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Abstract

In this paper we investigate two main problems. One of them is the question on the existence
of category liftings in the product of two topological spaces. We prove, th&t ¥ Y is a Baire
space, then, given (strong) category liftingando on X andY, respectively, there exists a (strong)
category liftingz on the product space such thats a product ofp ando and satisfies the following
section property:

[7(E)], =o([7(E)],) foralECX xY

with Baire property and alk € X. We give also an example, where some of the sectioig)]”
must be without Baire property.

Then, we investigate the existence of densities respecting coordinates on products of topological
spaces, provided these products are Baire spaces. The densities are definatyeras of sets
with Baire property and select elements modulodhieleal of all meager sets. In all the problems
the situation in the “category case” turns out to be much better, than in case of products of measure
spaces. In particular, in every product there exists a canonical strong density being a product of the
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canonical densities in the factors and there exist (strong) densities respecting coordinates with given
a priori marginal (strong) densities.
0 2005 Elsevier B.V. All rights reserved.
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Introduction

In [20] the last three authors considered densities and liftings in products of two prob-
ability spaces with good section properties analogous to that for measures and measurable
sets in the Fubini theorem. These properties have been then applied to prove the perma-
nence of the measurability of stochastic processes under the modification by liftings [20].
In this paper we study the product situation for thalgebra® . (X) of all sets having the
Baire property, selecting a representative element from each equivalence classxof
modulo sets of the first category (see Graf [11], Maharam [18] and Oxtoby [22]). Following
Oxtoby’s [22], p. 74 remark that “the suggestion to look for a category analogue has very
often proved to be a useful guide”, we have attempted to check if this can be interesting in
case of our investigations.

It has been already mentioned by Graf [11], Maharam [18], and Oxtoby [22] that the
canonical density which selects from each equivalence its regular open representative is
a category strong density, while even for a compact Radon measure space a measure-
theoretic strong density may not exist (cf. Fremlin [9]). A different approach to category
density in case of the real line was presented by Wiisky[31], who defined it via density
points. As the first result for categories we show that the canonical strong density on the
product that is a Baire space is a product density of the canonical densities on the factors
(see Proposition 3.1). It has been proven in [17] that for measure spaces such a result can-
not be true in general (see also Remark 4.7). The formula defining the product-density from
its marginals (see Proposition 3.1 and Proposition 4.1) makes clear the crucial point in the
difference between the measure and the category case. A non-meager set with the Baire
property in the product contains up to a meager set a rectangle with non-meager sides with
the Baire property, while a famous result of Bsdand Oxtoby [5] exhibits an example of
a measurable set in the producialgebra of quite arbitrary non-atompositivemeasure
spaces, containing up to a set of measure zero no rectangle of positive measure (compare
also Remark 4.7). That fact makes it clear that in the category case we probably should
apply completely different methods than in the case of measure product liftings. The latter
is done, as a rule, by transfinite induction, relying crucially on the martingale theorem, not
available in the category case.

There is now a question what is precisely the situation in case of category (strong)
liftings. We prove that given arbitrary topological spacésand Y such that the prod-
uct spaceX x Y is Baire and given (strong) liftings on (X, %B.(X), M(X)) ando on
(Y, B.(Y), M(Y)) there always exists a (strong) liftimg on (X x Y, B.(X x Y), M(X x
Y)) satisfying the product conditiom1(A x B) = p(A) x o(B) for all A € B.(X),
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B € %.(Y) and such that for each € ®B.(X x Y) and eachx € X the section property
[71(E)], = o ([71(E)]x) holds true (see Theorem 5.1). The above assumptions are imme-
diately satisfied by Polish spac&sandY. The latter answers affirmatively Question 10
from [26] in case of Polish spaces and shows that at least in case of products of Polish
spaces the category (strong) liftings behaves better than the measure-theoretic ones. One
should notice also that it is impossible (besides some trivial cases) to have also the relation
[71(E)])” = p([w1(E)])”) for eachE € B.(X x Y) and eachy € Y, even if X =Y. See
[26].

As a negative result we provide an example of Polish spaces for which do not exist
liftings o € A(M(Y)) andw € A(M(X x Y)) with the properties such that for eagkiE)
all sections[r(E)]” have the Baire property ixX and all section$x (E)], are invariant
with respect tar (Theorem 6.8).

The second problem considered in this paper concerns the existence of a density and
a lifting 0; on a Baire producf [, X; of topological spaces such that/f# J € I and
A €B.(X)), then there is & € B.(X ;) such that); (A x X <) = B x X c. Thisis an
obvious generalization of the two factor case. We say that such a density respects coordi-
nates. The terminology is taken from measure products case, where it has been proposed
by Fremlin [8]. There is a weaker version of respecting coordinates in which th iset
not required to have the property of Baire. In the last section of the paper we give an ex-
ample of a lifting respecting coordinates in this weaker sense. This pathology cannot occur
if each pair of subproduct{ [, X;,[[;¢, X;) satisfies the Kuratowski-Ulam property.
It also cannot occur if all factors are weaklyfavorable (see Section 8 for more details).
In Theorem 7.2 (this is the basic result in case of arbitrary products) we prove that for an
arbitrary non-empty collectioflX;: i € I} of topological spaces such that their product
X, is a Baire space, for any given a priori collection of (strong) dens#iefer i € I,
on (X;, B.(X;), M(X;)) there exists a (strong) density on (X;, B.(X;), M(X;)) re-
specting coordinates, being separately Baire additive and having the ded)sitiesl) as
its marginals. A corresponding result for measure theoretic densities can be found in [8,
346B] or [15, Theorem 2.5].

The best known result in case of liftings on finite measure products is from [3], where
it is shown that liftings respecting coordinates exist (no coordinate liftings are fixed in
advance). In case of infinite product, Fremlin [8] proved the existence of liftings respecting
coordinates if all the coordinate measure spaces are Maharam homogeneous. The general
problem remains open. Also in the category products of more than two factors the existence
of liftings respecting coordinates remains open.

1. Preliminaries

Throughout we assume that all topological spaces under consideration are non-empty.
Let X be a topological space. The weightXfis denoted byw(X). A family /x of non-
empty open sets in a topological spacevill be called apseudo-basir -basis for short)
if every non-empty open set iKi contains an elemerif € U{x. The minimal cardinality of
ar-basis will be denoted by (X). For each subset of X we denote by ch (or by A) and
by int(A) the topological closure and interior df, respectively. A sei C X is nowhere
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densef int(clA) = . A setM C X is meageror of thefirst categoryif it is expressible
as a union of a sequence of nowhere dense sets. A seX is of thesecond categorif
it is not meager. We recall the standard observation (see, e.g., [21]) thatfnbendense
subspace ok, for subsetsA of Y we have thatA is nowhere dense ifi if and only if A
is nowhere dense i, andA is meager it if and only if A is meager inX.

An open setA C X is said to beregular openin X if it coincides with the interior
of its closure. A setdA C X has theBaire propertyif it can be represented in the form
A =G AN, whereG is open andV is meager. A topological space is called aBaire
spaceif every non-empty open set i is non-meagerM (X) denotes the collection of
all meager subsets of the topological spacandB.(X) denotes ther-algebra of sets
possessing the Baire property. &dd(X)) := min{cardy: J C M(X)& JJ ¢ M(X)}.

We write A C B a.e.(M(X)) or A Caq B if A\ B e M(X) and similarly for equality in
place of the inclusion.

For eachE € B.(X) we denote bypy(E) the regular open set equivalent fo.
ox B:(X) — B.(X) defined in that way is a strong density (see [11, Section 9], [18,
Section 4], or [22, p. 88])x will be called thecanonical densitpn (X, %B.(X), M(X)).

AsetA € B.(X)\ M(X) is anM(X)-atomof B .(X) if A cannot be decomposed into
two disjoint elements of3.(X) \ M(X). Notice thatyy is a lifting precisely when every
regular open set iX is clopen, i.e., precisely wheXi is extremally disconnected.

Lower densities and liftings onX, B.(X), M (X)) are defined exactly in the same
way as densities and liftings for measure spaces (cf. [12], [25, Chapter 28]). We call them
category lower densitieandcategory liftings while we call the densities and liftings for
measure spacawneasure-theoretic densitiaadmeasure-theoretic liftingsf no confusion
arises we say “density” instead of “category lower density” and “measure-theoretic lower
density” and “lifting” instead of “category lifting” and “measure-theoretic lifting”. The
family of all (lower) densities on(X, B.(X), M (X)) is denoted by} (M (X)), and the
family of lifting, by A(M(X)). Each density € ¢ (M (X)) generates a collection of filters
{F(x): x € X} containing no elements 0¥1(X): F(x) ={A € B.(X): x € §(A)}.

