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Abstract It has been proven in Di Piazza and Musiał (Set Valued Anal 13:167–179,
2005, Vector measures, integration and related topics, Birkhauser Verlag, Basel, vol
201, pp 171–182, 2010) that each Henstock–Kurzweil–Pettis integrable multifunction
with weakly compact values can be represented as a sum of one of its selections and a
Pettis integrable multifunction. We prove here that if the initial multifunction is also
Bochner measurable and has absolutely continuous variational measure of its integral,
then it is a sum of a strongly measurable selection and of a variationally Henstock
integrable multifunction that is also Birkhoff integrable (Theorem 3.4). Moreover,
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in case of strongly measurable (multi)functions, a characterization of the Birkhoff
integrability is given using a kind of Birkhoff strong property.

Keywords Multifunction · Set-valued Pettis integral · Set-valued variationally
Henstock and Birkhoff integrals · Selection

Mathematics Subject Classification 28B20 · 26E25 · 26A39 · 28B05 · 46G10 ·
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1 Introduction

Integration of vector valued functions is strongly motivated by general problems of
modern analysis including control theory, economics and differential inclusions. In
many situations it is enough to use the well-known Bochner and Pettis integrals
involved with the classical Lebesgue theory. In the last decades however gauge (non–
absolute) integrals have been also considered [2–4,7,8,10–14,18,19,22,24,25,27,29]
after the pioneering studies of G. Birkhoff, J. Kurzweil, R. Henstock and E. J.
McShane. The Birkhoff integral was introduced in [1] and recently investigated in
[9,15,16,31,39,40]. B. Cascales, V. M. Kadets, M. Potyrala, J. Rodriguez, and other
authors considered the unconditional Riemann–Lebesgue multivalued integral.

This article is organized in the following manner. In Sect. 2 we give some pre-
liminaries and the definitions. In Sect. 3 a new decomposition theorem for Bochner
measurable and weakly compact valued Henstock–Kurzweil–Pettis integrable multi-
function Γ with absolutely continuous variational measure of its integral is obtained,
involving Birkhoff and variationally Henstock integrability of the multifunction G
such that Γ = f + G. It is also shown that the conditions in Theorem 3.4 do not
imply, in general, the variational integrability of the multifunction Γ and an example
is given (Example 3.6).

Finally, in case of strongly measurable (multi)functions, a characterization of the
Birkhoff integrability is given using a kind of Birkhoff strong property (see Defini-
tion 3.11).

2 Preliminary facts

Throughout [0, 1] is the unit interval of the real line equipped with the usual topology
and Lebesgue measure λ, L denotes the family of all Lebesgue measurable subsets
of [0, 1], and I is the collection of all closed subintervals of [0, 1]: if I ∈ I then its
Lebesgue measure will be denoted by |I |.

X is an arbitrary Banach space with its dual X∗. The closed unit ball of X∗ is
denoted by B(X∗). Following the notation in [17], cwk(X) is the family of all non-
empty convex weakly compact subsets of X and ck(X) is the family of all compact
members of cwk(X). We consider on cwk(X) the Minkowski addition (A + B : =
{a+b : a ∈ A, b ∈ B}) and the standardmultiplication by scalars. dH is theHausdorff
distance in cwk(X) and cwk(X)with this metric is a complete metric space. For every
A ∈ cwk(X), ‖A‖ := dH (A, {0}) = sup{‖x‖: x ∈ A}.
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Some new results on integration for multifunction 363

For every C ∈ cwk(X) the support function of C is denoted by s(·,C) and defined
on X∗ by s(x∗,C) := sup{〈x∗, x〉 : x ∈ C}, for each x∗ ∈ X∗.

A map Γ : [0, 1] → 2X\{∅} (= non-empty subsets of X ) is called a multifunction.
A multifunction Γ : [0, 1] → cwk(X) is said to be scalarly measurable if for

every x∗ ∈ X∗, the map s(x∗, Γ (·)) is measurable.
Γ is said to be Bochner measurable if there exists a sequence of simple multifunctions
Γn : [0, 1] → cwk(X) such that

lim
n→∞ dH (Γn(t), Γ (t)) = 0

for almost all t ∈ [0, 1].
A function f : [0, 1] → X is called a selection of Γ if f (t) ∈ Γ (t), for every

t ∈ [0, 1].
A partition P in [0, 1] is a collection {(I 1, t1), . . . , (I p, t p)}, where I 1, . . . , I p

are nonoverlapping subintervals of [0, 1], t i is a point of [0, 1], i = 1, . . . , p.
If ∪p

i=1 I i = [0, 1], thenP is a partition of [0, 1]. If ti is a point of I i , i = 1, . . . , p,
we say that P is a Perron partition of [0, 1].

