understanding let us point out that gauge integrable multifunctions take always
bounded values (dH is well defined on bounded sets only) whereas scalarly defined
integrals integrate multifunctions with arbitrary closed convex values.
A partition P in [0, 1] is a collection {(I1, t1), . . . , (Ip, tp)}, where I1, . . . , Ip are
nonoverlapping subintervals of [0, 1], ti is a point of [0, 1], i = 1, . . . , p.



D. Candeloro et al. / Integration of Multifunctions ... 1237

If ∪p
i=1I i = [0, 1], then P is a partition of [0, 1]. If ti is a point of I i, i = 1, . . . , p,

we say that P is a Perron partition of [0, 1].
A gauge on [0, 1] is a positive function on [0, 1]. For a given gauge δ on [0, 1], we
say that a partition {(I1, t1), . . . , (Ip, tp)} is δ-fine if I i ⊂ (ti − δ(ti), ti + δ(ti)),
i = 1, . . . , p.
A multifunction Γ : [0, 1] → cb(X) is said to be Henstock (resp. McShane) inte-
grable on [0, 1], if there exists ΦΓ ([0, 1]) ∈ cb(X) with the property that for every
ε > 0 there exists a gauge δ on [0, 1] such that for each δ-fine Perron partition
(resp. partition) we have

dH

(
ΦΓ ([0, 1]),

p∑
i=1

Γ (ti)|I i|
)

< ε . (4)

Γ is said to be Henstock (resp. McShane) integrable on I ∈ I (resp. E ∈ L) if Γ1I
(resp. Γ1E) is integrable on [0, 1] in the corresponding sense. Moreover, if the
gauge δ of the Henstock integrability is measurable we speak on H-integrability
(see also [16]).
A multifunction Γ : [0, 1] → cb(X) is said to be Birkhoff integrable on [0, 1], if it
is McShane integrable but the gauges are measurable functions. As before, we
denote by H(cb(X)) (resp.H(cb(X)), MS(cb(X)), BI(cb(X))), the spaces of Hen-
stock, (resp. Henstock with measurable gauges, McShane, Birkoff) integrable
multifunctions in cb(X).
A multifunction Γ : [0, 1] → cwk(X) is said to be variationally Henstock (resp.
McShane) integrable, if there exists a multimeasure ΦΓ : I → cb(X) (resp.
ΦΓ : L → cb(X)) with the following property: for every ε > 0 there exists
a gauge δ on [0, 1] such that for each δ-fine Perron partition (resp. partition)
{(I1, t1), . . . , (Ip, tp)} we have

p∑
j=1

dH (ΦΓ (Ij), Γ (tj))|Ij|) < ε . (5)

The set multifunction ΦΓ will be called the variational Henstock (McShane) pri-
mitive of Γ .
Finally SH(Γ ) (resp. SMS(Γ ), SP (Γ ), SHKP (Γ ), SB(Γ ), SvH(Γ ), . . .) denotes the
family of all scalarly measurable selections of Γ that are Henstock (resp. McShane,
Pettis, Henstock-Kurzweil-Pettis, Birkhoff, variationally Henstock, ...) integrable.
A useful tool to study the cb(X)-valued multifunctions is the Rådström embedding
(see, for example, [2, Theorem 3.2.9 and Theorem 3.2.4(1)] or [22, Theorem II-19])
i : cb(X) → l∞(BX∗) given by i(A) := s(·, A). It satisfies the following properties:
(1) i(αA ⊕ βC) = αi(A) + βi(C) for every A,C ∈ cb(X), α, β ∈ R+; (here the

symbol ⊕ is the Minkowski addition)
(2) dH(A,C) = ∥i(A)− i(C)∥∞, A, C ∈ cb(X);
(3) i(cb(X)) is a closed cone in the space l∞(BX∗) equipped with the norm of the

uniform convergence.



1238 D. Candeloro et al. / Integration of Multifunctions ...

3. Scalarly defined integrals

The following result is a generalization of [40, Theorem 6.7].
Theorem 3.1. If Γ : [0, 1] → c(X∗) is weak∗ scalarly integrable, then Γ is Gelfand
integrable in cw∗k(X∗).