For the densitied € % (M (X)), v € 3 (M(Y)) andé € ¥ (M(X x Y)) we say that is
a product ofs andv, and we write itag € § Q v if

E(A x B)=38(A) x u(B) forall A e®B.(X)andB € B.(Y).

We use similar notation for a density for the category algebra of an infinite product
[1ic; Xi with densitiess; in X;, writing £ € @,c;8i If E([[;c; Ai) = [[;e; i (Ai) for
each product sdt],_; A; whereA; € B.(X;) andA; = X; for all but finite collection of
iel.

The collection of all strong densities and of all strong liftings(@h B.(X), M (X))
will be denoted by, (M (X)) and by A (M (X)), respectively.

Each time we consider strong densities on a topological sfacge assume thax
is a Baire space. The assumption is necessary for the existence of a strong density in
¥ (M(X)). Infact, assume tha& is a topological space admitting a strong dengitfhen
for each non-empty open sétwe haveG C ¢(G), from which it follows thaty(G) # ¢
and hencés is not meager.

iel
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Given a probability spac&?, X', i) the family of all u-null sets is denoted b¥o. The
family of all elements of2 of positive u-measure is denoted by, . The (Carathéodory)
completion of(£2, X, u) will be denoted by$2, 5. 0).

Given probability space&?, X, 1) and (®, T, v), we denote byX ® T the product
o-algebra generated by andT. (2 x ®, X ® T, u ® v) is the corresponding product
probability space an@2 x ©, ¥ ® T, 1 ® v) denotes its (Carathéodory) completion.

If Iis anon-empty set an@;);c; is a family of arbitrary topological spaces then, for
eachy # J € I we denote byX; the product topological spadq,_; X;. If / =, then
for simplicity of notation we identifyX ; x Y with Y.

We say that ap € 9 (M (X)) is separately Baire additive for any non-empty sets
J, K € I with J N K =@ we have

@(EUF)=@(E)U@(F) forallE€®B.(Xs) x X;c andF € B (Xk) x Xke.

For measure theoretic densities this notion is due to Fremlin [8], where it is calléd)the
property.

We call a liftingzr € A(M (X)) aproduct-liftingif there are liftingsp; € A(M(X;)),
for i € I, such that the equation

7 ([Aig, ... Ai) = [pin(Ai), .., iy (Ai) ] (P)

holds true for alln € N, i1,...,i, € I and all A;, € B.(X;) (k =1,...,n) where
[A, ..., Aj,] denotes the cylinder s¢{;_; B; for B;, = A;, (k=1,...,n) andB; = X;,
iel\\{i1,...,iy}. We write thenw € Q,;; pi. If I :=[n]:={1,...,n} then we write
TeEPLV - Qpp-

We say thatp; € 9 (M(Xy)) (or ¢; € A(M(X[))) respects coordinates for each
properd # J C I the inclusionp; (B.(X ) x X ) CB.(X ;) x X e holds true.

It can be easily seen thatgf; respects coordinates then, for edtl J C I there is a
uniquely determined density; € 9 (M(X;)) given byg;(A) x X je = ¢ (A x X ), for
all A €B.(X ). And conversely, if for eacll £ J C I there is a density; onB.(X )
such thaip; (A x Xjc) = @y(A) x X jc, wheneverA € B.(X ), theny; respects coordi-
nates. From this point of view one could speak about completely product density instead
of density respecting coordinates.

Let X be a topological space. A densitye ¢ (M (X)) is consistenif for everyn e N
there exists a density € 9 (M (X™)), such that

8"(A1 X -+ X Ap) = 8(A1) X -~ x 8(Ap)

for all A1,...,A, € B.(X) (see Talagrand [28], for the corresponding definition for
measure-theoretic densities). We use a similar definition for liftings.

If X is a topological space with a complete finite measuren X' then, (X, X, u)
is called acategory measure spaéeand only if X' = 9B.(X) and Yo = M(X). u is
called then acategory measurg-or an arbitrary probability spadg?, X, 1) we define
its associatedhyperstonian spacéX, 7, B.(X), v) by means of:X = Ston€X'/u), the
Stone space of the measure algebrgsf X, u). 7 denotes the topology generated by
{s(a): a € ¥/u}, wheres(a) C X is the open-and-closed set corresponding é@cording
to the Stone dualityy = i o 7 :B.(X) — R, wheren :%8.(X) — X /u is the canoni-
cal epimorphism andgli: X/u — R is defined byfi(a) := u(A) if a = A® for Ae ¥
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(where A® denotes the class of all sets i that are equivalent wittd). We may say
that “(X, 7, B.(X), v) is a hyperstonian space” instead(af, 7, B.(X), v) is the hyper-
stonian space associated with the complete probability s@ace’, ), if confusion is
unlikely.

It is well known that if (X, 7, 96.(X), u) is a hyperstonian space, then the elements
of %B.(X) are precisely those expressible in the fafa= s(a) A N wherea € X/, s(a)
is the corresponding open-and-closed subseX oand N is meager. The system of the
meager sets coincides with that of nowhere dense sefs amd the system of the regular
open sets coincides with that of the open-and-closed sefqsee, e.g. [8, 321K]).

Each hyperstonian space is a category measure space, but there are category measure
spaces which are not hyperstonian (see, e.g. [22, Section 22]).

Other unexplained notations and terminology come from [25].

2. Basic facts concerning Baire property

To begin a deeper investigation of densities on product spaces we need to prove or
recall a few particular properties of regular open sets in product spaces and of sets having
the property of Baire in Baire product spaces.

We recall that a topological spacg is Baire if and only if player | does not have a
winning strategy in the Banach—Mazur game for two players, | and Il, in which, starting
with player I, the players alternately play the terms of a decreasing sequigncé/> O - - -
of nonempty open sets and player | wins if the intersection of the sequence is empty. When
the stronger condition that player Il has a winning strategy hotdis calledweaklya-
favorable The standard proofs of the Baire category theorem for locally compact and for
completely metrizable spaces show that these spaces are weéddprable. (See [24]
for more details. The characterization of Baire spaces is Theorem 2.1 of that paper.) If
andY are Baire spaces and, Y) is a Kuratowski—Ulam pair, thel x Y is Baire. It
is not hard to see (and well-known), using the game-theoretic characterizations,Xhat if
is Baire andy is weaklyx-favorable, thenX x Y is Baire. Also, it is easily seen that an
arbitrary produc{ [;.; X; of weakly«-favorable spaces is weakdyfavorable (see [30]).

For examples of Baire spaces whose product is not Baire, see [21,6,19].

The following fact has been communicated to us by J. Pawlikowski.

Lemma 2.1. Let X and Y be topological spaces such thatY) < add M (X)). If U C
X x Y is regular open, then there is a s&te M (X) such thatU, is regular open for
everyx ¢ R.

Proof. We are going to prove that iff € X x Y is closed, then the sék: (intF), =

int(Fy)} is comeager. To do it let us fix a bafE,: @ < w(Y)} of the topology inY. Note
that W, := {x: V, C Fy} is closed. Now, ifH =, (int(W,) x V), then in{F) = H.

Moreover, intFy) =, {Va: x € Wy} andH, =, {Va: x € int(Wy)}. So, forx outside
the meager sdt), (W, \ int(W,)) we have intF,) = H,. SettingF = clU for a regular
opensetU/ C X x Y andR =, (W, \ int(W,)), we obtain the required result.c
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Lemma 2.2. If X andY are non-empty topological spaces, then the following facts hold
true:

(a) If U is a regular open subset &f and V is a regular open subset of, thenU x V
and (U x Y) U (X x V) are regular open subsets &f x Y.

(b) If Be M(Y),thenX x B e M(X x Y). B is nowhere dense ifi ifand only ifX x B
is nowhere dense iX x Y.

(c) If X x Y is a Baire space, then alsk andY are Baire spaces.

(d) If X is Baire, then for any regular open sdt5 V C X, we haveU C V if and only if
UCVae(WM(X)).

(e) If A1 C Ap a.e.(M(X)) and B1 C By a.e.(M(Y)), thenA1 x A, C B; x By a.e.
(M(X x Y)). Similarly for equalities.

(f) If X x Y is aBaire spacel € B.(X)\M(X)andD € B.(Y)\ M(Y),thenC x D ¢
M(X xY).

(g) If X x Y isaBaire spaceC x D C A x Ba.e.(M(X xY)),whereA, B,C, D have
the Baire property in their respective spaces @hend D are non-meager, the@l C A
a.e.(M(X))andD C B a.e.(M(Y)).

(h) If E is aregular open subset &f x Y, then

E = U{A x B: Ais regular open inX, B is regular open
inY andA x BC E}.

