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1. Introduction

After the pioneering works of Aumann and Debreu, the theory of multivalued functions has been inten-
sively studied and several notions of integral have been developed using different techniques, see for example 
[48,40,41,12,3,24,14–16,25,43,4,5,26,27,20,6,10,37]. These notions have shown to be useful when modeling 
some theories in different fields as optimal control and mathematical economics, see for example [36,2,18,
30,31]. The choice to deal with these types of integration is motivated by the fact that a very important 
tool in this framework is the Kuratowski and Ryll-Nardzewski theorem which guarantees the existence of 
measurable selectors, though this famous result requires the separability of the range space X.

The starting point of this research are the papers [14–16,43] in which this result was extended to the 
non-separable Banach spaces for the Pettis multivalued integral and the papers [27,25,26,24] where the 
existence of selections integrable in the same sense of the corresponding multifunctions has been considered 
for some gauge integrals in the hyperspace cwk(X) (ck(X)) of convex and weakly compact (compact) subsets 
of a general Banach space X and [6,8,9] in which these arguments are studied in suitable Banach lattices.
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In the present paper selection results are obtained for Henstock, McShane, Birkhoff and variational 
integrals of cwk(X)-valued multifunctions. Also a number of examples are given when this is not possible.

The paper is organized as follows: in section 2 the Henstock, McShane, Birkhoff and variationally multi-
valued integrals are considered for multifunctions taking values in cwk(X), and an embedding result, which 
will be useful later, is recalled. Moreover some other properties of variational integrals are proved, as for 
example their Bochner measurability.

Section 3 is more specifically devoted to selections theorems: results concerning McShane (resp. Henstock) 
integrability of all selectors of a McShane (resp. Henstock) integrable multifunction are given, at least in 
the separable case, and examples have been given to show that in non-separable spaces the results can fail.

In case of a variationally Henstock (resp. McShane) integrable cwk(X)-valued multifunction, the problem 
of existence of at least one variationally Henstock (resp. McShane) selection has been investigated. Full 
solution has been given for Banach spaces with the Radon–Nikodým Property. In case of a general space 
X we present a solution for the variational McShane integral. It remains an open problem if, in a general 
Banach space X, any cwk(X)-valued variationally Henstock-integrable multifunction has a variationally 
Henstock-integrable selection. Results with positive answers are given in some particular cases.

In section 4, thanks to the structure of near vector space of cwk(X), it is shown that the variationally 
Henstock integrability of F , with 0 ∈ F , implies its Birkhoff integrability and this result is used in order 
to obtain a decomposition extending the one given in [27] for compact convex valued multifunctions. For 
scalarly measurable multifunctions some implications are also given, connecting Henstock, McShane and 
Pettis multivalued integrability to one another. Moreover an example of a variationally Henstock but not 
variationally McShane integrable multifunction is given.

2. Preliminary facts

Throughout [0, 1] is the unit interval of the real line equipped with the usual topology and Lebesgue 
measure λ, L denotes the family of all Lebesgue measurable subsets of [0, 1], and I is the collection of all 
closed subintervals of [0, 1]. If I ∈ I then |I| denotes its length.

X is an arbitrary Banach space with its dual X∗. The closed unit ball of X∗ is denoted by B(X∗). cwk(X)
is the family of all non-empty convex weakly compact subsets of X and ck(X) is the family of all compact 
members of cwk(X). We consider on cwk(X) the Minkowski addition (A +B : = {a +b : a ∈ A, b ∈ B}) and 
the standard multiplication by scalars. ‖A‖ := sup{‖x‖ : x ∈ A}. dH is the Hausdorff distance in cwk(X). 
cwk(X) with the Hausdorff distance is a complete metric space.

For every C ∈ cwk(X) the support function of C is denoted by s(·, C) and defined on X∗ by s(x∗, C) =
sup{〈x∗, x〉 : x ∈ C}, for each x∗ ∈ X∗. For all unexplained definitions we refer to [17].

A map Γ : [0, 1] → 2X \ {∅} (= non-empty subsets of X) is called a multifunction. A multifunction 
Γ : [0, 1] → 2X \ {∅} is said to be a simple multifunction if there exists a finite collection {E1, . . . , Ep} of 
measurable subsets of [0, 1], pairwise disjoint, such that Γ is constant on each Ej .

A multifunction Γ : [0, 1] → cwk(X) is said to be Effros measurable (or simply measurable) if for each 
open O ⊂ X, the set {t ∈ [0, 1] : Γ (t) 

⋂
O 	= ∅} is measurable.

A multifunction Γ : [0, 1] → cwk(X) is said to be scalarly measurable if for every x∗ ∈ X∗, the map 
s(x∗, Γ (·)) is measurable. Γ is said to be Bochner measurable if there exists a sequence of simple multifunc-
tions Γn : [0, 1] → cwk(X) such that

lim
n→∞

dH(Γn(t), Γ (t)) = 0

for almost all t ∈ [0, 1].
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It is well known that the measurability of a cwk(X)-valued multifunction yields its scalar measurability 
(if X is separable also the reverse implication is true). Moreover, each Bochner measurable multifunction is 
also measurable (see [36]). The reverse implication fails (see Example 3.8).

A measurable multifunction Γ is said to be Aumann integrable if it admits at least one Bochner integrable 
selection. A function f : [0, 1] → X is called a selection of Γ if f(t) ∈ Γ (t), for every t ∈ [0, 1].

A partition P in [0, 1] is a collection {(I1, t1), . . . , (Ip, tp)}, where I1, . . . , Ip are nonoverlapping subinter-
vals of [0, 1], ti is a point of [0, 1], i = 1, . . . , p. If ∪p

i=1Ii = [0, 1], then P is a partition of [0, 1]. If ti is a 
point of Ii, i = 1, . . . , p, we say that P is a Perron partition of [0, 1].

