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a b s t r a c t

The aim of this paper is to describe Henstock–Kurzweil–Pettis (HKP) integrable compact
valued multifunctions. Such characterizations are known in case of functions (see Di
Piazza and Musiał (2006) [16]). It is also known (see Di Piazza and Musiał (2010) [19])
that each HKP-integrable compact valued multifunction can be represented as a sum
of a Pettis integrable multifunction and of an HKP-integrable function. Invoking to that
decomposition, we present a pure topological characterization of integrability. Having
applied the above results, we obtain two convergence theorems, that generalize results
known for HKP-integrable functions. We emphasize also the special role played in the
theory by weakly sequentially complete Banach spaces and by spaces possessing the Schur
property.

© 2013 Elsevier Inc. All rights reserved.

0. Introduction

We assume that the unit interval of the real line is endowed with the Lebesgue measure and X is an arbitrary Banach
space (in particular X may be non-separable). The Henstock–Kurzweil–Pettis integral is the natural generalization of the
Pettis integral for a function, obtained by replacing the Lebesgue integrability for scalar functions by the Henstock–Kurzweil
integrability. It integrates essentially more functions than the Pettis (see [25, Example 44] and [24, Proposition 2]) and
the Henstock ones (see [15, Example 1]). The authors have proven in [16, Theorem 3] that a scalarly Henstock–Kurzweil
integrable function f : [0, 1] → X , is Henstock–Kurzweil–Pettis integrable if and only if f is determined by a weakly
compactly generated (WCG) subspace of X and on the set {x∗f : ∥x∗

∥ ≤ 1} the topology of convergence inmeasure coincides
with the weak topology of Henstock–Kurzweil integrable real functions.

In the current paper the authors prove that a similar characterizationholds true also in case of scalarlyHenstock–Kurzweil
integrable multifunctions that are compact valued (Theorem 2.5). The basic tools are the decomposition theorem
[19, Theorem 2], the selector theorem [9, Theorem 3.8] and the results of [32].

We apply then the above characterization to obtain Vitali type convergence theorems for sequences of Henstock–
Kurzweil–Pettis (Theorem 4.4) and Henstock (Theorem 5.3) integrable multifunctions.

Our results generalize the earlier convergence theorems proved for sequences of functions (see [16, Theorem 5]) and
extend some of the convergence theorems from [32], proved there for compact valued Pettis integrable multifunctions, to
non-absolute gauge integrals.
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If X contains no copy of c0, it is well known that each X-valued strongly measurable scalarly integrable function is
also Pettis integrable. In case of the Henstock–Kurzweil integrability a similar property is fulfilled by weakly sequentially
complete Banach spaces. In fact in [25, Theorem 40] Gordon proved that a separable Banach space is weakly sequentially
complete if and only if each X-valued Henstock–Kurzweil scalarly integrable function is also HKP integrable. Herewe extend
such a result to not necessarily separable Banach spaces by means of the notion of function (or multifunctions) determined
by a WCG subspace of X (Theorem 3.3). Moreover by means of the same notion a characterization of the spaces possessing
the Schur property is also given (Theorem 3.4).

1. Basic facts

L and L+ denote the family of all Lebesgue measurable subsets of [0, 1] and that of positive measure, respectively. If
A ∈ L, then |A| denotes its Lebesgue measure.

X∗ is the dual space of X . The closed unit ball of X is denoted by B(X). c(X) denotes the collection of all nonempty closed
convex subsets of X and cb(X) is the collection of all boundedmembers of c(X). cwk(X) is the family of all nonempty convex
weakly compact subsets of X and ck(X) is the collection of all norm compact elements of cwk(X).

We consider on cb(X) the Minkowski addition (A ⊕ B := {a + b : a ∈ A, b ∈ B}) and the standard multiplication by
scalars. For every C ∈ c(X) the support function of C is denoted by s(·, C) and defined on X∗ by s(x∗, C) = sup{⟨x∗, x⟩: x ∈ C},
for each x∗

∈ X∗. If ∅ ≠ W ⊂ X , then |W | := sup{∥x∥ : x ∈ W }.
τ(X∗, X) denotes the topology of uniform convergence on elements of cwk(X) and τc(X∗, X) is the topology of uniform

convergence on convex compact subsets of X . The weak∗-topology of X∗ will be denoted by σ(X∗, X). It is known that
τc(X∗, X) coincideswith σ(X∗, X) on B(X∗) and s(·, C) is τc(X∗, X)-continuous if and only if it is weak∗-continuous on B(X∗).

A map Γ : [0, 1] → c(X) is called a multifunction. A multifunction Γ̃ : [0, 1] → c(X) is dominated by Γ if Γ̃ (t) ⊆ Γ (t)
for every t ∈ [0, 1]. We associate with each Γ the set

ZΓ := {s(x∗, Γ ) : ∥x∗
∥ ≤ 1}.

If the multifunction is a function f , then we have

Zf := {x∗f : ∥x∗
∥ ≤ 1}.

In both cases we consider functions, not equivalence classes of a.e. equal functions. Identifying scalarly equivalent functions
we obtain respectively the sets ZΓ and Zf .

We say that a space Y ⊂ X determines a multifunction Γ : [0, 1] → ck(X) if s(x∗, Γ ) = 0 a.e. for each x∗
∈ Y⊥

:= {y∗
∈

X∗
: ∀ y ∈ Y y∗(y) = 0} (the exceptional sets depend on x∗).
A function f : [0, 1] → X is called a selector of Γ if f (t) ∈ Γ (t), for every t ∈ [0, 1].
A family ∅ ≠ W ⊂ L1[0, 1] is said to be uniformly integrable if and only if it is uniformly absolutely continuous, that

is if for each ε > 0 there exists δ > 0 such that if |A| < δ, then supf∈W

A |f (t)| dt < ε. One should notice that in case of

an arbitrary probability space a family of integrable functions is called uniformly integrable if it is bounded and uniformly
absolutely continuous. However for an atomless probability the boundedness is a consequence of the uniform absolute
continuity. It is a well known fact that ∅ ≠ W ⊂ L1[0, 1] is weakly relatively compact in L1[0, 1] if and only ifW is uniformly
integrable (cf. [20, Corollary IV.8.11]).

A partition P in [0, 1] is a collection {(I1, t1), . . . , (Ip, tp)}, where I1, . . . , Ip are nonoverlapping subintervals of [0, 1] and
ti is a point of Ii, i = 1, . . . , p. If ∪p

i=1 Ii = [0, 1], we say that P is a partition of [0, 1]. A gauge on [0, 1] is a positive function
on [0, 1]. For a given gauge δ on [0, 1], we say that a partition {(I1, t1), . . . , (Ip, tp)} is δ-fine if Ii ⊂ (ti − δ(xi), ti + δ(xi)), i =

1, . . . , p. By I we denote the family of all nontrivial closed subintervals of [0, 1]. We recall that a function h : [0, 1] → R is
said to be Henstock–Kurzweil-integrable, or simply HK-integrable, on [0, 1] if there exists a ∈ R with the following property:
for every ϵ > 0 there exists a gauge δ on [0, 1] such that p

i=1

h(ti)|Ii| − a

 < ε (1)

for each δ-fine partition {(I1, t1), . . . , (Ip, tp)} of [0, 1]. We set (HK)
 1
0 hdt := a.

