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Abstract Fremlin (Ill J Math 38:471–479, 1994) proved that a Banach space valued
function is McShane integrable if and only if it is Henstock and Pettis integrable. In this
paper we prove that the result remains valid also in case of multifunctions with compact
convex values being subsets of an arbitrary Banach space (see Theorem 3.4). Di Piazza
and Musiał (Monatsh Math 148:119–126, 2006) proved that if X is a separable Banach
space, then each Henstock integrable multifunction which takes as its values convex
compact subsets of X is a sum of a McShane integrable multifunction and a Henstock
integrable function. Here we show that such a decomposition is true also in case of an
arbitrary Banach space (see Theorem 3.3). We prove also that Henstock and McShane
integrable multifunctions possess Henstock and McShane (respectively) integrable
selections (see Theorem 3.1).
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460 L. Di Piazza, K. Musiał

1 Introduction

In this paper we deal with relationship among Henstock, McShane and Pettis inte-
grable multifunctions which take as their values compact convex subsets of a general
Banach space, not necessarily separable. The Henstock and McShane integrals for
multifunctions are, respectively, generalizations of the Henstock and McShane inte-
grals for vector valued functions by means the notion of Hausdorff distance. In a
remarkable paper [8, Theorem 8] Fremlin proved that a Banach space valued function
in [0, 1] is McShane integrable if and only if it is both Henstock and Pettis integrable.
Here we show that the same characterization holds true also in case of multifunc-
tions with compact convex values being subsets of an arbitrary Banach space (see
Theorem 3.4). An important step in our investigations is a proof of the existence
of a Henstock (resp. McShane) integrable selection for a Henstock (resp. McShane)
integrable multifunction with weakly compact convex values (see Theorem 3.1). It
completes an earlier result from [1], where the existence of Pettis integrable selec-
tions of a Pettis integrable multifunction had been proven. Then, we use the existence
of Henstock integrable selections to decompose each Henstock integrable multifunc-
tion as the sum of a McShane integrable multifunction and a Henstock integrable
function (see Theorem 3.3). In this way we strengthen a previous decomposition for
Henstock–Kurzweil–Pettis integrable multifunction taking values in a general Banach
space: each Henstock–Kurzweil–Pettis integrable multifunction is the sum of a Pettis
integrable multifunction and a Henstock–Kurzweil–Pettis integrable function [6].

Throughout [0, 1] is the unit interval of the real line equipped with the usual topology
and the Lebesgue measure and I is the collection of all closed subintervals of [0, 1].
L denotes the family of all Lebesgue measurable subsets of [0, 1] and if E ∈ L, then
|E | denotes its Lebesgue measure. A partition P in [0, 1] is a collection {(I1, t1),
. . . , (Ip, tp)}, where I1, . . . , Ip are nonoverlapping subintervals of [0, 1], ti is a point
of [0, 1], i = 1, . . . , p. If ∪p

i=1 Ii = [0, 1], then P is a partition of [0, 1]. If ti is a point
of Ii , i = 1, . . . , p, we say that P is a Perron partition of [0, 1]. A gauge on [0, 1]
is a positive function on [0, 1]. For a given gauge δ on [0, 1], we say that a partition
{(I1, t1), . . . , (Ip, tp)} is δ-fine if Ii ⊂ (ti − δ(xi ), ti + δ(xi )), i = 1, . . . , p.

Given a function g : [0, 1] → X and a partition P = {(I1, t1), . . . , (Ip, tp)} in
[0, 1] we set

σ(g,P) =
p∑

i=1

|Ii |g(ti ).

Definition 1.1 (see [8]) Let X be a Banach space. A function g : [0, 1] → X is said to
be Henstock (resp. McShane) integrable on [0, 1] if there exists a point Φg[0, 1] ∈ X
with the following property: for every ε > 0 there exists a gauge δ on [0, 1] such that

∣∣∣∣σ(g,P) − Φ f [0, 1]∣∣∣∣ < ε.

for each δ-fine Perron partition (resp. partition) P of [0, 1]. We set (H)
∫ 1

0 g dt :=
Φg[0, 1] (resp. (M S)

∫ 1
0 g dt := Φg[0, 1]). ��
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Relations among Henstock, McShane and Pettis integrals 461

We denote the set of all Henstock (resp. McShane) integrable functions on [0, 1],
taking their values in X , by H([0, 1], X) (resp. MS([0, 1], X)). In case when X
is the real line, g is called Henstock–Kurzweil integrable, or simply HK-integrable,
(resp. integrable, because for real functions McShane integrability coincides with
Lebesgue integrability). Moreover the space of all HK-integrable scalar functions
(resp. integrable functions) is denoted by HK[0, 1] (resp. MS[0, 1]).

