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NON-EXISTENCE OF CERTAIN TYPES OF
LIFTINGS AND DENSITIES IN PRODUCT

SPACES WITH σ-IDEALS

Abstract

We prove that if (Ω, Σ, I), (Θ, T,J ) and (Ω×Θ, Ξ,K) are measur-
able spaces with σ-ideals satisfying some natural Fubini type conditions
then there is no density on (Ω×Θ, Ξ,K) with density invariant sections.

1 Introduction

Throughout (Ω,Σ) and (Θ, T ) are two measurable spaces and I ⊂ Σ, J ⊂ T
are arbitrary σ–ideals. Besides we consider a σ–algebra Ξ ⊇ Σ ⊗ T and a
σ–ideal K ⊂ Ξ. We assume that I × Θ ∪ Ω × J ⊂ K. We denote by Ξ⊕̂K
the σ-algebra Ξ ⊕K completed with respect to K, i.e. E ∈ Ξ⊕̂K if and only
if there is F ∈ Ξ and K ∈ K such that E4F ⊂ K. In a similar way the
σ–algebras Σ⊕̂I and T ⊕̂J are defined. A ∈ Σ \ I is an I-atom of Σ if A
cannot be decomposed into two disjoint elements of Σ \ I. Lower densities
and liftings on (Ω,Σ, I) are defined exactly in the same way as densities and
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liftings for measure spaces (cf [5], chap. 28). The family of all (lower) densities
on (Ω,Σ, I) is denoted by ϑ(I), and the family of liftings, by Λ(I). Each
density δ ∈ ϑ(I) generates a collection of filters {F(ω) : ω ∈ Ω} containing no
elements of I: F(ω) = {A ∈ Σ : ω ∈ δ(A)}. Similarly for the other ideals.
Other unexplained notations and terminology come from [3].

Definition 1. We say that the triplet (I,J ,K) of σ–ideals has the property
(*), if E ∈ K yields always

{ω ∈ Ω : Eω /∈ J } ∈ I and {θ ∈ Θ : Eθ /∈ I} ∈ J .

Definition 2. ϕ ∈ ϑ(K) is a product of δ ∈ ϑ(I) and τ ∈ ϑ(J ) if ϕ(A×B) =
δ(A)× τ(B) for all A ∈ Σ and B ∈ T . We write then ϕ ∈ δ ⊗ τ .

We say that ϕ ∈ ϑ(K) has (δ, τ)-sub-invariant sections if for every (ω, θ)
and every E ∈ Ξ the equalities

[ϕ(E)]ω ⊇ τ ([ϕ(E)]ω) and [ϕ(E)]θ ⊇ δ
(

[ϕ(E)]θ
)

are fulfilled. In case of equalities we have (δ, τ)-invariance. In a similar way
liftings with lifting invariant sections are introduced.

The main problem investigated in this paper is the question of the existence
of liftings and densities possessing invariant sections in the sense of the above
definition. In Theorem 3.5 of [3] we proved that if the product measure space
(Ω,Σ, µ)⊗̂(Θ, T, ν) admits a density possessing a density invariant sections,
then one of the marginal measure spaces is atomic. We prove now that also in
case of σ–ideals possessing the property (*) a characterization similar to that
in [3] holds true.

2 Products of Liftings and Densities

We begin by proving an essential property of densities with density invariant
sections.

Proposition 3. Let (Ω,Σ, I), (Θ, T,J ) and (Ω×Θ,Ξ,K) be spaces with the
property (*). Assume that δ ∈ ϑ(I) and τ ∈ ϑ(J ) are arbitrary and ϕ ∈ ϑ(K)
has (δ, τ)-sub-invariant sections. Then ϕ(A × B) ⊇ δ(A) × τ(B) for every
A × B ∈ Σ × T . If ϕ has (δ, τ)-invariant sections, then ϕ ∈ δ ⊗ τ and is
uniquely determined by the marginal densities. If δ, τ and ϕ are liftings then,
(δ, τ)-sub-invariance of ϕ is equivalent to its (δ, τ)-invariance.
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Proof. Assume that ϕ is the density possessing (δ, τ)-sub-invariant sections.
It is sufficient to show that ϕ(A×Θ) ⊇ δ(A)×Θ and ϕ(Ω ×B) ⊇ Ω × τ(B)
for the appropriate A and B.

It follows from the (*) property, that given A ∈ Σ there exists MA ∈ J
such that for all θ /∈ MA

[ϕ(A×Θ)]θ ⊇ δ
(
[ϕ(A×Θ)]θ

)
= δ
(

(A×Θ)θ
)

= δ(A) .

In particular, we get the inclusion ϕ(A × Θ) ⊇ δ(A) × (Θ \ MA). Hence, if
ω ∈ δ(A), then [ϕ(A×Θ)]ω ⊇ τ(Θ \MA) = Θ. Consequently,

ϕ(A×Θ) ⊇ δ(A)×Θ . (1)

Since the proof of the inclusion ϕ(Ω × B) ⊇ Ω × τ(B) is symmetric, we get
the required inclusion ϕ(A × B) ⊇ δ(A) × τ(B). Similar considerations yield
the equality in case of (δ, τ)-invariant ϕ.