A function h is said to be HK-integrable on I ∈ I if hχI is HK-integrable on [0, 1].
It is known that if h is an HK-integrable function on [0, 1], then for each I ∈ I the function hχI is also HK-integrable. We

say then that h is HK-integrable on I and write Φh(I) = (HK)

I h(t) dt := (HK)

 1
0 h(t)χI(t) dt . We denote by HK [0, 1] the

linear space of all real valued Henstock–Kurzweil-integrable functions on [0, 1] (we identify functions that are equal a.e.).
The space HK [0, 1] is endowed with a norm that is equivalent to the original Alexiewicz norm (cf. [1])

∥g∥A = sup
I∈I

(HK)


I
g(t) dt

 .
The completion HK [0, 1] of HK [0, 1] is isomorphic to the space of all distributions, each one of which is the distributional
derivative of a continuous function (cf. [4]). The conjugate space HK ∗

[0, 1] is linearly isometric to the space BV [0, 1] of
functions of bounded variation.
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The weak topology of HK [0, 1] will be denoted by σ(HK , BV ). We will denote by τm and τp the topology of convergence
in measure in the space of Lebesgue measurable functions and the topology of the pointwise convergence respectively.

If f : [0, 1] → X is an X valued function, f is called scalarly Henstock–Kurzweil integrable (or simply scalarly HK-
integrable), if, for each x∗

∈ X∗, the function x∗f is Henstock–Kurzweil integrable. By a result [24, Theorem 3] we know that f
is scalarly Henstock–Kurzweil integrable if and only if f is Henstock–Kurzweil–Dunford integrable, or simply HKD-integrable,
(i.e. if for each interval I ∈ I, there exists a vector wI ∈ X∗∗ such that for every x∗

∈ X∗, ⟨x∗, wI⟩ = (HK)

I x

∗f (t) dt).

Definition 1.1. A multifunction Γ : [0, 1] → c(X) is said to be scalarly measurable if for every x∗
∈ X∗, the functional

s(x∗, Γ (·)) is measurable. A multifunction Γ : [0, 1] → c(X) is said to be scalarly integrable (resp. scalarly HK-integrable) if
s(x∗, Γ ) is integrable (resp. HK-integrable) for every x∗

∈ X∗.
If ∆ : [0, 1] → c(X) is another multifunction, then Γ and ∆ are called scalarly equivalent if for each x∗

∈ X∗ the equality
s(x∗, Γ ) = s(x∗, ∆) holds true a.e.

A scalarly integrablemultifunctionΓ : [0, 1] → c(X) is called Pettis integrable in cb(X), [ck(X), cwk(X)] if for eachA ∈ Σ

there exists a setMΓ (A) ∈ cb(X), [ck(X), cwk(X), respectively] such that

s(x∗,MΓ (A)) =


A
s(x∗, Γ (t)) dt for every x∗

∈ X∗. (2)

We set (P)

A Γ (t) dt := MΓ (A) and call MΓ (A) the Pettis integral of Γ over A. �

Definition 1.2. A multifunction Γ : [0, 1] → c(X) is said to be scalarly HK-integrable if s(x∗, Γ ) is HK-integrable for every
x∗

∈ X∗. A scalarly HK-integrablemultifunctionΓ : [0, 1] → c(X) is said to beHenstock–Kurzweil–Pettis integrable (or simply
HKP-integrable) in cb(X), [ck(X), cwk(X)] if for each I ∈ I there exists a set ΦΓ (I) ∈ cb(X) [ck(X), cwk(X), respectively]
such that

s(x∗, ΦΓ (I)) = (HK)


I
s(x∗, Γ (t)) dt for every x∗

∈ X∗. (3)

We set (HKP)

I Γ (t) dt := ΦΓ (I) and call ΦΓ (I) the Henstock–Kurzweil–Pettis integral of Γ over I . �

If f = Γ is an X-valued function, then we have an HKP-integrable function. In such a case Φf , considered as an X-valued
function on [0, 1], is often called the primitive of f .

The space of scalarly equivalent HKP-integrable multifunctions can be endowed with a metric defined by

dA(Γ , ∆) := sup{∥s(x∗, Γ ) − s(x∗, ∆)∥A : ∥x∗
∥ ≤ 1}.

If a multifunction Γ : [0, 1] → cwk(X) is HKP-integrable in cwk(X), then there is an HKP-integrable selector of Γ

(see [19, Proposition 3]).
By the symbol SHKP(Γ ) we denote the family of all selectors of Γ that are HKP-integrable.

Proposition 1.3 (See [19, Proposition 2]).

(i) Let Γ : [0, 1] → cwk(X) be a scalarly HK-integrable multifunction. Then Γ is HKP-integrable in cwk(X) if and only if for
each I ∈ I the mapping x∗

−→ (HK)

I s(x

∗, Γ (t)) dt is τ(X∗, X)-continuous.
(ii) Let Γ : [0, 1] → ck(X) be a scalarly HK-integrable multifunction. Then Γ is HKP-integrable in ck(X) if and only if for each

I ∈ I the mapping x∗
−→ (HK)


I s(x

∗, Γ (t)) dt is τc(X∗, X)-continuous.

Lemma 1.4. Let Γ : [0, 1] → cwk(X) be a scalarly HK-integrable multifunction. Then there exists a scalarly HK-integrable
selector f of Γ . Moreover each scalarly measurable selector f of Γ is scalarly HK-integrable.

Proof. Since Γ is scalarly HK-integrable, it is scalarly measurable. So by [9, Theorem 3.8] we have the existence of a scalarly
measurable selector f of Γ . Then, proceeding as in the first part of [15, Lemma 2], we get the scalar HK-integrability of f . �

Another proof of the existence of a scalarly measurable selector of a scalarly measurable Γ : [0, 1] → cwk(X) can be found
in [22].

Proposition 1.5. If Γ : [0, 1] → ck(X) (resp. Γ : [0, 1] → cwk(X)) is HKP-integrable in ck(X) (resp. cwk(X)), then each
scalarly measurable multifunction Γ̃ dominated by Γ is HKP-integrable in ck(X) (resp. cwk(X)).

Proof. If Γ̃ is a scalarly measurable multifunction dominated by Γ , then for each x∗
∈ X∗ and t ∈ [0, 1] we have the

inequality

− s(−x∗, Γ (t)) ≤ −s(−x∗, Γ̃ (t)) ≤ s(x∗, Γ̃ (t)) ≤ s(x∗, Γ (t)). (4)
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So, if Γ̃ is scalarly measurable, then the Henstock–Kurzweil-integrability of the support function s(x∗, Γ̃ ) follows immedi-
ately by the Henstock–Kurzweil-integrability of s(x∗, Γ (t)), for each x∗

∈ X∗. Indeed, we get from the inequalities (4),

0 ≤ s(x∗, Γ̃ (t)) + s(−x∗, Γ (t)) ≤ s(x∗, Γ (t)) + s(−x∗, Γ (t)).

The function s(x∗, Γ (·)) + s(−x∗, Γ (·)) is non-negative and HK-integrable, hence it is Lebesgue integrable (cf. [26, The-
orem 9.13]). Consequently also s(x∗, Γ̃ (·) + s(−x∗, Γ (·))) is Lebesgue integrable. Finally s(x∗, Γ̃ (t)) = [s(x∗, Γ̃ (t)) +

s(−x∗, Γ (t))] − s(−x∗, Γ (t)) and so s(x∗, Γ̃ ) ∈ HK [0, 1]. Hence for each I ∈ I we have

− s(−x∗, ΦΓ (I)) ≤ (HK)


I
s(x∗, Γ̃ (t)) dt ≤ s(x∗, ΦΓ (I)). (5)

Since ΦΓ (I) is convex compact (resp. convex weakly compact), the function x∗
→ s(x∗, ΦΓ (I)) is τc(X∗, X)-continuous

(resp. τ(X∗, X)-continuous). Consequently, (5) yields the continuity of the functional x∗
→ (HK)


I s(x

∗, Γ̃ (t)) dt at zero.
But since the functional is sublinear it is τc(X∗, X)-continuous (resp. τ(X∗, X)-continuous) on X∗.