It is well known that if g is Henstock integrable on [0, 1], then g is Henstock inte-
grable over all I ∈ I (see [8] or [13, Theorem 3.3.4.]). We write then (H)

∫
I f (t) dt :=

(H)
∫ 1

0 f (t)χI (t) dt and in case of scalar functions: (H K )
∫

I f (t) dt . Integrals with-
out prefixes (HK) or (MS) are the ordinary Lebesgue integrals.

Throughout this paper X is a Banach space with its dual X∗. The closed unit ball
of X∗ is denoted by B(X∗). cb(X) is the family of all non-empty closed convex and
bounded subsets of X . ck(X) denotes the family of all compact members of cb(X)

and cwk(X) is the collection of all weakly compact elements of cb(X). For every
C ∈ cb(X) the support function of C is denoted by s(·, C) and defined on X∗ by
s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, for each x∗ ∈ X∗.

A map Γ : [0, 1] → 2X \{∅} (=non-empty subsets of X ) is called a multifunction. Γ
is said to be scalarly measurable if for every x∗ ∈ X∗, the map s(x∗, Γ (·)) is measur-
able. Γ is said to be scalarly Henstock–Kurzweil (resp. scalarly) integrable if, for every
x∗ ∈ X∗, the function s(x∗, Γ (·)) is Henstock–Kurzweil integrable (resp.integrable).
A function f : [0, 1] → X is called a selection of Γ if, for every t ∈ [0, 1], one has
f (t) ∈ Γ (t).

We associate with each multifunction Γ : [0, 1] → cb(X) the set

ZΓ := {s(x∗, Γ ) : ‖x∗‖ ≤ 1},

where we consider functions, not equivalence classes of a.e. equal functions. Identi-
fying equivalent functions we obtain the set ZΓ .

Let A and B be nonempty subsets of X . The excess of A over B is defined as
e(A, B) = sup{d(x, B) : x ∈ A}. The Hausdorff distance of A and B is defined
by dH (A, B) := max{e(A, B), e(B, A)}. cb(X) with the Hausdorff distance is a
complete metric space. We consider on cb(X) the Minkowski addition (A ⊕ B :=
{a + b : a ∈ A, b ∈ B}) and the standard multiplication by scalars.

Definition 1.2 A multifunction Γ : [0, 1] → cb(X) is said to be Henstock–Kurzweil–
Pettis integrable (see [4]) in cb(X) [cwk(X), ck(X)] (resp. Pettis integrable (see [12])
in cb(X)[cwk(X), ck(X)]) if Γ is scalarly Henstock–Kurzweil (resp. scalarly) inte-
grable on [0, 1] and for each subinterval I ∈ I (resp. A ∈ L), there exists a set
ΦΓ (I ) ∈ cb(X)[cwk(X), ck(X)] (resp. MΓ (A) ∈ cb(X)[cwk(X), ck(X)]) such that
for each x∗ ∈ X∗, we have

s(x∗, ΦΓ (I )) = (H K )

∫

I

s(x∗, Γ (t)) dt

⎛

⎝resp. s(x∗, MΓ (A)) =
∫

A

s(x∗, Γ (t)) dt

⎞

⎠ .