Proof. Assume at the beginning that Γ is weak∗ scalarly bounded (i.e. there
exists 0 < K < ∞ such that |s(x, Γ )| ≤ K∥x∥ a.e. for each x ∈ X separately). Let
us fix A ∈ L and define a sublinear functional on X setting φA(x) : =

∫
A
s(x, Γ ) dλ.

One can easily see that φA is norm continuous. This proves the existence of a set
CA ∈ cw∗k(X∗) such that φA(x) = s(x,CA), for every x ∈ X (we simply take as
CA the weak∗-closure of the set {x∗ ∈ X∗ : ⟨x∗, x⟩ ≤ φA(x)}). Consequently, Γ is
Gelfand integrable in cw∗k(X∗). The general case follows by decomposition of Γ
in a series of weak∗ scalarly bounded multifunctions (see [40, Theorem 6.7]).

As a direct consequence of Theorem 3.1 we obtain the following generalization
of [40, Theorem 6.9] to the case of c(X) valued multifunctions:
Theorem 3.2. Each scalarly integrable multifunction Γ : [0, 1] → c(X) is Dun-
ford integrable in cw∗k(X∗∗).

In [42, Proposition 23] an example of a wMS-integrable function is given which is
not Pettis integrable. The same property has the function constructed in [34]. In
case of positive multifunctions the situation is different.
The next result has been proven in [28, Lemma 1 and Remark 3] for the Denjoy–
Pettis integral and multifunctions with weakly compact values. Unfortunately
that proof fails in the general case.
Theorem 3.3. If Γ ∈ DP(cb(X)) (resp. DP(cwk(X)), DP(ck(X))) is a positive
multifunction, then Γ ∈ P(cb(X)) (resp. P(cwk(X)), P(ck(X))).

Proof. Assume that Γ ∈ DP(cb(X)). Since s(x∗, Γ ) is a.e. non-negative and
Denjoy integrable, it is Lebesgue integrable (cf. [36, Theorem 7.7]). By the as-
sumption, for every I ∈ I there exists NΓ (I) ∈ cb(X) such that

s(x∗, NΓ (I)) =

∫
I

s(x∗, Γ ) dλ for every x∗ ∈ X∗.

In virtue of Theorem 3.2 Γ is Dunford integrable in cw∗k(X∗∗):

∀ E ∈ L ∃ MD
Γ (E) ∈ cw∗k(X∗∗) ∀ x∗ ∈ X∗ s(x∗,MD

Γ (E)) =

∫
E

s(x∗, Γ ) dλ.

Thus, for every I ∈ I we have the equality s(x∗, NΓ (I)) = s(x∗,MD
Γ (I)). Due to

the Hahn-Banach theorem, it follows MD
Γ (I) = NΓ (I)

∗ and X ∩MD
Γ (I) = NΓ (I),

for every I ∈ I. We are going to prove that Γ is Pettis integrable. So let
us fix E ∈ L. Since the support functionals are a.e. non-negative, we have
MD

Γ (E) ⊂ MD
Γ [0, 1] and then X ∩MD

Γ (E) ⊂ X ∩MD
Γ [0, 1] = NΓ [0, 1].
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The set NΓ (E) := X ∩MD
Γ (E) is closed and

s(x∗, NΓ (E)) = s(x∗, X ∩MD
Γ (E)

∗
) ≤ s(x∗,MD

Γ (E)) .

Consequently, we have

s(x∗, NΓ (E)) ≤
∫
E

s(x∗, Γ ) dλ for all x∗ ∈ X∗. (6)

But s(x∗, NΓ ) : L → R is an additive set function that is, due to the inequality
(6) countably additive. Since both sides of (6) coincide on I, they coincide on L
and (6) becomes equality. In this way we obtain the required Pettis integrability
of Γ in cb(X).

A useful application of above property for positive multifunctions is the decompo-
sition of a multifunction Γ integrable in “a certain sense” into a sum of one of its
selections integrable in the same way and a positive multifunction “integrable in
a stronger sense” than Γ is. An important key ingredient in such a decomposition
is the existence of selections “integrable in the same sense” as the corresponding
multifunction. The existence of scalarly measurable selections of arbitrary weakly
compact valued scalarly measurable multifunctions has been proven by Cascales,
Kadets and Rodriguez in [19].
Concerning the integrability of selections for functionally defined multifunctions
with weakly compact values the following holds:
Proposition 3.4. (see [28]) If the multifunction Γ : [0, 1] → cwk(X) is DP (resp.
HKP, Pettis or weakly McShane) integrable in cwk(X), and f is a scalarly mea-
surable selection of Γ , then f is respectively DP (resp. HKP, Pettis or weakly
McShane) integrable.