By Proposition 1.3 the multifunction Γ̃ is HKP-integrable in ck(X) (resp. cwk(X)). �

An important tool for our investigation is the decomposition theorem proved in [19, Theorem 2]. Since we use it many times
throughout the paper, for readers’ convenience, we state it here.

Theorem 1.6. A scalarly HK-integrable multifunction Γ : [0, 1] → ck(X) (resp. Γ : [0, 1] → cwk(X)) is HKP-integrable in
ck(X) (resp. cwk(X)) if and only if there is a representation Γ = G + f , where G : [0, 1] → ck(X) (resp. G : [0, 1] → cwk(X))
is Pettis integrable in ck(X) (resp. cwk(X)) and f ∈ SHKP(Γ ).

2. HKP-integrability of ck(X)-valued multifunctions

The following two results are essential for our investigation. The first one follows directly from [32] but was not
formulated there explicitly. We formulate it in the context of perfect measure spaces (cf. [36, p. 771] for the definition),
but we will apply it for the Lebesgue measure on [0, 1].

Proposition 2.1. Let (Ω, Σ, µ) be a complete and perfect probability space and, let G : Ω → ck(X) be scalarly measurable.
Then ZG is compact in τp and ZG is compact in τm.

If ZG is weakly relatively compact in L1(µ) (for instance if G : Ω → ck(X) is Pettis integrable in cwk(X)), then ZG is compact
in σ(L1(µ), L∞(µ)) and in the norm topology of L1(µ), hence σ(L1(µ), L∞(µ)), τm and the norm topology of L1(µ) coincide
on ZG.

Proof. The τp-compactness of ZG is a consequence of the weak∗ compactness of B(X∗) and of the weak∗ continuity of the
support functions s(·,G(ω)), ω ∈ Ω . If {s(x∗

n,G) : n ∈ N} ⊂ ZG is arbitrary, then from Fremlin’s subsequence theorem
(see [21] or [38, Chapter 8]) follows the existence of a subsequence {s(x∗

nk ,G) :∈ N} that is a.e. convergent to a measurable
function h. If x∗ is a weak∗ cluster point of ⟨x∗

nk⟩n, then, due to the compactness of the sets G(ω), we have h = s(x∗,G) a.e.
As a result, the set ZG is τm-compact.

It is known that in L1(µ) a sequence that is weakly convergent and convergent in measure is convergent in the norm of
L1(µ). Thus, if ZG is also weakly relatively compact in L1(µ) then, being τm-compact, it is norm compact and all the three
topologies coincide on ZG.

The weak relative compactness of ZG for a Pettis integrable G : Ω → ck(X) has been proven in [8, Theorem 4.1] and
[32, Theorem 2.5]. �

Proposition 2.2 (See [16, Proposition 2]). If f : [0, 1] → X is scalarly measurable, then Zf is τm-compact. If f : [0, 1] → X is
HKP-integrable, then Zf is σ(HK , BV )-compact and σ(HK , BV ) coincides on Zf with τm.

Proposition 2.3. If Γ : [0, 1] → ck(X) is scalarly measurable, then ZΓ is compact in τp and ZΓ is compact in τm. If Γ is
HKP-integrable in cwk(X), then ZΓ is compact also in σ(HK , BV ) and the two topologies coincide on ZΓ .

Proof. τp-compactness of ZΓ and τm-compactness of ZΓ follow exactly in the same way as that of ZG and ZG in Proposi-
tion 2.1. Assume Γ : [0, 1] → ck(X) is HKP-integrable in cwk(X). In virtue of [19, Theorem 1] Γ = G + f where G is Pettis
integrable in cwk(X) and f ∈ SHKP(Γ ). In virtue of Proposition 2.1 the set ZG is weakly compact in L1[0, 1] and so it is also
σ(HK , BV )-compact in L1[0, 1]. Zf is σ(HK , BV )-compact and τm-compact by Proposition 2.2. Since the norm topology on
ZG coincides with τm, taking into account the decomposition, we see that σ(HK , BV ) and τm coincide on the set ZΓ and ZΓ

is compact in the both topologies. �

To prove a characterization of HKP-integrable ck(X)-valued multifunctions, we need a supplementary fact concerning real
functions.
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Lemma 2.4 (See [35, p. 157]). Let ⟨fn(t)⟩ be a sequence of non-negative integrable functions converging in measure to a function
f (t) on [0, 1]. If limn

 1
0 fn(t)dt =

 1
0 f (t)dt, then limn


E fn(t)dt =


E f (t)dt for all E ∈ L.

The following theorem extends [16, Theorem 3] to compact valued multifunctions.

Theorem 2.5. A scalarly HK-integrable multifunction Γ : [0, 1] → ck(X) is HKP integrable in cwk(X) if and only if it satisfies
the following conditions

(S) SHKP(Γ ) ≠ ∅;
(TC) on the set ZΓ ⊂ HK [0, 1] the topology σ(HK , BV ) coincides with τm;
(D) Γ is determined by a WCG space Y ⊆ X.

Proof. ⇒ Assume Γ : [0, 1] → ck(X) is HKP-integrable in cwk(X). In virtue of [19, Theorem 1] Γ = G+ f where G is Pettis
integrable in cwk(X) and f ∈ SHKP(Γ ). In virtue of Proposition 2.3 the condition (TC) is fulfilled and the set ZΓ is compact in
the both topologies. Concerning condition (D) it follows at once from the fact that both the Pettis integrable multifunction G
and the HKP-integrable multifunction f are determined by a WCG space Y ⊆ X (see [32, Proposition 2.2] and [16, Theorem
3], respectively).

⇐ Assume now that the conditions (S), (TC) and (D) are fulfilled. Take f ∈ SHKP(Γ ). Define G : [0, 1] → ck(X) by
Γ = G + f . Since s(x∗, Γ ) = s(x∗,G) + x∗f and s(x∗,G) ≥ 0 everywhere and for every x∗

∈ X∗,G is scalarly integrable.
Moreover, it follows from the inequalities

− s(−x∗, Γ (t)) ≤ x∗f (t) ≤ s(x∗, Γ (t)) for every x∗
∈ X∗ and t ∈ [0, 1] (6)

that f , and then G are determined by Y .
In order to prove theHKP-integrability ofΓ weneed only to show thatG is Pettis integrable. According to Propositions 2.1

and 2.3, respectively, the sets ZG and ZΓ are τm compact. Take an arbitrary sequence ⟨x∗
n⟩n with {x∗

n : n ∈ N} ⊂ B(X∗) and
assume for simplicity that s(x∗

n, Γ ) −→ s(x∗

0, Γ ) and s(x∗
n,G) −→ s(x∗

0,G) a.e. Due to (TC) and Proposition 2.2 the sequence
⟨s(x∗

n,G)⟩n is σ(HK , BV ) convergent to s(x∗

0,G). Nowwe apply Lemma 2.4 to get theweak convergence s(x∗
n,G) −→ s(x∗

0,G).
Thus, we have proven that ZG is weakly compact in L1[0, 1]. Being weakly compact and compact in measure in L1[0, 1], the
set ZG is compact in the norm topology of L1[0, 1]. In virtue of [32, Theorem 3.3] G is Pettis integrable in ck(X). �

As a direct consequence of the proof of the above theorem, we obtain the following interesting description of ck(X)-valued
multifunction that are HKP-integrable in cwk(X). The result can be considered as a partial completion of [19, Theorem 1]
and of [17].