A gauge on [0, 1] is a positive function on [0, 1]. For a given gauge δ on [0, 1], we say that a partition 
{(I1, t1), . . . , (Ip, tp)} is δ-fine if Ii ⊂ (ti − δ(ti), ti + δ(ti)), i = 1, . . . , p.

Given a function g : [0, 1] → X and a partition P = {(I1, t1), . . . , (Ip, tp)} in [0, 1] we set

σ(g,P) =
p∑

i=1
|Ii|g(ti).

Definition 2.1. A multifunction Γ : [0, 1] → cwk(X) is said to be Henstock (resp. McShane) integrable on 
[0, 1], if there exists a non-empty closed convex set ΦΓ ([0, 1]) ⊂ X such that for every ε > 0 there exists a 
gauge δ on [0, 1] such that for each δ-fine Perron partition (resp. partition) {(I1, t1), . . . , (Ip, tp)} of [0, 1], 
we have

dH

(
ΦΓ ([0, 1]),

p∑
i=1

Γ (ti)|Ii|
)

< ε . (1)

A multifunction Γ : [0, 1] → cwk(X) is said to be Birkhoff (resp. abs-Birkhoff ) integrable on [0, 1], if there 
exists a non-empty closed convex set ΦΓ ([0, 1]) ∈ cwk(X) with the following property: for every ε > 0 there 
is a countable partition Π0 of [0, 1] in L such that for every countable partition Π = (An)n of [0, 1] in L finer 
than Π0 and any choice T = (tn)n in An, the series 

∑
n λ(An)Γ (tn) is unconditionally convergent (resp. 

absolutely convergent) and

dH

(
ΦΓ ([0, 1]),

∑
n

Γ (tn)λ(An)
)

< ε . (2)

A multifunction Γ : [0, 1] → cwk(X) is said to be Henstock (resp. McShane or Birkhoff ) integrable on I ∈ I
if Γ1I is respectively integrable on [0, 1]. We write then (H) 

∫
I
Γ dt := ΦΓ1I

([0, 1]) (resp. (MS) 
∫
I
Γ dt :=

ΦΓ1I
([0, 1]) or (Bi) 

∫
I
Γ dt := ΦΓ1I

([0, 1])). It is known that a multifunction that is Henstock (McShane, 
Birkhoff) integrable on [0, 1] is in the same manner integrable on each I ∈ I (see e.g. [27]).

It is easily seen from the definition and the completeness of the Hausdorff metric that ck(X)
(cwk(X))-valued integrable multifunctions have compact (weakly compact) values of their integrals.

Moreover we would like to recall that a vector function g : [0, 1] → X is Birkhoff-integrable if it is 
McShane integrable, but just measurable gauges are involved in the notion of McShane integrability. More 
precisely

Definition 2.2. g : [0, 1] → X is Birkhoff-integrable if and only if there exists an element y ∈ X such that for 
each ε > 0 a measurable gauge δ can be found on [0, 1], such that, as soon as P = {(tj , Ij) : j = 1, . . . , n} is 
any δ-fine partition of [0, 1], it holds ‖σ(g, P) − y‖ ≤ ε.

(For the equivalence of this definition with the more common notion of Birkhoff integrability see [46,10,
13].)
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Definition 2.3. A multifunction Γ : [0, 1] → cwk(X) is said to be variationally Henstock (variationally 
McShane) integrable, if there exists a finitely additive multifunction ΦΓ : I → cwk(X) with the following 
property: for every ε > 0 there exists a gauge δ on [0, 1] such that for each δ-fine Perron partition (partition) 
{(I1, t1), . . . , (Ip, tp)} of [0, 1], we have

p∑
j=1

dH (ΦΓ (Ij), Γ (tj)|Ij |) < ε . (3)

We write then (vH) 
∫ 1
0 Γ dt := ΦΓ ([0, 1]) ((vMS) 

∫ 1
0 Γ dt := ΦΓ ([0, 1])). We call the set multifunction ΦΓ

the variational Henstock (McShane) primitive of Γ . The variational integrals on I ∈ I are defined in the 
same way as the ordinary ones. The integrals are uniquely determined.

We say that a multifunction Γ is scalarly Henstock integrable if, for every x∗ ∈ X∗, the function s(x∗, Γ (·))
is Henstock integrable.

It follows from the definitions that if Γ is McShane (variationally McShane) integrable, then it is also 
Henstock (variationally Henstock) integrable (with the same values of the integrals). There is a McShane 
integrable function f : [0, 1] → B(L∞[0, 1]) that is not variationally McShane integrable [33, 3D].

When a multifunction is a function f : [0, 1] → X, then the set Φf ([0, 1]) is reduced to a vector of X
and the above definitions coincide with those corresponding for vector valued functions. For vector valued 
functions on [0, 1] the variational McShane integrability is equivalent to the Bochner integrability [19]. This 
result has been generalized in [22] to the case of vector valued functions defined in a compact finite Radon 
measure space.

For the definitions of Pettis and of Henstock–Kurzweil–Pettis integral for multifunctions we refer the 
reader to [42,45,43,44,14,23,25].

In [38] a Rådström embedding theorem is extended to the space cwk(X) as follows.

Theorem 2.4. (See [38, Theorem 5.6].) There exist a compact Hausdorff space Ω and a map i : cwk(X) →
C(Ω) such that

2.4.1) i(αA + βC) = αi(A) + βi(C) for every A, C ∈ cwk(X), α, β ∈ R
+;

2.4.2) dH(A, C) = ‖i(A) − i(C)‖∞, A, C ∈ cwk(X);
2.4.3) i(cwk(X)) = i(cwk(X)) (norm closure);
2.4.4) i(co(A ∪ C)) = max{i(A), i(C)} for all A, C in cwk(X);
2.4.5) If 0 ∈ A, then i(A) ≥ 0.