In the more general case of cb(X)-valued multifunctions we do not know if each
scalarly measurable multifunction possesses scalarly measurable selections.
Decomposition theorems in case of weakly compact valued multifunctions have
been proven in [28, Theorem 1 and Remark 3] and in [12, Theorem 3.2]. Below,
we formulate the results in a more general situation.
Theorem 3.5. If Γ : [0, 1] → c(X) is a multifunction, then the following condi-
tions are equivalent:
(i) Γ is DP -integrable in cb(X) and SDP (Γ ) ̸= ∅;
(ii) SDP (Γ ) ̸= ∅ and for all f ∈ SDP (Γ ) the multifunction G : [0, 1] → cb(X)

defined by G = Γ − f is Pettis integrable in cb(X);
(iii) There exists f ∈ SDP (Γ ) such that the multifunction G = Γ − f is Pettis

integrable in cb(X);
DP -integrability above may be replaced by HKP or wMS-integrability.
Proof. (i)⇒(ii) follows by Theorem 3.3 to G := Γ − f . The other implications
are clear.
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Remark 3.6. Exactly in the same manner one proves the analogous decompo-
sition theorems in case of multifunctions Γ that are HKP-integrable or weakly
McShane integrable in cb(X) , cwk(X) or ck(X).

By the previous decompositions we obtain:
Theorem 3.7. Let Γ : [0, 1] → c(X) be a DP-integrable multifunction.
(i) If SHKP (Γ ) ̸= ∅, then Γ is HKP-integrable.
(ii) If SwMS(Γ ) ̸= ∅, then Γ is wMS-integrable.
(iii) If SP (Γ ) ̸= ∅, then Γ is Pettis integrable.

Proof. (i) If Γ is DP-integrable and f ∈ SHKP (Γ ), then, according to Theorem
3.5, Γ = G + f , where G is Pettis integrable. Being Pettis integrable, G is also
HKP integrable, what yields HKP integrability of Γ . (ii) and (iii) can be proved
in a similar way.

In case of cwk(X)-valued Γ and HKP integrable Γ , the necessary decomposition
was proved in [28, Theorem 1].
Now we are going to concentrate on a particular family of positive multifunctions:
the class of multifunctions that are determined by integrable functions. Such
multifunctions quite often serve as examples and counterexamples. It is interesting
to know which properties of the function can be transferred to the generated
multifunction.
Proposition 3.8. If Γ is determined by a scalarly measurable f , then it is Pettis
integrable in cwk(X) if and only if f is Pettis integrable.

Proof. Observe first that Γ is scalarly measurable. If Γ is Pettis integrable,
then f is Pettis integrable by [18, Corollary 2.3]. Viceversa, if f is Pettis in-
tegrable, by [39, Theorem 2.6] Γ is Pettis integrable in cwk(X), since we have
|s(x∗, Γ (t))| ≤ |(x∗, f(t))|.

If one investigates multifunctions that are integrable in cb(X) the situation is more
complicated. If f : [0, 1] → X is strongly measurable and scalarly integrable,
then the multifunction determined by f is Pettis integrable in cb(X) (see [31,
Theorem 3.7]). An example of c0–valued function f that is not Pettis integrable
but Γ : [0, 1] → ck(c0) defined by Γ (t) = conv{0, f(t)} is Pettis integrable in
cb(c0) can be found in [39, Example 1.12]. The same example can be used to show
that DP-integrability of f : [0, 1] → X does not guarantee the DP-integrability
in cwk(X) of Γ determined by f . Indeed, it follows from Proposition 3.3 that
Γ ̸∈ DP(cwk(X)), since otherwise f would be Pettis integrable.
The next result is a strengthening of [28, Proposition 4] in case of a multifunction
determined by a function.
Proposition 3.9. Let f : [0, 1] → X be scalarly measurable. If all scalarly mea-
surable selections of Γ determined by f are DP–integrable, then Γ is Pettis inte-
grable in cwk(X).
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Proof. If E ∈ L, then f̃ : [0, 1] → X defined by f̃(t) = f(t) if t ∈ E and zero
otherwise is a DP-integrable selection of Γ . It follows that f is Pettis integrable.
The assertion follows from Proposition 3.8.