Theorem 2.6. If Γ : [0, 1] → ck(X) is HKP-integrable in cwk(X) and f ∈ SHKP(Γ ), then Γ = G + f and G: [0, 1] → ck(X) is
Pettis integrable in ck(X).

As a particular case of the above result, we obtain a partial but essential generalization of [32, Theorem 3.6] in case when
Γ : [0, 1] → ck(X) is Pettis-integrable in cwk(X) with respect to the Lebesgue measure. But as the result holds true in case
of an arbitrary finite complete perfect measure space (Ω, Σ, µ), we sketch its general proof also.

Theorem 2.7. If Γ :Ω → ck(X) is Pettis-integrable in cwk(X) andµ is complete and perfect, thenΓ is Pettis integrable in ck(X)
and


E∈Σ MΓ (E) is a norm relatively compact subset of X.

Proof. According to [8, Theorem 2.5], Γ possesses a Pettis integrable selector f . Define G : [0, 1] → ck(X) by Γ = G + f .
Since Γ is determined by a WCG space (see [32, Proposition 2.2]), it follows from (6) that also G and f are determined by a
WCG space. According to Proposition 2.1 the set ZG is norm relatively compact in L1(µ) and so — in virtue of [32, Theorem
3.3]—G is Pettis integrable in ck(X). According to [23, Proposition 3J] the range of the integral of f is norm relatively compact.
It follows that Γ is Pettis integrable in ck(X). �

Remark 2.8. Theorem 2.7 fails for non-perfect measures. In [32, Remark 3.5] is described an example of a ck(l∞)-valued
multifunction, defined on a space with non-perfect measure, that is Pettis integrable in cwk(l∞) but not in ck(l∞).

The next theorem gives a complete description of those ck(X)-integrable compact valued multifunctions Γ for which the
total rangeΦΓ (I):=


I∈I ΦΓ (I) of the integral is norm relatively compact. The theoremsolves also the problem formulated

in [19, Question 1]. First we present a general situation (the result should be compared with [27, Theorem 8.5.10]).

Proposition 2.9. If a multifunction Γ : [0, 1] → cwk(X) is HKP-integrable in cwk(X), then the set ΦΓ (I):=


I∈I ΦΓ (I) is
weakly relatively compact.

Proof. Assume that Γ is HKP-integrable in cwk(X). Then according to [19, Theorem 1], there exists f ∈ SHKP(Γ ) such
that the multifunction G : [0, 1] → cwk(X) defined by Γ (t) = G(t) + f (t) is Pettis integrable in cwk(X). Then, for each
I ∈ I, ΦΓ (I) = MG(I) + (HKP)


I f . In virtue of [27, Theorem 8.5.10] the set


MG(Σ):=


E∈Σ MΓ (E) is weakly relatively

compact. (In fact it is weakly compact since MG(I) ⊂ MG[0, 1], for each I ∈ I.) Moreover also the set {(HKP)

I f : I ∈ I} is

weakly relatively compact (see [18, Theorem 1]). Therefore the set ΦΓ (I) is weakly relatively compact. �
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One should notice however that even in case of HKP-integrable functions the range of its HKP-integral may be non relatively
compact (see [18, Example 2]). Thus, even for ck(X)-valuedmultifunctionsΓ the setΦΓ (I) is not always relatively compact.

Theorem 2.10. If Γ : [0, 1] → ck(X) is scalarly HK-integrable, then the following conditions are equivalent:

(i) Γ is HKP-integrable in ck(X) and Φ(I) is relatively compact;
(ii) Each scalarly measurable selector of Γ is HKP-integrable and has norm relatively compact range of its integral;
(iii) Each scalarly measurable selector of Γ is HKP-integrable and has continuous primitive.

Proof. (i) ⇒ (ii) If f is a scalarly measurable selector of Γ , then its HKP-integrability follows from Proposition 1.5. As
f ∈ SHKP(Γ ), we have Φf (I) ∈ ΦΓ (I) ⊂ Φ(I), for each I ∈ I.

(ii) ⇒ (i) In virtue of [19, Theorem 1] Γ is HKP-integrable in cwk(X). Applying Theorem 2.6 we have a representation
Γ = G + f with the properties mentioned there. Theorem 2.7 yields then the norm relative compactness of the set MG(I).
Since ΦΓ (I) ⊂ MG(I) +


I∈I Φf (I) and the last set is in norm relatively compact, we have the required property of the

range of ΦΓ .
The equivalence (ii) ⇔ (iii) is a result of Naralenkov [34]. �

Our next result reverts to [32, Theorem 4.6], where Pettis integrability has been characterized in the language of core.

Definition 2.11 ([32, Definition 4.3]). Let Γ :Ω → c(X) be a multifunction. For each E ∈ Σ we define the core of Γ on E by
the formula

corΓ (E):=


µ(N)=0

conv Γ (E \ N) =


µ(N)=0

conv

 
ω∈E\N

Γ (ω)


.

One can immediately see that E ⊂ F yields corΓ (E) ⊂ corΓ (F). Moreover, if Γ dominates Θ : Ω → c(X), then corΘ(E)
⊂ corΓ (E), for each E ∈ Σ .

Theorem 2.12. A scalarly HK-integrable multifunction Γ : [0, 1] → ck(X) is HKP integrable in cwk(X) if and only if it satisfies
the following conditions

(S) SHKP(Γ ) ≠ ∅;
(TC) on the set ZΓ ⊂ HK [0, 1] the topology σ(HK , BV ) coincides with τm;
(CC) If ∆ : [0, 1] → ck(X) is scalarly measurable and dominated by Γ , then cor∆(E) ≠ ∅, for every E ∈ L+.

The condition (CC) may be replaced by a formally weaker

(CS) If f : [0, 1] → X is a scalarly measurable selector of Γ , then corf (E) ≠ ∅, for every E ∈ L+.

Proof. ⇒ IfΓ is HKP-integrable in cwk(X), then the conditions (S) and (TC) follow fromTheorem2.5. Let∆ : [0, 1] → ck(X)
be scalarly measurable and dominated by Γ . By Proposition 1.5 ∆ is HKP-integrable. Hence, by [19, Theorem 1] there exists
f ∈ SHKP(∆). Since for every E ∈ L+ we have corf (E) ⊂ cor∆(E) and corf (E) ≠ ∅ by [16, Theorem 3], the (CC) condition is
fulfilled.

⇐ Assume that (S), (TC) and (CS) are fulfilled. Define G : [0, 1] → ck(X) by Γ = G + f , where f ∈ SHKP(Γ ). In order to
prove the HKP-integrability of Γ we need only to show that G is Pettis integrable in cwk(X).

The weak compactness of ZG can be proved exactly as in the proof of Theorem 2.5.
According to [8] or [32, Theorem 4.8], in order to prove Pettis integrability of G in cwk(X), we should prove that each

scalarly measurable selector g of G is Pettis integrable. Let us fix one such g . In virtue of the condition (CS) we have
corg+f (E) ≠ ∅ for every E ∈ L+.

According to [30, Corollary 3.1], one can decompose [0, 1] into pairwise disjoint sets Sk ∈ L+ in such a way that g + f is
scalarly bounded on each Sk, k ∈ N. Hence, for each k ∈ N the collection Zg+f restricted to Sk is weakly relatively compact.
Talagrand’s characterization of Pettis integrability (see [38, Theorem 5-2-2], [30, Theorem 6.1] or [31, Theorem 4.10]) yields
Pettis integrability of g + f on each Sk.