The embedding i allows to reduce the Henstock (resp. McShane) integrability of multifunctions to the 
Henstock (resp. McShane) integrability of functions by embedding the family cwk(X) into the Banach 
space C(Ω). Since i(cwk(X)) is a closed cone of C(Ω), a multifunction Γ : [0, 1] → cwk(X) is Henstock 
or variationally Henstock (resp. McShane or variationally McShane) integrable if and only if the single 
valued function i ◦ Γ : [0, 1] → C(Ω) is Henstock or variationally Henstock (resp. McShane or variationally 
McShane) integrable in the usual sense. The key point is that i(cwk(X)) is a closed cone. Consequently, if 
z ∈ C(Ω) is the value of the integral of i ◦ Γ , then there exists a set K ∈ cwk(X) with i(K) = z.

Observe that it follows directly from the definitions that if i : cwk(X) → Y is the Rådström embedding 
into a Banach space, then a multifunction Γ : [0, 1] → cwk(X) is G-integrable if and only if i(Γ ) is 
G-integrable (G stands for any of the gauge integrals). In [12, Proposition 2.6, Corollary 2.7] the authors 
proved it for Birkhoff. Thanks to the embedding, the following result, similar to that for single-valued 
function, is now obvious:
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Proposition 2.5. Let Γ : [0, 1] → cwk(X) be a Birkhoff integrable multifunction. Then Γ is McShane 
integrable.

Proof. It is enough to observe that Γ is McShane integrable if and only if i(Γ ) is McShane integrable. �
Finally SH(Γ ) [SMS(Γ ) , SP (Γ ) , SHKP (Γ ) , SB(Γ ) , SvH(Γ ) , SvMS(Γ ) ] denotes the family of all 

scalarly measurable selections of Γ that are Henstock [McShane, Pettis, Henstock–Kurzweil–Pettis, Birkhoff, 
variationally Henstock, variationally McShane] integrable.

A useful tool to study the integrability of a single-valued function or of a multifunction is the variational 
measure associated to the primitive.

Definition 2.6. Given a finitely additive interval multimeasure Φ : I → cwk(X), a gauge δ and a set 
E ⊂ [0, 1], we define

V ar(Φ, δ, E) = sup
p∑

j=1
‖Φ(Ij)‖,

where the supremum is taken over all the δ-fine Perron partitions {(Ij, tj)}pj=1 with tj ∈ E for j = 1, . . . , p. 
The set function

VΦ(E) := inf
δ
{V ar(Φ, δ, E) : δ is a gauge on E}

is called the variational measure generated by Φ. Moreover, we say that VΦ is absolutely continuous with 
respect to λ and we write VΦ � λ if for every E ∈ L with λ(E) = 0 we have VΦ(E) = 0.

In order to deduce more information from the integral of a multifunction, we state the following simple 
result.

Proposition 2.7. Let F : [0, 1] → cwk(X) be any Henstock integrable mapping and f be a Henstock integrable 
selection of F . Then, for every interval I ∈ I, one has

(H)
∫
I

fdt ∈ (H)
∫
I

Fdt and VΦf
(I) ≤ VΦF

(I) .

Proof. If x∗ ∈ X∗, then x∗f ≤ s(x∗, F ). Hence (H) 
∫
I
x∗f(t) dt ≤ (H) 

∫
I
s(x∗, F (t)) dt. The Hahn–Banach 

theorem yields the required result. �
Observe that the previous result holds also for McShane and Birkhoff integrable multifunctions: in these 

cases, moreover, the conclusion is valid not only for intervals, but also for arbitrary measurable subsets.
It is well known [11] that a variationally Henstock integrable vector valued function is Bochner measur-

able. Using the embedding of cwk(X) into C(Ω) it is possible to prove a similar result for a multifunction.

Proposition 2.8. Let Γ : [0, 1] → cwk(X) be variationally Henstock integrable. Then Γ is Bochner measur-
able.

Proof. Since Γ is variationally-Henstock integrable, then also the single valued function γ := i ◦ Γ is so in 
i(cwk(X)). By [11, Theorem 9] i ◦ Γ is Bochner measurable.

We may assume that γ is separably valued. For each n ∈ N let {yn,k : k ∈ N} ⊂ γ([0, 1]) be a countable 
1/n-net of γ([0, 1]). For each n, k let
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γ′
n(t) = yn,k if t ∈ γ−1(B(yn,k, 1/n)).

Then (γ′
n)n is a sequence of countably valued functions that is uniformly converging to γ.

For each n let kn be such that λ 
(⋃kn

i=1 γ
−1(B(yn,i, 1/n))

)
> 1 − 1/n. We define

γn(t) =

⎧⎨⎩ γ′
n(t) t ∈

⋃kn

i=1 γ
−1(B(yn,i, 1/n))

a fixed point yn ∈ i(cwk(X)) otherwise.

Since the values of γn belong to γ([0, 1]) = i ◦ Γ([0, 1]) and the embedding is one to one then each function 
γn defines in a unique way a simple multifunction Γn : [0, 1] → cwk(X) such that i ◦ Γn(t) = γn(t) for 
every t ∈ [0, 1]. Clearly dH(Γn(t), Γ (t)) = ‖γn(t) − γ(t)‖ −→ 0 in λ-measure. Hence, there is a subsequence 
converging a.e. to Γ . In conclusion, Γ is the a.e. limit of a sequence of simple multifunctions, and therefore 
it is Bochner measurable. �
3. Selections of cwk(X)-valued multifunctions

When X is an arbitrary Banach space, then it is well known that each scalarly measurable selection of 
a Pettis (resp. Henstock–Kurzweil–Pettis) integrable multifunction Γ : [0, 1] → cwk(X) is also Pettis (resp. 
Henstock–Kurzweil–Pettis) integrable (see [15,43,25]).

For the Henstock integral the behavior is different. If X is separable and we consider ck(X)-valued mul-
tifunctions, every measurable selection of a Henstock (resp. McShane) integrable multifunction is Henstock 
(resp. McShane) integrable (see [24]). This essentially depends on the fact that for functions taking values 
in a separable Banach space the Pettis and the McShane integrability coincide.