(1)
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462 L. Di Piazza, K. Musiał

We set (H K P)
∫

I Γ (t) dt := ΦΓ (I ) and (P)
∫

A Γ (t) dt := MΓ (A). ��

Definition 1.3 A multifunction Γ : [0, 1] → cb(X) is said to be Henstock (resp.
McShane) integrable, if there exists a set ΦΓ [0, 1] ∈ cb(X) with the following prop-
erty: for every ε > 0 there exists a gauge δ on [0, 1] such that for each δ-fine Perron
partition (resp. partition) {(I1, t1), . . . , (Ip, tp)} of [0, 1], we have

dH

(
ΦΓ [0, 1],

p⊕

i=1

Γ (ti )|Ii |
)

< ε. (2)

We write then (H)
∫ 1

0 Γ (t) dt := ΦΓ [0, 1] (resp. (M S)
∫ 1

0 Γ (t) dt := ΦΓ [0, 1]).
If ΦΓ [0, 1] ∈ cwk(X) or ΦΓ [0, 1] ∈ ck(X), then sometimes we say that Γ

is Henstock integrable in cwk(X) or ck(X), respectively. It is easily seen from the
definition and the completeness of the Hausdorff metric that cwk(X)[ck(X)]-valued
Henstock integrable multifunctions are integrable in cwk(X)[ck(X)].

SH (Γ ) [SM S(Γ ) , SP (Γ )] denotes the family of all scalarly measurable selections
of Γ that are Henstock [McShane, Pettis] integrable. ��

We note that when a multifunction is a function f : [0, 1] → X , then the set Φ f [0, 1]
is reduced to a vector of X and the above definitions coincide with those of Henstock
and McShane integrability for vector valued functions.

It follows from the definitions that if Γ is McShane integrable, then it is also
Henstock integrable (with the same values of the integrals).

According to Hörmander’s equality (cf. [11, p. 9])

dH

(
K ,

p⊕

i=1

Γ (ti )|Ii |
)

= sup
‖x∗‖≤1

∣∣∣∣∣s(x∗, K ) −
p∑

i=1

s(x∗, Γ (ti ))|Ii |
∣∣∣∣∣ . (3)

for each δ-fine Perron partition (resp. partition) {(I1, t1), . . . , (Ip, tp)} of [0, 1] and
for each set K ∈ cb(X). Hence, it follows from (2) and (3) that for each x∗ ∈ X∗ the
function s(x∗, Γ (·)) is HK-integrable (or McShane integrable) and s(x∗, ΦΓ [0, 1]) =
(H K )

∫ 1
0 s(x∗, Γ (t)) dt .

Hörmander’s equality allows us to reduce the Henstock integrability of mul-
tifunctions to the Henstock integrability of functions by embedding the families
ck(X), cwk(X) and cb(X) into the Banach space l∞(B(X∗)). More precisely, let
j : cb(X) → l∞(B(X∗)) be the mapping defined by j (K )(x∗) = s(x∗, K ). Then
j (cb(X)), j (ck(X)) and j (cwk(X)) are closed cones of l∞(B(X∗)) (see [2, Theorem
II.19]). Therefore a multifunction Γ : [0, 1] → cb(X) is Henstock integrable if and
only if the single valued function j ◦ Γ : [0, 1] → l∞(B(X∗)) is Henstock integrable
in the usual sense. The key point is that j (cb(X)) [ j (ck(X)), j (cwk(X))] are closed
cones. Consequently, if z ∈ l∞(B(X∗)) is the value of the Henstock integral of j ◦Γ ,
then there exists a set K ∈ cb(X) [ck(X), cwk(X)] with j (K ) = z.
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Relations among Henstock, McShane and Pettis integrals 463

2 Equi-integrability

In the theory of Lebesgue integration uniform integrability plays an essential role. Its
counterpart in the theory of gauge integrals is the notion of equi-integrability.

Definition 2.1 Let {gα : α ∈ A} be a family of real valued functions in HK[0, 1] (resp.
MS[0, 1]). We say that {gα : α ∈ A} is Henstock (resp. McShane) equi-integrable on
[0, 1] whenever for every ε > 0 there is a gauge δ such that

sup

⎧
⎨

⎩

∣∣∣∣∣∣
σ(gα,P) − (H K )

1∫

0

gα dt

∣∣∣∣∣∣
: α ∈ A

⎫
⎬

⎭ < ε.

for each δ-fine Perron partition (resp. partition) P of [0, 1].
The next result follows immediately from the equality (3) and it has been explicitly
formulated in [3] for Henstock integrable functions.

Proposition 2.2 If Γ : [0, 1] → cb(X) is a scalarly HK-integrable multifunction,
then the following conditions are equivalent:

(i) Γ is Henstock (resp. McShane) integrable;
(ii) the family ZΓ is Henstock (resp. McShane) equi-integrable;

Direct consequences of the above characterizations are hereditary properties of Hen-
stock and McShane integrals.