Invoking again to [38, Theorem 5-2-2] (either to [30, Theorem 6.2] or to [31, Theorem 4.5]), we see that there exists a set
B(X) ⊃ Wk ∈ cwk(X) that spans a Banach space which determines and (g + f )χSk . If W :=


∞

k=1
1
2k
Wk, then W ∈ cwk(X)

and it spans a WCG space that determines g + f .
Let us notice now that f is also determined by a WCG Banach space, since we have assumed HKP-integrability of f

(see [16, Theorem 3]). Thus, f as well as g + f are determined by a common WCG Banach space, what immediately yields
determination of g by the same WCG space.

We already know that ZG is weakly relatively compact in L1[0, 1]. So by the Dunford characterization of weakly relatively
compact subsets of L1[0, 1], the family ZG is (bounded in L1[0, 1] and) uniformly absolutely continuous. Since−s(−x∗,G) ≤

x∗g ≤ s(x∗,G) everywhere, for each x∗, also Zg is (bounded in L1[0, 1] and) uniformly absolutely continuous. Applying once
again the Dunford characterization, we infer that Zg is weakly relatively compact in L1[0, 1].

Finally wemay apply [30, Theorem 6.2] or [31, Theorem 4.5] to obtain Pettis integrability of g . Thus, G is Pettis integrable
in cwk(X) and that completes the whole proof. �
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In case of multifunctions with relatively compact total range Φ(I) of the integral the above theorem has the following
form:

Theorem 2.13. A scalarly HK-integrablemultifunctionΓ : [0, 1] → ck(X) is HKP integrable in ck(X) andΦ(I) is norm relatively
compact if and only if it satisfies the following conditions
(S) There exists f ∈ SHKP(Γ ) with norm relatively compact range of its HKP-integral;

(TC) on the set ZΓ ⊂ HK [0, 1] the topology σ(HK , BV ) coincides with τm;
(CC) If ∆ : [0, 1] → ck(X) is scalarly measurable and dominated by Γ , then cor∆(E) ≠ ∅, for every E ∈ L+.
The condition (CC) may be replaced by (CS).

Proof. Only the implication ⇐ requires an explanation. We keep the notation of the proof of Theorem 2.12 which yields
Pettis integrability of G in cwk(X). But then, it follows from Theorem 2.7 that G is Pettis integrable in ck(X) and


E∈Σ MΓ (E)

is a norm relatively compact subset of X . This fact composed with (S) forces HKP-integrability of Γ in ck(X) and completes
the whole proof. �

3. Integration in weakly sequentially complete Banach spaces and in Banach spaces possessing the Schur property

When one investigates Pettis integrable functions, then the space c0 is that space which makes problems. If c0 ⊂ X
isomorphically, then there are X-valued scalarly integrable functions that are not Pettis integrable. Gordon proved in
[25, Theorem 40] that in case of Denjoy–Pettis integral a similar role to spaces not containing c0 is played by weakly
sequentially complete separable Banach spaces.

Let us recall that X is called weakly sequentially complete if each weakly Cauchy sequence in X is weakly convergent. It
is known that no weakly sequentially complete Banach space can contain an isomorphic copy of c0.

Gordon [25, Theorem 40 + Example 41] proved that a separable Banach space X is weakly sequentially complete if
and only if each X-valued scalarly Denjoy–Pettis-integrable function f : [0, 1] → X is Denjoy–Pettis integrable. His proof
remains valid for theHKP-integral also andwewill apply it here. It is our aim to extend that result to not necessarily separable
Banach spaces.

To formulate our next result we will recall first Romanowski’s lemma (see [37] or [26, Lemma 5.18]):

Lemma 3.1. Let F be a family of open subintervals of (α, β) and assume that F has the following properties;
(a) If (a, b) ∈ F and (b, c) ∈ F , then (a, c) ∈ F ;
(b) If (a, b) ∈ F and (c, d) ⊂ (a, b), then (c, d) ∈ F ;
(c) If (a, b) ∈ F for every [a, b] ⊂ (c, d), then (c, d) ∈ F ;
(d) If H ⊂ [α, β] is perfect and all open intervals contiguous to H are in F , then there exists I ∈ F such that I ∩ H ≠ ∅.
Then (α, β) ∈ F . �

Theorem 3.2. Let X be a weakly sequentially complete Banach space. A scalarly HK-integrable function f : [0, 1] → X is HKP-
integrable if and only if it is determined by a WCG space.

Proof. ⇐ Let Φ : I → X∗∗ be the HKD-integral of f and let F be the collection of all open intervals I ⊂ (0, 1) such that
Φ(J) ∈ X for every open J ⊂ I .We are going to prove that (0, 1) ∈ F and sowe have to verify condition (a)–(d) of Lemma 3.1
in case (α, β) = (0, 1).

It is obvious that conditions (a) and (b) hold true. Assume now that (a, b) ∈ F for every [a, b] ⊂ (c, d). We are going to
prove that f is HKP-integrable on [c, d]. Since for each x∗

∈ X∗ the function x∗f is HK-integrable, we have for every x∗
∈ X∗

x∗Φ[c, d] =

 d

c
x∗f (t) dt = lim

n

 d−1/n

c+1/n
x∗f (t) dt = lim

n
x∗Φ[c + 1/n, d − 1/n].

Thus, the sequence {Φ[c + 1/n, d − 1/n]; n ∈ N} is weakly Cauchy and weak∗ convergent to Φ[c, d]. As the space X is
assumed to be weakly sequentially complete and weak∗ convergent sequences may have only one limit point, we have
Φ[c, d] ∈ X and this verifies condition (c).

We are proving that (0, 1) ∈ F . Let H be a perfect subset of [0, 1] such that each interval in (0, 1) contiguous to H
belongs to F . Since f is HKD-integrable on [0, 1] it follows from [25, Theorem 33] that there exists an interval [u, v] with
u, v ∈ H and H ∩ (u, v) ≠ ∅ such that f is Dunford integrable in [u, v]. Since c0 ⊈ X and f is determined by a WCG space,
by [32, Theorem 2.14] f is Pettis integrable on [u, v]. Thus, (d) is fulfilled and so (0, 1) belongs to F what means (in virtue
of (c)) that f is HKP-integrable in [0, 1].

⇒ If f is HKP-integrable, then according to [16, Theorem 3], it is determined by a WCG space. �

Taking into account the characterization of weakly sequentially complete Banach spaces by Gordon [25], we obtain the
following result:

Theorem 3.3. The following conditions are equivalent for an arbitrary Banach space X:
(i) X is weakly sequentially complete Banach space;
(ii) Each scalarly HK-integrable function f : [0, 1] → X that is determined by a WCG space is HKP-integrable;
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(iii) Each scalarly HK-integrable multifunction Γ : [0, 1] → cwk(X)[ck(X)] that is determined by a WCG space, is HKP-
integrable in cwk(X).

Proof. (i) ⇒ (ii) has been proven in Theorem 3.2.
(ii) ⇒ (iii) Let f be a scalarly measurable selector of Γ (Lemma 1.4). By (ii) f ∈ SHKP(Γ ). Hence, it follows from

[19, Theorem 1] that Γ is HKP-integrable in cwk(X).
(iii) ⇒ (i) Gordon [25, Example 41] proved that if X is a separable non weakly sequentially complete Banach space, then

there exists an X-valued scalarly HK-integrable function that is not HKP-integrable. �

We recall that a Banach space X has the Schur property is each sequence weakly convergent to 0 is also norm convergent. It
well known that each space with the Schur property is weakly sequentially complete. The next theorem generalizes one of
the results from [34] and answers Question 3 from [18].