The answer is also affirmative if we consider cwk(X)-valued multifunctions taking values in any Ba-
nach space X with the property that the Pettis and the McShane integrability coincide, as the following 
proposition shows (see [29,51,1] and the bibliography inside, for the Banach spaces with such a property).

Proposition 3.1. Let X be a Banach space with the property that the Pettis and the McShane integrability 
coincide. Then for any Henstock (resp. McShane) integrable multifunction Γ : [0, 1] → cwk(X), every 
scalarly measurable selection of Γ is Henstock (resp. McShane) integrable.

Proof. Let Γ : [0, 1] → cwk(X) be Henstock integrable. According to [27, Theorem 3.1] there exists f ∈
SH(Γ ) and so by [25, Theorem 1] Γ (t) = G(t) + f(t), where G : [0, 1] → cwk(X) is a Pettis integrable 
multifunction. Now let h : [0, 1] → X be any scalarly measurable selection of Γ . So h = g + f , where g is a 
scalarly measurable selection of G. Since the multifunction G is Pettis integrable, g is also Pettis integrable 
(see [15] or [43]). Then by the hypothesis g is also McShane (and then Henstock) integrable. This gives 
that h as a sum of two Henstock integrable functions, is Henstock integrable. In case the multifunction Γ is 
McShane integrable, then it is enough to consider the decomposition with a McShane integrable selection 
of Γ (again, by [27, Theorem 3.1] one has SMS(Γ ) 	= ∅). �

If X is a general Banach space, and the multifunction is cwk(X) valued, the previous assertion is false as 
we are showing in the next proposition. To do it we use an example given in [1, Theorem 3.7] under ZFC, of 
a scalarly negligible function, which is not McShane integrable. We recall that a family F of finite subsets 
of [0, 1] is said to be MC-filling on [0, 1] if it is hereditary (i.e. if G ∈ F whenever G ⊂ F ∈ F) and there 
exists ε > 0 such that for every countable family (Ai) of disjoint sets whose union is [0, 1], there is F ∈ F
such that λ∗ (∪{Ai : F ∩Ai 	= ∅}) > ε, where λ∗ is the outer Lebesgue measure.
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Proposition 3.2. There exist a reflexive Banach space Y and a variationally McShane integrable multifunction 
Γ : [0, 1] → cwk(Y ) such that 0 ∈ Γ (t) for each t ∈ [0, 1] and Γ possesses a scalarly measurable selection 
that fails to be Henstock integrable.

Proof. Let F be a compact MC-filling family on [0, 1], existing by [1, Theorem 3.5] and let X be equal to 
C(F) (the space of continuous functions on F). The function f : [0, 1] → C(F) defined by

f(t)(F ) = 1F (t), for t ∈ [0, 1] and F ∈ F

is scalarly negligible and not McShane integrable. Moreover, there exists a reflexive Banach space Y , a 
one-to-one linear continuous mapping T : Y → C(F) and a function g : [0, 1] → Y such that: f([0, 1]) ⊂
T (B(Y )) and T ◦ g = f . So also the function g is scalarly negligible and not McShane (and then not 
Henstock, due to [32]) integrable and g([0, 1]) ⊂ B(Y ). Since Y is a reflexive Banach space, the unit ball 
B(Y ) is a convex weakly compact set of Y , not norm compact. Now let us consider the constant multifunction 
Γ : [0, 1] → cwk(Y ) defined by

Γ (t) := B(Y ), for every t ∈ [0, 1].

Clearly Γ is variationally McShane integrable and g is a scalarly measurable selection of Γ which fails to 
be Henstock integrable. �
Proposition 3.3. Each variationally Henstock integrable multifunction Γ : [0, 1] → cwk(X) possesses a 
strongly measurable selection.

Proof. By Proposition 2.8 we know that Γ is Bochner measurable. We get the thesis applying [35, Theo-
rem 2.9] which states that: in a metric space any Bochner measurable multifunction taking convex closed 
bounded values has strongly measurable selections. In [35] the metric is supposed to be bounded but the 
result is available without this assumption (see [34, Remark 3.7]). �

A similar selection theorem can be stated for Birkhoff integrable mappings.

Theorem 3.4. Let Γ : [0, 1] → cwk(X) be any Birkhoff integrable multifunction. Then, there exists at least 
one Birkhoff integrable selection.

Proof. Since γ := i ◦ Γ is Birkhoff integrable, by [46, Remark 1] then γ is McShane integrable with a 
measurable gauge, namely there exists an element H ∈ cwk(X) such that, for each ε > 0 a measurable 
gauge δ can be found, such that, as soon as P = {(tj , Ij) : j = 1, . . . , n} is any δ-fine partition of [0, 1], it 
holds

‖σ(γ,P) − i(H)‖∞ ≤ ε

Now, since Γ is McShane integrable, by [27, Theorem 3.1], it admits a McShane-integrable selection g. It 
only remains to prove that, in the condition of McShane integrability of g, measurable gauges are involved. 
To this aim it is enough to repeat almost verbatim the proof of [27, Theorem 3.1], taking into account that, 
for each x∗ in the dual space, the real-valued map x∗g is Lebesgue integrable, hence also Birkhoff integrable 
again using [46, Remark 1]. �
Remark 3.5. The example given in Proposition 3.2 shows that in general not all scalarly measurable selections 
of a Birkhoff integrable multifunction are Birkhoff integrable.
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If X is separable, then thanks to Pettis measurability Theorem, the answer is contained in [12, Propo-
sition 3.1(ii)]. In fact in this case Γ admits strongly measurable selections each of them being Birkhoff 
integrable, and for every measurable set A it is

(B)
∫
A

Γdt =

⎧⎨⎩
∫
A

fdt, f ∈ SB(Γ )

⎫⎬⎭ .