Proposition 2.3 (We refer to [8, Proposition 4]) If Γ : Ω → cb(X) is a Henstock
integrable multifunction, then for each I ∈ I the multifunction Γ χI is Henstock
integrable.

Proposition 2.4 (We refer to [9, Theorem 2E]) If Γ : Ω → cb(X) is a multifunction
that is McShane integrable, then for each E ∈ L the multifunction Γ χE is also
McShane integrable.

As an immediate corollary, we obtain the following result:

Corollary 2.5 If Γ : [0, 1] → cb(X) is Henstock integrable in cb(X)[cwk(X),

ck(X)], then it is also Henstock-Kurzweil-Pettis integrable in cb(X)[cwk(X), ck(X)].
If Γ : [0, 1] → cb(X) is McShane integrable in cb(X)[cwk(X), ck(X)], then it is

also Pettis integrable in cb(X)[cwk(X), ck(X)].
In order to prove our main results we need to know a little bit more about relations

between the two types of equi-integrability. The idea of our proof is taken from [8,
Theorem 8].

Proposition 2.6 Let A = {gα : [0, 1] → [0,∞) : α ∈ S} be a family of functions
satisfying the following conditions:

(i) A is Henstock equi-integrable;
(ii) A is norm relatively compact in the L1 norm;

(iii) A is pointwise bounded.
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464 L. Di Piazza, K. Musiał

Then the family A is also McShane equi-integrable.

Proof At first we observe that, since the functions gα in A are non negative and
Henstock integrable, they are also Lebesgue and then McShane integrable (see [10]).
Let ε > 0. For each k ∈ N set ηk = 2−kε/(2ε + 12(k + 1)) > 0.

According to the hypothesis (ii), choose hk,0, . . . , hk,i(k) ∈ A such that for every
function gα ∈ A there exists jα ≤ i(k) with

||gα − hk, jα ||1 ≤ ηk .

Moreover by hypothesis (i) and the McShane integrability of the functions in A, choose
a gauge δk in [a, b] such that:

sup

⎧
⎨

⎩

∣∣∣∣∣∣
σ(gα,P) −

1∫

0

gα(t) dt

∣∣∣∣∣∣
: α ∈ A

⎫
⎬

⎭ < ηk . (4)

for every δk-fine Perron partition P of [0, 1], and

∣∣∣∣∣∣
σ(hk, j ,P) −

1∫

0

hk, j (t) dt

∣∣∣∣∣∣
< ηk . (5)

for every j ≤ i(k) and every δk-fine partition P of [0, 1]. Now by hypothesis (iii) let
g : [0, 1] → [0,∞) be a function such that

0 ≤ gα(t) ≤ g(t), (6)

for every t ∈ [0, 1] and every gα ∈ A.
For each k set

Ak = {t ∈ [a, b] : k ≤ g(t) < k + 1}. (7)

Define a gauge δ on [0, 1] setting δ(t) = δk(t), if t ∈ Ak .
Now let Q = {(Ji , ti ) : i = 1, . . . , p} be a δ-fine partition of [0, 1] and take any

gα ∈ A.
Let us fix k. Set

Tk = {i : i ≤ p, ti ∈ Ak} and Hk =
⋃

i∈Tk

Ji .

We are going to evaluate | ∫Hk
gα(t) dt − ∑

i∈Tk
|Ji |gα(ti )|.

Take jα ≤ i(k) such that
∫ 1

0 |gα(t) − hk, jα(t)| dt ≤ ηk . Then also

∣∣∣∣∣∣∣

∫

Hk

[gα(t) − hk, jα (t)] dt

∣∣∣∣∣∣∣
≤ ηk . (8)
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Relations among Henstock, McShane and Pettis integrals 465

Note that, if S is any δk-fine partition in [0, 1], by (5) and Lemma 3.5.6. of [13], we
have ∣∣∣∣∣∣∣

∫

⋃
(J,t)∈S J

hk, jα (t) dt − σ(hk, jα ,S)

∣∣∣∣∣∣∣
≤ ηk . (9)

So, if R is any δk-fine Perron partition in [0, 1], by (4), (9), and by Lemma 3.5.6. of
[13], we get

∣∣∣∣∣∣∣
σ(gα,R) −

∫

⋃
(I,t)∈R I

gα(t) dt

∣∣∣∣∣∣∣
≤ ηk

and
∣∣∣∣∣∣∣
σ((gα − hk, jα ),R) −

∫

⋃
(I,t)∈R I

[gα(t) − hk, jα (t)] dt

∣∣∣∣∣∣∣
≤ 2ηk .