In case of liftings, we take also into account the inclusions

ϕ(Ac ×Θ) ⊇ δ(Ac)×Θ and ϕ(Ω ×Bc) ⊇ Ω × τ(Bc).

Combining them with (1) and ϕ(Ω × B) ⊇ Ω × τ(B), we get the required
(δ, τ)-invariance of ϕ.

Suppose now that α, β ∈ ϑ(K) are two densities possessing (δ, τ)-invariant
sections. Since α(E)4β(E) ∈ K it follows from the (*) property of the ideals,
that there exist sets NE ∈ I and ME ∈ J such that

[α(E)]ω = [β(E)]ω and [α(E)]θ = [β(E)]θ

for all ω /∈ NE and θ /∈ ME , respectively. Hence

α(E)4β(E) ⊆ NE ×ME .

The (δ, τ)-invariance shows that also for ω ∈ NE , the equality [α(E)]ω =
[β(E)]ω holds true. Consequently, α(E) = β(E) .

Definition 4. τ ∈ ϑ(J ) is said to be J -continuous if
⋂∞

n=1 τ(Bn) = ∅ for
every decreasing sequence 〈Bn〉 of members of T such that

⋂∞
n=1 Bn ∈ J .

One can easily see that if the Boolean algebra T/J is non–atomic and
satisfies the countable chain condition (CCC), then τ cannot be J -continuous.
Hence, if τ is J -continuous and T/J satisfies the countable chain condition
(CCC), then T/J is purely atomic. If T/J has infinitely many atoms and



476 W. Strauss, N. D. Macheras and K. Musia l

Q1, . . . , Qn, . . . are corresponding J -atoms of T , then the J -continuity of τ
is equivalent to

∞⋂
n=1

τ

( ∞⋃
k=n

Qk

)
= ∅ .

The next result is a generalization of Theorem 3.5 of [3].

Theorem 5. Assume that (Ω,Σ, I), (Θ, T,J ) and (Ω ×Θ,Ξ,K) are spaces
satisfying (*). Assume moreover, that the marginal Boolean algebras satisfy
(CCC). If there exist densities δ ∈ ϑ(I), τ ∈ ϑ(J ) and ϕ ∈ ϑ(K) possess-
ing (δ, τ)-sub-invariant sections, then either δ is I-continuous or τ is J -
continuous.

Proof. Assume that I and J are such that neither δ ∈ ϑ(I) is I–continuous
nor τ ∈ ϑ(J ) is J –continuous and ϕ ∈ ϑ(K) has (δ, τ)-sub-invariant sections.
Let us fix (ω, θ) and decreasing sequences of sets Ân = δ(Ân) and B̂n =
τ(B̂n) , n ∈ N, such that

ω ∈
∞⋂

n=1

Ân and θ ∈
∞⋂

n=1

B̂n ,

where
⋂

n Ân ∈ I and
⋂

n B̂n ∈ J . Assume for simplicity that Â1 = Ω and
B̂1 = Θ. Now set

C1 : =
∞⋂

n=1

Ân and D1 : =
∞⋂

n=1

B̂n

and for all n ≥ 1

An : = Ân \ C1 and Bn : = B̂n \D1

Cn+1 : = An \An+1 and Dn+1 : = Bn \Bn+1 .

Notice that Cn’s are pairwise disjoint and
⋃

n Cn = Ω. A similar property
holds true also for 〈Dn〉.

We define two new sets in the product space by setting

U : =
∞⋃

n=1

Cn ×Bn and V : =
∞⋃

n=1

An ×Dn .

We have
U ∩ V = ∅ .
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Let {F(ω) : ω ∈ Ω} and {G(θ) : θ ∈ Θ} be the collections of filters in Σ and
T respectively, generated by δ and τ , respectively. Now if ω ∈ Ω then there is
nω ∈ N such that ω ∈ Cnω

and so

Uω =
( ∞⋃

n=1

Cn ×Bn

)
ω

=
(
Cnω ×Bnω

)
ω

= Bnω ∈ G(θ).

Hence Uω ∈ G(θ), and similarly, V θ ∈ F(ω) . By the assumption, we have for
each (ω, θ) that

[ϕ(U)]ω ⊇ τ
(

[ϕ(U)]ω
)

and [ϕ(U)]θ ⊇ δ
(

[ϕ(U)]θ
)

.

Moreover, (*) yields the existence of a set NU ∈ I such that

[ϕ(U)]ω4Uω ∈ J for all ω /∈ NU .

It follows that

[ϕ(U)]ω ⊇ τ ([ϕ(U)]ω) = τ
(
Uω

)
for all ω /∈ NU .

Now, since Uω ∈ G(θ) for all ω ∈ Ω, we have

θ ∈ τ
(
Uω

)
⊆ [ϕ(U)]ω for all ω /∈ NU .

Consequently, θ ∈ [ϕ(U)]ω for all ω /∈ NU or equivalently, ω ∈ [ϕ(U)]θ for all
ω /∈ NU . Hence, N c

U ⊆ [ϕ(U)]θ and consequently,

Ω = δ(N c
U ) ⊆ δ

(
[ϕ(U)]θ

)
⊆ [ϕ(U)]θ .