In non-separable case we have that if Γ : [0, 1] → cwk(X) is Birkhoff integrable, then Γ is Pettis integrable 
by Proposition 2.5. So each scalarly measurable selection of Γ is Pettis integrable. Birkhoff integrability 
can be obtained if the range of Γ is separable, or if the selection is strongly measurable, thanks to [47, 
Corollary 5.11].

We recall that a multifunction Γ : [0, 1] → cwk(X) is said to be integrably bounded if there is a scalar 
valued function h ∈ L1[0, 1] such that ‖Γ (t)‖ ≤ |h(t)| for almost all t ∈ [0, 1].

Proposition 3.6. Let Γ : [0, 1] → cwk(X) be a scalarly measurable multifunction. Then the following condi-
tions are equivalent:

(i) Γ is variationally McShane integrable;
(ii) i(Γ ) ∈ L1(λ, Y );
(iii) Γ is Bochner measurable and integrably bounded.

Proof. The equivalence of (i) and (ii) follows from [22], where it has been proven that a Banach space 
valued function is variationally McShane integrable if and only if it is Bochner integrable. Consequently, Γ
is variationally McShane integrable if and only if i(Γ ) ∈ L1(λ, Y ). The equality ‖i ◦Γ (t)‖ = ‖Γ (t)‖ and the 
fact that i(Γ ) is Bochner measurable if and only if Γ is such, yield the equivalence of (ii) and (iii). �
Theorem 3.7. Each strongly measurable selection of a variationally McShane integrable multifunction Γ :
[0, 1] → cwk(X) is vMS-integrable (= Bochner integrable). In particular, if X is separable, then each scalarly 
measurable selection of Γ is Bochner integrable. Consequently, Γ is Aumann integrable and the integrals 
coincide.

Proof. That follows at once from Propositions 3.6 and 3.3 and the inequality ‖f(t)‖ ≤ ‖Γ (t)‖ that is valid 
for any selection f of Γ . �

We would like to observe that in general the Aumann integrability of a measurable cwk(X) valued multi-
function does not imply its variational McShane integrability. In fact it is enough to consider Example 4.7: 
the multifunction G is not variationally McShane integrable, but is Aumann integrable, since the null func-
tion is a selection. Moreover in [3, Example 1] another example is given which is useful for this purpose. 
The example is reported here for the sake of completeness and compared with the variational McShane 
integrability:

Example 3.8. Let X = l2(N); for every A ⊂ N we consider

UA = {x ∈ X : ‖x‖ ≤ 1, and xn = 0 if n /∈ A} = {1Ax : ‖x‖ ≤ 1},

where (1Ax)n = 1A(n)xn. If A 	 =B then dH(UA, UB) ≥ 1 and so the set {UA, A ⊂ N} is not separable.
Let Ω = [0, 1[ and for every ω ∈ Ω let 0, ω1 · · ·ωn · · · be its dyadic representation, namely ω1 = 1 iff 

ω ∈ [1/2, 1[, ω2 = 1 iff ω ∈ [1/4, 1/2[∪[3/4, 1[, etc. We set B1 = [1/2, 1[, B2 = [1/4, 1/2[ ∪ [3/4, 1[, etc.
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Let F (ω) = UA(ω) where A(ω) = {n ∈ N : ωn = 1}. F is integrably bounded, takes weakly compact and 
convex values and its support function s(y, F (ω)) is measurable since it is the limit of simple functions. In 
particular all scalarly measurable selections are Bochner integrable.

From [36, Proposition II.2.39] F is Effros measurable, but for every λ-null set N , the set F (Ω \N) is not 
separable in the dH-metric topology. Then immediately it follows that F is not Bochner measurable and 
then it cannot be variationally McShane integrable by Proposition 3.6.

Theorem 3.9. If Γ : [0, 1] → ck(X) is Bochner measurable and Henstock integrable (Γ : [0, 1] → cwk(X) is 
variationally McShane integrable), then each scalarly measurable selection of Γ is Henstock (variationally 
McShane) integrable. Moreover in the second case Γ is Aumann integrable and the two integrals coincide.

Proof. By [31, Theorem 3.6] the range of Γ is almost separably valued in X. Assume for simplicity that X̃
is a separable subspace of X containing the range of Γ . It follows from [24, Theorem 2.(iv)] that all scalarly 
measurable selections of Γ are Henstock integrable. In case of variationally McShane integrable Γ , we apply 
Theorem 3.7 to X̃. �
Proposition 3.10. If Γ : [0, 1] → cwk(X) is Birkhoff integrable and its range is almost separably valued 
then each scalarly measurable selection of Γ is Birkhoff integrable, and then also McShane and Henstock 
integrable.

Proof. Obviously Γ is Pettis integrable and then, by [15, Corollary 2.3], each scalarly measurable selection 
f of Γ is Pettis integrable. Since the range of Γ is almost separably valued the same occurs for f , so f
is McShane integrable. Since f is scalarly measurable and its range is separable, by [46, Corollary 3], it is 
Bochner measurable. But then f satisfies the hypotheses of [46, Theorem 7] and so it is Birkhoff integrable 
(see also the Remark 3.5). �

The previous results, and in particular Theorem 3.7, give raise to the following problem.

Question 3.11. Does there exist at least one variationally Henstock integrable selection of a cwk(X)-valued 
variationally Henstock integrable multifunction?

If X is an arbitrary Banach space, we do not know the answer to the previous question. But for Banach 
spaces possessing the Radon–Nikodým property there exist variationally Henstock integrable selections of 
cwk(X)-valued variationally Henstock integrable multifunctions, as it is stated in the next theorem.

To present a proof, we need the notion of the variational measure associated to the primitive given in 
Definition 2.6.

Theorem 3.12. Let X be a Banach space with the Radon–Nikodým property and let Γ : [0, 1] → cwk(X) be 
a variationally Henstock integrable multifunction. Then every strongly measurable selection of Γ is varia-
tionally Henstock integrable.