4. Gauge integrals

In case of positive multifunctions with weakly compact values and integrals, it
has been proven in [12, Propositions 3.1 and 4.1] that Henstock (resp. H) inte-
grability implies McShane (resp. Birkhoff) integrability. In the general case of
cb(X) valued multifunctions, we do not know if positive Henstock or H-integrable
multifunctions are in fact McShane or Birkhoff integrable. We do not know even if
positive Pettis and Henstock or H-integrable multifunctions are in fact McShane
or Birkhoff integrable. But if we assume something on the Banach space X or
we require something more on the multifunction, then the result in [12] can be
generalized.
First we need one supplementary fact.
Proposition 4.1. If X does not contain any isomorphic copy of c0, then the
function M : L → cb(X) is an h-multimeasure if and only if it is a multimeasure.

Proof. Let us notice first that the fact that M is defined on [0, 1] endowed with
Lebesgue measure is totally unimportant. It may be defined on an arbitrary
measure space.
Assume that M is a multimeasure and let {Ei : i ∈ N} be a sequence of measurable
and pairwise disjoint sets in [0, 1]. Take arbitrarily xi ∈ M(Ei), i ∈ N and
x∗ ∈ X∗. If π is a permutation of N and m ≤ n, then

−s

(
−x∗,

n∑
i=m

M(Eπ(i))

)
≤

〈
x∗,

n∑
i=m

xπ(i)

〉
≤ s

(
x∗,

n∑
i=m

M(Eπ(i))

)
.

It follows that the sequence
{∑n

i=1 xπ(i)

}
n

is weakly Cauchy and consequently

the series
∑∞

n=1 xn is weakly unconditionally Cauchy. But as c0 * X the series is
unconditionally convergent in the norm of X due to Bessaga-Pełczyński result [3]

(cf. [30, Theorem V.8]). Set ∆(E) :=

{∑
i≥1 xi : xi ∈ M(Ei)

}
. Exactly as in

the proof of Theorem [37, Theorem 8.4.10] one can prove that ∆(E) = M(E) for
every E ∈ L and that will complete the whole proof.

So we have:
Theorem 4.2. Let Γ : [0, 1] → cb(X). Then, Γ ∈MS(cb(X)) (resp.Γ ∈BI(cb(X)))
if and only if Γ ∈ Ps(cb(X)) and Γ ∈ H(cb(X)) (resp. Γ ∈ H(cb(X))).

Proof. If Γ is strongly Pettis integrable the range of (P )
∫
Γ via the Rådström

embedding is a vector measure. Now we follow the proof of [12, Proposition 3.1].
In fact, we can observe that (P )

∫
I
Γ = (H)

∫
I
Γ for every I ∈ I.
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The strong integrability guarantees the convergence of each series
∑

n(H)
∫
In
i◦Γ ,

where (In)n is any sequence of pairwise non-overlapping subintervals of [0, 1], since
(H)

∫
I
i ◦ Γ = i ◦ ((H)

∫
I
Γ ) = i ◦ (P )

∫
I
Γ , for every I ∈ I. Applying now [32,

Corollary 9 (iii)] we obtain McShane integrability of i ◦ Γ . If Γ is H-integrable,
we can apply [32, Theorem 8] and [12, Theorem 2.11].

Problem 4.3. What is the situation if Γ is strongly Pettis and variationally
Henstock integrable?

Even in the single valued case Γ need not be variationally McShane integrable.
An example is given in [25].
Theorem 4.4. Let Γ : [0, 1] → cb(X).
If c0 * X, then Γ ∈MS(cb(X)) (resp.Γ ∈BI(cb(X))) if and only if Γ ∈P(cb(X))
and Γ ∈ H(cb(X)) (resp. Γ ∈ H(cb(X))).
Proof. If c0 * X then, by Proposition 4.1, Γ ∈ Ps(cb(X)). We apply Theorem
4.2.

