VARIATIONAL HENSTOCK INTEGRABILITY OF BANACH SPACE VALUED FUNCTIONS

Luisa Di Piazza, Palermo, Valeria Marraffa, Palermo, Kazimierz Musiae, Wrocław

Received March 6, 2016
Communicated by Dagmar Medková

Cordially dedicated to Professor Jaroslav Kurzweil on the occasion of his 90th birthday

Abstract. We study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions f given by $\sum_{n=1}^{\infty} x_{n} \chi_{E_{n}}$, where x_{n} are points of a Banach space and the sets E_{n} are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for Bochner and Pettis integrability of f. The function f is Bochner integrable if and only if the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right|$ is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of f. In this paper we give some conditions for variational Henstock integrability of a certain class of such functions.

Keywords: Kurzweil-Henstock integral; variational Henstock integral; Pettis integral MSC 2010: 26A39

1. Introduction

In this paper we study the variational Henstock integrability of strongly measurable functions. It is well known (cf. [5], Lemma 5.1) that each strongly measurable Banach valued function, defined on a measurable space, can be written as $f=g+\sum_{n=1}^{\infty} x_{n} \chi_{E_{n}}$, where g is a bounded strongly measurable function, x_{n} are vectors of the given Banach space and E_{n} are measurable and pairwise disjoint sets. As each bounded strongly measurable function is Bochner integrable, it is enough to study

The research has been supported by the grant GNAMPA 2016-Di Piazza.
integrability only for functions of the form $\sum_{n=1}^{\infty} x_{n} \chi_{E_{n}}$. In the case of Bochner and Pettis integrals, a necessary and sufficient condition for integrability of a function given by $\sum_{n=1}^{\infty} x_{n} \chi_{E_{n}}$ is, respectively, the absolute and the unconditional convergence of the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right|$ (see Theorem A). In the case of Kurzweil-Henstock or variational Henstock integrals, in general the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right|$ is only conditionally convergent. So the conditions for integrability depend on the order of the terms $x_{n}\left|E_{n}\right|$. In [1], [3] and [4] conditions for the Kurzweil-Henstock integrability of functions of the form $\sum_{n=1}^{\infty} x_{n} \chi_{E_{n}}$ are given. Here we go a bit further in this investigation. We give another characterization of the Kurzweil-Henstock integrability (see Theorem 3.1). The main results are Proposition 4.1 and Theorem 4.1. In the latter, a necessary and sufficient condition for the variational Henstock integrability of a special type of such functions is given. It needs a particular order of the sets E_{n}.

2. BASIC FACTS

Let $[0,1]$ be the unit interval of the real line equipped with the usual topology and Lebesgue measure. If a set $E \subset[0,1]$ is Lebesgue measurable, then $|E|$ denotes its Lebesgue measure. \mathcal{I} denotes the family of all closed subintervals of $[0,1]$.

A partition in $[0,1]$ is a finite collection of pairs $\mathcal{P}=\left\{\left(I_{1}, t_{1}\right), \ldots,\left(I_{p}, t_{p}\right)\right\}$, where I_{1}, \ldots, I_{p} are nonoverlapping subintervals of $[0,1]$ and $t_{i} \in I_{i}, i=1, \ldots, p$. If $\bigcup_{i=1}^{p} I_{i}=[0,1]$, we say that \mathcal{P} is a partition of $[0,1]$. A gauge on $E \subset[0,1]$ is a positive function on E. For a given gauge δ, we say that a partition $\left\{\left(I_{1}, t_{1}\right), \ldots,\left(I_{p}, t_{p}\right)\right\}$ is δ-fine if $I_{i} \subset\left(t_{i}-\delta\left(t_{i}\right), t_{i}+\delta\left(t_{i}\right)\right), i=1, \ldots, p$.

