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AN ALTERNATE APPROACH TO THE
McSHANE INTEGRAL

Abstract

The classical McShane integral has been generalized by D.H. Fremlin
[2] to the case of an arbitrary σ-finite outer regular quasi-Radon measure
space. We present an alternate approach to the Fremlin integral for a
non-atomic, finite quasi-Radon space.

1 Introduction

In [2] D.H. Fremlin studies, in a σ-finite outer regular quasi-Radon space, a
method of integration for vector-valued functions which is a generalization
of that from the McShane process of integration [5]. This method involves
infinite McShane partitions by disjoint families of measurable sets of finite
measure. However, in the compact case, the method may use finite McShane
partitions with disjoint measurable sets. In the case of a compact space and
a Radon measure, the use of suitable ‘intervals’, instead of measurable sets,
is also possible: let A be an algebra of measurable sets such that whenever
F ⊆ G, F is closed and G is open there is an A ∈ A such that F ⊆ A ⊆ G;
the ‘intervals’ considered by Fremlin are the elements of a family C ⊆ A such
that every member of A is a finite disjoint union of members of C.

In this paper, the context is a non-atomic, probability, and quasi-Radon
space, (Ω, T ,Σ, µ). We consider a method of integration which involves finite
Henstock partitions by disjoint families of measurable sets that cover the whole
domain up to a set of arbitrarily small measure (we call the partitions η-tight).
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We prove that it is equivalent to Fremlin’s method. We may also consider η-
tight partitions by disjoint families of ‘intervals’. We have a larger choice
in the definition of the ‘intervals’, indeed we may use semirings S satisfying
the following weaker condition: given ε > 0, ω ∈ Ω and an open set G of
positive measure and containing ω, there exists A ∈ S satisfying the condition:
ω ∈ A ⊆ G and µ(G \ A) < ε. In case the family C of ‘intervals’ is properly
enclosed in S it may happen that no ∆-fine Henstock η-tight partition exists,
for some gauge ∆ and sufficiently small η. In this case our method involves
finite McShane η-tight partitions.

The use of finite McShane η-tight partitions may be applied to quite general
families of sets B. We do not know whether the B-integral is always equivalent
to the McShane integral considered by Fremlin. However, in Theorem 7 we
prove this equivalence for real valued functions and in Theorem 9 for strongly
measurable functions.

2 Preliminaries

Throughout (Ω, T ,Σ, µ) will be a non-atomic, probability and quasi-Radon
space (see [1]) i.e.:

(i) (Ω,Σ, µ) is complete;

(ii) T is a T1-topology such that T ⊂ Σ;

(iii) µ(E) = sup{µ(F ) : F ⊆ E ,F is closed} for every E ∈ Σ;

(iv) µ is τ -additive, i.e. if G ⊆ T is non–empty and upwards directed by
inclusion, then

µ(
⋃
G∈G

G) = sup{µ(G) : G ∈ G}.

The outer measure induced by µ is denoted by µ∗. For E ⊂ Ω, Ē, Ec and ∂E
are respectively the closure, the complement and the boundary of E.
Each function ∆ : Ω → T satisfying for each ω ∈ Ω the property ω ∈ ∆(ω)
will be called a gauge.
Let ∆ be a gauge and let E ⊂ Ω. Given a non-empty family B ⊆ Σ, a
collection P = {(An, ωn) : n = 1, . . . , p} of pairwise disjoint sets An ∈ B and
points ωn ∈ An is said to be a Henstock B-partition. If we assume only that
ωn ∈ Ω, 1 ≤ n ≤ p, then we say this is a McShane B-partition. If there is no
necessity to distinguish between them we will say simply about B-partition.
If all elements of the partition are subsets of E, then it is a B-partition in E.
A B-partition is said to be:
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(a) tagged in E if ωn ∈ E for each n ≤ p ;

(b) ∆-fine, if An ⊂ ∆(ωn) for each n ≤ p ;

(c) η-tight, if µ(Ω \
⋃p
n=1An) < η, where η is a positive number.

Given a partition P = {(An, ωn) : n = 1, . . . , p}, we set co(P) = ∪nAn. For
simplicity, a B-partition that is ∆-fine and η-tight will be called a (∆, η,B)-
partition. If P is a ∆-fine B-partition in E, and µ[E \ co(P)] < η, then it
is called a (∆, η,B)-partition of E. Whenever the set where the partition is
tagged is not specified, then it means that the partition is tagged in Ω. If
B ⊆ Σ, we denote by B∪ the family of all finite unions of members of B. We
say that T is inner regular with respect to B whenever µ(G) = sup{µ(B) : B 3
B ⊆ G}, for each G ∈ T .
The following result may be considered as a partial justification of our further
assumptions concerning B:

Proposition 1. Let B ⊆ Σ be a collection of sets and let C ⊂ B be such that
each member of B is a finite union of pairwise disjoint elements of C. If T is
inner regular with respect to B, then for each G ∈ T the set of all ω ∈ G such
that for each ε > 0 there exists G ⊇ C ∈ C of positive measure less than ε and
containing the point ω is of full measure in G.

Proof. Since µ is nonatomic, for each n ∈ N there exists a decomposition
G = ∪ni=1H

n
i into pairwise disjoint sets of measure µ(G)/n . Because of the

outer regularity of µ for each i ≤ n there is an open set Gni ⊃ Hn
i , such that

Gni ⊂ G and µ(Gni \Hn
i ) < µ(G)/n2n . It follows from the inner regularity of

T , that for each i ≤ n one can find Bni ∈ B with µ(Gni \ Bni ) < µ(G)/n2n .
Consequently,

µ
(
G \

n⋃
i=1

Bni

)
≤ µ

( n⋃
i=1

(Hn
i \Bni )

)
≤

n∑
i=1

µ(Gni \Bni ) < µ(G)/2n .