Consequently, applying (8), we have

∑

(I,t)∈R
|I |(gα − hk, jα )(t) ≤ 3ηk , (10)

for every δk-fine Perron partition R in [0, 1]
Now set

V =
⋃

{(t − δk(t), t + δk(t)) : gα(t) − hk, jα (t) ≥ ε}.

Then by [8, Lemma 6] applied to the function gα − hk, jα we have

|[0, 1] ∩ V | ≤ 3ηk/ε.

Since
⋃

{Ji : i ∈ Tk, gα(ti ) − hk, jα (ti ) ≥ ε} ⊂ V ,

we have also
∑

{i∈Tk : gα(ti )−hk, jα (ti )≥ε}
|Ji | ≤ 3ηk/ε.

In a similar way we obtain

∑

{i∈Tk : hk, jα (ti )−gα(ti )≥ε}
|Ji | ≤ 3ηk/ε.
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466 L. Di Piazza, K. Musiał

Moreover, by (6) and (7) we have for every ti ∈ Ak

|hk, jα (ti ) − gα(ti )| ≤ 2g(t) < 2(k + 1)

Hence, ∑

i∈Tk

|Ji ||hk, jα (ti ) − gα(ti )| ≤ ε|Hk | + 12ηk(k + 1)/ε. (11)

By (8), (9) and (11) we obtain

∣∣∣∣∣∣∣

∫

Hk

gα(t) dt −
∑

i∈Tk

|Ji |gα(ti )

∣∣∣∣∣∣∣
< 2ηk + ε|Hk | + 12ηk(k + 1)/ε < ε(2−k + |Hk |).

And summing over k we get

∣∣∣∣∣∣

b∫

a

gα(t) dt − σ(gα,Q)

∣∣∣∣∣∣
< ε

∑

k

(2−k + |Hk |) = 3ε.

Since this is true for every function gα in A and for every δ-fine partition Q of [0, 1],
the family A is McShane equi-integrable. ��

3 Main results

The following theorem is fundamental for our characterization of McShane integrable
multifunctions.

Theorem 3.1 If Γ : [0, 1] → cwk(X) is Henstock integrable, then SH (Γ ) �= ∅.
If Γ : [0, 1] → cwk(X) is Henstock and Pettis integrable in cwk(X), then

SM S(Γ ) �= ∅.

Proof The first part of our proof is similar to that of [1, Theorem 2.5]. Since H :=∫ 1
0 Γ (t) dt ∈ cwk(X), there exists a strongly exposed point x0 ∈ H . Assume that

x∗
0 ∈ B(X∗) is such that x∗

0 (x0) > x∗
0 (x) for every x ∈ H \ {x0} and the sets {x ∈ H :

x∗
0 (x) > x∗

0 (x0)−α} , α ∈ R , form a neighborhood basis of x0 in the norm topology
on H . Define G : [0, 1] → cwk(X) by G(t) := {x ∈ Γ (t) : x∗

0 (x) = s(x∗
0 , Γ (t))}.

If Γ is Henstock integrable in cwk(X), then Γ is also HKP-integrable in cwk(X)

(see Corollary 2.5). It follows from the continuity characterization of HKP-integrable
multifunctions (see [6, Proposition 2]) that also G is HKP-integrable in cwk(X). If Γ

is Pettis integrable, then also G is Pettis integrable (see [1] or [12]). Let g : [0, 1] → X
be a selection of G constructed in [1] for the strongly exposed point x0. In case of
Henstock integrability of Γ , the selection g is HKP-integrable [6, Proposition 3] and
in case when Γ is Pettis integrable, g is Pettis integrable (see [1, Corollary 2.3] or [12,
Corollary 1.5]). In the both cases x∗