Throughout this paper, X is a Banach space with dual X^{*}. We recall the following definitions:

Definition 2.1. A function $f:[0,1] \rightarrow X$ is said to be Kurzweil-Henstock integrable (or simply KH-integrable) on $[0,1]$ if there exists $w \in X$ with the following property:

For every $\varepsilon>0$ there exists a gauge δ on $[0,1]$ such that

$$
\left\|\sum_{i=1}^{p} f\left(t_{i}\right)\left|I_{i}\right|-w\right\|<\varepsilon
$$

for each δ-fine partition $\left\{\left(I_{1}, t_{1}\right), \ldots,\left(I_{p}, t_{p}\right)\right\}$ of $[0,1]$. We set $(\mathrm{KH}) \int_{0}^{1} f:=w$.

Definition 2.2. A function $f:[0,1] \rightarrow X$ is said to be variationally Henstock integrable (briefly vH -integrable) on $[0,1]$, if there exists an additive function F : $\mathcal{I} \rightarrow X$, satisfying the following condition:

Given $\varepsilon>0$ there exists a gauge δ such that if $\mathcal{P}=\left\{\left(I_{i}, t_{i}\right): i=1, \ldots, p\right\}$ is a δ-fine partition in $[0,1]$, then

$$
\sum_{i=1}^{p}\left\|f\left(t_{i}\right)\left|I_{i}\right|-F\left(I_{i}\right)\right\|<\varepsilon
$$

It is obvious that each vH -integrable function is KH -integrable. It is also well known that in the case of real-valued functions the variational Henstock and the Kurzweil-Henstock integrals are equivalent.

We recall the following classical result for the Bochner and Pettis integrals:
Theorem A ([2], page 55). Let $f=\sum_{n=1}^{\infty} x_{n} \chi_{E_{n}}$, where $x_{n} \in X$ and the sets E_{n} are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$. Then
(1) f is Pettis integrable if and only if the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right|$ is unconditionally convergent;
(2) f is Bochner integrable if and only if the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right|$ is absolutely convergent.
In both cases $\int_{E} f=\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap E\right|$, for every measurable set E.

3. Kurzweil-Henstock integrability

In [1], Theorem 1, a necessary condition for the Kurzweil-Henstock integrability of the function $f=\sum_{n=1}^{\infty} x_{n} \chi_{E_{n}}$ is given. Here we prove that the condition is also sufficient.

Theorem 3.1. Let $f:[0,1] \rightarrow X$ be defined by $f=\sum_{n=1}^{\infty} x_{n} \chi_{E_{n}}$, where $x_{n} \in X$ and the sets E_{n} are Lebesgue measurable and pairwise disjoint. Then the following conditions are equivalent:
(A) f is Kurzweil-Henstock integrable with

$$
(\mathrm{KH}) \int_{I} f(t) \mathrm{d} t=\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I\right|,
$$

for every interval $I \in \mathcal{I}$;
(B) for every $\varepsilon>0$ there exist a gauge δ and $k_{0} \in \mathbb{N}$ such that given a δ-fine partition $\left\{\left(I_{1}, t_{1}\right), \ldots,\left(I_{p}, t_{p}\right)\right\}$ of $[0,1]$ and given $s>r>k_{0}$ we have

$$
\left\|\sum_{k=r}^{s} x_{k}\left|\bigcup_{t_{j} \in E_{k}} I_{j}\right|\right\|<\varepsilon
$$

Proof. $(\mathrm{B}) \Rightarrow(\mathrm{A})$ was proved in [1].
$(\mathrm{A}) \Rightarrow(\mathrm{B})$ We assume that f is Kurzweil-Henstock integrable with

$$
(\mathrm{KH}) \int_{0}^{1} f(t) \mathrm{d} t=\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right| .
$$

According to [3], Theorem 2, for every $\varepsilon>0$ there exists a gauge δ on $[0,1]$ such that if $\mathcal{P}:=\left\{\left(i_{1}, t_{1}\right), \ldots,\left(I_{p}, t_{p}\right)\right\}$ is a δ-fine partition of $[0,1]$, then there exists $n_{\mathcal{P}} \in \mathbb{N}$ such that

$$
\left\|\sum_{n=1}^{n} x_{k}\left(\left|\bigcup_{t_{i} \in E_{k}} I_{i}\right|-\left|E_{k}\right|\right)\right\|<\frac{\varepsilon}{3} \quad \text { for all } n>n_{\mathcal{P}}
$$