Theorem 3.4. The following conditions are equivalent for an arbitrary Banach space X:
(i) X has the Schur property;
(ii) Each scalarly HK-integrable function f : [0, 1] → X that is determined by a WCG space, is HKP-integrable and the range of

its integral is norm relatively compact;
(iii) Each scalarly HK-integrable multifunction Γ : [0, 1] → ck(X) that is determined by a WCG space, is HKP-integrable in

ck(X).

Proof. (i)⇒ (iii) According to Theorem 3.3, if Γ : [0, 1] → ck(X) is scalarly HK-integrable and determined by aWCG space,
then it is HKP-integrable in cwk(X). The Schur property of X forces the integrability in ck(X).

(iii) ⇒ (ii) If f : [0, 1] → X is scalarly integrable and determined by a WCG space, then by (iii) it is HKP-integrable. Also
if Γ (t) := conv{0, f (t)}, then Γ is HKP-integrable in ck(X). But Φf (I) ⊂ ΦΓ [0, 1], which is compact. This completes the
proof.

(ii) ⇒ (i) Assume that X fails the Schur property. Then we can find a sequence {xn : n ∈ N} that is weakly convergent to
zero and all its terms are of norm 1. Moreover, due to Bessaga–Pełczyński selection principle (cf. [13, p. 42]), wemay choose
a subsequence that is a basis of the space Y := span{xn : n ∈ N}. Assume that {xn : n ∈ N} is already such. We are going to
construct an Y -valued function that is HKP-integrable but the range of its integral is not relatively compact.

We will use an idea of Gamez and Mendoza [24]. So consider a sequence of intervals An = [an, bn] ⊆ [0, 1] such that
a1 = 0, bn < an+1 for all n ∈ N and limn→∞ bn = 1 and define f : [0, 1] → Y by

f (t) =

∞
n=1

xn


χA2n−1(t)
|A2n−1|

−
χA2n(t)
|A2n|


.

One can easily see that the sequence
k

n=1 xn


χA2n−1 (t)
|A2n−1|

−
χA2n (t)
|A2n|


k
is eventually constant for each t ∈ [0, 1], hence norm

convergent.
We claim that f is HKP-integrable and for each I ∈ I

(HKP)


I
f (t) dt =

∞
n=1

xn


|A2n−1 ∩ I|

|A2n−1|
−

|A2n ∩ I|
|A2n|


. (7)

One can easily see that the series is norm convergent because it has always only finitely many terms.
If I = [a, b] and b < 1, then the sum in (7) is finite and the equality holds true. Consider now a sequence ck ↗ 1 and a

functional x∗
∈ B(Y ∗). Since {xn: n ∈ N} is a normalized basis there exists in Y ∗ a biorthogonal sequence {x∗

n: n ∈ N} being
a weak∗-basis of Y ∗. In particular x∗

=


∞

n=1 αnx∗
n , where the series is weak∗-convergent. We should notice that as xn → 0

weakly, we have αn = x∗(xn) → 0. We have now

(HK)

 ck

0
x∗f (t) dt =


αn

|A2n−1 ∩ [0, ck]|
|A2n−1|

if a2n−1 < ck < b2n−1

αn if b2n−1 ≤ ck ≤ a2n

αn


1 −

|A2n ∩ [0, ck]|
|A2n|


if a2n < ck < b2n

0 otherwise.

Since ck ↗ 1 is arbitrary, it follows that limk(HK)
 ck
0 x∗f (t) dt = 0 and so we may apply [26, Theorem 9.21] to get the

HK-integrability of x∗f on [0, 1] and the equality (7) for I = [0, 1].
Since (HKP)


A2n−1

f (t) dt = xn, n ∈ N, the range of the integral is not relatively compact. �

4. Convergence theorem for the HKP-integral

Convergence theorem of Vitali type is fundamental in the theory of absolute integration. Several results of that type are
well known in case of Bochner or Pettis integrable multifunctions with values in separable Banach spaces. Theorems of
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that type for non-separable Banach spaces have been proven for Pettis integrable functions in [29–31,2]. The corresponding
results for Pettis integrable multifunctions can be found in [32]. We are going to present here and in the next section two
convergence theorems for non-absolute integrals, the first for HKP-integrable multifunctions and the second for Henstock
integrable multifunctions. Their formulation reverts to the corresponding form of the results in [12], [16, Theorems 5,6]
and [32]. From our point of view [32, Theorem 3.16] is of particular interest.

To prove our convergence results, we need another form of Proposition 2.3 and another condition guaranteeing the
HKP-integrability (Theorem 4.2).

We recall that a family {hα:α ∈ A} of real valued functions in HK [0, 1] is said to be Henstock–Kurzweil equi-integrable
(or equi-HK-integrable) on [0, 1] whenever for every ε > 0 there is a gauge δ such that

sup

 p
i=1

hα(ti)|Ii| − (HK)

 1

0
hα(t)dt

 :α ∈ A


< ε

for each δ-fine partition {(Ii, ti) : i ≤ p} of [0, 1].

Lemma 4.1. Let Γ : [0, 1] → ck(X) be a scalarly HK-integrable multifunction such that each infinite subset of ZΓ contains an
infinite equi-HK-integrable subset. Then the set ZΓ is σ(HK , BV ) and τm compact, and the two topologies coincide on ZΓ .

Proof. According to Proposition 2.3 the set ZΓ is τm-compact. Take now a sequence ⟨s(x∗
n, Γ )⟩n in ZΓ converging in

measure to s(x∗, Γ ) ∈ ZΓ . If (s(x∗
nk , Γ ))k → s(x∗, Γ ) a.e., it is also pointwise bounded because Γ is compact valued. So

applying the equi-integrability of a subsequence ⟨s(x∗
nkp

, Γ )⟩p, we see that s(x∗
nkp

, Γ )p → s(x∗, Γ ) weakly in HK [0, 1] (see
[5, Theorem4]). It follows that each subsequence of ⟨s(x∗

n, Γ )⟩n contains a subsequenceweakly convergent to s(x∗, Γ ) and so
s(x∗

n, Γ ) → s(x∗, Γ ) weakly in HK [0, 1]. Thus the identity mapping (ZΓ , τm) −→ (ZΓ , σ (HK , BV )) is continuous and since
ZΓ is τm-compact, it is a homeomorphism. Consequently, σ(HK , BV ) and τm coincide on ZΓ . This completes the proof. �

Theorem 4.2. Let Γ : [0, 1] → ck(X) be a scalarly HK-integrable multifunction determined by a WCG space. If each infinite
family of ZΓ contains an infinite equi-HK-integrable subfamily, then Γ is HKP-integrable in cwk(X).

Proof. We are going to prove that each scalarly measurable selector of Γ is HKP-integrable. It will follow then from
[19, Theorem 2] that Γ is HKP-integrable in cwk(X). Since Γ is determined by aWCG space, the same holds true also for its
selectors. Let f be a scalarly HK-integrable selector of Γ , existing by Lemma 1.4. In order to prove its HKP-integrability, we
need to show (see [16, Theorem3]) that σ(HK , BV ) and τm coincide onZf . Due to τm-compactness ofZf (see Proposition 2.2)
it is enough to show that the identity mapping (Zf , τm) −→ (Zf , σ (HK , BV )) is continuous. To achieve it, we will prove
that each τm-convergent sequence ⟨x∗

nf ⟩n contains a subsequence that is σ(HK , BV )-convergent to the same limit.
Let G : [0, 1] → ck(X) be defined by G(t) := Γ (t) − f (t), t ∈ [0, 1]. It is important to observe that s(x∗,G(t)) ≥ 0

for every x∗
∈ X∗ and every t ∈ [0, 1]. Moreover let {x∗

n: n ∈ N} ⊂ B(X∗) be an arbitrary sequence such that ⟨x∗
nf ⟩n i s a.e.

convergent to an element of Zf .
Let x∗ be a weak∗-cluster point of ⟨x∗

n⟩n. According to Fremlin’s subsequence theorem there exists a subsequence ⟨x∗
nk⟩

such that we have a.e.

s(x∗

nk , Γ ) → s(x∗, Γ ) s(−x∗

nk , Γ ) → s(−x∗, Γ ) and x∗

nk f → x∗f a.e.

and hence also

s(x∗

nk ,G) → s(x∗,G) s(−x∗

nk ,G) → s(−x∗,G) a.e.

