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We extend earlier work [M.R. Burke, N.D. Macheras, K. Musiał, W. Strauss, Category product
densities and liftings, Topology Appl. 153 (2006) 1164–1191] of the authors on the existence
of category liftings in the product of two topological spaces X and Y such that X × Y is
a Baire space. For given densities ρ , σ on X and Y , respectively, we introduce two ‘Fubini
type’ products ρ �σ and ρ �σ on X × Y . We present a necessary and sufficient condition
for ρ � σ to be a density. Provided (X, Y ) and (Y , X) have the Kuratowski–Ulam property,
we prove for given category liftings ρ , σ on the factors the existence of a category lifting π
on the product, dominating the density ρ � σ and such that

π(A × B) = ρ(A) × σ(B) for Baire subsets A of X and B of Y , and

ρ
([

π(E)
]y) = [

π(E)
]y

for all y ∈ Y and Baire subsets E of X × Y .

We show that further properties of consistency with the product structure cannot be
expected.
We prove also that contrary to measure theoretical liftings, in case of Baire spaces there
might exist countably additive liftings. This answers, assuming the existence of a compact
cardinal, a question from [M.R. Burke, N.D. Macheras, K. Musiał, W. Strauss, Category
product densities and liftings, Topology Appl. 153 (2006) 1164–1191]. The example we
present is a version of an example of D.H. Fremlin of a space whose category algebra has
a countably additive lifting.

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

In [11] densities and liftings defined in products of two probability spaces and possessing section properties analogous to
that described by the Fubini theorem in case of measures and measurable sets were considered. These properties have been
then applied to prove the permanence of the measurability of stochastic processes under the modification by liftings [11].
In [2] the product situation for the σ -algebra Bc(X) of all sets having the Baire property, selecting a representative element
from each equivalence class of Bc(X) modulo sets of the first category (S. Graf [8], D. Maharam [10] and J.C. Oxtoby [14])
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was investigated. Following J.C. Oxtoby’s [14, p. 74] remark that “the suggestion to look for a category analogue has very
often proved to be a useful guide”, we have attempted to check if this can be interesting in case of our investigations.

It has been proven in [2] that given topological spaces X and Y such that the product space X × Y is Baire and given
(strong) liftings ρ on (X,Bc(X), M(X)) and σ on (Y ,Bc(Y ), M(Y )) always there exists a (strong) lifting π1 on (X × Y ,

Bc(X × Y ), M(X × Y )) satisfying the product condition π1(A × B) = ρ(A) × σ(B) for all A ∈ Bc(X), B ∈ Bc(Y ) and such
that for each E ∈ Bc(X × Y ) and each x ∈ X the section property [π1(E)]x = σ([π1(E)]x) holds true (see [2, Theorem 5.1]).

The second problem investigated also in [2] concerns the existence of a density θI on a Baire product
∏

i∈I Xi of topo-
logical spaces such that if ∅ �= J ⊆ I and A ∈ Bc(X J ), then there is a B ∈ Bc(X J ) such that θI (A × X J c ) = B × X J c . This is
an obvious generalization of the two factor case. We say that such a density respects coordinates. The terminology is taken
from measure products case, where it has been proposed by Fremlin [5].

The best-known result in case of finite measure products is due to Burke [1], who proved the existence of liftings
respecting coordinates (no coordinate liftings are fixed in advance). In case of infinite product, Fremlin [5] proved the
existence of liftings respecting coordinates if all the coordinate measure spaces are Maharam homogenous.

In this paper we continue the investigation of [2] by introducing Fubini type products for densities and liftings and
studying their consistency with the product structure. Given two topological spaces X , Y such that X × Y is Baire and
arbitrary densities υ and τ on Bc(X) and Bc(Y ), we consider the density ξ on Bc(X × Y ) of Proposition 4.1 from [2],
satisfying the formula

ξ(E) =
⋃{

υ(A) × τ (B): A ∈ Bc(X), B ∈ Bc(Y ), A × B ⊆M E
}
.

We call ξ the �-product of υ and τ , and denote it by υ � τ .
This formula defining the �-product density from its marginals (see Definition 2.2 and [2, Propositions 3.1 and 4.1])

makes clear the crucial difference between the measure and the category cases. A non-meager set with the Baire property
in the product contains, up to a meager set, a rectangle with non-meager sides with the Baire property, while a famous
result of P. Erdös and J.C. Oxtoby [3] exhibits an example of a set of positive measure in the product σ -algebra of quite
arbitrary non-atomic positive measure spaces, containing, up to a set of measure zero, no rectangle of positive measure. That
fact makes it clear that in the category case we should apply completely different methods than in case of measure product
liftings. The latter is done, as a rule, by transfinite induction, relying crucially on the martingale theorem, not available in
the category case.