Since the series $=\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right|$ is convergent, there is $n_{1}>n_{\mathcal{P}}$ such that if $s>r>n_{1}$, then

$$
\left\|\sum_{i=r}^{s} x_{i}\left|E_{i}\right|\right\|<\frac{\varepsilon}{3} .
$$

Hence, if $s>r>n_{1}$, then

$$
\begin{aligned}
\left\|\sum_{k=r}^{s} x_{k}\left|\bigcup_{t_{j} \in E_{k}} I_{j}\right|\right\| \leqslant & \left\|\sum_{k=1}^{s} x_{k}\left|\bigcup_{t_{j} \in E_{k}} I_{j}\right|-\sum_{k=1}^{s} x_{k}\left|E_{k}\right|\right\| \\
& +\left\|\sum_{k=1}^{r-1} x_{k}\left|\bigcup_{t_{j} \in E_{k}} I_{j}\right|-\sum_{k=1}^{r-1} x_{k}\left|E_{k}\right|\right\|+\left\|\sum_{i=r}^{s} x_{i}\left|E_{i}\right|\right\|<\varepsilon
\end{aligned}
$$

4. Variational Henstock integrability

The aim of this section is to formulate conditions for the variational Henstock integrability of a certain class of strongly measurable functions.

Proposition 4.1. Let $\left\{a_{n}\right\}$ be a decreasing sequence converging to zero such that $a_{1}=1$. Let $\left\{x_{n}\right\} \subset X$ be arbitrary and define $f:[0,1] \rightarrow X$ by $f=\sum_{n=1}^{\infty} x_{n} \chi_{E_{n}}$, where each $E_{n} \subseteq\left[a_{n+1}, a_{n}\right)$ is Lebesgue measurable. Then the following conditions are equivalent:
(i) the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right|$ is convergent;
(ii) f is vH -integrable;
(iii) f is KH-integrable.

In each case

$$
\begin{equation*}
\text { (vH) } \int_{I} f=\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I\right| \quad \text { for every } I \in \mathcal{I} \tag{4.1}
\end{equation*}
$$

and the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I\right|$ is uniformly convergent on \mathcal{I}.
Proof. (i) $\underset{\infty}{\Rightarrow}$ (ii) Assume that the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right|$ is convergent. Notice then that the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I\right|$ is convergent for every $I \in \mathcal{I}$. Let $F(I)=\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I\right|$. Now we show that f is vH -integrable. Without loss of generality we may assume that $f(0)=0$.

Let $\varepsilon>0$. Since the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right|$ is convergent, there is $K \in \mathbb{N}$ such that for $s \geqslant n \geqslant K$,

$$
\left\|\sum_{k=n}^{s} x_{k}\left|E_{n}\right|\right\|<\frac{\varepsilon}{4} .
$$

Moreover, for each $n \in \mathbb{N}$, let $\delta_{n}:\left[a_{n+1}, a_{n}\right] \rightarrow(0, \infty)$ be a gauge such that if $\mathcal{P}=\left\{\left(I_{i}, t_{i}\right), i=1, \ldots, p\right\}$ is a δ_{n}-fine partition of $\left[a_{n+1}, a_{n}\right]$, then

$$
\sum_{i=1}^{p}\left\|f\left(t_{i}\right)\left|I_{i}\right|-F\left(I_{i}\right)\right\|<\frac{\varepsilon}{2^{n+1}}
$$

We may assume that $\delta_{n+1}\left(a_{n+1}\right)=\delta_{n}\left(a_{n+1}\right)$.
Define $\delta(t)$ on $[0,1]$ as follows:

$$
\delta(t)= \begin{cases}\delta_{n}(t) & \text { if } t \in\left(a_{n+1}, a_{n}\right) \\ \min \left\{\delta_{n}\left(a_{n}\right), \delta_{n-1}\left(a_{n}\right)\right\} & \text { if } t=a_{n} \\ a_{K} & \text { if } t=0\end{cases}
$$