Proof. This is routine, so we omit most of the proofs. For parts (a) and (h), it is useful
to note that because the closure operation satisfies the identitiesxa) =cl A x cl B

and cl(A x Y)U (X x B)) =(clA x Y) U (X x cl B) and the same identities hold with
closure replaced by interior, these identities also hold for the compositi@i(int. The
other properties are easily established in the given order.

Given arbitrary topological spacésandY, denote by(B.(X) @ B.(Y)) D M(X x Y)
the system of all subsefd of X x Y such that there exist sefse B.(X) ® B.(Y) with
HA P e M(X xY). The following result explains partially the relation between product
sets with the property of Baire and the coordinate sets with the Baire property.

Proposition 2.3. Let X andY be topological spaces. Then we have
(Be(X) @ B(Y)) ®M(X xY) S B(X xY).

Moreover, ifX or Y has a countable basis, then
(Be(X) @ Be(Y)) ®M(X xY)=B(X xY).

Proof. SinceB.(X x Y) is ac-algebra, the inclusion follows immediately from the defi-
nition of the Baire property.

Assume now thatr has a countable basi&,),cn Of open sets. To check that
B(X xY)C(B:(X)®B.(Y)) & M(X xY), itis enough to observe thatlif C X x Y
is open therV = (J, (Vi x E,) whereV, = J{V: VisopeninX andV x E, C U}
forneN. O
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We recall yet a definition introduced by Fremlin, Natkaniec and Rectaw in [10]. A pair
(X, Y) of topological spaces is lduratowski—Ulam pain(briefly K—U pair) or it has the
Kuratowski—Ulam propertyif the Kuratowski—Ulam Theorem holds Xi x Y:

VECX xY[EeM(X xY)= {x € X! Ex ¢ M(Y)} e M(X)].

Kuratowski and Ulam proved that if (Y) < add M (X)), then the pai(X,Y) is aK-U
pair (see [22, Theorem 15.1]). In particular,¥ifhas a countable -basis, then for each
topological spac& the pair(X, Y) isaK-U pair.

Recall the Banach Category Theorem (cf. [13, Theorem 1.10.111.1]): in any topological
spaceX, if A is a set which is covered by open sétsuch that every/ N A is meager,
thenA is meager.

The properties of the density topology associated with a densityXo&, A) when
N C X is ac-ideal and every subset &f has a minimalX'-cover modulo\ are studied
in some detail in [14]. The minimal cover property wh&h= B.(X) and N = M(X)
is a classical result of Szpilrajn-Marczewski (see Szpilrajn-Marczewski [27], Kuratowski
[13, Corollary 1.11.1V] or [14, Exercise 6.E.30, p. 221]). It is shown in [14, Proposition
6.37] (see also the Remark on p. 213) that the strong density topology (see Definition 2.5)
is indeed a topology. For the convenience of the reader, we give the proof of this fact that
is used repeatedly in this paper.

Proposition 2.4. Let X be a Baire space and léte ¢ (M (X)) be arbitrary. Then for each
collectionC C %B.(X) such thatC C §(C) for eachC € C, we have

| JceBox) and UCQS(UC).

Proof. Let U be the regular open set W {C*: C € C}, whereC* denotes the equivalence
class ofC in B.(X) and\/ is the sup operation in the algeb#. (X)/ M (X). For any
C €C,we haveC® < U*® and henc& C U a.e.(M(X). This givesC C §(C) C §(U) and
hence

Jeccsw.

There remains to check th&tU) \ | JC is meager, or equivalently, that\ | JC is meager.
Note that ifUc denotes the regular open set equivaler@ tthen| J{U¢: C € C} is adense
open subset al/. Also, Uc N(U\|JC) CUcNWU\C)=p UcN(U\ Uc)=0.Hence

U \ | JC has a meager trace on edéh and thus, by the Banach Category Theorem, it has
a meager trace dpJ{Uc: C € C} and hence is meagerQ

Next we define the density and lifting topologies associated with a density and a lifting,
respectively.
Definition 2.5. Let X be a Baire space, and &t ¢ (M (X)) be arbitrary. If
15:={A€B(X): ACS(A)},

then, due to Proposition 2.4; is a topology onX, called thestrong (category density
topologyassociated witld. The family {§(A): A € B.(X)} itself forms a topological ba-
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sis of another topology, called thveeak(category density topology; associated witls.
Clearly, we haves C 15 C B.(X).

If § is a lifting in A(M (X)) then we calls theweak lifting topologyandz; the strong
lifting topology:.

3. Products of canonical densities
We are going to present some basic properties of the product of the canonical densities.
Proposition 3.1. If X x Y is a Baire space, then the following conditions hold true

() oxxy € 9x @ gy andpyy is separately Baire additive
(i) foreveryE e®B.(X xY)

oxxy (E) = | J{ox(4) x oy (B): Ax BCp E& AeB(X), BeB(N)};

('_") Tox X loy =loy.y:

(V) Tox X Tyy S Tox,rs

(V) [exxy(E)lx € oy ([pxxy(E)]y) foreveryE € B.(X x Y) andx € X,
Vi) [exxy(E)P S ox([pxxy(E)]Y) foreveryE e B.(X xY)andyeY.

If moreoverw(Y) < add M (X)), then

(a) foreachE € B.(X x Y) there existd g € M(X) such that

[exxy(E)] =9y (lpxxy(E)]y) foreveryx ¢ M.
If alsow(X) < add M(Y)), then we obtain moreover

(b) for eachE € B.(X x Y) there existsVg € M(Y) such that

[oxxy (E)]" = ox([pxxy(E)]") foreveryy ¢ Ng.

Proof. To prove (i) we have to notice only that the product of two regular open sets is
regular open and, thaty (A) x gy (B) = A x B a.e.(M(X x Y)). These properties follow
from Lemma 2.2(a,e) for equalities. The separate additivitypfy follows from the
second part of Lemma 2.2(a).

(i) follows from (i) and from Lemma 2.2(h). Indeed, both sides of the formula in (ii)
depend only on the class @ in the category algebra, so we may assume thas a
regular open set. Similarly, we may restriétand B to vary over regular open sets in
their respective spaces. But then by Lemma 2.2(a,d), we may writeB C E instead of
A X B Cpq E. The formula now reduces to Lemma 2.2(h).

To prove (iii) let us notice that the inclusiap, x t,, C t,,,, follows immediately
from (i). The converse inclusion is a consequence of (ii). (iv) follows from (i). (v) and (vi)
follow from the fact that the canonical densities are strong.
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Moreover, ifw(Y) < add M (X)) (in this case, instead of assumiigx Y is Baire, we
can make a simpler assumption thaeandY are Baire, since the fact that x Y is Baire
then follows from [21, Theorem 2]), then (a) follows from Lemma 2.1. One obtains (b) in
a similar way. This completes the proof of the whole proposition.

Corollary 3.2.If X x Y is a Baire space, then there exists a dengityy € 9,(M(X xY))
with the following properties

(i) ¢xxy € px @ ¢y andpxxy(E) € pxxy(E) forall E € B (X x Y);
(il) [@xxy(E)]x =@y ([@xxy(E)]y) for everyx € X andE € B.(X x Y);

If moreoverw(Y) < add M (X)), then
(i) [pxxy(E)) € B.(X)foreveryyeY andE € B.(X xY).

Proof. The canonical densitiggy andgy «y satisfy the condition (v) of Proposition 3.1.
Let E € B.(X x Y) be an arbitrary set. We defigg «y (E) by setting for eachh € X

[oxxy(E)] =y ([exxy(E)],) forallxeX.

It can be easily seen, thal .y satisfies the condition (i) and (ii). It is also obvious that
@xxy IS strong.

To prove (iii), letus fixaseE e B.(X x Y)anday € Y. If w(Y) <add M (X)), then
according to Lemma 2.1 there exists a &6t € M (X) such that

[exxy(E)], = oy ([exxy(E)],) foreachr ¢ M.

Consequently, we get for evegye Y

[Pror (B Mg = v € X: (6,2 € oy ()} 0 M
={xeX: ye [@XxY(E)]X} N My
={xeX: yeoy(exxr(B)] )} N Mg
={xeX: yelpxxr(E)] N Mg
= [(PXXY(E)]y NnMg.
Since [pxxy(E)) N My € B.(X), we get [pxxy(E)]Y N My € B.(X), hence
[@xxy(E)) € Be(X). O

The following result follows immediately from Proposition 3.1 by induction.

Corollary 3.3. Let X be a topological space such that for eacle N the product space
X" is Baire. Then the canonical density € ¢, (M (X)) is consistent.

Corollary 3.4. Let (X, B.(X), u) be a hyperstonian space. Then the canonical density
px € ¥,(M (X)) is a consistenfstrong lifting.