We outline that Γ ∈ Ps(cb(X)) or c0 * X are key ingredients in Theorem 4.2
and Theorem 4.4. Due to Theorem 3.3 we know that if Γ ∈ H(cb(X)) is positive,
then it is Pettis integrable. It remains an open question if there exist a positive
Henstock integrable multifunction Γ : [0, 1] → cb(c0) that is not strongly Pettis
integrable.
If Φ : I → cb(X) is an additive multifunction, then given I ∈ I, the variation of
Φ(I) is defined by

Φ̃(I) := sup{
∑
i

∥Φ(Ii)∥ : {I1, . . . , In} is a finite partition of I} .

If Φ̃[0, 1] < ∞, then Φ is said to be of finite variation. In this case Theorem 4.2
has a stronger form.
Theorem 4.5. Let Γ : [0, 1] → cb(X) be Henstock (or H) integrable and let ΦΓ be
its H (H)-integral. If Φ̃Γ [0, 1] < ∞, then Γ is McShane (or Birkhoff) integrable.
Proof. By the assumption i ◦ Γ is Hennstock (H) integrable. Consequently, if
(In)n is a sequence of non-overlapping subintervals of [0, 1] then, due to the finite
variation of Φ̃Γ , the series

∑
n(H)(H)

∫
In
i◦Γ is absolutely convergent in l∞(BX∗),

hence also convergent. Thus, i◦Γ is McShane (Birkhoff) integrable and, this yields
McShane (Birkhoff) integrability of Γ .

We are going to present now a decomposition theorem for multifunctions that are
H (resp. H)-integrable in cb(X). While for weakly compact valued multifunctions
properly integrable selections exist (see [29] for the Henstock or the McShane
integral, [11] for the Birkhoff or the variational Henstock integral), we do not
know if that is the case also for cb(X)-valued multifunctions. In order to obtain
a decomposition of H or H-integrable multifunction, we have to assume that the
set of suitably integrable selections is non-void.
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Moreover, we do not know if positive Henstock or H-integrable multifunctions
are in fact McShane or Birkhoff integrable (as it was proved in [12, Lemma 3.1
and 4.1] for weakly compact valued multifunctions). We do not know even if
positive Pettis and Henstock or H-integrable multifunctions are in fact McShane
or Birkhoff integrable. Therefore the theorem below differs from [12, Theorem 3.3
and 4.3].

Theorem 4.6. Let Γ : [0, 1] → cb(X) be multifunction such that SH(Γ ) ̸= ∅
(SH(Γ ) ̸= ∅). Then the following conditions are equivalent:
(i) Γ is H-integrable (resp. H-integrable) in cb(X);
(ii) For all f ∈ SH(Γ ) (resp. f ∈ SH(Γ )), the multifunction G : [0, 1] → cb(X)

defined by G = Γ − f is Pettis and Henstock integrable (resp. Pettis and
H-integrable) in cb(X);

(iii) There exists such an f ∈ SH(Γ ) (resp. f ∈ SH(Γ )) that the multifunction
G : [0, 1] → cb(X) defined by G = Γ − f is Pettis and Henstock integrable
(resp. Pettis and H-integrable) in cb(X);

Proof. (i)⇒(ii): If f ∈ SH(Γ ) (resp. f ∈ SH(Γ )), then G := Γ − f is also H-
integrable (resp. H-integrable). It follows from Theorem 3.3 that G is also Pettis
integrable.

Problem 4.7. Is each positive Pettis integrable multifunction McShane inte-
grable?

In case of multifunctions with weakly compact values, each positive H-integrable
multifunction is McShane integrable (see [12, Proposition 3.1]). Suppose that
positive H-integrable multifunctions possessing an H-integrable selection are Mc-
Shane integrable, and let Γ be an H-integrable multifunction possessing an MS-
integrable selection. Then Γ can be written as Γ = G+f , where f ∈ SMS(Γ ) and
G is Pettis integrable. But then G is also Henstock integrable. Consequently, G
is McShane integrable, and also Γ is.

In the general case the following questions remain an open problem:

Problem 4.8. Is each positive H-integrable multifunction (possessing an H-inte-
grable selection) McShane integrable? Is each positive Pettis integrable multifunc-
tion strongly Pettis integrable?