This yields (ω, θ) ∈ ϕ(U). In a similar way we can see that (ω, θ) ∈ ϕ(V ).
This is however impossible since U ∩ V = ∅ and so ϕ(U) ∩ ϕ(V ) = ∅. This
completes the whole proof.

Corollary 6. Let Ω, Θ be topological spaces possessing the following property:
there are countable collections of non-empty open subsets of Ω and of Θ such
that each open subset of Ω and each open subset of Θ contains a member of
the corresponding collection (in particular Ω and Θ may be Polish spaces) .
Let I,J be the collections of 1st category subsets of Ω and Θ, respectively and
Σ, T be the corresponding families of the sets with the Baire property. We
assume that Σ/I and T/J satisfy CCC and both are non-atomic. Moreover,
let K be the family of the 1st category sets in Ω × Θ and Ξ be the collection
of the sets with the Baire property in the product space. Then, there are no
densities δ ∈ ϑ(I), τ ∈ ϑ(J ) and ϕ ∈ ϑ(K) possessing (δ, τ)-sub-invariant
sections.
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Proof. According to the Kuratowski-Ulam Theorem (see for example [4],
comments following Theorem 15.1) the triplet (I,J ,K) has the property (∗).
Assume, if possible that there are densities δ ∈ ϑ(I) , τ ∈ ϑ(J ) and ϕ ∈ ϑ(K)
possessing (δ, τ)-subinvariant sections. Since Σ/I and T/J are non-atomic
it follows that neither δ is I-continuous nor is τ J -continuous. So the result
follows from Theorem 5.

If σ ∈ Λ(J ) is J -continuous and 〈Qn〉 are all the atoms of T/J , then⋃∞
n=1 σ(Qn) = Θ and so we get

Theorem 7. Let (Ω,Σ, I) and (Θ, T,J ) be spaces with liftings ρ ∈ Λ(I) and
σ ∈ Λ(J ) with their Boolean algebras satisfying (CCC). Let (Ω ×Θ,Ξ,K) be
such that (I,J ,K) satisfies (*). If there exists a lifting π ∈ Λ(K) possessing
(ρ, σ)-invariant sections, then either Ω =

⋃
n ρ(Pn) where Pn’s are I-atoms

or Θ =
⋃

n σ(Qn), where Qn’s are J -atoms.

In case when Ξ is close to Σ ⊗ T we have also a reverse result.

Theorem 8. Let (Ω,Σ, I) be a space possessing a lifting ρ and let T/J be
an atomic algebra satisfying (CCC). Let (Ω ×Θ, Ξ,K) be such that (I,J ,K)
satisfies (*) and Σ ⊗ T is K-dense in Ξ. Then there exist σ ∈ Λ(J ) and
π ∈ Λ(K) such that π has (ρ, σ)-invariant sections.

Proof. Take σ ∈ Λ(J ) such that Θ =
⋃

n σ(Qn), where Qn’s are the T/J -
atoms, and an arbitrary ρ ∈ Λ(I). If E ∈ Ξ⊕K, then for each n there is An ∈
Σ ⊕ I with E

K=
⋃

n An ×Qn. It is enough to set π(E) =
⋃

n ρ(An)× σ(Qn).
According to Proposition 3 the lifting π is uniquely determined by ρ and σ.

Corollary 9. Let (Ω, Σ, µ) and (Θ, T, ν) be probability spaces with liftings
ρ ∈ Λ(µ) and σ ∈ Λ(ν) and let (Ω × Θ,Ξ, κ) be a probability space such that
Σ⊗T ⊆ Ξ, Σ⊗T is κ-dense in Ξ and κ|Σ⊗T = µ⊗ν. Then a lifting π ∈ Λ(κ)
possessing (ρ, σ)-invariant sections exists if and only if, either Ω =

⋃
n ρ(Pn)

where Pn’s are µ-atoms or Θ =
⋃

n σ(Qn) where Qn’s are ν-atoms.

Notice that the assumptions of Corollary 9 are satisfied if µ and ν are τ -
additive and κ is the τ -additive extension of µ ⊗ ν. In particular µ, ν and κ
may be Radon measures.

Question 10. We have proven in [3] that if (Ω,Σ, µ), (Θ, T, ν) are complete
probability spaces and (Ω × Θ,Ξ, κ) is their completed product, then there
are liftings ρ ∈ Λ(µ), σ ∈ Λ(ν) and π ∈ Λ(κ) such that π ∈ ρ⊗σ and for every
E ∈ Ξ and every ω ∈ Ω we have

[π(E)]ω = σ
(

[π(E)]ω
)

.
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We do not know if a similar result holds true in case of arbitrary σ-ideals
satisfying (∗).

It is worth to mention at this place that in case of an arbitrary Baire space
(no non-empty open set is of the first category in itself) always there is a lifting
on the σ-algebra of sets with the Baire property, with respect to the ideal of
the first category sets (cf [1] or [2]).
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