Let us consider now a δ-fine partition $\mathcal{P}=\left\{\left(I_{i}, t_{i}\right), i=1, \ldots, p\right\}$ of $[0,1]$ and the corresponding sum

$$
\sum_{i=1}^{p}\left\|f\left(t_{i}\right)\left|I_{i}\right|-F\left(I_{i}\right)\right\|
$$

If $q \geqslant K$ is the largest integer such that $I_{1} \subset\left[0, a_{q}\right)$, then

$$
\begin{align*}
\left\|f\left(t_{1}\right)\left|I_{1}\right|-F\left(I_{1}\right)\right\| & =\left\|\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I_{1}\right|\right\| \tag{4.2}\\
& =\left\|\sum_{k=q}^{\infty} x_{k}\left|E_{k} \cap I_{1}\right|\right\|=\left\|x_{q}\left|E_{q} \cap I_{1}\right|+\sum_{k=q+1}^{\infty} x_{k}\left|E_{k}\right|\right\| \\
& \leqslant\left\|x_{q}\right\|\left|E_{q} \cap I_{1}\right|+\left\|\sum_{k=q+1}^{\infty} x_{k}\left|E_{k}\right|\right\|<\frac{\varepsilon}{2}
\end{align*}
$$

Hence

$$
\begin{aligned}
& \sum_{i=1}^{p}\left\|f\left(t_{i}\right)\left|I_{i}\right|-F\left(I_{i}\right)\right\| \\
&=\left\|f\left(t_{1}\right)\left|I_{1}\right|-F\left(I_{1}\right)\right\| \\
&+\sum_{n=1}^{\infty} \sum_{t_{i} \in\left(a_{n+1}, a_{n}\right]}\left\|f\left(t_{i}\right)\left|I_{i} \cap\left[a_{n+1}, a_{n}\right]\right|-F\left(I_{i} \cap\left[a_{n+1}, a_{n}\right]\right)\right\| \\
& \leqslant \frac{\varepsilon}{2}+\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\varepsilon,
\end{aligned}
$$

which proves the vH -integrability of f and equality (4.1) for $I=[0,1]$.
(iii) \Rightarrow (i) If f is KH-integrable, its primitive $F(t)=(\mathrm{vH}) \int_{0}^{t} f$ is continuous on $[0,1]$. Let $F(I)$ be the additive interval function associated to $F(t)$. We have

$$
F([0,1])=\sum_{k=1}^{n} F\left(\left[a_{k+1}, a_{k}\right)\right)+F\left(\left[0, a_{n+1}\right]\right)=\sum_{k=1}^{n} x_{k}\left|E_{k}\right|+F\left(\left[0, a_{n+1}\right]\right)
$$

Letting $n \rightarrow \infty$, the convergence of the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n}\right|$ follows.
In the same way, setting $F_{I}(t):=(\mathrm{vH}) \int_{\alpha}^{t} f$ if $t \in I=[\alpha, \beta]$, we obtain (4.1).
Now we are going to prove that the series $\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I\right|$ is uniformly convergent on \mathcal{I}.

Since F is uniformly continuous, there is $n_{0} \in \mathbb{N}$ such that if $I \subset\left[0, a_{n_{0}}\right]$, then

$$
\begin{equation*}
\left\|\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I\right|\right\|=\|F(I)\| \leqslant \varepsilon \tag{4.3}
\end{equation*}
$$

Now, if $I \in \mathcal{I}$ and $m>n_{0}$, then applying (4.1) and (4.3), we have the following inequalities:

$$
\begin{aligned}
\| F(I)-\sum_{n=1}^{m} & x_{n}\left|E_{n} \cap I\right| \| \\
\leqslant & \left\|F\left(I \cap\left[0, a_{m}\right]\right)-\sum_{n=1}^{m} x_{n}\left|E_{n} \cap I \cap\left[0, a_{m}\right]\right|\right\| \\
& +\left\|F\left(I \cap\left[a_{m}, 1\right]\right)-\sum_{n=1}^{m} x_{n}\left|E_{n} \cap I \cap\left[a_{m}, 1\right]\right|\right\| \\
\leqslant & \left\|F\left(I \cap\left[0, a_{m}\right]\right)-\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I \cap\left[0, a_{m}\right]\right|\right\| \\
& +\left\|\sum_{n=m+1}^{\infty} x_{n}\left|E_{n} \cap I \cap\left[0, a_{m}\right]\right|\right\| \\
& +\left\|F\left(I \cap\left[a_{m}, 1\right]\right)-\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I \cap\left[a_{m}, 1\right]\right|\right\| \\
& +\left\|\sum_{n=m+1}^{\infty} x_{n}\left|E_{n} \cap I \cap\left[a_{m}, 1\right]\right|\right\| \\
(\stackrel{4.1)}{=} & \left\|\sum_{n=m+1}^{\infty} x_{n}\left|E_{n} \cap I \cap\left[0, a_{m}\right]\right|\right\|+\left\|\sum_{n=m+1}^{\infty} x_{n}\left|E_{n} \cap I \cap\left[a_{m}, 1\right]\right|\right\| \\
= & \left\|\sum_{n=1}^{\infty} x_{n}\left|E_{n} \cap I \cap\left[0, a_{m}\right]\right|\right\| \stackrel{(4.3)}{\leqslant} \varepsilon \text { for every } I \in \mathcal{I} .
\end{aligned}
$$

The last equality follows from the fact that $E_{n} \cap\left[a_{m}, 1\right]=\emptyset$ if $n>m$.
Reordering the sets E_{n} in a suitable way, we obtain the following more general result:

Theorem 4.1. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be decreasing sequences converging to zero such that $a_{1}=1$ and $a_{n+1} \leqslant b_{n} \leqslant a_{n}$, for every $n \in \mathbb{N}$. Let $\left\{x_{n}\right\} \subset X$ be arbitrary and define $f:[0,1] \rightarrow X$ by $f=\sum_{k=1}^{\infty} x_{k} \chi_{E_{k}}$, where $\left\{E_{k}: k \in \mathbb{N}\right\}$ is a sequence of pairwise disjoint Lebesgue measurable sets of positive measure with the following properties:
(j) $\lim _{k} \operatorname{diam}\left(E_{k}\right)=0$;
(jj) for each $n \in \mathbb{N}$, the set $\left\{E_{k}: E_{k} \subset\left[a_{n+1}, a_{n}\right]\right\}$ is split into two disjoint collections (one of them may be empty):

$$
\left\{E_{2 n-1, p_{i}}: \forall i \in \mathbb{N} \sup E_{2 n-1, p_{i+1}} \leqslant \inf E_{2 n-1, p_{i}}\right\} \subset\left[a_{n+1}, b_{n}\right]
$$

and

$$
\left\{E_{2 n, q_{i}}: \forall i \in \mathbb{N} \inf E_{2 n, q_{i+1}} \geqslant \sup E_{2 n, q_{i}}\right\} \subset\left[b_{n}, a_{n}\right] ;
$$

(jjj) for each $n \in \mathbb{N}, \lim _{i} d_{H}\left(\left\{a_{n+1}\right\}, E_{2 n-1, p_{i}}\right)=0=\lim _{i} d_{H}\left(\left\{a_{n}\right\}, E_{2 n, q_{i}}\right)$, where $d_{H}(\cdot, \cdot)$ is the Hausdorff distance between two sets.
Let $c_{2 n-1, i}(I):=x_{n}\left|E_{2 n-1, p_{i}} \cap I\right|$ and $c_{2 n, i}(I):=x_{n}\left|E_{2 n, q_{i+1}} \cap I\right|, n \in \mathbb{N}$. We order the series $\sum_{k=1}^{\infty} x_{k}\left|E_{k} \cap I\right|$ in the following way:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}(I) \tag{4.4}
\end{equation*}
$$

Then, the following conditions are equivalent:
(a) the series (4.4) is uniformly convergent on the family \mathcal{I};
(b) f is vH -integrable;
(c) f is KH-integrable.