1174 M.R. Burke et al. / Topology and its Applications 153 (2006) 1164-1191

Proof. SinceX is extremally disconnectegy is a lifting. It follows from Corollary 3.3
that for eachn € N there exists a density” € ¥,(M(X™)) such that

9" (AL X X Ap) = x (A1) X -+ X 9x(An) Yy

forall A1,..., A, € B.(X). It follows from [11, Corollary 9.4] (see also [23]) that there
exists a liftingp"” € A(M(X™)) such thatp" (E) C p"(E) for eachE € B.(X"), hence
p" is strong. It follows from (1) and from the lifting properties @ and p” thatpy is
consistent. O

Corollary 3.5. Let{X;: i € I} be non-empty collection of non-empty topological spaces
such thatX; is a Baire space. Then, the canonical densityXgrnrespects coordinates and
is separately Baire additive.

If w(X;) <add M (X;)), then for each proper non-empfyc I and eacht € B.(X;)
there isMg jc € M(X ;<) such that

[ox, (E)], . = ¢x,c ([0x, ()], ) foreveryxye ¢ Mg se.

Xje
Proof. If I = K U L is a proper partition of, the according to Proposition 3.1 we have
vx; € ¢xx @ ¢x, What means exactly thaty, respects coordinates. Separate additivity

of px, is a consequence of Lemma 2.2(a). The section property comes from Proposi-
tion3.1. O

Remark 3.6. (a) It should be noted here that in general thadditive produc{see e.g. [9]

for the definition) of two category probability spaces is not a category probability space.
In fact, let be given two category probability spades 95.(X), u) and (¥, B.(Y), v).
Assume if possible that thetr-additive product is a category probability space. Then we
get

MX xY) = (B (X x 1)), )

where%f(X x Y) is the completion the-algebra®3 (X x Y) of Borel subsets ok x Y
with respect to the-additive produciu ®. v of u andv. But since the Fubini Theorem
holds true forr-additive products of probability measures (see Ressel [23]), it follows from
(2) that(X, Y) is aK-U pair, what is not in general true according to [10, Example 2].

(b) The Radon product of two non-atomic hyperstonian spaces is not a category proba-
bility space. In fact, assume if possible that for given hyperstonian sgacés.(X), u)
and(Y, B.(Y), v) their Radon product is a category probability space. It then follows that

MX x Y) = (Br(X x Y)),, (3)

where by@R(X x Y) is denoted the completion thealgebraB (X x Y) with respect to
the Radon produgt ®p v of u andv.

A well-known result of Erés and Oxtoby [5] says that there exigts: B (X) ®%(Y)
of positive measure such that for noe %(X) \ (%(X))o and noB € %(Y) \ (%(Y))o
the inclusionA x B C E a.e.(u®v) holds true. But since&Z € B(X) ® B(Y), we get
Ee®B.(X xY)\ M(X x Y). Hence there exist a non-empty setc 7 x S such that
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GAE e M(X x Y). Consequently, there exist non-empty séte 7 andW € S such
thatV x W € G, henceV x W € E—a.e.(M(X x Y)). So applying condition (3) we get

VxWCE ae.(u®gv).
But sinceE € B(X) ® B(Y) this is the same as
VXxWCE ae(u®v),

what is impossible.

Notice that the above proof shows that evet{X x Y) C (%R(X x Y))o is false.

One can in fact see that the validity of the above inclusion yieldkth& property of
(X,Y)and(Y, X). Indeed, ifE € M(X xY), then the Fubinitheoremyields € X: E, ¢
M)} ={xeX: E; ¢B.(Y)o} € B.(X)o=M(X). Similarly for (¥, X).

(c) Assume thatX, B.(X), u) and(Y, B.(Y), v) are hyperstonian. X, Y) isaK-U
pair, then

(BrX x ¥))y S M(X x Y). (4)

In fact, let us fix a sett € (‘%R(X x Y))o. Then there exists a sét € (B(X x Y))o
such thatk C F, henceF € B.(X x Y). SinceX x Y is a K-U pair there exists a set
Np € M(X) such thatF, e M(Y) =B.(Y)o for eachx ¢ Ng, henceF € M(X x Y)
and soE e M(X x Y).

(d) Corollary 3.4 shows that in case of hyperstonian probability spaces the category
strong liftings have a better behavior than the measure theoretic ones under the product
formation, since a category strong product lifting always exists and has nice properties,
while the existence of a measure theoretic strong product lifting remains an open problem
(see [9, 453Z, Problem (a)]).

4. Products of two arbitrary densities

Proposition 4.1. Assume thak x Y is a Baire space. Given densitiés 9 (M (X)) and
v e P(M(Y)), we set

£(E):=|J{8(4) xv(B): Ax BSEae.(M(X xY))}

for everyE € B.(X x Y). Then¢ € ¥ (M (X x Y)) and satisfies the following conditians

(i) E€ed®;
(i) 1z =15 x 1;
(i) e D 15 X Ty,
(V) [E(E)]x € B (Y) and[§(E)]x S v([§(E)]y) for everyE € B (X x Y) andx € X;
(V) [E(E)] € Be(X) and[E(E)]) C3([E(E)]) foreveryE € B.(X x Y) andy € Y;
(vi) if 8§ andv are strong, therg is also strong
(vii) & is separately Baire additive.
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Proof. £(@) =0 by Lemma 2.2((X xY)=X xY and,E = F ae.(M(X x Y))
implies&(E) = &£(F). It is also easy to check thgtpreserves intersections. We have to
check yetifs(E) e B, (X x Y) forall E €®B.(X x Y) and

E(E)y=pm E foral E€®B.(X xY). (5)

Clearly it suffices to prove (5). To check if property (5) holds true, we need first to prove
that& satisfies condition (i). To this aim, notice first thatif= A x B a.e.(M(X x Y)),
then directly from the definition of follows the inclusions(A) x v(B) C&(A x B). The
converse inclusion follows from Lemma 2.2(g). Indeed; ik D C A x B a.e.(M(X x
Y)) and all the sets have the Baire property, then it follows from Lemma 2.2(gj ¢t@atx
v(D) C§(A) x v(B), what immediately yield§(A x B) € §(A) x v(B). This proves (i).

To check if property (5) always holds true, IEtbe a regular open subsetX¥fx Y. That
E(E)=E a.e.(M(X x Y)) can be seen as follows. if x V is a basic open set disjoint
from E, then, using condition (i) and the fact thapreserves intersections, we get

E(E)YNWU x V)= pmE(E)N (5(U) X U(V))
=EE)NEWU x V)=E(ENU x V)) =4.
By the Banach Category Theorem, we get) C cl E a.e. (M (X x Y)) and hencé&(E) C

E ae.(M(X xY)).
Similarly, for each basic open st x V C E, applying condition (i), we see that

(U x V)N(E\EE)) S (U x V) \ (8(U) x u(V))

is meager by Lemma 2.2(e) and hence, by the Banach Category Thebre§(E) is
meager. Consequent§(E) = E a.e.(M(X x Y)) andE € B.(X x Y).
Inclusion?s x 1, < t¢ follows from condition (i), while the inverse inclusion follows
from the definition oft, hence condition (ii) holds true. Condition (iii) follows from (i).
To prove condition (iv), let us fix a sé € B.(X x Y) andx € X. Then, let

B, :={BeB(Y): JAcB(X) AxBC Eae (M(XxY))&xes(A}.

Now we have

[6(E)], = U{[s(A) x v(B)],: Ax BCE ae(M(X xY))}

- U U(B)§v< U v(B>)=v([S(E)]x)v

Be'B, Be'B,

where the relatiot J .5 v(B) € B.(Y) and the inclusion follow from Proposition 2.4.

If B, =0, then[&(E)], = @. In both cases condition (iv) holds true. Consequently, for
eachE € B.(X x Y) all sectiongé(E)], of the sett(E) are inB.(Y).