A gauge on [0, 1] is a positive function on [0, 1]. For a given gauge δ on [0, 1], we
say that a partition {(I 1, t1), . . . , (I p, t p)} is δ-fine if I i ⊂ (t i − δ(t i ), t i + δ(t i )), i =
1, . . . , p.

We recall that an interval multifunction Φ : I → cwk(X) is said to be finitely
additive if for every non-overlapping intervals I 1, I 2 ∈ I such that I 1 ∪ I 2 ∈ I we
have Φ(I 1 ∪ I 2) = Φ(I 1) + Φ(I 2). Φ is then called an interval multimeasure.

A multifunction M : L → cwk(X) is said to be a multimeasure if for every
x∗ ∈ X∗, the map A �→ s(x∗, M(A)) is a real-valued measure (see [28, Theorem
8.4.10]). We say that the multimeasure M : L → cwk(X) is λ-continuous and we
write M 
 λ, if λ(A) = 0 yields M(A) = {0}.

For the definitions of Birkhoff, Henstock, McShane and variationally Henstock
cwk(X)-valued multifunctions we refer to [11, Definitions 2.2., 2.3, 2.8].

If X = R and Γ is a function, we speak of Henstock-Kurzweil integrability instead
of Henstock one. Each of these integrals turns out to be an additive mapping, on I
or L respectively, and is called primitive, or also integral measure of the mapping Γ .
From the definition and the completeness of the Hausdorff metric the cwk(X)-valued
integrals defined before have weakly compact values.

Definition 2.1 A multifunction Γ : [0, 1] → cwk(X) is said to be Pettis (resp.
Henstock-Kurzweil-Pettis integrable (in short (HKP)-integrable)) if s(x∗, Γ ) is inte-
grable (resp. Henstock-Kurzweil integrable) for each x∗ ∈ X∗, and for each A ∈ L
(resp. I ∈ I) there exists an element wA ∈ cwk(X) (resp. wI ∈ cwk(X)) such that
x∗(wA) = ∫

A s(x
∗, Γ (t))dt (resp. x∗(wI ) = (H)

∫
I s(x

∗, Γ (t))dt) holds, for each
x∗ ∈ X∗.

There is a large literature concerning Pettis and Henstock–Kurzweil–Pettis integral
for functions and multifunctions; we refer the reader to [15,21,22,32–35,37].
It follows from the classical properties of theHenstock–Kurzweil integral that the prim-
itives of Henstock or (HK P) integrable multifunctions are interval multimeasures,
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while the primitives of Pettis or Birkoff integrable multifunctions are multimeasures
on the σ -algebra L (see [16, Theorem 4.1(i)]).

Moreover, as observed in [11], the multivalued integral of a Pettis integrable
cwk(X)-valuedmultifunction is absolutely continuouswith respect toλ and its embed-
ded measure is an l∞(B(X∗))-valued countably additive measure.

For the definition of the variational measure VΦ associated to a finitely additive
interval measure Φ : I → Rwe refer the reader to [6,23]. In particular, we recall that
the variational measure Vφ of the primitive φ of a variationally Henstock integrable
mapping is a (possibly unbounded) λ-continuous measure on L: see [38, Proposition
3.3.1].

Finally, a useful tool to study the cwk(X)-valued multifunctions is the Rådström
embedding (see for example [30]) given by i(A) := s(·, A). It satisfies the following
properties:

(1) i(αA + βC) = αi(A) + βi(C) for every A,C ∈ cwk(X), α, β ∈ R
+;

(2) dH (A,C) = ‖i(A) − i(C)‖∞, A,C ∈ cwk(X);
(3) i(cwk(X)) = i(cwk(X)) (norm closure).

Observe that it follows directly from the definitions that a multifunction Γ :
[0, 1] → cwk(X) is Birkhoff (resp. Henstock, McShane, variationally Henstock)
integrable if and only if i(Γ ) is integrable in the same sense.

3 Variationally Henstock integrable selections

Concerning existence of selections of gauge integrable mappings with values in
cwk(X), several results have been obtained recently in [4,10,11,21,22,39]. The pur-
pose of this paper is to revisit the last results, trying to generalize it to a more general
case. We begin with some useful Lemmas.