0 (x0) = ∫ 1
0 x∗

0 g(t) dt .
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Relations among Henstock, McShane and Pettis integrals 467

Let ε > 0 and 0 < ε′ < ε/2 be arbitrary. Then, let 0 < η < ε′ be such that

∀ x ∈ H [|x∗
0 (x) − x∗

0 (x0)| < η ⇒ ‖x − x0‖ < ε′]. (12)

Since Γ is Henstock integrable and x∗
0 g is HK-integrable we can find a gauge δ on

[0, 1] such that for each δ-fine Perron partition P := {(I1, t1), . . . , (Ip, tp)} of [0, 1]

dH

(
H,

p⊕

i=1

Γ (ti )|Ii |
)

< η/2 (13)

and ∣∣∣∣∣∣

1∫

0

x∗
0 g(t) dt −

p∑

i=1

x∗
0 g(ti )|Ii |

∣∣∣∣∣∣
< η/2. (14)

It is a consequence of (13) that there exists a point xP ∈ H with

∥∥∥∥∥

p∑

i=1

g(ti )|Ii | − xP

∥∥∥∥∥ < η/2

and so, taking into account also (14) and the equality x∗
0 (x0) = ∫ 1

0 x∗
0 g(t) dt , we have

|x∗
0 (xP )−x∗

0 (x0)| ≤
∣∣∣∣∣x

∗
0 (xP ) − x∗

0

( p∑

i=1

g(ti )|Ii |
)∣∣∣∣∣+

∣∣∣∣∣

p∑

i=1

x∗
0 g(ti )|Ii | − x∗

0 (x0)

∣∣∣∣∣<η.

Now, (12) yields ‖xP − x0‖ < ε′ and finally

∥∥∥∥∥

p∑

i=1

g(ti )|Ii | − x0

∥∥∥∥∥ ≤
∥∥∥∥∥

p∑

i=1

g(ti )|Ii | − xP

∥∥∥∥∥ + ‖xP − x0‖ < ε.

The above inequality proves the Henstock integrability of g. If g is also Pettis inte-
grable, then it follows from [8] that g is McShane integrable. �

The following lemma is related to [6, Lemma 1].

Corollary 3.2 Let Γ : [0, 1] → cwk(X) be a multifunction that is Henstock-
integrable in ck(X). If s(x∗, Γ ) ≥ 0 almost everywhere for each x∗ ∈ X∗ separately,
then Γ is McShane integrable in ck(X).

Proof According to [6, Lemma 1] Γ is Pettis integrable in cwk(X). But if E ∈ L,
then

(P)

∫

E

Γ (t) dt ⊂ (P)

1∫

0

Γ (t) dt = (H)

1∫

0

Γ (t) dt ∈ ck(X).
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Hence Γ is Pettis integrable in ck(X) and all f ∈ SP (Γ ) have norm relatively compact
ranges of their Pettis integrals. Hence, it follows from [12, Theorem 3.7] and its proof
that ZΓ is relatively compact in L1[0, 1]. In view of Propositions 2.2 and 2.6 the
multifunction Γ is McShane integrable in ck(X). ��

The next theorem is a strong generalization of [5, Theorem 2], where an identical
result has been proven for compact valued multifunctions taking their values in a
separable Banach space.

Theorem 3.3 Let Γ : [0, 1] → cwk(X) be a scalarly Henstock–Kurzweil integrable
multifunction. Then the following conditions are equivalent:

(i) Γ is Henstock integrable in ck(X);
(ii) SH (Γ ) �= ∅ and for every f ∈ SH (Γ ) the multifunction G : [0, 1] → cwk(X)

defined by Γ (t) = G(t) + f (t) is McShane integrable in ck(X);
(iii) there exists f ∈ SH (Γ ) such that the multifunction G : [0, 1] → cwk(X) defined

by Γ (t) = G(t) + f (t) is McShane integrable in ck(X).

If Γ : [0, 1] → ck(X), then also the multifunctions G are ck(X)-valued.