Proof. Thanks to Proposition 3.3 we know that there exist strongly measurable selections of Γ . Let f be 
one of such selections. Since Γ is variationally Henstock integrable, it is also Henstock–Kurzweil–Pettis 
integrable. Therefore by [26, Proposition 1.5] f ∈ SHKP (Γ ).

Let us denote by F its Henstock–Kurzweil–Pettis primitive and by ΦΓ the Henstock primitive of Γ . By 
[49, Proposition 3.3.1] we have VΦΓ

� λ. Hence also VF � λ. Since X has the Radon–Nikodým property, 
by [7, Theorem 3.6] we infer that F is the variational Henstock primitive of f . Therefore f is variationally 
Henstock integrable. �
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Comparing the previous theorem with Proposition 3.2, we see that the condition of strong measurability 
of the selection cannot be relaxed. Indeed, in the example given in 3.2 X is reflexive, and it is shown that 
a constant cwk(X)-valued multifunction has a scalarly measurable selection that is not even Henstock-
integrable.

Another partial answer is the following:

Theorem 3.13. If Γ : [0, 1] → cwk(X) is a bounded multifunction which is variationally Henstock and Pettis 
integrable, then SvMS(Γ ) 	= ∅.

Proof. Thanks to Proposition 3.3 the multifunction Γ admits a strongly measurable selection f which is 
Pettis integrable by [15, Corollary 2.3]. Let μf be its indefinite Pettis integral. Then R(μf ), the range of 
μf , is relatively norm compact (classical result) and the variation |μf | of μf is of σ-finite variation (cf. [42, 
Theorem 4.1]).

Now, since f is a selection of Γ which is bounded, then there exists M > 0 such that for every E ∈ L
it is |μf |(E) ≤ Mλ(E), so μf is moderated. Then thanks to [22, Lemma 2] f is variationally McShane 
integrable. �

This result could be extended to multifunctions F of the following type:

Γ : [0, 1] → cwk(X) : ∃ Mn ∈ R and On = O◦
n such that VΓ(∩nO

c
n) = 0 and ‖Γ (t) · 1On

(t)‖ ≤ Mn.

These assumptions cannot be further weakened since in [50, Example 1] an example of a Birkhoff and 
strongly measurable function is given, whose variational indefinite integral is not moderated on any open 
interval.

It is well known that if Γ is a cwk(X) valued multifunction defined on a complete probability space 
(resp. [0, 1]), and all its scalarly measurable selections are Pettis integrable (resp. Henstock–Kurzweil–Pettis 
integrable), then Γ is Pettis integrable (resp. Henstock–Kurzweil–Pettis integrable) ([15] or [43] (resp. [25])). 
A similar result is valid in case of a separable X and a ck(X)-valued Henstock integrable multifunction ([24, 
Theorem 2]).

The following proposition shows that the above assertion remains true also for the McShane integral.

Proposition 3.14. Let X be a separable Banach space and let Γ : [0, 1] → ck(X) be a Bochner measurable 
multifunction.

(i) If all measurable selections of Γ are McShane integrable, then Γ is McShane integrable.
(ii) If all measurable selections of Γ are Birkhoff integrable, then Γ is Birkhoff integrable.

Proof. Since all measurable selections of Γ are McShane integrable, they are also Pettis and Henstock 
integrable. So by [15, Theorem 4.2] and [16, Theorem 3.8], Γ is Pettis integrable, and by [24, Theorem 2], 
Γ is Henstock integrable. An application of [27, Theorem 3.4] gives us the McShane integrability of Γ . The 
second statement follows from 3.14.i) and [4, Corollary 4.2]. �
Remark 3.15. We would like to point out that even in the case of separable Banach spaces, the assertion of 
Proposition 3.14 is false if we consider cwk(X) valued multifunctions. In fact Γ may fail to be even Henstock 
integrable. Indeed let X be a separable Banach space without the Schur property. Then, following the proof 
of [14, Theorem 2.1] it is possible to construct a Pettis integrable multifunction Γ : [0, 1] → cwk(X), such 
that i ◦ Γ is not scalarly measurable. Since Γ is Pettis integrable, then (see [15] or [43]), each measurable 
selection of Γ is Pettis, so McShane integrable and then Henstock integrable. But Γ cannot be Henstock 
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integrable (hence neither McShane). In fact in such a case also i ◦Γ would be Henstock integrable, whereas 
i ◦ Γ fails to be scalarly measurable.

4. Variationally Henstock and McShane integrability of cwk(X)-valued multifunctions

Some results concerning variationally Henstock and McShane integrable multifunctions are collected here.

Proposition 4.1. Let G : [0, 1] → cwk(X) be variationally Henstock integrable. If 0 ∈ G(t) a.e., then G is 
Birkhoff integrable.

Proof. Let i be the embedding of cwk(X) into C(Ω) of Theorem 2.4. Then we just have to prove that i(G)
is Birkhoff integrable.

To this aim, we observe that i(G) is variationally Henstock integrable, hence Bochner-measurable, thanks 
to Proposition 2.8. This implies that i(G) is also Riemann-measurable, according with [46, Theorem 1]. So, 
in order to prove that i(G) is Birkhoff integrable, it is enough to show that it is McShane-integrable, thanks 
to [46, Theorem 7]. Since 0 ∈ G(t) one has that i(G(t)) is non-negative for almost all t ∈ [0, 1], and i(G) is 
variationally Henstock integrable.