To prove condition (vi), fix an open subsBtof X x Y. There exists a familyG; x
Ui)ier Of open rectangles ifB.(X x Y) such thatG = J,., G; x U;. Sinces andv are
strong densities, we get

G < J8(Gn) x v C£(G),
iel

hencez is strong.

iel
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To show (vii), letE € B.(X) and F € B.(Y). Notice then that ifA € %B.(X) and
B € B.(Y) satisfyA x BC (ExY)U(X x F) a.e.(M(X xY)),then(A\ E) x (B\ F) C
(Ax B)\((ExY)U(X x F)) e M(X x Y). Thus, because the sets\ E andB \ F
have the property of Baire, we get eithérC F a.e.(M(X)) or B C F a.e.(M(Y)), by
Lemma 2.2(f). Hence,
E(ExY)UX x F))
=U{8(A) x U(B): Ax BSp (ExY)U(X x F)}
C(S(E) x Y)U(X x u(F)) CE(E x Y)UE(X x F),

and so condition (vii) holds true.o

Proposition 4.2. Assume thafX x Y is a Baire space and that we are given densities
3 e ¥(M(X)),ved(M(Y)) and¢ € 9 (M(X x Y)) such that for eactE € B.(X x Y)
and eachx € X

[¢(E)], €Be(Y) and [¢(E)] Sv([¢B)],). (6)
If ¢1:B.(X xY) = P(X x Y) is defined by¢1(E)], = v([¢(E)]y), then

(@) t1ed9(M(X x Y))and¢(E) C ¢1(E) foreveryE € B.(X x Y);

(b) If ¢ es® v, thenty €5 Q@ v;

(c) If ¢ e §®v and¢ is separately Baire additive, then algpis separately Baire additive
(d) If ¢ is strong, then als@; is strong.

Proof. Due to (6), we have¢(E) C ¢1(E) and consequently;(E) € B.(X x Y) and
C1(E) AE € M(X x Y). Other density properties are immediate. To show condition (b),
let A e B.(X), BeB.(Y)andx € X be arbitrary. Then,

[aa x B, =v([c(a x B],) =v([5(4) x v(B)],)

_[u(B) ifxesA),
v if x ¢ 8(A).

To show (c) take setd x Y € B.(X) x Y andX x B e X x B.(Y).
We have thert (A x YU X x B) =((A x Y)U (X x B). Since¢ € § ® v, we have
(A xY)=§(A) x Y whatyields[¢(A x Y)], equals/ or Y. Hence
[(1(AxYUX x B)],
=v([¢c(AxYUX xB)] )=v([{(AxY)UL(X x B)] )
=v([¢(Ax ] U[¢(X x B)]))
=v([¢(Ax D] )JUv([e(X x B)],)
=[aAx ] U[aX x B)],

and so¢; is separately Baire additive. (d) follows from (a). This completes the whole
proof. O
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Remark 4.3. If v is a Borel density, i.ev(B) is Borel if B € B.(Y), then all X-sections
of & are Borel setsg(is defined as in Proposition 4.1). In spite of thisnay be not Borel,
at least when CH is assumed (see Example 1.7 of [2] Witk the ideal of meager sets).

Lemma 4.4. Assume thatX x Y is a Baire space. Then, given arbitrary densitieg
H(M(X)) andv € 3 (M(Y)) there exista)1 € ¥ (M(X x Y)) satisfying for eachx € X
andE € B.(X x Y) the following conditions

() &1(E) S y1(E);
() W(B)]x UyY1(E)] =Y a.e.(M(Y));
ai) WiE)] =v(Y1(E)]x);
(v) YCeB.(X) [V1(C x V)]y € {0, Y} & [Y1(C x V)], U[Y1(C° x V)], =7
(v) if 8 andv are strong, theny is also strong.

If moreoverw(Y) < add M (X)), § = ¢x andv = ¢y, then there exists a density €
¥ (M(X x Y)) satisfying the propertie§)—(v) with 1 and ¢x«y instead ofy; and &1,
respectively, and the additional property

(Vi) [Y1(E)]) € B.(X)forall EeB.(X xY)andyeY.

Proof. Let

D:={ped?(MX xY)): VE € B(X x Y) &1(E) S ¢(E)
& Vx e XVE € B(X xY) [p(E)]y Cv([e(E)],)
& VC eB(X)Vx e X[p(C xY)] e{4 Y}}

Notice first that Proposition 4.1 yields € @ and so® # (. We considerp with inclusion
as the partial ordep < ¢ if o(E) C §(E) for eachE € B (X x Y).

Claim 1. There exists a maximal elementdn

Proof. The only fact we have to prove is showing that each cHaifl,ca € @ has a
dominating element i®. The obvious candidate isgiven for eachE € B.(X x Y) by

9(E) =] pu(E).
acA
Let us prove first the Baire property of E). To do it notice first that
o(E) = ea(E).
aeA

and suppose, there exists, y) € ¢(E) N ¢(E°). In such a case there existe A and
a € A such that(x, y) € ¢, (E) and(x, y) € g5 (E€). SinceA is linearly ordered, we have
a < @ or conversely. Assume that< «, then(x, y) € ¢z (E) N (E€), contradicting the
disjointness of these two sets. Thus,

o(E) ﬂgo(Ec) ={.
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Hencew(E) C [¢p(E°)]¢ and so if arx € A is fixed, then

9a(E) C(E) € [9(E)] S [¢a(E)]

for eachE € B.(X x Y). Since M(X x Y) is complete andp, € (M (X x Y)), this
proves the Baire property @f(E) . Consider now the section propertiesgaft). For fixed
xeX

[o(B)], = U[ea(B)], € | v([ee(®)],)

€A aEeA

and so—in virtue of Proposition 2.4—the det(E)], is in B.(Y). It is clear that the
inclusion[¢(E)]: C v([¢(E)]y) is satisfied also. O

Now, we take ag/, an arbitrary maximal element @ . To prove all its properties we
can follow the proof of Lemma 2.8 from [20]. But for the sake of completeness we present
here the important steps.

Claim 2. For everyE € 8.(X x Y) and everyx € X
[vi(B)], = v([va(E)],).

Proof. Setforeachx € X andE € B.(X x Y)
[F®], = v([¥aB)],)-

Clearlyy1(F) C v (F) for eachF. Moreover the equality1(E) N y1(E€) = @ yields for
eachx the relationv ([¥1(E)1,) Nv([¥1(E)],) = #. As a consequence, we get E¢) C
(¥ (E)). Hence

Y1(EC) S (EC) S [V(B)] < [va(B)]
and soy/ (E) € B.(X x Y). It follows thaty € @ and consequently;, = ¢ andy satis-
fies (jii). O
Claim 3. For eachx € X andC € 8.(X)

[V2(C x V)], U[ya(C x V)] =Y

Proof. According to the definition of we have the relatiofw1(C x Y)], € {4, Y} for
eachx andC € 9B.(X). Suppose that for someg angCo € B.(X) the equality{yr1(Co x
Y)]xo U [¥1(CG x Y)]x, =9 holds true. Then defing € ¥ (M(X x Y)) by the equality

[Y1(E)]x if x # xo,
[V(E)], = { [Y1(E U (Cox Y)), if x = 0.

It is clear thaty(E) C 1//(E) for eachE € B.(X x Y) and[x/f(C x Y)]x € {@,Y} for

eachx € X andC € B.(X). Consequentlw ed. Smcehﬁ(Co X Y)]xo =Y # [Y1(Cg x

Y)ly, =9, it follows thaty # 1 what contradicts the maximality af;. This completes
the proof of the claim and shows thai satisfies (jv). O
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Claim4. Foreachx e X andE € B.(X x Y)
[vi(B)], U[v1(E9)], =Y ae.(MD)).

Proof. If not, then there existH € B.(X x ¥) andxg € X such that([y1(H)]x, U
[V1(H) ) ¢ M(Y). Let

W= [ ([va()],, U [va(H9)],,)]
and let

(B it x  xo,
@], = { [W1(E)lo U (W N [Y1(H U E)l) i x = xo.

Itis clear, thaty1(E) C ¥/ (E) for eachE € B.(X x Y). In particulary (X x ¥) = X x Y.
It can be easily proved that € & (M (X x Y)).

Since[V (H )]y, = [Y1(H )] U W % [Y1(H®)]y,, We see thafy andy; are different
densities.

In order to get a contradiction with our hypothesis it is enough to shom[zﬂ’(df)]xo -
v([&(E)]xO) and[xff(C x Y)]x, € {4, Y} for everyE € B.(X x Y) and everyC € B.(X),
but this is immediate. I € B.(X x Y), then

v([I(E)],) 2 v([¥aB)], ) Vv (WN[vaH UE)], )
=[va®)],, U [vW) Nu([var(HUE)], )]
=[] V(WnyHUBD] ) =[¥(E)], .
If C €9B.(X), then
[¥(C x ], =€ xN] V(WY (HUC xD)], )
and
[9(CE x ¥)],, = [¥a(C€ x V)], U (W O [ya(H U (€ x V))],,).

If [Y1(CxY)]yy=7Y, then[@(c x Y)]y, =Y either. If[y1(C x Y)1x, = @, then, according
to Claim 3,[y1(C¢ xY)],, =Y and so[xﬁ(cc XV =Y. Consequentl;{,l/}(c XY =
). This completes the proof of the claim and shows ihasatisfies (ii). O

Since for eaclt € B.(X x Y) we havet1(E) C ¥1(E) and since according to Proposi-
tion 4.1 the density; is strong, provided andv are strong, it follows that; satisfies (v).