If Bni = ∪k(i,n)
j=1 Cn,ij with Cn,ij ∈ C, then some of the sets Cn,ij may be of

measure zero; denote their union by Nn
i .

For each n put Hn = :
⋃n
i=1B

n
i \
⋃n
i=1N

n
i . Then µ(Hc

n) < µ(G)/2n . Consider
now the set lim supnHn. If ω ∈ lim supnHn, then for each ε > 0 there exists
an element of C containing ω and of measure less than ε. Now we have :

µ(G \ lim sup
n

Hn) = µ
( ∞⋃
n=1

∞⋂
k=n

Hc
k

)
= lim

n
µ
( ∞⋂
k=n

Hc
k

)
= 0 . (1)

This completes the proof.
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Following the above lemma, we say that a family B is fine on Ω if for all ω ∈ Ω
the following is satisfied: for each G ∈ T with ω ∈ G and µ(G) > 0, there
exists B ∈ B such that ω ∈ B ⊂ G and µ(B) > 0. It is clear that together
with outer regularity of µ this means that each point ω ∈ Ω can be embedded
into a member of B of arbitrary small measure. We say that B ⊆ Σ separates
points off closed sets if given ε > 0 , ω ∈ Ω and an open G of positive measure
and containing ω, there exists B ∈ B satisfying the condition ω ∈ B ⊆ G and
µ(G \B) < ε .
From now on we assume that S ⊆ Σ is a semiring of sets , i.e.

if A,B ∈ S then A ∩B ∈ S and A \B ∈ S .

Throughout C ⊆ S is a fine collection of sets, such that each R ∈ S is a finite
union of pairwise disjoint members of C. We assume also that S separates
points off closed sets.
It follows that T is inner regular with respect to S (or equivalently: S-regular).

Remark 1. In [2] Proposition 1F, Fremlin considers an algebra A satisfying
the following stronger condition:
given a closed set F and an open G such that F ⊆ G, there exists A ∈ A with

F ⊆ A ⊆ G .

Notice that an algebra separating points off closed sets not necessarily satisfies
the above condition. Indeed let us consider the following two examples:

Example 1. Let A be the algebra generated by intervals of R and let µ be
a Gaussian measure on R. Then A separates points off closed sets, but does
not satisfy Fremlin’s condition.
In fact let F = N and let G =

⋃
n∈N(n − 1

2 , n + 1
2 ). It is impossible to find

such A since it should be a union of finitely many intervals only.

Example 2. Let B be the family of first category subsets of [0, 1] and let µ be
the Lebesgue measure. According to a theorem of Marczewski and Sikorski [4]
if G is an open subset of [0, 1], then G can be decomposed into disjoint sets K
and M such that K ∈ B and µ(M) = 0. It follows that the ring B separates
points off closed sets. Indeed, if ω ∈ G then we simply set B = K ∪ {ω}. On
the other hand, since the algebra A generated by B consists of sets which are
of the first category or their complements are such, it cannot satisfy Fremlin’s
property. Indeed, if we take F = [1/3, 1/2] and G = (1/4, 3/4), then each
A ∈ A such that F ⊆ A ⊆ G is of the second category and its complement Ac

either. Thus, A cannot be a member of the algebra generated by B.
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3 B-Integrals Generated by Semirings and Intervals.

One of the most essential problems in the theory of gauge integrals is the
existence of ∆-fine partitions. In the case of partitions generated by a semiring
or by a family C of intervals the following result holds:

Lemma 1. If W ⊆ Ω is such that µ∗(W ) = 1, then for each η > 0 and
each gauge ∆ there exists a (∆, η, C)-McShane partition tagged in W and a
(∆, η,S)-Henstock partition tagged in W .

Proof. Let η > 0 and a gauge ∆ : Ω → T be given. Then Ω ⊆
⋃
ω∈Ω ∆(ω).

Let us fix an arbitrary ω0 ∈ W such that µ(∆(ω0)) > 0 (such a point exists
because µ is τ -additive). Assume now that κ is the first ordinal of the cardi-
nality equal to the cardinality of the set Ω and that for some 1 ≤ γ < κ we
already have a collection {ωα ∈W : α < γ} such that :

(i) µ(∆(ωα)) > 0 for each α < γ;

(ii) ωβ /∈ ∆(ωα) for each α < β < γ.

If µ[
⋃
α<γ ∆(ωα)] = 1, then we finish the construction. But if µ[

⋃
α<γ ∆(ωα)] <

1, then we have the inclusion

Ωγ ⊆
⋃
ω∈Ωγ

∆(ω)

where,for simplicity we put Ωγ = Ω\
⋃
α<γ ∆(ωα), and the set Ωγ is of positive

measure. Since the measure µ restricted to Ωγ is also τ -additive, there exists
a point ωγ ∈ Ωγ ∩W such that µ[∆(ωγ) ∩ Ωγ ] > 0.
Since µ is finite, it satisfies the CCC condition (i.e. each pairwise disjoint
family of sets of positive measure is at most countable) and so there is a
countable ordinal γ < κ such that µ(Ωγ) = 0. Applying once again the τ -
additivity of µ, we find a finite collection ω1, . . . , ωn ∈ {ωα : α < γ} such
that

a : = µ
(

Ω \
n⋃
i=1

∆(ωi)
)
< η .