Lemma 3.1 Let Γ : [0, 1] → cwk(X) be any (HK P)-integrable multifunction, and
let f : [0, 1] → X be any (HK P)-integrable selection of Γ . Then, if φ and Φ denote
respectively the primitives of f and Γ , it is

φ(I ) ∈ Φ(I )

for every subinterval I ⊂ [0, 1].
Proof It can be deduced as in the proof of [10, Proposition 2.7]. ��
Lemma 3.2 Let Γ : [0, 1] → cwk(X) be any (HK P)-integrable multifunction,
and let f be any (HK P)-integrable selection of Γ . If the variational measure VΦ

associated to the primitiveΦ ofΓ is absolutely continuouswith respect to theLebesgue
measure λ, the same holds for the variational measure of the primitive φ of f . In
particular this holds whenever Γ is variationally Henstock integrable.

Proof From the previous Lemma we have that φ(I ) ∈ Φ(I ) for every interval I ⊂
[0, 1]. Then Vφ ≤ VΦ . Since VΦ is λ-continuous the same holds for Vφ , of course. ��
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Some new results on integration for multifunction 365

A crucial tool is the following.

Theorem 3.3 Let G : [0, 1] → cwk(X) be any McShane integrable mapping. Then
G is variationally Henstock integrable if and only if it is Bochner measurable and the
variational measure of its integral is λ-continuous.

Proof IfG is McShane integrable, then also i(G) is McShane, hence Pettis, integrable
and we may apply [6, Lemma 4.1]. ��

Here is the new decomposition theorem which extends [11, Theorem 5.1].

Theorem 3.4 Let Γ : [0, 1] → cwk(X) satisfy the following conditions:

(3.4.1) Γ is Bochner measurable;
(3.4.2) Γ is HK P-integrable;
(3.4.3) the variational measure associated to the primitive of Γ is λ-continuous.

Then Γ can be decomposed as the sum Γ = f + G, where f is any strongly
measurable selection of Γ and G is a variationally Henstock and Birkhoff integrable
multifunction.

Proof Let f be any Bochner measurable selection of Γ . Then f is HK P-integrable
and the mapping G defined by Γ = G + f is Pettis integrable (see [21, Theorem 1]).
Moreover i(G) and G are strongly measurable. By [16, Proposition 4.5] i(G) is Pettis
integrable, since the range of i(G) is separable. So, by [37, Corollary 5.11] i(G) is
McShane and so G is McShane integrable.

By (3.4.3) and by Lemma 3.2 the variational measure Vφ associated to f is
λ-continuous and so the variational measure associated to the primitive of G is λ-
continuous too. So, the mapping G is variationally Henstock integrable thanks to
Theorem 3.3. Birkhoff integrability of G follows from [10, Proposition 4.1] since the
support functionals of G are non-negative. ��
Remark 3.5 Weobserve that the conditions (3.4.1), (3.4.2), (3.4.3) do not imply in gen-
eral variational Henstock integrability of Γ . But the implication holds true, as already
observed, if (3.4.2) is replaced by the stronger request that Γ is Pettis integrable, by
Theorem 3.3.

So, we shall now give an example of a mapping f : [0, 1] → c0, satisfying
(3.4.1), (3.4.2), (3.4.3), but not Henstock integrable (and so, a fortiori, not variationally
Henstock integrable). The example is the same as [5, Example 2], and [26, Example].

Example 3.6 Fix any disjoint sequence of closed subintervals (Jn)n := ([an, bn])n in
[0, 1], such that 0 = a1 < b1 < a2 < b2 < · · · and limn bn = 1.

Now the function f is defined as follows:

fn(t) := 1

2
|J2n−1|χJ2n−1(t) − 1

2
|J2n|χJ2n (t),
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for each t ∈ [0, 1], where fn denotes the nth component of f . Proceeding as in the
quoted papers [5,26], it is possible to see that f is (HKP)-integrable, and, for every
interval I ⊂ [0, 1]:

∫

I
f dt =

(
λ(I ∩ J2n−1)

2|J2n−1| − λ(I ∩ J2n)

2|J2n|
)

n
.

However, as observed in [5, Example 2], the set {∫I f (t)dt : I ∈ I} is not relatively
norm compact in c0, hence f is not Henstock integrable, thanks to [5, Proposition 1].

Since c0 is separable, f is strongly measurable; then, we only have to prove that
the variational measure associated with the integral Γ of f is λ-continuous.