Remark 4.9. Finally it is worth to note that in all previous results concerning
the representation of a multifunction Γ as a sum of one of its selections and a
positive multifunction, it is sufficient to have a quasi selection f (cf. [39]), i.e. such
a function f that x∗f ≤ s(x∗, Γ ) a.e. for each x∗ ∈ X∗ separately. In fact, if f is
a quasi selection, the multifunction Γ − f is a.e. positive.

Acknowledgement. The authors thank Vladimir Kadets and the anonymous
referee for their suggestions concerning the research topic.



1244 D. Candeloro et al. / Integration of Multifunctions ...

References
[1] E. J. Balder, A. R. Sambucini: Fatou’s Lemma for unbounded multifunctions with

values in a dual space, J. Convex Analysis 12(2) (2005) 383–395.
[2] G. Beer: Topologies on Closed and Closed Convex Sets, Mathematics and its Ap-

plications 268, Kluwer Academic Publishers, Dordrecht (1993).
[3] C. Bessaga, A. Pełczyński: On bases and unconditional convergence of series in

Banach spaces, Studia Math. 17 (1958) 151–174.
[4] A. Boccuto, D. Candeloro, A. R. Sambucini: Henstock multivalued integrability in

Banach lattices with respect to pointwise non atomic measures, Atti Accad. Naz.
Lincei Rend. Lincei Mat. Appl. 26(4) (2015) 363–383.

[5] A. Boccuto, A. R. Sambucini: A note on comparison between Birkhoff and Mc-
Shane-type integrals for multifunctions, Real Analysis Exchange 37(2) (2011/2012)
315–324.

[6] B. Bongiorno, L. Di Piazza, K. Musiał: A variational Henstock integral character-
ization of the Radon-Nikodym Property, Illinois J. Math. 53(1) (2009) 87–99.

[7] L. Boxer: Multivalued functions in digital topology, Note di Matematica 37(2)
(2017) 61–76.

[8] D. Candeloro, A. Croitoru, A. Gavrilut, A. Iosif, A. R. Sambucini: Properties of the
Riemann-Lebesgue integrability in the non-additive case, Rend. Circ. Mat. Palermo
69(2) (2020) 577-–589.

[9] D. Candeloro, A. Croitoru, A. Gavrilut, A. R. Sambucini: An extension of the
Birkhoff integrability for multifunctions, Medit. J. Math. 13(5) (2016) 2551–2575.

[10] D. Candeloro, A. Croitoru, A. Gavrilut, A. R. Sambucini: A multivalued version of
the Radon-Nikodym theorem, via the single-valued Gould integral, Australian J.
Math. Analysis Appl. 15(2) (2018), art.no. 9, 16 pp.

[11] D. Candeloro, L. Di Piazza, K. Musiał, A. R. Sambucini: Gauge integrals and selec-
tions of weakly compact valued multifunctions, J. Math. Anal. Appl. 441(1) (2016)
293–308.

[12] D. Candeloro, L. Di Piazza, K. Musiał, A. R. Sambucini: Relations among gauge
and Pettis integrals for multifunctions with weakly compact convex values, Annali
di Matematica 197(1) (2018) 171–183.

[13] D. Candeloro, L. Di Piazza, K. Musiał, A. R. Sambucini: Some new results on in-
tegration for multifunction, Ric. di Matematica 67(2) (2018) 361–372.

[14] D. Candeloro, L. Di Piazza, K. Musiał, A. R. Sambucini: Multifunctions deter-
mined by integrable functions, Int. J. Approx. Reasoning 112 (2019) 140–148.

[15] D. Candeloro, L. Di Piazza, K. Musiał, A. R. Sambucini: Multi-integrals of finite
variation, arXiv: 1912.00892 (2019), Bull. Un. Mat. Ital. 13(4) (2020).

[16] D. Caponetti, V. Marraffa, K. Naralenkov: On the integration of Riemann-
measurable vector-valued functions, Monatshefte Math. 182 (2017) 513–536.

[17] B. Cascales, V. Kadets, J. Rodríguez: The Pettis integral for multi-valued functions
via single-valued ones, J. Math. Anal. Appl. 332(1) (2007) 1–10.

[18] B. Cascales, V. Kadets, J. Rodríguez: Measurable selectors and set-valued Pettis
integral in non-separable Banach spaces, J. Funct. Anal. 256 (2009) 673–699.