Now by the properties of the family S, we can find for each i ∈ {1, . . . , n} a
set Bi ∈ S such that ωi ∈ Bi ⊆ ∆(ωi) and µ[∆(ωi) \ Bi] < (η − a)/n. It
follows that

µ
( n⋃
i=1

∆(ωi) \
n⋃
i=1

Bi

)
≤ µ

( n⋃
i=1

[∆(ωi) \Bi]
)
≤

n∑
i=1

µ[∆(ωi) \Bi] < η − a .
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Thus,

µ(Ω \
n⋃
i=1

Bi) ≤ µ
(

Ω \
n⋃
i=1

∆(ωi)
)

+ µ
( n⋃
i=1

∆(ωi) \
n⋃
i=1

Bi

)
< η .

Setting R1 = B1, . . . , Rn = Bn \
⋃n−1
i=1 Bi = (· · · (Bn \ B1) \ · · · \ Bn−1), we

get a (∆, η,S)-Henstock partition {(Ri, ωi) : i ≤ p} , that is tagged in W .
By the assumption however each Ri is of the form Ri =

⋃ki
j=1 C

j
i , i ≤ n.

{(Cji , ωi) : j ≤ ki, i ≤ n} is the required McShane (∆, η, C)-partition tagged
in W .
Let X be a Banach space and let f : Ω → X. For each partition P =
{(An, ωn) : n = 1, . . . , p}, we set σ(f,P) =

∑p
n=1 f(ωn)µ(An).

Definition 1. Let B ⊆ Σ be an arbitrary collection of sets such that for every
η > 0 and every gauge ∆ there exists a (∆, η,B)-McShane (resp. Henstock)
partition. We say that f is BMS (resp. BH) -integrable on Ω if there exists
w ∈ X satisfying the following property:
for each ε > 0 there exists a gauge ∆ : Ω→ T and a positive constant η such
that

‖σ(f,P)− w‖ < ε, (2)

for every (∆, η,B)-McShane (resp. Henstock) partition P.
We set w = (BMS)

∫
Ω
f dµ and w = (BH)

∫
Ω
f dµ respectively.

Given a measurable set E ⊂ Ω it is said that f is BMS (resp. BH) -integrable
on E if the function fχE is BMS (resp. BH) -integrable on Ω. We set w(E) =
(BMS)

∫
Ω
fχE dµ and w(E) = (BH)

∫
Ω
fχE dµ respectively.

It is clear that without the assumption concerning the existence of (∆, η,B)-
partitions the above integrals may not exist. In case of B = C or B = S the
B-integrals are well defined, that is each function has at most one value of
the integral. Indeed, suppose there exist wi ∈ X, a gauge ∆i : Ω → T and
ηi > 0 such that ‖σ(f,Pi) − wi‖ < ε for each (∆i, ηi,B)-McShane partition
Pi, i = 1, 2. Then define ∆(ω) = ∆1(ω) ∩∆2(ω) , ω ∈ Ω and η = min{η1, η2}.
Let P be a (∆, η,B)-McShane partition (existing in virtue of Lemma 1). We
have

‖w1 − w2‖ ≤ ‖σ(f,P)− w1‖+ ‖σ(f,P)− w2‖ < 2ε .

Thus w1 = w2. In the same way, one proves the uniqueness of the BH -integral.

Remark 2. If f is Σ-McShane B-integrable, then it is BMS-integrable for
quite arbitrary B ⊂ Σ (such that the definition makes sense). It is clear that
the opposite implication is in general false, since B can be very poor. A similar
fact holds true also for the Henstock version.
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Lemma 2. Let f : Ω→ X be a function almost everywhere equal to zero on
Ω. Then f is SMS (resp. SH) -integrable with SMS (resp. SH) -integral equal
to zero. The same result holds true for CMS-integral.

Proof. For each n = 1, 2..., let Nn = {ω ∈ Ω : n − 1 < ‖f(ω)‖ ≤ n}. It
follows that µ(∪nNn) = 0. Fix ε > 0, take 0 < η < ε and for each n ∈ N,
choose an open set Gn such that Gn ⊃ Nn and µ(Gn) < η/n2n .
Then define ∆ : Ω → T so that ∆(ω) = Gn, if ω ∈ Nn. If P = {(An, ωn) :
n = 1, . . . , p} is a (∆, η,A)-McShane partition, then

‖σ(f,P)‖ =

∥∥∥∥∥∑
n

∑
ωi∈Nn

f(ωi)µ(Ai)

∥∥∥∥∥ ≤∑
n

n
∑
ωi∈Nn

µ(Ai) < η
∑
n

2−n < ε .

Definition 2. It is said that f is Fremlin-integrable on Ω (see Fremlin [2]) if
there exists w ∈ X satisfying the following property:
for each ε > 0 there exists a gauge ∆ such that

lim sup
k→∞

∥∥∥∥∥
k∑

n=1

f(xn)µ(An)− w

∥∥∥∥∥ < ε, (3)

for every ∆-fine infinite McShane Σ-partition {(An, xn) : n ∈ N} such that
µ(Ω \ ∪∞n=1An) = 0. We set w = (F )

∫
Ω
f dµ.

Theorem 3. A function f : Ω→ X is ΣMS-integrable on Ω if and only if it
is ΣH-integrable on Ω, and if and only if it is Fremlin-integrable on Ω.