To this aim, let us fix any null set A ∈ L, and fix any ε > 0. Then clearlyλ(A∩Jn) =
0 for every integer n. So, for every n there exists an open setUn such that A∩ Jn ⊂ Un

and λ(Un) ≤ ε

2n
|Jn|.

Now, for each element t ∈ A, we define δ(t) in such a way that [t−δ(t), t+δ(t)] ⊂
Un whenever t ∈ A∩ J 0n , and [t −δ(t), t +δ(t)] ⊂]bn(t), an(t)+1[ as soon as t /∈ ∪n Jn
and n(t) is such that t ∈]bn(t), an(t)+1[. Finally, if t ∈ A is one of the points an or bn ,
we choose δ(t) in such a way that [t − δ(t), t + δ(t)] ⊂ Un and [t − δ(t), t + δ(t)]
intersects just one of the intervals Jn .

So, if {(Ik, tk), k = 1, . . . , K } is any δ-fine Henstock partition in [0, 1], with tags
in A, for each index k the interval Ik intersects at most one of the intervals Jn , and
therefore F(Ik) := ∫

Ik
f (t)dt has no more than one component different from 0 (say

n), and

‖
∫

Ik
f (t)dt‖ ≤ λ(Ik ∩ Jn)

2|Jn| .

Hence, summing as k = 1, . . . , K , we get

∑

k

‖F(Ik)‖ =
∑

n

∑

tk∈Jn

‖
∫

Ik
f (t)dt‖ ≤

∑

n

∑

tk∈Jn

λ(Ik ∩ Jn)

2|Jn| ≤

≤
∑

n

λ(Un)

2|Jn| ≤
∑

n

ε

2n
= ε.

This proves that f satisfies condition (3.4.3) as required.

The function from the above example has a trivial decomposition: f (t) = {0} +
f (t). To have an example of a multifunction Γ : [0, 1] → cwk(c0) satisfying (3.4.1),
(3.4.2), (3.4.3) and possessing a non-trivial decomposition, it is sufficient to take any
variationally Henstock integrable multifunction Γ0 : [0, 1] → cwk(c0), and define:
Γ (t) = Γ0(t) + f (t), for t ∈ [0, 1], where f is the function defined above. Since
i(Γ ) = i(Γ0)+ i({ f (t)}), we easily see that i(Γ ) (and so Γ ) satisfies (3.4.1), (3.4.2),
(3.4.3), but it cannot be Henstock integrable, otherwise i({ f }) (and therefore f ) would
be, by difference.

As a consequence of Theorem 3.4 we can obtain the following corollary which
appears also in [11, Thorem 5.3] with a different proof.
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Some new results on integration for multifunction 367

Corollary 3.7 Let Γ : [0, 1] → cwk(X) be any variationally Henstock integrable
multifunction. Then every strongly measurable selection f of Γ is variationally Hen-
stock integrable and Γ = G + f , where G is Birkhoff and variationally Henstock
integrable.

Proof Since Γ is variationally Henstock integrable, it satisfies (3.4.1), (3.4.2) and
(3.4.3), so from Theorem 3.4 we deduce that, for every strongly measurable selection
f the mapping G defined by Γ = G + f is variationally Henstock and Birkhoff
integrable. Finally, since i({ f }) = i(Γ ) − i(G), it follows easily that i({ f }) (and
therefore also f ) is variationally Henstock integrable. ��

We have cited before [37, Corollary 5.11] which ensures that for strongly measur-
able functions, the Pettis and the Birkhoff integrability are the same. We shall now
present onemore characterization of the Birkhoff integrability for stronglymeasurable
integrands.

Proposition 3.8 Assume that f : [0, 1] → X is strongly measurable. Then for every
ε > 0 there exists a countable partition of [0, 1], made of measurable sets (Ah)h, such
that f |Ah is Bochner integrable for every h ∈ N and

∑

k

∥
∥
∥
∥
∥
f (tk)λ(A′

k) −
∫

A′
k

f

∥
∥
∥
∥
∥

≤ ε (1)

holds true, for any partition {A′
k}k refining (An)n, and any choice of points tk in A′

k ,
k ∈ N.