If w(¥) < addM (X)) andv = ¢y, then we can consider the sgtto be the same
with @ but with gxy instead oft;. Notice that® # @, since according to Corollary 3.2
we havegy .y € @. It follows in the same way as above that there exists a density
B ((M(X x Y)) satisfying conditions (j)—(v) withy; and ¢xy instead ofy; and &y,
respectively.

In order to prove the Baire property of tifiesections ofi1 notice, that sincéy .y and
Y1 are densities in the same space, the equalityy (E) = ¥1(E) a.e.(M(X x Y)) holds
true. It follows then from the Kuratowski—Ulam Theorem that ther#fis € M(X) such
that for allx ¢ Mg
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[exxy(E)], A[Y1(E)], e M(Y) and

[Gxxy(E)], U[@xxy(E)], =Y ae(M).
If x ¢ Mg, then

[11(E)], = or ([1(B)],) = oy ([exxr(B)],) = [@xxr (E)],-
Hence,

@xxy(E)\ (Mg x Y) =y1(E)\ (Mg x Y).

Since all sectiongpy «y (E)]” have the Baire property, the same holds true for the sections
[¥1(E)]Y. This completes the proof of the whole lemmaz

We are going to formulate now two suggesting themselves questions.

Question 4.5. Let X x Y be a Baire space. Given densities (M (X)) andv €
F(M(Y)), does there exist a densitye (M (X x Y)) N (§ ® v) satisfying the prop-
erties

() [C(E)]x €B.(Y)and[z(E)]) eB (Y)forall EEB.(X xY), (x,y)e X xY;
(i) VEeB(X xY)3INg e M(X) [S(E)]x =v([£(E)]x) Vx ¢ Ng?

Proposition 3.1 proves thatif has a countable basis for its topology an8l #hdv are the
canonical densities, then the answer is affirmative. It will follow from Theorem 6.8 that if
¢ andv are liftings, then in general the answer is negative.

It follows from [26], Corollary 6, that in case of Polish spacésandY such that both
Boolean algebra®.(X) and®B.(Y) are non-atomic there are no densittes ¢ (M (X)),
v e P (M(Y)) andé € ¥ (M(X x Y)) satisfying the following conditions:

(i) [E(E)]y =v([E(E)]y) foreachE € B.(X x Y) andx € X;
(i) [E(E)) =8([E(E)]) foreachE e B.(X x Y)andy €Y.

But the following question remains open.

Question 4.6. Let X x Y be a Baire space and léte ¥ (M (X)) andv € 3(M(Y)) be
arbitrary. Does there existe & (M (X x Y)) N (§ ® v) such that for eaclt € B.(X x Y)
there existNg € M(X) and Mg € M(Y) with [£(E)], = v([€(E)],) for eachx ¢ Ng
and[¢(E)]” = 8([6(E)]”) for eachy ¢ ME?

Proposition 3.1 proves that ¥ andY have countable bases for their topologies and if
8 andv are the canonical densities, then the answer is affirmative.

The following remarks show that the category densities behave better than the measure-
theoretic ones under formation of products.

Remark 4.7. (a) In general a result analogous to Proposition 4.1 is false for measure-
theoretic densities. More precisely, given non-atomic complete probability sPacEs 1)
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and(®, T, v), and densities € ¥ (1) andv € ¥ (v), themap: : T QT — P(X x O) de-
fined by

£(E) = U{a(A) xv(B): Ax BCEae(u®v)}

cannot be a density fr @ v.

In fact, suppose thdte 9 (u®v). If E € ¥ ® T thenE = £(E) a.e.(u ®v), hence for
eachE € (X ®T), there existdA € ¥, andB € T, such thatA x B C E a.e.(u®v),

a contradiction to a well-known result of K8l and Oxtoby [5] saying that there exists
E € (X ®T), such that there are nd € ¥, andB e T, satisfying conditiorA x B C E
a.e.(u®v).

(b) Given non-atomic complete probability spaggs X', 1) and(®, T, v), and arbi-
trary densitiess € 9 (i), v € ¥ (v) andé € ¥ (u ® v), condition (i) from Proposition 4.1
cannot be true.

In fact, assume if possible that condition (ii) holds true. It then follows that for each
E € (X QT), there exists a familyA; x B;)ic; of measurable rectangles of positive
measure such thgtE) = |, [8(A;) x v(B;)], hence there exist;, € ¥ andB;, € T+
such thatd,;, x B;, € E a.e.(u ®v), which again contradicts [5].

5. Existence of liftingsin products of two spaces, with sections possessing the Baire
property

As we have proven in previous sections when densities are under consideration, then
there exist always product densities with nice measurability properties. In Proposition 3.1
and in Proposition 4.1 the existence of a product density with measurable sections satisfy-
ing an inclusion has been proven. There is now a question whether similar results in case
of liftings can be achieved. We solve this problem in the next theorem.

Theorem 5.1. Assume thafX x Y is a Baire space. Then given arbitrary liftings e
A(M(X)) ando € A(M(Y)), there exists a liftingr; € A(M(X x Y)) such that

() mep®o;
(ii) [m1(E)]x =0 ([m(E)]y) forall Ee®B.(X xY)andallx € X;
(i) if p ando are strong, thenry is strong.

Proof. Applying Lemma 4.4 with§ = p andv = o, we obtain a density1 € ¢ (M (X x
Y)) such that

p(A) x 0(B) Cm1(A x B) forall AeB.(X)andB e B.(Y), (7)

[m1(E)] U[mi(E°)], =Y ae.(M()) forallxeXandE e B (X xY), (8)
and

[ﬂl(E)]X = "([’Tl(E)]x) forall x e X andE € B.(X x Y). 9)

Standard calculation proves that(A x B) = p(A) x o(B), wheneverA € B.(X) and
B € B.(Y). Consequently, we get condition (i) of the theorem.
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We are going to prove now that is a lifting. To do it notice that as a consequence of
(8) we get for eachr the equality{71(E°)] = ([r1(E)])¢ a.e.(M(Y)). Hence

o ([ra(E)],) = o[ ([ra(®)],)]- (10
Taking into account (9), (10) and the lifting propertiessoive see that

[nl(EC)]x = ([nl(E)]C)x'
This impliesm1(E€) = [71(E)]¢ and sar1 € AM(X x Y)).
Condition (iii) follows from (i) in the same way as in the proof of condition (vi) in
Proposition 4.1. O

Remark 5.2. A result analogous to that from Theorem 5.1 fails for measure-theoretic
strong liftings (see [17, Section 3, Remark 5]). The best possible result for measure-
theoretic strong liftings is the following theorem from [16]:

Given complete topological probability spades 7, X', u) and(®, S, T, v), such that
the first one admits a strong lifting for « and the second one admits a strong admissibly
generated liftingr for v (see [16] or [20] or [25] for the definition), there exists a strong
lifting 7 for u® v satisfying the conclusions of Theorem 5.1. The corresponding best
possible result for measure-theoretic liftings can be found in [20, Theorem 2.13].

This shows again the better behavior of the category strong liftings than the measure-
theoretic ones under formation of products.

6. Countably additiveliftings

It is a consequence of [26] that the liftimg in Theorem 5.1 cannot have, in general,
all Y-sectionsp-invariant. We are going to settle in this section whether it can have all
Y-sections with the property of Baire. This is related to the following question which we
deal with first.

Question 6.1. Let Y be a non-empty Baire Tychonoff space without isolated points. Is it
possible that there is a lifting fa’, B.(Y), M(Y)) which is ac -homomorphisrd

It follows from the results below that a counterexample would have to have the property
that every meager set is nowhere dense. Moreover, the cellularity of every open set would
have to be at least equal to the first measurable cardinal. (Recall that a cardimaka-
surable if P (k) carries a diffuse-additive probability measure, or equivalently, there is a
x-additive free ultrafilter om.) From the latter property it follows that the negative answer
to the question for all spaces is consistent relative to ZFC.

Letus say that : B.(Y) — B.(Y) is aselectorif it chooses a representative from each
class moduloM, i.e.,0(E) =5 E andd(E) =6 (F) wheneverE = 4 F.