We prove that under the mild condition that the pairs (X, Y ) and (Y , X) satisfy the Kuratowski–Ulam property (see
Section 1 for the definition), the map υ � τ (see Definition 4.1) is a subdensity and the map υ � τ (see Definition 4.7)
is a density, called the �-product of its marginals. Both maps υ � τ and υ � τ have nice properties consistent with the
product structure of(

X × Y ,Bc(X × Y ), M(X × Y )
)

(see Proposition 4.4 and Theorem 4.9). If moreover the cardinality condition w(Y ) < add(M(X)) holds true (such a condi-
tion holds e.g. true if X , Y are Polish spaces) and τ is the canonical density on Y , then υ � τ = υ � τ (see Theorem 4.6). If
X , Y are Polish spaces with the corresponding canonical densities ϕX , ϕY we get additional properties:

ϕX×Y = ϕX � ϕY � ϕX � ϕY = ϕX � ϕY ∈ ϑ
(

M(X × Y )
) ∩ ϕX ⊗ ϕY ,[

(ϕX � ϕY )(E)
]y = ϕX

([
(ϕX � ϕY )(E)

]y)
for all y ∈ Y and E ∈ Bc(X × Y ), and [(ϕX � ϕY )(E)]x ∈ Bc(Y ) for all x ∈ X and all E ∈ Bc(X × Y ) (see Theorem 4.11).

The situation here is much better than in the measure-theoretic case, since in that case such results hold true only
under a measurability condition (see [12, Definition 4.2]) that is automatically satisfied in the category case. We prove
in [12, Remark 5.1], that this measurability condition sometimes fails in the measure-theoretic case.

Based on the properties of ρ �σ , for a lifting ρ on (X,Bc(X), M(X)) and a lifting σ on (Y ,Bc(Y ), M(Y )), we find that
the maximal elements of the system of all densities possessing the properties of ρ � σ and dominating ρ � σ are liftings
on X × Y being consistent with the product structure of (X × Y ,Bc(X × Y ), M(X × Y ). More precisely, we prove that given
arbitrary topological spaces X and Y such that the product space X × Y is Baire and such that the pair (X, Y ) satisfies the
Kuratowski–Ulam property, and given (strong) liftings ρ on (X,Bc(X), M(X)) and σ on (Y ,Bc(Y ), M(Y )) there always
exists a (strong) lifting π2 on (X × Y ,Bc(X × Y ), M(X × Y )) dominating the density ρ �σ , satisfying the product condition
π2(A × B) = ρ(A) × σ(B) for all A ∈ Bc(X), B ∈ Bc(Y ) and such that for each E ∈ Bc(X × Y ) and each y ∈ Y the section
property [π2(E)]y = ρ([π2(E)]y) holds true (see Theorem 4.12). One should notice that it is impossible (besides some trivial
cases) to have also the section property [π2(E)]x = σ([π2(E)]x) for each E ∈ Bc(X × Y ) and each x ∈ X , even if X = Y (see
Theorem 5.1). It is also impossible (besides some trivial cases) for the subdensity ρ � σ to be a lifting (see Theorem 5.5).

In Section 6 we extend the result to finite products of topological spaces. For finite products of Polish spaces we prove
that the �-product of the corresponding canonical densities coincides with the corresponding �-product, which respects
coordinates and possesses nice section properties (see Theorem 6.8).

In the category products of more than two factors the existence of liftings respecting coordinates remains open.
In Section 7 we examine conditions under which there exist countably additive liftings or countably multiplicative densi-

ties and consequences for the existence of product densities with invariant sections. It is well known that in case of measure
spaces countably additive liftings exist only in the case of purely atomic measures. (Cf. the comment after Proposition 7.8.)
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1. Preliminaries

Throughout we assume that all topological spaces under consideration are non-empty. Let X be a topological space. The
weight of X is denoted by w(X). A family U of non-empty open sets in a topological space will be called a pseudo-basis
(π -basis for short), if every non-empty open set in X contains an element U ∈ U . The minimal cardinality of a π -basis
will be denoted by π(X). For each subset A of X we denote by cl A (or by A) and by int(A) the topological closure and
interior of A, respectively. A set A ⊆ X is nowhere dense if int(cl A) = ∅. A set M ⊆ X is meager or of the first category if it
is expressible as a union of a sequence of nowhere dense sets. A set A ⊆ X is of the second category if it is not meager. We
recall the standard observation (see, e.g., [13]) that when Y is a dense subspace of X , for subsets A of Y we have that A is
nowhere dense in Y if and only if A is nowhere dense in X , and A is meager in Y if and only if A is meager in X .