Then, thanks to [32, Corollary 9 (iii)], it will be sufficient to prove convergence in C(Ω) of all series of 
the type 

∑
n(vH) 

∫
In

i(G), where (In)n is any sequence of pairwise non-overlapping subintervals of [0, 1].
The map Ψ(E) := (vH) 

∫
E
G is defined, nonnegative and finitely additive on the algebra H generated 

by all intervals. By [7, Corollary 3.1] VΨ � λ. Since 0 ∈ G(t) then s(x∗, Ψ(E)) ≥ 0 for every x∗ ∈ X∗

and every E ∈ H, and so by [28, Theorem 4.6] the map Ψ can be extended to L in a σ-additive way; let 
Ψ̃ : L → cwk(X) be its extension. So, fixed any sequence of pairwise non-overlapping subintervals (In)n of 
[0, 1], let E = ∪nIn. Then i(Ψ̃)(E) :=

∑
n(vH) 

∫
In

i(G) ∈ C(Ω). �
Theorem 4.2. Let Γ : [0, 1] → cwk(X) be a variationally Henstock integrable multifunction. If SvH(Γ ) 	= ∅
(this is fulfilled in case of X possessing RNP, by Proposition 3.3 and Theorem 3.12), then for every f ∈
SvH(Γ ) the multifunction G : [0, 1] → cwk(X) defined by Γ (t) = G(t) + f(t) is Birkhoff integrable.

Proof. Let f ∈ SvH(Γ ) be fixed. Define G : [0, 1] → cwk(X) by G(t) := Γ (t) − f(t). Then G is also 
variationally Henstock integrable (in cwk(X)) and 0 ∈ G(t) for every t ∈ [0, 1]. By Proposition 4.1 the 
multifunction G is Birkhoff integrable. �

The next two results generalize [27, Theorem 3.4], proved there for cwk(X)-valued multifunctions with 
compact valued integrals.

Theorem 4.3. Let Γ : [0, 1] → cwk(X) be a vH-integrable multifunction. If SvH(Γ ) 	= ∅ (this is fulfilled 
in case of X possessing RNP, by Proposition 3.3 and Theorem 3.12), then the following conditions are 
equivalent:

(a) SvH(Γ ) ⊂ SMS(Γ );
(b) SvH(Γ ) ⊂ SP (Γ );
(c) SP (Γ ) 	= ∅;
(d) Γ is Pettis integrable;
(e) Γ is McShane integrable.

Proof. (a) ⇒ (b) is valid, because each McShane integrable function is also Pettis integrable ([32, Theo-
rem 8]).

(b) ⇒ (c) is obvious.
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(c) ⇒ (d) Take f ∈ SP (Γ ). Since Γ is Henstock integrable too, it is also HKP-integrable and so applying 
[25, Theorem 2] we obtain a representation Γ = G + f , where G : [0, 1] → cwk(X) is Pettis integrable in 
cwk(X). Consequently, Γ is also Pettis integrable in cwk(X) and so (d) is fulfilled.

(d) ⇒ (e) In virtue of [27, Theorem 3.1] Γ has a McShane integrable selection f . It follows from Theo-
rem 4.2 that the multifunction G : [0, 1] → cwk(X) defined by Γ (t) = G(t) + f(t) is McShane integrable.

(e) ⇒ (a) It is a consequence of Proposition 3.6 and [15, Corollary 2.3], in fact, if f ∈ SvH(Γ ), then 
f ∈ SH(Γ ) ∩ SP (Γ ) and so f is McShane integrable. �
Theorem 4.4. Let Γ : [0, 1] → cwk(X) be an integrably bounded multifunction satisfying Theorem 4.3. Then 
all the statements given in Theorem 4.3 are equivalent to

(f) Γ is variationally McShane integrable.

Proof. The equivalence of the four first conditions can be proved as in Theorem 4.3.
(e) ⇒ (f) Assume that Γ is integrably bounded by h ∈ L1[0, 1] and let i be the Rådström embedding 

of cwk(X) into a Banach space Z. Since Γ is variationally Henstock integrable, also i(Γ ) is variationally 
Henstock integrable. If MΓ is the indefinite Pettis integral of Γ , then it is a measure in the Hausdorff metric, 
hence also i(MΓ ) is countably additive in Z. Moreover, if I ∈ I, then

〈z∗, i(MΓ (I))〉 = (HK)
∫
I

〈z∗, i(Γ )(I)〉 dλ for every z∗ ∈ Z∗. (4)

But i(Γ ) is integrably bounded and so every 〈z∗, i(Γ )(I)〉 is Lebesgue integrable. Consequently, both sides 
of the equality (4) may be extended to scalar measures on L. By the integral boundedness assumption we 
have also |i(MΓ )|(E) ≤

∫
E
|h| dλ for all E ∈ L. Thus, i(MΓ ) is moderated (in fact finite). Then, thanks to 

[22, Lemma 2], i(Γ ) is variationally McShane integrable. This proves the required result.
(f) ⇒ (e) is obvious. �
A comparison with the Birkhoff integrability is the following

Proposition 4.5. If Γ is Bochner measurable and abs(Bi)-integrable, then Γ is vMS-integrable.

Proof. Thanks to Theorem 2.4 the function i ◦Γ is Bochner measurable and abs(Birkhoff)-integrable then, 
applying [50, Corollary 1], i ◦ Γ is vMS-integrable. �

While for the converse implication only Birkhoff-integrability could be obtained, see [50, Corollary 3].

Corollary 4.6. If X has RNP and Γ is variationally Henstock integrable, then every strongly measurable se-
lection of Γ is variationally Henstock and Birkhoff integrable. Moreover, Γ turns out to be Birkhoff integrable 
too.

Proof. The first part is an easy consequence of Theorem 3.12 and [15, Corollary 2.3], since by [47, Corol-
lary 5.11], for finite measure spaces Birkhoff integrability of strongly measurable functions is equivalent to 
their Pettis integrability. The final assertion about Γ follows from Theorem 4.2 since both the selection f
and the translated mapping G are Birkhoff integrable. �

We would like to observe that in general the equivalent conditions in Theorem 4.3 do not imply the varia-
tional McShane integrability, even in case of single valued functions (see [21]). Moreover, also Proposition 4.1
cannot be obtained, if we consider variational McShane integrability instead of Birkhoff integrability, as the 
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following example shows. Observe first that if Γ satisfies assumptions of Proposition 4.1, then by Proposi-
tion 2.5 is Pettis integrable since it is McShane integrable. The multifunction of the following Example 4.7
satisfies Proposition 4.1, so it will be vH-integrable, Pettis integrable but not vMS-integrable.