In each case

$$
\begin{equation*}
(\mathrm{vH}) \int_{I} f=\sum_{n=1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}(I) \quad \text { for every } I \in \mathcal{I} \text {. } \tag{4.5}
\end{equation*}
$$

Proof. Without loss of generality, we may assume that if for some $n \in \mathbb{N}$ one has $\left\{E_{n_{p_{i}}}: i \in \mathbb{N}\right.$, for all $\left.i \in \mathbb{N}\right\}=\emptyset$, then $a_{n+1}=b_{n}$, and if $\left\{E_{n_{q_{i}}}: i \in \mathbb{N}\right.$, for all $i \in \mathbb{N}\}=\emptyset$, then $a_{n}=b_{n}$. We may assume also that each interval $\left[a_{n+1}, a_{n}\right]$ contains infinitely many sets E_{k} and $f(0)=0$.
(a) \Rightarrow (b) It follows from Proposition 4.1 that if for every $I \in \mathcal{I}$ the series $\sum_{n=1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}(I)$ is convergent, then f is vH -integrable on every interval $\left[a_{n+1}, b_{n}\right]$ and $\left[b_{n}, a_{n}\right]$. Consequently, f is vH-integrable on $\left[a_{n+1}, a_{n}\right]$ and

$$
(\mathrm{vH}) \int_{a_{n+1}}^{a_{n}} f=\sum_{n=1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}\left(\left[a_{n+1}, a_{n}\right]\right) .
$$

Now let $F(I)=\sum_{n=1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}(I)$ for every $I \in \mathcal{I}$ and let $\varepsilon>0$. For each $n \in \mathbb{N}$ there exists a gauge $\delta_{n}:\left[a_{n+1}, a_{n}\right] \rightarrow(0, \infty)$ with the property that for each δ_{n}-partition $\left.\left\{\left(J_{1}, s_{1}\right), \ldots, J_{p}, s_{p}\right)\right\}$ of $\left[a_{n+1}, a_{n}\right]$ one has

$$
\sum_{j=1}^{p}\left\|f\left(s_{j}\right)\left|J_{j}\right|-(\mathrm{vH}) \int_{J_{j}} f\right\| \leqslant \frac{\varepsilon}{2^{n+2}}
$$

Taking $\min \left\{\delta_{n+1}\left(a_{n+1}\right), \delta_{n}\left(a_{n+1}\right)\right\}$, one may assume that $\delta_{n+1}\left(a_{n+1}\right)=\delta_{n}\left(a_{n+1}\right)$.

Let $k_{0} \in \mathbb{N}$ be such that $k \geqslant k_{0}$ yields

$$
\left\|\sum_{n=k}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}(I)\right\|<\frac{\varepsilon}{4} \quad \text { for every } I \in \mathcal{I}
$$

Then, let $n_{0} \in \mathbb{N}$ be such that all sets E_{j} built into some $c_{i, n+1-i}(I)$ with $n \leqslant k_{0}$ are contained in $\left(a_{n_{0}}, 1\right]$.

Define $\delta(t)$ on $[0,1]$ as follows:

$$
\delta(t)= \begin{cases}\delta_{n}(t) & \text { if } t \in\left[a_{n+1}, a_{n}\right], n \in \mathbb{N} \\ a_{n_{0}} & \text { if } t=0\end{cases}
$$

Let $\mathcal{P}=\left\{\left(I_{i}, t_{i}\right), i=1, \ldots, p\right\}$ be a δ-fine partition of $[0,1]$ and let us consider the sum

$$
\sum_{i=1}^{p}\left\|f\left(t_{i}\right)\left|I_{i}\right|-F\left(I_{i}\right)\right\|
$$

Without loss of generality, one may assume that the right end point of I_{1} is equal to a point a_{m} with $m>n_{0}$.

It follows that

$$
\sum_{j=2}^{p}\left\|f\left(s_{j}\right)\left|J_{j}\right|-(\mathrm{vH}) \int_{J_{j}} f\right\| \leqslant \frac{\varepsilon}{2}
$$