Proof Since f is Bochner measurable, then f is also Lusin measurable, see [36, Sec-
tion 3]. Now, in order to prove (1), fix arbitrarily ε > 0. Thanks to Lusin measurability
of f there exists a sequence (Bn)n of pairwise disjoint closed subsets of [0, 1], such
that

∑+∞
n=1 λ(Bn) = 1, and a corresponding sequence (δn)n of positive real numbers,

such that

‖ f (t) − f (t ′)‖ ≤ ε

holds for every n, as soon as t, t ′ are in Bn and |t − t ′| ≤ δn . Since f|Bn is continuous,
it is obviously Bochner integrable in Bn , hence we can deduce also that

∥
∥
∥
∥
∥
f (t) −

∫
Bn∩I f

λ(Bn ∩ I )

∥
∥
∥
∥
∥

≤ ε (2)

holds true, for every n, every interval I ⊂ [0, 1] with |I | ≤ δn and every point
t ∈ Bn ∩ I (provided the latter is non-negligible).
Now, in order to construct the announced partition (An)n , for every integer n fix a
finite partition {I n1 , . . . , I nN (n)} of [0, 1] consisting of half-open intervals of the same

length, with |I nj | < δn for all j , and set An+1
j := Bn ∩ I nj whenever the intersection

is non-negligible. From (2), we see that
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∥
∥
∥
∥
∥
∥
f (tn+1

j ) −
∫
An+1
j

f

λ(An+1
j )

∥
∥
∥
∥
∥
∥

≤ ε (3)

holds true, for every n and every choice of points tn+1
j ∈ An+1

j . Finally, since the

sequence (An+1
j ){n∈N, j∈{1,...,N (n)}} is composed by pairwise disjoint sets, we can rear-

range them in a sequence (Ah)
∞
h=2. Adding also the null set A1 := [0, 1]\(∪∞

h=2Ah),
we claim that the partition (Ah)h obtained in this way is the requested one.

Indeed, let {A′
k}k be any refinement of (Ah)h . Since each non-negligible A′

k is
contained in some set of the type Bn ∩ I j , we also have, similarly to (2)

∥
∥
∥
∥
∥
f (tk) −

∫
A′
k
f

λ(A′
k)

∥
∥
∥
∥
∥

≤ ε (4)

as soon as tk ∈ A′
k . So

∑

k

∥
∥
∥
∥
∥
f (tk)λ(A′

k) −
∫

A′
k

f

∥
∥
∥
∥
∥

≤
∑

n

∑

j

∑

A′
k⊂Bn∩I nj

∥
∥
∥
∥
∥
f (tk)λ(A′

k) −
∫

A′
k

f

∥
∥
∥
∥
∥

≤
∑

n

∑

j

∑

A′
k⊂Bn∩I nj

ελ(A′
k) =

∑

n

∑

j

ελ(Bn ∩ I nj ) =
∑

n

ελ(Bn) = ε,

as requested. ��
Remark 3.9 We observe that if f satisfies (1), in general f is not variationally Hen-
stock integrable: indeed, in [6, Remark 4.3] it is shown that for every Banach space
X there are Pettis integrable mappings f : [0, 1] → X whose variational measure
associated to the integral fails to be λ-continuous. In particular, if X is separable, such
functions are also Birkhoff integrable and strongly measurable.

Corollary 3.10 Assume that f : [0, 1] → X is strongly measurable. Then
f is Birkhoff integrable if and only if there exists a countable partition (Ak)k
of [0, 1] such that the restriction f |Ak is bounded whenever λ(Ak) > 0 and{∑

k f (tk)λ(Ak), tk ∈ Ak
}
is made up of unconditionally convergent series.

Proof It is enough to apply Proposition 3.8 together with [14, Proposition 2.2]. ��
By the properties of the Rådström embedding we can obtain also that a Bochner

measurable multifunction Γ : [0, 1] → cwk(X) is Birkhoff integrable if and only
is there exists a countable partition of [0, 1]: (Ak)k such that the restriction F |Ak is
bounded whenever λ(Ak) > 0 and

{∑
k Γ (tk)λ(Ak), tk ∈ Ak

}
is made up of uncon-

ditionally convergent series.
Finally, we would like to remark that, for strongly measurable maps, Birkhoff

integrability can be labeled in a form that recalls the notion of variational Henstock
integrability (though there is no direct implication between the twonotions, in general).
We first give a definition.
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Some new results on integration for multifunction 369

Definition 3.11 Given a function f : [0, 1] → X , we say that f is strongly Birkhoff
integrable if there exists a λ-continuous σ -additive measure φ : L → X such that,
for every ε > 0 it is possible to find a countable partition P of [0, 1], made with
measurable sets, such that, as soon as {An}n is a refinement of P , it holds

∑

n

‖ f (tn)λ(An) − φ(An)‖ ≤ ε

for every choice of tn ∈ An , n ∈ N.