Proof. The first equivalence is obvious. Let now f be ΣMS-integrable on Ω.
Fix ε > 0 and let ∆, η and w be such that

‖σ(f,P)− w‖ < ε ,

for each (∆, η,Σ)-McShane partition P.
Now let Q = {(Ai, ωi) : i ∈ N} be an infinite ∆-fine McShane partition such
that

∑∞
i=1 µ(Ai) = µ(Ω). Let i0 be such that

∑
i>i0

µ(Ai) < η. Note that
{((Ai \ ∪∞j=1{ωj})∪ {ωi}, ωi) : i ≤ j} is a (∆, η,Σ)-partition for every j > i0.
Then we have for every j > i0∥∥∥∥∥∑

i≤j

f(ωi)µ(Ai)− w

∥∥∥∥∥ < ε .

Hence f is Fremlin-integrable.
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If f is Fremlin-integrable on Ω, then it is Pettis integrable and the integrals
coincide (see [2], Theorem 1Q). Since the indefinite Pettis integral is absolutely
continuous with respect µ, for each ε > 0 we can find a positive constant η
such that ∥∥∥∥(F )

∫
E

f dµ

∥∥∥∥ < ε

2
, whenever µ(E) < η.

Moreover, by [2] (Lemma 2B) we can find a gauge ∆ such that∥∥∥∥∥σ(f,P)− (F )
∫
co(P)

f dµ

∥∥∥∥∥ < ε

2
,

whenever P is a McShane ∆-fine Σ-partition.
Thus, if P is a (∆, η,Σ)-McShane partition, we have:∥∥∥∥σ(f,P)− (F )

∫
Ω

f dµ

∥∥∥∥
≤

∥∥∥∥∥σ(f,P)− (F )
∫
co(P)

f dµ

∥∥∥∥∥+

∥∥∥∥∥(F )
∫

Ω\co(P)

f dµ

∥∥∥∥∥
<
ε

2
+
ε

2
= ε.

Theorem 4. Assume that C ⊂ S is fine and S separates points off closed sets.
For an arbitrary function f : Ω→ X the following are equivalent:

(i) f is ΣMS-integrable on Ω;

(ii) f is CMS-integrable on Ω;

(iii) f is SH-integrable on Ω.

Proof. It follows directly by definitions that if f is ΣMS-integrable on Ω
then it is SH -integrable on Ω and - in the same way - it is CMS-integrable.
Moreover the integrals coincide.

We will prove now, that CMS-integrability yields SH -integrability. To see
it assume that f is CMS-integrable. Then fix ε > 0 and take η > 0 and a gauge
∆ such that ∥∥∥∥σ(f,Q)− (CMS)

∫
Ω

f dµ

∥∥∥∥ < ε (4)

for each (∆, η, C)-McShane partition Q = {(Ci, wi) : i = 1, . . . , s}. Let P =
{(Ai, ωi) : i = 1, . . . , p} be a (∆, η,S)-Henstock partition. It follows from the
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assumed properties of C, that for each i ≤ p we have Ai =
⋃ki
j=1 C

j
i , where

C1
i , . . . , C

ki
i are pairwise disjoint members of C. If we set V : = {(Cji , ωi) : j ≤

ki, i ≤ p}, then it follows from the inequality (4) that∥∥∥∥σ(f,V)− (SH)
∫

Ω

f dµ

∥∥∥∥ < ε

what proves the SH -integrability of f .
Now suppose f is SH -integrable on Ω. We are going to show that f is

ΣH -integrable. Fix ε > 0 and take 0 < η < ε/8 and a gauge ∆ such that∥∥∥∥σ(f,Q)− (SH)
∫

Ω

f dµ

∥∥∥∥ < ε

2
(5)

for each (∆, η,S)-Henstock partition Q = {(Ai, wi) : i = 1, . . . , s}. Let
P = {(Ei, ωi) : i = 1, . . . , p} be a (∆, η,Σ)-Henstock partition. Put m :=
maxi ‖f(ωi)‖. The proof will be inductive. Assume that for some 1 ≤ q < p
we have already sets A1, . . . , Aq ∈ S , such that ωj ∈ Aj for j ≤ q , closed sets
F1, . . . , Fq and open sets G1, . . . , Gq satisfying for each j ≤ q the following
properties:

Fj ⊆ Aj ⊆ Gj and Ej ⊆ Gj ⊆ ∆(ωj) ; (6)

Gi ∩ ({ω1, . . . , ωp} \ {ωi}) = ∅ and Gi ∩ Fj = ∅ if j < i ≤ q ; (7)

µ(Gj \ Fj) <
2η

p2(m+ 1)
and µ(Ej4Aj) <

2η
p2(m+ 1)

. (8)

Having these sets, we take an open set Gq+1 such that

Eq+1 ⊆ Gq+1 ⊆ ∆(ωq+1) , Gq+1 ∩ ({ω1, . . . , ωq} \ {ωq+1}) = ∅

and
µ(Gq+1 \ Eq+1) <

η

p2(m+ 1)

(besides the outer regularity of µ we apply here the T1-property of T and the
non-atomicity of µ). Since Eq+1 ∩ (

⋃
j≤q Ej) = ∅, we may take Gq+1 in such

a way that
Gq+1 ∩ Fj = ∅ if j ≤ q .
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By the properties of S, there exists Aq+1 ∈ S, such that

ωq+1 ∈ Aq+1 ⊆ Gq+1 and µ(Gq+1 \Aq+1) <
η

p2(m+ 1)
.

Then, by the inner regularity of µ, we take a closed set Fq+1 ⊆ Aq+1 such that

µ(Aq+1 \ Fq+1) <
η

p2(m+ 1)
.

Then we have

µ(Gq+1 \ Fq+1) <
2η

p2(m+ 1)
and µ(Eq+14Aq+1) <

2η
p2(m+ 1)

.