Without loss of generality we may assume that the sequences ⟨s(x∗
nk , Γ )⟩k and ⟨s(−x∗

nk , Γ )⟩k are equi-HK-integrable. Since
obviously the sequences are pointwise bounded, by [14, Theorem 4] we obtain for each I ∈ I the convergence

(HK)


I
s(x∗

nk , Γ (t)) dt −→ (HK)


I
s(x∗, Γ (t)) dt (8)

and

(HK)


I
s(−x∗

nk , Γ (t)) dt −→ (HK)


I
s(−x∗, Γ (t)) dt. (9)

Taking into account the definition of G and adding (8) and (9) we get the convergence

s(x∗

nk ,G) + s(−x∗

nk ,G) −→ s(x∗, Γ ) + s(−x∗, Γ ) a.e.

and for each I ∈ I

(L)

I
[s(x∗

nk ,G(t)) + s(−x∗

nk ,G(t))] dt −→ (HK)


I
[s(x∗, Γ (t)) + s(−x∗, Γ (t))] dt.
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In view of Lemma 2.4 we have

s(x∗

nk ,G) + s(−x∗

nk ,G) −→ s(x∗, Γ ) + s(−x∗, Γ ) = s(x∗,G) + s(−x∗,G) weakly in L1[0, 1],

and so the Vitali–Hahn–Saks Theorem yields the uniform integrability of the family

{s(x∗

nk ,G(t)) + s(−x∗

nk ,G): k ∈ N}.

Hence also the functions {s(x∗
nk ,G) dt: k ∈ N} are uniformly integrable. In particular, the Vitali convergence theorem yields

the convergence

(L)

I
s(x∗

nk ,G(t)) dt −→ (L)

I
s(x∗,G(t)) dt. (10)

Thus, it follows from (8) and (10) that

(HK)


I
x∗

nk f (t) dt −→ (HK)


I
x∗f (t) dt for every I ∈ I.

Notice now that it follows from our assumptions, due to [14, Theorem 4], that supk ∥s(±x∗
nk , Γ )∥A < ∞. Since f is a selector,

we have ∥x∗f ∥A ≤ ∥s(x∗, Γ )∥A + ∥s(−x∗, Γ )∥A for each x∗
∈ X∗ and so supk ∥x∗

nk f ∥A < ∞. This means that x∗
nk f −→ x∗f

weakly in HK [0, 1] (cf. [6, Proposition 3.3]).
It follows from the Krein–Šmulian Theorem that Zf is σ(HK , BV )-compact and σ(HK , BV ) is weaker than τm. As both are

compact on Zf , they coincide. It follows from [16, Theorem 3] that f ∈ SHKP(Γ ). This completes the whole proof. �

As an immediate corollary of the above proposition we have the following generalization of [16, Proposition 4]:

Theorem 4.3. Let f : [0, 1] → X be scalarly HK-integrable function determined by a WCG. If each infinite subset of Zf contains
an infinite equi-HK-integrable subset, then f is HKP-integrable.

Now we are in a position to prove a Vitali type convergence theorem for HKP-integrable functions.

Theorem 4.4. Let Γn : [0, 1] → ck(X) , n ∈ N, be a sequence of multifunctions that are HKP-integrable in cwk(X) and let
Γ : [0, 1] → ck(X) be a multifunction. Assume that the following conditions are satisfied:
(a) s(x∗, Γn) → s(x∗, Γ ) a.e. for each x∗

∈ X∗ (the exceptional sets depend on x∗);
(b) for each x∗

∈ X∗ the sequence ⟨s(x∗, Γn)⟩n is pointwise bounded;
(c) each countable subset of


n ZΓn is equi-HK-integrable.

Then Γ is HKP-integrable in cwk(X) and

lim
n

∥s(x∗, Γn) − s(x∗, Γ )∥A = 0 for each x∗
∈ X∗. (11)

Due to the Banach–Steinhaus theorem the condition (b) is equivalent to
(b′) ∀ t ∈ [0, 1] supn |Γn(t)| < ∞.

Proof. By condition (a), (b) and (c) and by [14, Theorem 4] it follows that Γ is scalarly HK-integrable. We are going to
prove that each sequence in ZΓ is equi-HK-integrable. So let {s(x∗

m, Γ ) : x∗
m ∈ B(X∗)} be an arbitrary sequence. At first

we observe that the sequence ⟨s(x∗
m, Γn(t))⟩n,m is pointwise bounded in [0, 1]. In fact let us fix t ∈ [0, 1]. By (b) we have

supn |s(x∗, Γn(t))| < ∞ and so the Banach–Steinhaus theorem gives supn |Γn(t)| < +∞ for every t ∈ [0, 1]. So we have
supm,n |s(x∗

m, Γn(t))| ≤ supn |Γn(t)| < +∞.
Now set Nm = {t ∈ [0, 1] : s(x∗

m, Γn(t)) 9 s(x∗
m, Γ (t))} and N =


∞

m=1 Nm. Let us fix an arbitrary ε > 0. According to (c)
the sequence ⟨s(x∗

m, Γn)⟩n,m is equi-HK-integrable and so by [26, p. 361], there is a gauge δ′ such that if {(I1, t1), . . . , (Ip, tp)}
is a δ′-fine partition of [0, 1], then for every n,m ∈ N p

i=1

s(x∗

m, Γn(ti))χNc (ti)|Ii| − (HK)

 1

0
s(x∗

m, Γn(t)) dt

 < ε.

Moreover, it follows from (a) that for eachm there is nm ∈ N such that for every n ≥ nm p
i=1

s(x∗

m, Γn(ti))χNc (ti)|Ii| −

p
i=1

s(x∗

m, Γ (ti))χNc (ti)|Ii|

 < ε.

By (c), for each m ∈ N the sequence ⟨s(x∗
m, Γn)⟩n is equi-HK-integrable and by (b) it is pointwise bounded. Then, by

[14, Theorem 4], there is km ≥ nm such that for every n ≥ km(HK)

 1

0
s(x∗

m, Γn(t)) dt − (HK)

 1

0
s(x∗

m, Γ (t)) dt
 < ε.
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Consequently, for eachm p
i=1

s(x∗

m, Γ (ti))χNc (ti)|Ii| − (HK)

 1

0
s(x∗

m, Γ (t)) dt

 ≤

 p
i=1

s(x∗

m, Γ (ti))χNc (ti)|Ii| −

p
i=1

s(x∗

m, Γkm(ti))χNc (ti)|Ii|


+

 p
i=1

s(x∗

m, Γkm(ti))χNc (ti)|Ii| − (HK)

 1

0
s(x∗

m, Γkm(t)) dt


+

(HK)

 1

0
s(x∗

m, Γkm(t)) dt − (HK)

 1

0
s(x∗

m, Γ (t)) dt
 < 3ε.