We now observe that, as soon as f : [0, 1] → X is strongly measurable and
Birkhoff integrable, it turns out to be also strongly Birkhoff integrable, thanks to
Proposition 3.8, and of course φ is the (Birkhoff) integral function of f .

Conversely, we have the following results.

Proposition 3.12 Assume that f : [0, 1] → X is strongly Birkhoff integrable. Then
it is also Birkhoff integrable.

Proof Fix ε > 0, and let P := {E j : j ∈ N} be the corresponding partition in the
definition of strong Birkhoff integrability. Choose now any finer partition {Ak}k , set
x := ∑

k φ(Ek) = φ([0, 1]), and observe that there exists an integer N such that
‖x − ∑

k≤n φ(Ak)‖ ≤ ε for every n ≥ N . So, for every n ≥ N , and every choice of
points tk ∈ Ak , we have

∥
∥
∥
∥
∥

n∑

k=1

f (tk)λ(Ak) − x

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

n∑

k=1

f (tk)λ(Ak) −
n∑

k=1

φ(Ak)

∥
∥
∥
∥
∥

+ ε

≤
n∑

k=1

‖ f (tk)λ(Ak) − φ(Ak)‖ + ε ≤
∞∑

k=1

‖ f (tk)λ(Ak) − φ(Ak)‖ + ε ≤ 2ε.

This means that

lim sup
n

∥
∥
∥
∥
∥

n∑

k=1

f (tk)λ(Ak) − x

∥
∥
∥
∥
∥

≤ 2ε.

This property in [9] is called simple-Birkhoff integrability, and is proved in [9, Theorem
3.18] to be equivalent to Birkhoff integrability of f . ��
Proposition 3.13 Assume that f : [0, 1] → X is strongly Birkhoff integrable. Then
f is also strongly measurable.

Proof We shall follow the technique of [19, Lemma 3]. First of all, let us denote by
V the separable subspace of X generated by the range of φ. Next, for every ε > 0 let
us set

Tε := {t ∈ [0, 1] : dH ( f (t), V ) > ε}.
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Now, we shall prove that λ(Tε) = 0 for all ε > 0, from which it will follow that f is
separably-valued, and so also strongly measurable, thanks to the Pettis Theorem. So,
assume by contradiction that there exists a ε′ > 0 such that λ∗(Tε′) = a > 0. Let A′
denote any measurable set such that Tε′ ⊂ A′ and λ(A′) = λ∗(Tε′) = a.

Now, fix 0 < ε < ε′ and take any partition� ≡ {E j } j ofmeasurable sets satisfying
the condition of strong Birkhoff integrability of f with respect to aε. Moreover let
{An}n be any finer partition, such that A′ ∩ E j and E j\A′ are among the sets An .
Without loss of generality, we can assume that λ(An) > 0 for all n. Observe that, if
An is of the type A′ ∩ E j , then An ∩Tε′ is non-empty, otherwise A′\An would contain
Tε′ but would have smaller measure than a. So, we can choose tn ∈ An ∩ Tε′ as soon
as An is of the type A′ ∩ E j . Thus we have

′∑

n

‖ f (tn)λ(An) − φ(An)‖ ≤ aε

where the
∑′ runs along the sets An of the type A′ ∩ E j . Therefore, since A′ is the

union of all the sets An of the type above,

′∑

n

‖ f (tn)λ(An) − φ(An)‖ ≤ ε

′∑

n

λ(An)

i.e.

′∑

n

∥
∥
∥
∥ f (tn) − φ(An)

λ(An)

∥
∥
∥
∥ λ(An) ≤ ε

′∑

n

λ(An).

This inequality implies that, for at least one integer n, it is

∥
∥
∥
∥ f (tn) − φ(An)

λ(An)

∥
∥
∥
∥ ≤ ε < ε′,

but this is impossible, since
φ(An)

λ(An)
∈ H and tn ∈ Tε′ . This proves that λ(Tε) = 0 for

every ε > 0, and so f is strongly measurable. ��
Summarizing, we get the following conclusion.

Theorem 3.14 Assume that f : [0, 1] → X is any mapping. Then f is strongly
Birkhoff integrable if and only if it is strongly measurable and Birkhoff integrable.
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