Since the first step is similar to the inductive one (we set F0 = ∅ in (6)), the
construction is over.
By (6) and (7) we deduce that, for each i, j ≤ p, ωi ∈ Ai and ωj 6∈ Ai
if j 6= i. Now put B1 = A1 , B2 = A2 \ A1 , . . . , Bp = Ap \ (∪p−1

j=1Aj) =
(· · · (Ap \ A1) \ · · · \ Ap−1). By the construction {(Bi, ωi) : i = 1, . . . , p} is a
(∆, η,S)-Henstock partition. Then notice that, from the relations Aj ⊆ Gj
and Gi ∩ Fj = ∅ for j < i, it follows

Ei ∩Aj ⊆ Ei ∩Gj ⊆ Gi ∩Gj ⊆ Gj \ Fj if j < i ≤ p .

Hence, we have

Bi4Ei = (Ei \Bi) ∪ (Bi \ Ei) ⊆ (∪j<iEi ∩Aj) ∪ (Ai4Ei)

⊆ ∪j<i(Gj \ Fj) ∪ (Ai4 Ei) .

So by (8) it results

µ(Bi4 Ei) ≤ µ(Ai4 Ei) +
∑
j<i

µ(Gj \ Fj) <
4η

p(m+ 1)
. (9)

Thus by (5) and by (9) we obtain

∥∥∥∥∥
p∑
i=1

f(ωi)µ(Ei)− (SH)
∫

Ω

f dµ

∥∥∥∥∥
≤

∥∥∥∥∥
p∑
i=1

f(ωi)µ(Bi)− (SH)
∫

Ω

f dµ

∥∥∥∥∥+
p∑
i=1

‖f(ωi)‖µ(Bi4Ei)

< ε/2 + 4η < ε.

In virtue of Theorem 3 f is ΣMS-integrable.
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4 B-Integrals Generated by Arbitrary Families of Sets.

We noticed earlier that we need to add some hypotheses either on the family
B ⊂ Σ or on Ω to guarantee the existence of a ∆-fine η-tight partition. We
are now going to present a proper example.

Example 3. Let 0 < η < 1 and let us consider Ω = [0, 1] endowed with the
usual topology and the Lebesgue measure µ. Fix two decreasing sequences of
positive numbers (rn), (Rn) such that 0 < rn < Rn < rn−1 < 1/4 and such
that

∞∑
n=1

rn
rn +Rn

< 1− η.

Define a sequence (Qn) of finite disjoint sets such that Qn ⊂ [0, 1] and every
interval of length Rn meets Qn. Then define B0 as the family of all finite
subsets of [0, 1] and by Bn, n ≥ 1, the family of all sets B such that there is
an interval I ⊂ [0, 1] and a set F ∈ B0 with the following property:

rn+1 ≤ µ(I) < rn

and
B = (I \ F ) ∪ {x ∈ Qn : dist(x, I) < 4Rn}.

Set B =
⋃∞
n=0 Bn.

Then, if {Bk, k = 1, 2, · · · } is a family of disjoint B-sets, we have:
∞∑
k=1

µ(Bk) =
∑
n

∑
Bk∈Bn

µ(Bk).

Now, for each n > 1 we can have at most (rn+1 + 3Rn)−1 elements of {Bk}
belonging to the family Bn. Moreover

rn − rn+1 < Rn − rn+1 < Rn < 2Rn

and
rn +Rn < rn+1 + 3Rn.

Then
∞∑
k=1

µ(Bk) ≤
∞∑
n=1

rn
rn +Rn

< 1− η.

Thus, for any gauge ∆ no (∆, η,B)-partition exists (neither Henstock nor
McShane). Notice however that, since (Rn) is decreasing to zero, the family B
is fine. Moreover, it follows from the compactness of [0, 1], that B∪ separates
points off closed sets. It is a consequence of Proposition 3, that for each η > 0
and for each gauge ∆ there exists a (∆, η,B∪)-Henstock partition.
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In order to exclude such pathologies we will assume – from now till the end
of this section – that for each gauge ∆ and each positive η there exists a
(∆, η,B)-Henstock (resp. McShane) partition of Ω. Sometimes we will assume
even more, that B is well founded for Henstock (resp. McShane) partitions,
i.e.

If W ⊆ Ω is such that µ∗(W ) = 1, then for each η > 0 and each gauge ∆
there exists a (∆, η,B)-Henstock (resp. McShane) partition tagged in W .
At the end of the paper we give two sufficient conditions on B such that the
previous assumption is satisfied.
Now we can prove the following Cauchy condition for B-integrals:

Proposition 2. f is BH (resp. BMS) -integrable on Ω if and only if the
following Cauchy condition holds:
for each ε > 0 there exist a gauge ∆ and a positive constant η such that

‖σ(f,P)− σ(f,Q)‖ < ε, (10)

for each couple P, Q of (∆, η,B)-Henstock (resp. McShane) partitions.

Proof. Let f be BH -integrable on Ω and let w = (BH)
∫

Ω
f dµ. Then, for

each ε > 0, there exists a gauge ∆ and a positive constant η such that

‖σ(f,P)− w‖ < ε

2
,

for any (∆, η,B)-Henstock partition P. Thus, if P and Q are two (∆, η,B)-
Henstock partitions, we have

‖σ(f,P)− σ(f,Q)‖ ≤ ‖σ(f,P)− w‖+ ‖σ(f,Q)− w‖ < ε.