Example 4.7. Assume that 
∑

n xn is unconditionally but not absolutely convergent in X. We assume that 
‖xn‖ ≤ 1, for all n ∈ N. Moreover, let In =: (2−n, 2−n+1), n ∈ N. We define f : [0, 1] → X by

f(t) =
∞∑

n=1
2nxn1In(t).

It has been proven in [21,39] that f is variationally Henstock and Pettis integrable but is not variationally 
McShane integrable. Consider now the multifunction G : [0, 1] → ck(X) defined by G(t) = conv{f(t), 0}.

Claim 1. G is variationally Henstock integrable.

Proof. For each x∗ we have s(x∗, G(t)) = (x∗f)+(t) and so if I ∈ I, then

∫
I

s(x∗, G(t)) dt =
∫
I

(x∗f)+(t) dt =
∫
I

( ∞∑
n=1

2n〈x∗, xn〉+1In(t)
)
dt =

∞∑
n=1

2n|In ∩ I|〈x∗, xn〉+

where 〈x∗, xn〉+ = 〈x∗, xn〉 if 〈x∗, xn〉 ≥ 0 and 0 otherwise. Let ε > 0 be fixed and k ∈ N be such that 
sup‖x∗‖≤1

∑∞
i=k |〈x∗, xi〉| < ε/2. We define a gauge setting

δ(t) =

⎧⎪⎪⎨⎪⎪⎩
min{|t− 2−n|, |t− 2−n+1|} if t ∈ In

ε2−2n−2 if t = 2−n−1

ε2−k t = 0

Let {(J1, t1), . . . , (Jp, tp)} be a δ-fine Perron partition of [0, 1]. We have to evaluate the expression

p∑
i=1

sup
‖x∗‖≤1

∣∣∣∣∣∣
∫
Ji

s(x∗, G(t)) dt− s(x∗, G(ti))|Ji|

∣∣∣∣∣∣
=

p∑
i=1

sup
‖x∗‖≤1

∣∣∣∣∣
∞∑

n=1
2n|In ∩ Ji|〈x∗, xn〉+ −

∞∑
n=1

2n〈x∗, xn〉+1In(ti)|Ji|
∣∣∣∣∣ .

If ti ∈ Ini
, then Ji ⊂ Ini

and we have∣∣∣∣∣
∞∑

n=1
2n|In ∩ Ji|〈x∗, xn〉+ −

∞∑
n=1

2n〈x∗, xn〉+1In(ti)|Ji|
∣∣∣∣∣

=
∣∣2ni〈x∗, xni

〉+|Ji| − 2ni〈x∗, xni
〉+|Ji|

∣∣ = 0.

If ti = 2−ni , then∣∣∣∣∣
∞∑

n=1
2n|In ∩ Ji|〈x∗, xn〉+ −

∞∑
n=1

2n〈x∗, xn〉+1In(ti)|Ji|
∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1
2n|In ∩ Ji|〈x∗, xn〉+

∣∣∣∣∣
= 2ni−1|Ini−1 ∩ Ji|〈x∗, xni−1〉+ + 2ni |Ini

∩ Ji|〈x∗, xni
〉+
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≤ 2ni−1ε22ni−2〈x∗, xni−1〉+ + 2niε22ni−2〈x∗, xni
〉+

= ε2ni−3〈x∗, xni−1〉+ + ε2ni−2〈x∗, xni
〉+ < ε2−ni .

If ti = 0, then ∣∣∣∣∣
∞∑

n=1
2n|In ∩ Ji|〈x∗, xn〉+ −

∞∑
n=1

2n〈x∗, xn〉+1In(ti)|Ji|
∣∣∣∣∣

=
∞∑

n=1
2n|In ∩ Ji|〈x∗, xn〉+ ≤

∞∑
n=k

2n|In|〈x∗, xn〉+ ≤
∞∑

n=k

|〈x∗, xn〉| ≤ ε/2−k.

So we can conclude that

p∑
i=1

sup
‖x∗‖≤1

∣∣∣∣∣∣
∫
Ji

s(x∗, G(t)) dt− s(x∗, G(ti))|Ji|

∣∣∣∣∣∣ < 2ε. �

Claim 2. G is not variationally McShane integrable and not abs-Birkhoff.

Proof. Let δ : [0, 1] → (0, ∞) be an arbitrary gauge. Let m ∈ N be the smallest number satisfy-
ing the inequality 2−m ≤ δ(0). For each p > m we take a particular δ-fine partition of [0, 1]: P :=
{([0, 2−p], 0), (Ip, 0), . . . , (Im+1, 0), (J1, s1), . . . , (Jq, sq)}, where we require each (Ji, si) to be only δ(si)-small. 
We have then

∑
(J,t)∈P

sup
‖x∗‖≤1

∣∣∣∣∣
∞∑

n=1
2n|In ∩ J |〈x∗, xn〉+ −

∞∑
n=1

2n〈x∗, xn〉+1In(t)|J |
∣∣∣∣∣

≥
p∑

i=m+1
sup

‖x∗‖≤1

∣∣∣∣∣
∞∑

n=1
2n|In ∩ Ii|〈x∗, xn〉+

∣∣∣∣∣ =
p∑

i=m+1
sup

‖x∗‖≤1
2i|Ii|〈x∗, xi〉+ =

p∑
i=m+1

‖xi‖ −→ ∞

when p → ∞. For the last part, since G is Bochner measurable if it were abs-Birkhoff, then by Proposition 4.5
then G would be variationally McShane-integrable. �
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