Proof (i) ⇒ (ii) According to Theorem 3.1 SH (Γ ) �= ∅. Let f ∈ SH (Γ ) be fixed.
Define G : [0, 1] → ck(X) by G(t) := Γ (t) − f (t). Then G is also Henstock
integrable in ck(X) and s(x∗, G(t)) ≥ 0 for every x∗ ∈ X∗ and every t ∈ [0, 1]. So
s(x∗, G(t)) is integrable. By Corollary 3.2 the multifunction G is McShane integrable
in ck(X). Obviously (ii) ⇒ (iii). The implication (iii) ⇒ (i) follows at once from
Proposition 2.2. ��

The next theorem generalizes [8, Theorem 8].

Theorem 3.4 Let Γ : [0, 1] → cwk(X) be a scalarly measurable multifunction.
Then the following conditions are equivalent:

(i) Γ is McShane integrable in ck(X);
(ii) Γ is Pettis and Henstock integrable in ck(X);

(iii) Γ is Henstock integrable in ck(X) and SH (Γ ) ⊂ SM S(Γ ).
(iv) Γ is Henstock integrable in ck(X) and SH (Γ ) ⊂ SP (Γ );
(v) Γ is Henstock integrable in ck(X) and SP (Γ ) �= ∅.

Proof (i) ⇒ (ii) [This implication holds true for an arbitrary Γ : [0, 1] → cb(X) that
is McShane integrable in cb(X)]. As we have already mentioned in Corollary 2.5, if
Γ is McShane integrable in ck(X), it is also Henstock and Pettis integrable in ck(X).

(ii) ⇒ (i) In virtue of Theorem 3.1 Γ has a McShane integrable selection f . It
follows from Theorem 3.3 that there exists a multifunction G : [0, 1] → cwk(X)

that is McShane integrable in ck(X) such that Γ = G + f . It follows that Γ is also
McShane integrable in ck(X).

(i) ⇒ (iii) If f ∈ SH (Γ ) then, according to Theorem 3.3, Γ = G + f for a
McShane integrable G. But as Γ is Pettis integrable, also f is Pettis integrable (cf.
[12, Corollary 1.5]). In view of [8, Theorem 8] f is McShane integrable.

(iii) ⇒ (iv) is valid, because each McShane integrable function is also Pettis inte-
grable [9, Theorem 2C].
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(iv) ⇒ (v) In view of Theorem 3.1 SH (Γ ) �= ∅ and so (iv) implies SP (Γ ) �= ∅.
(v) ⇒ (ii) Take f ∈ SP (Γ ). Since Γ is Henstock integrable, it is also HKP-

integrable and so applying [6, Theorem 2] we obtain a representation Γ = G + f ,
where G : [0, 1] → cwk(X) is Pettis integrable in ck(X). Consequently, Γ is also
Pettis integrable in ck(X) and so (ii) is fulfilled. ��
Remark 3.5 We observe that one cannot add to Theorem 3.4 the condition: “Γ is
Pettis integrable in ck(X) and SH (Γ ) �= ∅”. In fact let f : [0, 1] → X be a scalarly
negligible function, Pettis but not McShane integrable (it is well known that under (CH)
there are such functions [7]). We define a multifunction Γ : [0, 1] → ck(X) by setting
Γ (t) = conv{0, f (t)}. Since for every x∗ ∈ X∗ we have s(x∗, Γ (t)) = [x∗ f (t)]+, the
multifunction Γ is scalarly integrable and measurable. Moreover, since f is scalarly
negligible, then s(x∗, Γ (t)) = [x∗ f (t)]+ = 0 a.e. So Γ itself is Pettis integrable in
ck(X) with integral equal to {0}. Since f is not McShane integrable by [3, Lemma
1] there exists ε0 > 0 such that for every gauge δ we can find a δ-fine partition
{(Ii , ti ) : i ∈ I } satisfying the inequality

∥∥∥∥∥
∑

i∈I

f (ti )|Ii |
∥∥∥∥∥ > ε0.

So there exists x∗
0 ∈ B(X∗) such that

∑

i∈I

x∗
0 f (ti )|Ii | > ε0,

and then

∑

i∈I

s(x∗
0 , Γ (ti ))|Ii | =

∑

i∈I

[x∗
0 f (ti )]+|Ii | > ε0.

By Proposition 2.2 it follows that Γ is not McShane integrable, and by Theorem 3.4(v)
Γ is not Henstock integrable. On the other hand Γ has a McShane integrable zero
selection.
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