Now assume that the above Cauchy condition holds true and take ε = 1/n,
for n = 1, 2, . . .. There exists a gauge ∆n and a positive constant ηn such that

‖σ(f,P)− σ(f,Q)‖ < 1
n
,

for any couple P,Q of (∆, ηn,B)-Henstock partitions. We can assume ∆n(ω) ⊆
∆n−1(ω), for each ω ∈ Ω and ηn ≤ ηn−1. Let Pn be a (∆n, ηn,B)-Henstock
partition. Note that Pm is also a (∆n, ηn,B)-Henstock partition, if m > n.
Then

‖σ(f,Pn)− σ(f,Pm)‖ < 1
n
, if m > n.

Hence {σ(f,Pn)} is a Cauchy sequence in X. Let w = limn σ(f,Pn). We claim
that w is the BH -integral of f on Ω. Indeed, for each ε > 0 there exists n
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such that 1/n < ε. Define ∆ = ∆n and η = ηn. Let P be a (∆, η,B)-Henstock
partition. Since, for each m > n, Pm is also a (∆, η,B)-Henstock partition,
we have

‖σ(f,P)− σ(f,Pm)‖ < 1
n
< ε.

Thus

‖σ(f,P)− w‖ = lim
m
‖σ(f,P)− σ(f,Pm)‖ ≤ 1

n
< ε.

This completes the proof.
In our further investigations we will need one more definition:

Definition 3. Given a gauge ∆, we say that Ω is ∆H-saturated by B if for
each finite ∆-fine family {(B1, ω1), . . . , (Bn, ωn)} with all ωi ∈ Bi ∈ B and for
each η > 0 there exists a (∆, η,B)-Henstock partition of (

⋃n
i=1Bi)

c. In case
Ω is ∆H-saturated by B for each gauge ∆, then we say that B saturates Ω for
Henstock partitions. In a similar way we define ∆MS-saturation.

At the end of the paper we give two sufficient conditions on B such that B
saturates Ω.

Theorem 5. Assume that B saturates Ω for Henstock partitions. If f is BH-
integrable on Ω, then it is BH-integrable on E, for each measurable set E ⊂ Ω.
A similar result holds true for BMS-integral.

Proof. By Proposition 2, it is enough to prove that for each ε > 0 there
exists a gauge ∆̃ and a positive constant η̃ such that

‖σ(fχE ,P)− σ(fχE ,Q)‖ < ε, (11)

for any couple P, Q of (∆̃, η̃,B)-Henstock partitions.
We fix ε > 0 ,∆ and η such that condition (10) holds for any couple P, Q
of (∆, η,B)-Henstock partitions. Let F be a closed set and G be an open set
such that

F ⊂ E ⊂ G and µ(G \ F ) < η/4 .

Define the gauge ∆̃ by setting

∆̃(ω) =


∆(ω) ∩G if ω ∈ F

∆(ω) ∩ (G \ F ) if ω ∈ G \ F

∆(ω) ∩ F c if ω /∈ G .
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Given two (∆̃, η/8,B)-Henstock partitions P and Q, we denote by PE and QE
the subpartitions tagged in E.
It follows directly from the definition of ∆̃ that

co(PE) ∩ F = co(P) ∩ F

and
co(QE) ∩ F = co(Q) ∩ F .

Thus
[co(PE)4 co(QE)] ∩ F = [co(P)4 co(Q)] ∩ F

and

co(PE)4 co(QE) = [co(PE)4 co(QE)] ∩ F ∪ [co(PE)4 co(QE)] ∩ (G \ F ) .

Consequently
µ[co(PE)4 co(QE)] < η/4 + η/4 = η/2 .

Since B is ∆̃H -saturated, there exists a ∆̃-fine B-Henstock partition O in
Ω \ [co(PE) ∪ co(QE)] such that µ

(
Ω \ [co(PE) ∪ co(QE) ∪ co(O)]

)
< η/2.

Then
O ∪ PE and O ∪QE

are two (∆, η,B)-Henstock partitions. Thus, by (10), we get (11) with η̃ =
η/8 .

Theorem 6. Assume that B is well founded and saturates Ω for Henstock
partitions. If f : Ω → R is BH-integrable, then it is µ-measurable. A similar
result holds true for BMS-integral.

Proof. Suppose that f is not µ-measurable. Then there are reals α < β and
V ∈ Σ of positive measure, such that

µ∗(A) = µ∗(B) = µ(V ) ,

where

A = {ω ∈ V : f(ω) ≤ α} and B = {ω ∈ V : f(ω) ≥ β} .

According to Theorem 5, the function fχV is BH -integrable. Now put
ε = 1

4µ(V )(β − α) and let ∆ : Ω → T and 0 < η < 1
4µ(V ) β−α

|α|+|β| be such
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that (2) is satisfied by fχV . Let F1 ⊆ V and F2 ⊆ V c be closed sets such that
µ[(F1 ∪ F2)c] < η/2 . Then define a new gauge by setting

∆̃(ω) =


∆(ω) ∩ F c2 if ω ∈ F1

∆(ω) ∩ (F1 ∪ F2)c if ω /∈ F1 ∪ F2

∆(ω) ∩ F c1 if ω ∈ F2 .

The condition (2) is clearly satisfied also for ∆̃ and η.
By the assumption B is well founded for Henstock partitions and so there
exists a (∆̃, η,B)-Henstock partition P = {(Pi, pi) : i ≤ p} of Ω tagged in
A ∪ V c and a (∆̃, η,B)-Henstock partition Q = {(Qj , qj) : j ≤ q} of Ω tagged
in B ∪ V c. Suppose, that

PA = {(Pi, pi) : i ≤ p0 ≤ p} = {(Ps, ps) : ps ∈ A}

and
QB = {(Qj , qj) : j ≤ q0 ≤ q} = {(Qr, qr) : qr ∈ B} .