Proposition 6.2. Suppos¢ is a regular Baire space in which some non-empty open set has
a dense meager subset. Then for any sele€t@®.(Y) — B.(Y), there is a decreasing
sequencéA,} in B.(Y) such tha® (), An) #(), 0(An).
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Proof. (Cf. the proof of [7, Lemma 20].) Lek;,, n € N, be closed nowhere dense subsets

of Y such that J,, F,, coversd (%) and covers a dense subset of some non-empty open set
U C Y. Assume we have fixed for each first category set a sequence of closed nowhere
dense sets covering it and we have also fixed, for each non-empty opgénssebn-empty

open setV such thatW V. Consider the following strategy for player | in the Banach—
Mazur game described in Section 2. Player I's first mow&iis= U . Suppose both players
have made: movesUy; 2 V1 2 --- D U, 2 V,. Write F,,,x, k € N, for the closed nowhere
dense sets covering,, A6(V,,), m < n, which were fixed above. Corresponding to the
non-empty open set

vn\<Uqu U Fn )

m<n m<n, k<n

there was fixed above a non-empty open subget whose closure is contained inside it.
This is player I's next move.

BecauseY is Baire, there is a play of the game which is not winning for player I. Fix
such a play of the game and consider thefset (), V,,. We havek # @ by assumption.
Sincek =, U,, K is closed. Sinc& C U andK is disjoint from( J, F», K is nowhere
dense. For each € N, sinceKX is disjoint from | J, Fux, we havek N (V, A0(V,)) =
@ and hencek (), 6(V,). Together withK N 6(@) = @, the last inclusion shows that
), 0(Vx) \ 0(9) is not empty and hena&((), V,,) =0(K) =0(@) #(),6(V,). O

Remark 6.3. In any Ty space without isolated points, a set which is discrete in the subspace
topology is nowhere dense. Hence Proposition 6.2 covers appaces without isolated sets
which have as-discrete dense set. In particular it covers metric spaces without isolated
points. (Each metric space has a densd geD,, whereD, is a maximal set of points
whose pairwise distances are at legst.]

If B is a Boolean algebra, then a se€ B \ {0} is acellular familyif x A y =0 for all
distinctx, y € S. We define thecellularity of B to be sugcardS: S is a cellular family.
Bla denotes the induced Boolean algebrgom B: x < a}.

In the proposition belowyY, X, \) is a measurable space witlraideal N of subsets
of Y that is generated by N X'. To avoid trivialities we also assunie¢ N. Notice that
then the quotient algebra /N satisfies G£ 1.

Proposition 6.4. Let A = X /N . If some non-zera < A satisfies thatA [ a is complete
and non-atomic, and the cellularity @& [a does not carry any countably complete free
ultrafilter, then no lifting for(Y, X, ) is ac-homomorphism.

Proof. Leta € A be as in the hypothesis. L&t A — X be a lifting. Fix any pointp €
6(a). SinceA |a is non-atomic, for any non-zem < a, there are two disjoint non-zero
members ofA which are< b. Hence, there is a non-zeb6< b such thatp ¢ (b’). Thus,
there is a cellular familys in Afa such thatp ¢ 6(b) for eachb € S and\/ S = a. Let

F={s’gS: pe@(\/S/)}.
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F is a free ultrafilter onS. By assumptionF is not countably complete. Hence, we may
write S =, S, so thatp ¢ 6(\/ S,,) for eachn € N. Leta, =\/S,,. Thenp € 6(a) =
0(\/, an,) whereap ¢ J,6(a,). O

Remark 6.5. Let Y be a non-void Baire Hausdorff space without isolated points. The
structure(Y, B.(Y), M(Y)) satisfies the assumption if some non-empty opert/setY
has cellularity below the first measurable cardinal.

In the sequel we denote B/(N) the space of all subsetsifendowed with the ordinary
product metric topology.

Proposition 6.6. Let Y be a Baire space and lét be a non-countably-complete ultrafilter
onB.(Y) extending the filter of dense open sets. There is then & seP (N) x Y which

is a union of countably many open rectangles such that P(N): E, € U} is a free
ultrafilter.

Proof. Fix a pairwise disjoint family{A,: n € N} of open sets irY such thatA,, ¢ U for
eachn e Nand( J, A, is dense irt.

E:U{xQN: nex}x A,
neN

is as desired. O

Proposition 6.7. Let Y be a Baire space such thaP (N), Y) is a Kuratowski—Ulam pair.
For any lifting 8 € A(M(Y)) which is not as-homomorphism, there is a poipte Y and
there is a setF € P(N) x Y which is the union of countably many open rectangles and
is such that for no representativieof the category class af do we have thaf” has the
property of Baire and (S,) = S, for a residual set ok € P(N).

Proof. Note that ifo (|, An) # U, 0(A,) for some setsA, € B.(Y), then for anyp €
(U, An) \ U, 0(A,), the collectionlf := {A € B.(Y): p € 6(A)} is a non-countably-
complete ultrafilter o®3.(Y). If E andA,,’s are taken from Proposition 6.6, then

[xe PN): Eyeld) = {x e P(N): | J A, eu}
nex

is a free ultrafilter. Supposg is in the category class df andd(S,) = Sy for a residual
set ofx € P(N). The Kuratowski—Ulam Theorem ensures tligt= S, a.e.(M(Y)), for
a residual set ok € P(N). Hence,W :={x € P(N): 0(E,) = 0(Sy) = S,} is residual.
If x € W, thenx € S means thay € Sy =0(E,), i.e., Ex € U. By Proposition 6.qx €
P(N): E, €U} is afree ultrafilter. Sincéx € P(N): E, e U} D W, it possesses also the
property of Baire. On the other hand according to a well-known result of Sierpinski (cf. [1,
Theorem 4.1.1]), the s¢t € P(N): E, € U} does not have the property of Bairex

Applying Proposition 6.7 we obtain the main non-existence result of this paper.



1186 M.R. Burke et al. / Topology and its Applications 153 (2006) 1164-1191

Theorem 6.8. LetY be a separable metric space without isolated points. Then there exist
no lifting o € A(M(Y)) and densityy € % (M (P (N) x Y)) satisfying the following two
conditions

() there existy € Y such that for eaclt € B.(P(N) x Y)
[p(E)]" € B.(POV).

(j) foreachE € %B.(P(N) x Y)) there exists a se¥g € M (P (N)) such that
[e(E)], =0([e(E)],) foreachx ¢ N.

Corollary 6.9. Let Y be a separable metric space without isolated pointse,l& and
w1 are liftings satisfying Theore.1 (with X = P(N)), then for eachy € Y there exists
E € %B.(P(N) x Y) such thafm1(E)]” ¢ B.(P(N)).

It follows from the above corollary, that Theorem 5.1 cannot be in general improved.

Corollary 6.10. Let Y be a separable metric space without isolated points ang let
AM(P(N))),0 € AM(Y)) andrr € AM(P(N) x Y)) be such that

(K) mep®o0;
(KK) [2(E)) = p([m2(E)]) forall E € B.(P(N) x Y)andally € Y.

Then, there existg € B.(P(N) x Y) such that
{x e PON): [m2(B)], # p([m2(E)],)} ¢ M(P(V)).

Proof. According to Theorem 5.1 liftings, o andr satisfying(k) and (kk) exist. If we
assume that for each € B.(P(N) x Y) we have[na(E)], = p([m2(E)],) for almost all
x € P(N), then we get a contradiction with Theorem 6.82

In the context of the preceding results it is natural to ask the following two questions:

Question 6.11. Let X x Y be a Baire space. Assume also, if necessary, (tkiat') and
(Y, X) are K-U pairs. Do there exist (strong) liftingse A(M(X)), o0 € A(M(Y)) and
7 e AM(X x Y))N(p ® o) such that for eaclt € B.(X x Y) there exist setdVg
M(X) andMg € M(Y) with the property that whenever¢ Ny andy ¢ Mg then

[7(B)], =o([x(B)],) and [x(E)]" =p([x(E)])?

Question 6.12. Let X x Y be a Baire space. Assume also, if necessary, (tkiat') and
(Y, X) are K-U pairs. Do there exist (strong) liftings e A(M(X)), o0 € A(M(Y)) and
T e AM(X x Y))N (p ® o) such that for eaclt € B.(X x Y) and for eachx, y) €
X x Y we have[rw (E)]y € B.(Y) and[w(E)]Y € B.(X)?
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7. Densitiesin arbitrary products

In this section we are going to present a generalization of Proposition 4.1 to the case
of arbitrary Baire products of topological spaces. We start with an easy generalization of
Lemma 2.2 to the case of arbitrary products.

Lemma7.1. Let{X;: i € I} be a non-empty collection of topological spaces.

e)IfCicpmAiinX;,iel,andC;=A; =X, foralli e I\ F whereF C I is at most
countable, thef [;.; Ci Sam [ies Ai-

(f) If X; =[],; Xi is Baire, then the produdt]; ., C; of non-meager sets; € X; having
the Baire property and satisfying; = X; for all i € I \ F for some finiteF C I, is
non-meager.

(9) If X; is Baire, and[[;.; Ci Snm [ Ai, whereC;, A; C X; are sets having the
property of BaireC; = A; = X, forall i € I \ F for some finiteF and the set€’; are
not meager, then for eaghe 7 we haveC; C 4 A;.