D. Candeloro et al. / Integration of Multifunctions ... 1245

[19] B. Cascales, V. Kadets, J. Rodríguez: Measurability and selections of multifunc-
tions in Banach spaces, J. Convex Analysis 17 (2010) 229–240.

[20] B. Cascales, V. Kadets, J. Rodríguez: The Gelfand integral for multi-valued func-
tions, J. Convex Analysis 18(3) (2011) 873-–895.

[21] B. Cascales, J. Rodríguez: Birkhoff integral for multi-valued functions, J. Math.
Anal. Appl. 297(2) (2004) 540–560.

[22] C. Castaing, M. Valadier: Convex Analysis and Measurable Multifunctions, Lecture
Notes Math. 580, Springer, Berlin (1977).

[23] M. Cichoń, K. Cichoń, B. Satco: Differential inclusions and multivalued integrals,
Discuss. Math. Differ. Incl. Control Optim. 33(2) (2013) 171–191.

[24] M. Cichoń, K. Cichoń, B. Satco: Measure differential inclusions through selec-
tion principles in the space of regulated functions, Medit. J. Math. 15(4) (2018),
art.no. 148, 19 pp.

[25] L. Di Piazza, V. Marraffa: The McShane, PU and Henstock integrals of Banach
valued functions, Czechoslovak Math. J. 52(3) (2002) 609–633.

[26] L. Di Piazza, V. Marraffa, K. Musiał: Variational Henstock integrability of Banach
space valued function, Math. Bohem. 141(29) (2016) 287–296.

[27] L. Di Piazza, K. Musiał: A characterization of variationally McShane integrable
Banach-space valued function, Illinois J. of Math. 45(1) (2001) 279–289.

[28] L. Di Piazza, K. Musiał: A decomposition of Denjoy-Khintchine-Pettis and
Henstock-Kurzweil-Pettis integrable multifunctions, in: Vector Measures, Inte-
gration and Related Topics, G. P. Curbera, G. Mockenhaupt, W. J. Ricker (eds.),
Operator Theory: Advances and Applications Vol. 201, Birkhäuser, Basel (2010)
171–182.

[29] L. Di Piazza, K. Musiał: Relations among Henstock, McShane and Pettis integrals
for multifunctions with compact convex values, Monatshefte Math. 173 (2014)
459–470.

[30] J. Diestel: Sequences and Series in Banach Spaces, Graduate Texts in Mathematics
92, Springer, Berlin (1984).

[31] K. El Amri, C. Hess: On the Pettis integral of closed valued multifunctions, Set-
Valued Analysis 8 (2000) 329–360.

[32] D. H. Fremlin: The Henstock and McShane integrals of vector-valued functions,
Illinois J. Math. 38(3) (1994) 471–479.

[33] D. H. Fremlin: The generalized McShane integral, Illinois J. Math. 39(1) (1995)
39–67.

[34] J. L. Gamez, J. Mendoza: On Denjoy-Dunford and Denjoy-Pettis integrals, Studia
Math. 130 (1998) 115–133.

[35] R. A. Gordon: The Denjoy extension of the Bochner, Pettis and Dunford integrals,
Studia Math. 92 (1989) 73–91.

[36] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate
Studies in Mathematics 4, American Mathematical Society, Providence (1994).

[37] S. Hu, N. S. Papageorgiou: Handbook of Multivalued Analysis I, Mathematics and
Its Applications 419, Kluwer Academic Publishers, Dordrecht (1997).



1246 D. Candeloro et al. / Integration of Multifunctions ...

[38] V. Marraffa: The variational McShane integral in a locally convex space, Rocky
Mountain J. Math. 39(6) (2009) 1993–2013.

[39] K. Musiał: Pettis integrability of multifunctions with values in arbitrary Banach
spaces, J. Convex Analysis 18 (2011) 769–810.

[40] K. Musiał: Approximation of Pettis integrable multifunctions with values in arbi-
trary Banach spaces, J. Convex Analysis 20(3) (2013) 833–870.

[41] K. Musiał: Gelfand integral of multifunctions, J. Convex Analysis 21(4) (2014)
1193–1200.

[42] G. Ye, Š. Schwabik: The McShane and the weak McShane integrals of Banach
space-valued functions defined on Rm, Math. Notes, Miskolc 2 (2001) 127–136.