It follows, that ∣∣∣∣∣(BH)
∫
V

f dµ−
p0∑
i=1

f(pi)µ(Pi)

∣∣∣∣∣ < ε

and ∣∣∣∣∣(BH)
∫
V

f dµ−
q0∑
j=1

f(qj)µ(Qj)

∣∣∣∣∣ < ε .

Hence

(BH)
∫
V

f dµ < αµ(PA) + ε and (BH)
∫
V

f dµ > βµ(QB)− ε

and so
βµ(QB)− ε < αµ(PA) + ε .

Let
a = µ(V )− µ(PA) and b = µ(V )− µ(QB) .

It follows from the properties of the sets F1 and F2, that

µ(V )− µ(PA) = µ(V \ F1) + µ(F1)− µ(PA ∩ F1)− µ[PA ∩ (F1 ∪ F2)c] ≤ 3
2
η

because (V \F1)∪PA ∩ (F1 ∪ F2)c ⊆ (F1∪F2)c and P is a (∆̃, η,B)-Henstock
partition.
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In a similar way, we get the inequality

µ(PA)− µ(V ) = [µ(PA \ F1)− µ(V \ F1)] + [µ(PA ∩ F1)− µ(F1)] <
3
2
η .

By analogy

|µ(V )− µ(QB)| < 3
2
η .

Then we have

1
2
µ(V )(β − α) = 2ε > βµ(QB)− αµ(PA)

= (β − α)µ(V )− bβ + aα

≥ (β − α)µ(V )− |b||β| − |a||α|

> (β − α)µ(V )− 3
2
η(|α|+ |β|)

>
5
8

(β − α)µ(V ) ,

which is impossible.

Remark 3. In the case of an arbitrary Banach space valued function f : Ω→
X the B-integrability of f may be insufficient for measurability of ‖f‖. To see
it consider a function f : [0, 1]→ l2[0, 1] defined by

f(t) =

 et if t ∈ V

0 if t /∈ V ,

where V is the Vitali set and {et : t ∈ [0, 1]} is the ordinary orthonormal basis
of l2[0, 1]. f is McShane integrable, but ‖f(t)‖ = χV (t) is non-measurable.

Corollary 1. Assume that B is well founded and saturates Ω for Henstock
partitions. If f : [0, 1] → R is BH (resp. BMS) -integrable, then |f | is BH
(resp. BMS) -integrable.

Proof. By Theorem 6 the set E = {x : f(x) > 0} is measurable. Then
the functions fχE and fχEc are B-integrable, by Theorem 5. Hence |f | is
B-integrable, since |f | = fχE − fχEc .

Theorem 7. Assume that B is well founded and saturates Ω for Henstock
partitions. Then f : Ω→ R is BH (resp. BMS) -integrable on Ω if and only
if it is Lebesgue integrable. Moreover, the integrals coincide.
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Proof. Suppose f is Lebesgue integrable. Then it is Fremlin integrable [2]
and so it is also B-integrable and the integrals coincide.

Now suppose that f is B-integrable. Let E = {ω : f(ω) ≥ 0}. According
to Theorem 6, E is measurable. Then by Theorem 5, fχE is B-integrable.
Now, if g : E → [0,∞) is a Lebesgue integrable function, such that g ≤ fχE ,
then

(L)
∫
E

g dµ = (B)
∫
E

g dµ ≤ (B)
∫
E

f dµ < +∞ .

It follows, that (L)
∫
E
f dµ exists. In a similar way we get the existence of

(L)
∫

Ω\E f dµ. Consequently, f is Lebesgue integrable, and so, (L)
∫
f dµ =

(B)
∫
f dµ.

Theorem 8. Assume that B is well founded and saturates Ω for Henstock
partitions. If f : Ω → X is BH (resp. BMS) -integrable, then it is Pettis
integrable.

Proof. Given a measurable set E ⊂ Ω, f is B-integrable on E, by Theorem
5. Let wE = (B)

∫
E
f dµ and let x∗ ∈ X∗.

By the B-integrability of f on E, for each ε > 0 there exist ∆ and η such that

‖σ(fχE ,P)− wE‖ < ε,

for any (∆, η,B)-partition P. Then

|σ(x∗(fχE),P)− x∗(wE)|
≤ ‖x∗‖ ‖σ(fχE ,P)− wE‖ < ε ‖x∗‖.

This implies that x∗f is B-integrable on E and (B)
∫
E
x∗f dµ = x∗(wE). By

Theorem 7, it is Lebesgue integrable on E with (L)
∫
E
x∗f dµ = x∗(wE).

Therefore f is Pettis integrable.
In fact the following more general result holds true: If f : Ω → X is BH

(resp. BMS)-integrable, Y is a Banach space and T : X → Y is a bounded
linear operator, then Tf : Ω → Y is BH(BMS)-integrable T [(BH)

∫
f ] =

(BH)
∫
Tf (resp. T [(BMS)

∫
f ] = (BMS)

∫
Tf).

Since each strongly measurable and Pettis integrable function is Fremlin
integrable [2] we get the following:

Theorem 9. Assume that B is well founded and saturates Ω for Henstock
partitions. Let f : Ω → X be a strongly measurable function. Then f is BH
(resp. BMS) -integrable iff f is Pettis integrable.
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5. Existence of (∆, η,B)-Partitions.
Let us denote by T∂ the family of all open sets G such that µ(∂G) = 0 . Then
we have the following

Proposition 3. Let B ⊆ Σ be a fine family such that T is B∪-inner regular
and T is such that given U ∈ T and ω ∈ U , there exists V ∈ T∂ such that
ω ∈ V ⊆ U . Then B∪ is well founded for Henstock partitions. Moreover, for
each gauge ∆ : Ω→ T∂ the family B∪ saturates Ω for Henstock partitions.