Then,

$$
\begin{aligned}
& \left\|f(0)\left|J_{1}\right|-\sum_{n=1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}\left(J_{1}\right)\right\| \\
& =\left\|\sum_{n=1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}\left(J_{1}\right)\right\|=\left\|\sum_{k=k_{0}}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}\left(J_{1}\right)\right\|<\frac{\varepsilon}{4}
\end{aligned}
$$

and so f is vH -integrable.
(c) \Rightarrow (a) Assume the KH-integrability of f and let $\varepsilon>0$ and $n_{0} \in \mathbb{N}$ be such that $I \subset\left[0, a_{n_{0}}\right]$ yields $\|F(I)\|<\varepsilon / 2$. In virtue of Proposition 4.1, the series $\sum_{n=1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}(J)$ is uniformly convergent to $F(J)$ on the family $\mathcal{I} \cap\left[a_{n_{0}}, 1\right]$. Let $k_{0}>n_{0}$ be such that if $m>k_{0}$, then $E_{m} \cap\left(a_{n_{0}}, 1\right]=\emptyset$ and

$$
\left\|F\left(J \cap\left[a_{n_{0}}, 1\right]\right)-\sum_{n=1}^{m} \sum_{i=1}^{n} c_{i, n+1-i}\left(J \cap\left[a_{n_{0}}, 1\right]\right)\right\| \leqslant \frac{\varepsilon}{2} \quad \text { for every } J \in \mathcal{I} .
$$

If $I \in \mathcal{I}$ is fixed and $m>k_{0}$, then

$$
\left\|\sum_{n=m+1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}\left(I \cap\left[0, a_{n_{0}}\right]\right)\right\|=\left\|F\left(I \cap\left[0, a_{n_{0}}\right]\right)\right\| \leqslant \frac{\varepsilon}{2}
$$

and so, taking into account (4.5), we have

$$
\begin{aligned}
&\left\|F\left(I \cap\left[0, a_{n_{0}}\right]\right)-\sum_{n=1}^{m} \sum_{i=1}^{n} c_{i, n+1-i}\left(I \cap\left[0, a_{n_{0}}\right]\right)\right\| \\
& \leqslant\left\|F\left(I \cap\left[0, a_{n_{0}}\right]\right)-\sum_{n=1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}\left(I \cap\left[0, a_{n_{0}}\right]\right)\right\| \\
&+\left\|\sum_{n=m+1}^{\infty} \sum_{i=1}^{n} c_{i, n+1-i}\left(I \cap\left[0, a_{n_{0}}\right]\right)\right\| \leqslant \frac{\varepsilon}{2} .
\end{aligned}
$$

As a result, if $m>k_{0}$, then

$$
\left\|F(I)-\sum_{n=1}^{m} \sum_{i=1}^{n} c_{i, n+1-i}(I)\right\| \leqslant \varepsilon \quad \text { for every } I \in \mathcal{I}
$$

which proves the uniform convergence of the series (4.5) on \mathcal{I}.
Remark 4.1. In the same way as Theorem 4.1 was deduced from Proposition 4.1, one can obtain subsequent generalizations of Theorem 4.1.

References

[1] B. Bongiorno, L.DiPiazza, K. Musiat: Kurzweil-Henstock and Kurzweil-HenstockPettis integrability of strongly measurable functions. Math. Bohem. 131 (2006), 211-223. Zbl MR
[2] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15, American Mathematical Society 13, Providence, 1977.
zbl MR doi
[3] V. Marraffa: A characterization of strongly measurable Kurzweil-Henstock integrable functions and weakly continuous operators. J. Math. Anal. Appl. 340 (2008), 1171-1179. Zbl MR doi
[4] V. Marraffa: Strongly measurable Kurzweil-Henstock type integrable functions and series. Quaest. Math. 31 (2008), 379-386.
[5] K. Musiat: Topics in the theory of Pettis integration. School on Measure Theory and Real Analysis, Grado, 1991. Rend. Ist. Mat. Univ. Trieste 23, 1993, pp. 177-262.

```
zbl MR doi
```

zbl MR
Authors' addresses: Luisa Di Piazza, Valeria Marraffa, Department of Mathematics, University of Palermo, via Archirafi 34, 90123 Palermo, Italy, e-mail: luisa.dipiazza @unipa.it, valeria.marraffa@unipa.it; Kazimierz Musiat, Institute of Mathematics, Wrocław University, Plac Grunwaldzki 2/4, 50-384 Wrocław, Poland, e-mail: kazimierz. musial@math.uni.wroc.pl.