Proof. (€)[]ic; Ci\[lics Ai S U;icp(Ci\ Ai) x [];cp\;y X is meager.
(f) Fori € F, letU; C X; be an open set such th@t A U; is meager. SelV; = X; for
i € I\ F and define the basic open €é&=[]._,; U;. By (f), the set

m=Jwincox [T x;

ieF Jjel\{i}

iel

is meager. Then, because the s&tare non-meager, the sdfls are not empty. Sincg;
is a Baire spacd;/ is non-meager. Thug/ \ M is non-meager and the conclusion follows
from

v\mc|]c.
iel
(@) If Ci \ A; ¢ M, then, by (1),(C; \ A)) x [];ep\;y Cj ¢ M, contradicting the inclu-
sion[[ie; Ci Sm[lies Ai- O

Theorem 7.2. Let {X;: i € I} be a non-empty collection of topological spaces such that
X, is a Baire space. Moreover, I1€3; € 9 (M(X;)): i € I} be a collection of densities. For
eachf£J CIandE € B.(X ;) put

gE=J { [16iA) x xpk: [JAi x Xnk CE

iek iek
ae.(M(X,))).K e Fin(J)},

whereFin(J) denotes the collection of all non-empty finite subsets @f/. Then for each
non-empty subset of I &; is a density in (M(X )) satisfying the following conditions

(i) &, respects coordinates
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(i) &5 €&k @&y If K is anon-empty proper subset Hf

(ii)) &7 € @icydis

(iv) & is separately Baire additive

(V) [E/(E)lxgx € Enk([E7(E)]x,) for eachE € B.(X,), if K is a non-empty proper
subset of/;

(vi) if for eachi € I the density; is strong, thert; is also strong.

Proof. Let us fix a non-empty subsedtof I. Exactly as in Proposition 4.1 one can prove
thaté; € 9 (M(X)). To show condition (ii), we are going to prove first the following fact:

Claim. Let J = K U L be a proper decomposition df and let¢ (§x, £&1.) be the density
from Proposition4.1, whens and v are replaced bytx and &y, respectively. Theg; =

¢k, &L).

Proof. Without any comments we are going to apply below Lemma 7.1(e), (g). We assume
also, where necessary, that sets have the Baire property in the corresponding spaces.

SJ(E):U{ HB[(A,’) x X M- HA,' xXpmCEMmE, MeFinJ}

ieM ieM
= U{ l_[ 8i(Ai) x Xg\m X l_[ 8i(Ai) X Xp\m:
ieMNK ieMNL

HA,- x Xpm Sm E, MeFinJ}
ieM

{6k (A) x €L.(B): Ax BCpm E} =9 (Ek, EL)(E)

U
U{(UH5(A1') X XK\P) x <U []sB) x XL\Q): AxBCME,

ieP jeo

<

[T54) x Xx\p Sar A& []8(B) x X110 S B,
ieP jeQ

P eFinkK, Q eFinL}

< U{UH@(A,-) x [T8B)) x Xnrug:

ieP jeo
HS(A,-) X ]_[ 8(Bj) x Xnruo Sm E, P eFinkK, Qe FinL}
ieP jeo
=&;(E). O
Condition (ii) follows now from Proposition 4.1(i). Condition (i) is equivalent to (ii).

Conditions (iv), (v) and (vi) follow exactly in the same way as in Proposition 4.1.
Condition (iii) follows directly from (ii).
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This completes the proof of the theorent

Notice that in general the density above is not a lifting, even if al§;’s are liftings.
For example, ifX andY are infinite extremally disconnected compact spaces, then the
canonical densitiegy andgy are liftings. However the formula fay; in this case pro-
duces the canonical densipy «y (see Proposition 3.1) which is not a lifting sin&ex Y
is not extremally disconnected [4, Exercise 6.3.21].

We finish with the following open problem:

Question 7.3. Let {X;: i € I} be an infinite collection of topological spaces such tkiat
is Baire. Does there exist a lifting € A;(M (X)) respecting coordinates?

8. A lifting respecting coordinatesin a weak sense

Besides liftings respecting coordinates one can consider also the following two other
similar properties of a lifting € A(M(X x Y)):

(WRCy) ForeveryA € B.(X) andB € B.(Y), there are set§ C X andD C Y such that
0(AXx B)=C x D eB (X xY).

(WRGC,) ForeveryA x B eB.(X xY), there are set§ C X andD C Y such that (A x
B)=C x DeB.(X xY).

If we write (RC) for the property of respecting coordinates, then clearly (\WRCa
consequence of either (RC) or (WRC

We give an example to show that a lifting for the category algebra of a Baire product
X x Y can satisfy (WRg) without respecting coordinates. Other than the obvious impli-
cation mentioned above, the relationship of (WAR® the other two properties is not clear
to us. However, as we have already mentioned in the introduction, under some assumptions
concerning coordinate spaces, the situation is simpler.

Proposition 8.1. Let X and Y be arbitrary Baire spaces. IfX, Y) or (Y, X) satisfy the
Kuratowski—Ulam property or ik andY are weaklyx-favorable, then all three properties
coincide.

Proof. In case ofK-U the conclusion is easily seen, so we will present only the proof in
case of weaklyr-favorable spaces. It is enough to show that i¢ 5.(X), thenA x Y ¢
B.(X x Y). To do it notice first thatd C X is without the property of Baire if and only if
there is a non-empty open set U such that both U andU \ A are everywhere second
category inU (i.e. have second category intersection with every non-void open subset of
U). Let us fixA ¢ B.(X) and the corresponding . In particular,AN U andU \ A are
both dense ir.

We need in what follows the Oxtoby observation that wieis a dense subspace &f
andC c Z, thenC is meager irZ if and only if C is meager inX. TakingC =V N Z for
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non-empty open setg C X gives in particular thaZ is a Baire space if and only ¥ is
everywhere second categoryXh

We have thad N U andU \ A are thus Baire spaces. Because Y is weakfigvorable,
(ANU) x Y and(U \ A) x Y are both Baire spaces. But these are dendgé inY, so
they are everywhere second categoryix Y. Thus,A x Y does not have the property of
Baire because both it and its complement are everywhere second category¥h O

Example8.2. Let X andY be Baire normed spaces such that Y is not Baire (and hence
is meager). (See [29] or [19].) Let be the completion ok, so thatX is a Banach space.
SinceX is weakly«-favorable,X x Y is Baire (see [30]). Notice thaX x Y is meager
also as a subset of x Y. N

The spaceX is everywhere second category in itself and hence alsoimwhich it is
dense. It does not have the property of Baire in any opelys&tX because otherwise it
would follow from Lemma 2.2(f) thatU N X) x Y is second category iX x Y.

Let 6 be a translation invariant lifting for the category algebraok Y. For example,
start with the canonical density; ., which is translation-invariant since translations are
homeomorphisms. B/ is any ultrafilter orch(f( x Y) containing all neighborhoods of 0
and all residual sets, then settidgE) = {u € X x Y: E —u €U} works. We have that
6 is a strong lifting and respects coordinates. (Respecting coordinates follows easily from
the fact thaty dominates the separately additiyg, , and is translation-invariant, since
the former is the same as being invariant under translations of thedfesm: + (x, 0) and
ur>u+(0,y)). Letoy anddy be the marginal liftings induced t#y. We define a Boolean
homomorphismr on the category algebra &f into P(X) as follows.

O3(A\ X IO ¢05(A),
T(A) = {9;(/1) UX if0e 9;(1‘\)-

Thent(A) fails to have the property of Baire whenewéris not meager or residual. In
particularr ¢ 9 (M(X)).

Letting A denote®B.(X x Y), write 4 = Uéq Ag, whereAg is the algebra gener-
ated by the rectangles x B (A € B.(X), B e B.(Y)), for each ordinak < «, Ag41 is
generated overl: by adding a single elemeunt;, and.A; = LJ,7<é A, whené is a limit
ordinal. Inductively define a liftingr for A by takingo [.4p to be the unique Boolean
homomorphism of the product algeh#y into B.(X xY) satisfying

0(A x B)=1(A) x 0y(B).

Then at a successor stage,dgtds 11 be the unique extension off 4¢ satisfying

o(A)=0(A) U J{o(A): AeAr, A Sy Ac)
\(Jfo(d): Aeh, AnA e M(X x 1))

Thato is a lifting follows by checking by induction o& that for eachA € Ag, we have
o(A)AB(A) C X x Y and hencer (A) = 6(A). Theno is as desired since it respects
coordinates in the weaker sengg.is a marginal lifting ofo. The second marginal lifting
does not exist.
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