Proof. Let η > 0 and a gauge ∆ : Ω → T be given. Then Ω ⊆
⋃
ω∈Ω ∆(ω).

By the hypothesis, we may assume µ(∂∆(ω)) = 0, for each ω ∈ Ω.
Proceeding as in the proof of Lemma 1 we find a finite collection ω1, . . . , ωn ∈
W such that

(i) ωi /∈ ∆(ωj), for j < i;

(ii) µ
(

Ω \
⋃n
i=1 ∆(ωi)

)
< η/2 .

Since B∪ separates points off closed sets, there exists B1 ∈ B∪ such that
ω1 ∈ B1 ⊂ ∆(ω1) and µ

(
∆(ω1) \B1)

)
< η/2n .

Similarly there exists B2 ∈ B∪ such that ω2 ∈ B2 ⊂ (∆(ω1))c
⋂

∆(ω2)

and µ
([(

∆(ω1)
)c
∩ ∆(ω2)

]
\ B2)

)
< η/2n . At the step j, 1 < j ≤ n

there exists Bj ∈ B∪ such that ωj ∈ Bj ⊂
(⋃

s<j ∆(ωs)
)c⋂

∆(ωj) and

µ
([(⋃

s<j ∆(ωs)
)c
∩∆(ωj)

]
\Bj)

)
< η/2n . Then

µ
(

Ω \
n⋃
j=1

Bj

)
≤ µ

(
Ω \

n⋂
j=1

∆(ωj)
)

+ µ
( n⋃
j=1

∆(ωj) \
n⋃
j=1

Bj

)
≤ µ

(
Ω \

n⋃
j=1

∆(ωj)
)

+
n∑
j=1

µ
([(⋃

s<j

∆(ωs)
)c
∩∆(ωj)

]
\Bj)

)
<
η

2
+
η

2
= η,

and {(Bj , ωj) : j ≤ n} is a (∆, η,B∪)-Henstock partition tagged in W .
To see whether B∪ saturates Ω for each gauge ∆ : Ω → T∂ notice that if
{(B1, ω1), . . . , (Bn, ωn)} is a ∆-fine family with ∆ : Ω→ T∂ and all ωi ∈ Bi ∈
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B∪, then (
⋃n
i=1Bi)

c ⊇ Ω \
⋃n
i=1 ∆(ωi) and the last set is open. Hence we can

apply the first part of the proof to the set Ω \
⋃n
i=1 ∆(ωi).

We also have:

Proposition 4. Let B ⊆ Σ be a family such that B separates points off closed
sets. We assume moreover that µ(B \ B) = 0 for each B ∈ B. Then B is
well founded for Henstock partitions. Moreover, B saturates Ω for Henstock
partitions.

Proof. Let η > 0 and a gauge ∆ : Ω → T be given. Proceeding as in the
proof of Lemma 1 we find a finite collection {ω1, . . . , ωn} ⊂W such that

(i) µ(∆(ωi)) > 0 for each i ≤ n ;

(ii) ωi /∈ ∆(ωj) for all j < i ≤ n ;

(iii) a : = µ
(

Ω \
⋃n
i=1 ∆(ωi)

)
< η .

By the outer regularity of µ and because T is Hausdorff, there exist pairwise
disjoint open sets Vi , i ≤ n , such that

ωi ∈ Vi ⊆ ∆(ωi) and µ(Vi) <
η − a

2n
for each i ≤ n .

Then, by the inner regularity of µ and because T is Hausdorff, we can find for
each i ≤ n a closed set Fi ⊂ Vi with ωi ∈ Fi . Now, since B separates points
off closed sets, there exists B1 ∈ B such that

ω1 ∈ B1 ⊆ ∆(ω1) \
⋃
j 6=1

Fj

and
µ
[
∆(ω1) \B1 \

⋃
j 6=1

Fj

]
<
η − a

2n
.

Notice that
B1 ∩

⋃
j 6=1

{Fj} = ∅ .

Assume now that we have already chosen pairwise disjoint sets B1, . . . , Bi ∈ B
such that for each j ≤ i

ωj ∈ Bj ⊆ ∆(ωj) \
⋃
l<j

Bl \
⋃
l 6=j

Fl
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and
µ
[
∆(ωj) \

⋃
l≤j

Bl \
⋃
l 6=j

Fl

]
<
η − a

2n
.

Then, since B separates points off closed sets, there exists Bi+1 ∈ B such that

ωi+1 ∈ Bi+1 ⊆ ∆(ωi+1) \
⋃

l<i+1

Bl \
⋃
l 6=i+1

Fl

and
µ
[
∆(ωi+1) \

⋃
l≤i+1

Bl \
⋃
l 6=i+1

Fl

]
<
η − a

2n
.

It follows that

µ
( n⋃
i=1

∆(ωi) \
n⋃
i=1

Bi

)
≤ µ

( n⋃
i=1

∆(ωi) \
n⋃
i=1

Bi \
n⋃
i=1

Fi

)
+ µ

( n⋃
i=1

Fi

)
<

n∑
i=1

µ
[
∆(ωi) \

⋃
j≤i

Bj \
⋃
j 6=i

Fj

]
+
η − a

2
< η − a .

Thus,

µ(Ω \
n⋃
i=1

Bi) ≤ µ
(

Ω \
n⋃
i=1

∆(ωi)
)

+ µ
( n⋃
i=1

∆(ωi) \
n⋃
i=1

Bi

)
< η .

The family {(Bi, ωi) : i ≤ n} is the required (∆, η,B)-Henstock partition.
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