But according to [14, Lemma 1] there is a gauge δ′′ on N such that if {(I1, t1), . . . , (Ip, tp)} is a δ′′-fine partition anchored in
N , then supm

p
i=1 |s(x∗

m, Γ (ti))| |Ii| < ε. So if δ(t) := δ′(t)χNc (t)+ δ′′(t)χN(t), then for each partition {(I1, t1), . . . , (Ip, tp)}
of [0, 1] that is δ-fine, we have p

i=1

s(x∗

m, Γ (ti))|Ii| − (HK)

 1

0
s(x∗

m, Γ (t)) dt

 < 4ε,

what proves the equi-integrability of the sequence ⟨s(x∗
m, Γ )⟩m.

It order to prove the HKP-integrability of Γ we need to show yet the existence of a weakly compactly generated space
Y ⊂ X such that s(x∗, Γ ) = 0 a.e., if x∗

∈ Y⊥. But as eachΓn is a ck(X) valuedmultifunction HKP-integrable in cwk(X), there
is a weakly compact set Wn ⊂ B(X) such that s(x∗, Γn) = 0 a.e. if x∗

∈ Y⊥
n , where Yn is the Banach space generated by Wn.

Consequently, if W =


∞

n=1 2
−nWn, then W is weakly compact and the Banach space Y generated by W has the required

property.
Since each sequence ⟨s(x∗, Γn)⟩n is equi-integrable and pointwise bounded applying once again [14, Theorem 4] we get

lim
n

∥s(x∗, Γn) − s(x∗, Γ )∥A = 0 for each x∗
∈ X∗. �

Remark 4.5. Amore careful analysis of the above proof shows that one can weaken the condition (c) to the following form:
each infinite set {s(x∗

mk
, Γmk) : k ∈ N, ∥x∗

mk
∥ ≤ 1} contains an infinite subset {s(x∗

mkl
, Γmkl

) : l ∈ N, ∥x∗
mkl

∥ ≤ 1} that is
equi-HK-integrable.

5. Convergence theorems for the Henstock integral

Onemay askwhether the convergence in the equality (11)may be uniform on B(X∗). Wewill show now that it is possible
but under stronger assumptions on the convergence and integrability.

We recall first that if A and B are nonempty subsets of X , the Hausdorff distance of A and B is defined by dH(A, B) :=

max{e(A, B), e(B, A)} where e(A, B) = sup{d(x, B) : x ∈ A} and d(x, B) = inf{∥x − y∥ : y ∈ B}.

Definition 5.1. Γ : [0, 1] → cb(X) is said to beHenstock integrable if there exists a setΦΓ [0, 1] ∈ cb(X)with the following
property: for every ε > 0 there exists a gauge δ on [0, 1] such that for each δ-fine partition {(I1, t1), . . . , (Ip, tp)} of [0, 1],
we have

dH


ΦΓ [0, 1],

p
i=1

Γ (ti)|Ii|


< ε.

We say that Γ is Henstock integrable on I ∈ I if Γ χI is Henstock integrable. �

It is easily seen from the definition and the completeness of the Hausdorff metric that cwk(X)[ck(X)]-valued Henstock
integrable multifunctions are integrable in cwk(X)[ck(X)].

According to Hörmander’s equality (cf. [27, p. 9]) we have the equality

dH


K ,

p
i=1

Γ (ti)|Ii|


= sup

∥x∗∥≤1

s(x∗, K) −

p
i=1

s(x∗, Γ (ti))|Ii|

 (12)

for each δ-fine partition {(I1, t1), . . . , (Ip, tp)} of [0, 1] and set K ∈ cb(X).
Hörmander’s equality allows us to reduce the Henstock integrability of multifunctions to the Henstock integrability of

functions by embedding the families ck(X), cwk(X) and cb(X) into the Banach space l∞(B(X∗)). This standard approach
works properly for the Debreu, Birkhoff and McShane integrals (cf. [13,10,3], respectively). In case of the Pettis integral that
method not always can be applied but in many cases it is also useful (cf. [33]).
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More precisely, let j : cb(X) → l∞(B(X∗)) be the mapping defined by j(K)(x∗) = s(x∗, K). Then j(cb(X)), j(ck(X)) and
j(cwk(X)) are closed cones of l∞(B(X∗)) (see [11, Theorem II.19]). Therefore amultifunction Γ : [0, 1] → cb(X) is Henstock
integrable if and only if the single valued function j ◦ Γ : [0, 1] → l∞(B(X∗)) is Henstock integrable in the usual sense.
The key point is that j(cb(X)), j(ck(X)) and j(cwk(X)) are closed cones. Consequently, if z ∈ l∞(B(X∗)) is the value of the
Henstock integral of j ◦ Γ , then there exists a set K ∈ cb(X) with j(K) = z.

As an immediate corollary we obtain

Theorem 5.2. A scalarly HK-integrable multifunction Γ : [0, 1] → cb(X) is Henstock integrable if and only if ZΓ is equi-HK-
integrable.

And as a direct consequence of the convergence theorem for Henstock integrable functions in [14, Theorem 4], we get the
following convergence result.

Theorem 5.3. Let Γn : [0, 1] → cb(X) , n ∈ N, be a sequence of multifunctions that are Henstock integrable and let
Γ : [0, 1] → cb(X) be a multifunction. Assume that the following conditions are satisfied:

(a) limn dH(Γn, Γ ) = 0 a.e.;
(b) for each x∗

∈ X∗ the sequence ⟨s(x∗, Γn)⟩n is pointwise bounded;
(c)


n ZΓn is equi-HK-integrable.

Then Γ is Henstock integrable and

lim
n

dA(Γn, Γ ) = lim
n

sup
x∗∈B(X∗)

∥s(x∗, Γn) − s(x∗, Γ )∥A = 0. (13)

Due to the Banach–Steinhaus theorem the condition (b) is equivalent to

(b′) ∀ t ∈ [0, 1] supn |Γn(t)| < ∞.

Remark 5.4. It is worthwhile to recall that a function f : [0, 1] → R is Denjoy–Perron integrable on [0, 1] if there exists an
ACG∗

(s) function F : [0, 1] → R such that F ′
= f a.e. We refer to [5] for the definition of ACG∗

(s) function. By a classical result,
a function f : [0, 1] → R is Denjoy–Perron integrable on [0, 1] if and only if it is HK-integrable on [0, 1] (see [26, Theorem
11.3 and 11.4]). See also [5,7] for equivalent definitions of ACG conditions. So if in the definition of HKP-integral we replace
the HK-integrability for real functions with the Denjoy–Perron integrability, we obtain an integral equivalent to the HKP
one. For sake of simplicity we call HKP-integral also this Denjoy extension of the Pettis integral (see also the definition of
HKP integral in [34]).

It is well known that a sequence of real valued pointwise convergent functions is equi-HK-integrable if and only if the
sequence of their primitives is uniformly ACG∗

(s) (see e.g. [28,5]). So taking into account such an equivalence, by Theorem 5.3
we can formulate also the following result:

Theorem 5.5. Let Γn : [0, 1] → cb(X) , n ∈ N, be a sequence of multifunctions that are Henstock integrable and let
Γ : [0, 1] → cb(X) be a multifunction. Assume that the following conditions are satisfied:

(a) limn dH(Γn, Γ ) = 0 everywhere in [0, 1];
(b) the set {s(x∗, Φn) : ∥x∗

∥ ≤ 1, n ∈ N} is uniformly ACG∗

(s), where Φn’s are H-primitives of Γn’s.

Then Γ is Henstock integrable and

lim
n

dA(Γn, Γ ) = lim
n

sup
x∗∈B(X∗)

∥s(x∗, Γn) − s(x∗, Γ )∥A = 0. (14)
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