An open set A ⊆ X is said to be regular open in X if it coincides with the interior of its closure. A set A ⊆ X has the
Baire property if it can be represented in the form A = G
N , where G is open and N is meager. A topological space X is
called a Baire space if every non-empty open set in X is non-meager. M(X) denotes the collection of all meager subsets of
the topological space X and Bc(X) denotes the σ -algebra of sets possessing the Baire property. add(M(X)) := min{cardJ:
J ⊂ M(X) and

⋃
J /∈ M(X)}. For A, B ∈ Bc(X) we write A ⊆ B a.e. (M(X)) or A ⊆M B if A \ B ∈ M(X) and similarly for

equality in place of the inclusion.
It is crucial for this paper that we apply weaker functionals than densities. We define them now. Given a map

υ :Bc(X) → P (X) we consider for every A, B ∈ Bc(X) the following properties

(L1) υ(A) ∈ Bc(X) and υ(A) = A a.e. (M(X));
(L2) A =M B implies υ(A) = υ(B);
(N) υ(∅) = ∅ and υ(X) = X ;
(O) A ⊆ B implies υ(A) ⊆ υ(B);
(F) υ(A) ∩ υ(B) ⊆ υ(A ∩ B).

(ϑ ) υ(A ∩ B) = υ(A) ∩ υ(B).
(U) υ(Ac) = [υ(A)]c .

We call a υ ∈ P (X)Bc(X) satisfying (L1), (L2), and (N) a primitive lifting for M(X) and we denote by P (M(X)) the class
of all primitive liftings. A primitive lifting for M(X) will be called a monotone lifting for M(X) if it satisfies in addition
the axiom (O). If a primitive lifting satisfies in addition (F), we call it a subdensity for M(X) and denote by F (M(X))

the class of all subdensities. Any subdensity υ has the property υ(A) ∩ υ(B) = ∅ if A ∩ B ∈ M(X) for A, B ∈ Bc(X).
A monotone subdensity is called a lower density. The collection of all lower densities is denoted by ϑ(M(X)). A lower
density satisfying (U) is a lifting. The family of all liftings is denoted by Λ(M(X)).

Lower densities and liftings on (X,Bc(X), M(X)) are defined exactly in the same way as densities and liftings for mea-
sure spaces (cf. [15, Chapter 28]). We call them category lower densities and category liftings, while we call the densities and
liftings for measure spaces measure-theoretic densities and measure-theoretic liftings. If no confusion arises we say “density”
instead of “category lower density” and “measure-theoretic lower density” and “lifting” instead of “category lifting” and
“measure-theoretic lifting”.

For maps δ,υ from Bc(X) into P (X) we write δ � υ , if δ(A) ⊆ υ(A) for all A ∈ Bc(X).
For each E ∈ Bc(X) we denote by ϕX (E) the regular open set equivalent to E . ϕX :Bc(X) → Bc(X) defined in that

way is a strong density (see [8, Section 9], [10, Section 4] or [14, p. 88]). ϕX will be called the canonical density on
(X,Bc(X), M(X)).

A set A ∈ Bc(X) \ M(X) is an M(X)-atom of Bc(X) if A cannot be decomposed into two disjoint elements of
Bc(X) \ M(X). Notice that ϕX is a lifting precisely when every regular open set in X is clopen, i.e., precisely when X
is extremally disconnected.

A map δ :Bc(X) → P (X) is called strong if for every non-empty open set G ⊆ X we have G ⊆ δ(G).
The collection of all strong densities and of all strong liftings on (X,Bc(X), M(X)) will be denoted by ϑs(M(X)) and

by Λs(M(X)), respectively.
Each topological space X admitting a strong density is a Baire space. In fact, assume that X is a topological space

admitting a strong density ϕ . Then for each non-empty open set G we have G ⊆ ϕ(G), from which it follows that ϕ(G) �= ∅
and hence G is not meager.

If a Baire space X is a topological group, a map δ from Bc(X) into P (X) is called left invariant for X , if δ(xE) = xδ(E)

for every E ∈ Bc(X) and x ∈ X .
If I is a non-empty set and 〈Xi〉i∈I is a family of arbitrary topological spaces then, for each ∅ �= J ⊆ I we denote by X J

the product topological space
∏

i∈ J Xi . If J = ∅, then for simplicity of notation we identify X J × Y with Y .
We say that a ϕ ∈ ϑ(M(XI )) is separately Baire additive if for any non-empty sets J , K ⊆ I with J ∩ K = ∅ we have

ϕ(E ∪ F ) = ϕ(E) ∪ ϕ(F ) for all E ∈ Bc(X J ) × X J c and F ∈ Bc(XK ) × XK c .

For measure-theoretic densities this notion is due to Fremlin [5], where it is called the (∗) property.
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For maps δ :Bc(X) → P (X), υ :Bc(Y ) → P (Y ) and ξ :Bc(X × Y ) → P (X × Y ) we say that ξ is a product of δ and υ ,
and we write it as ξ ∈ δ ⊗ υ if

ξ(A × B) = δ(A) × υ(B) for all A ∈ Bc(X) and B ∈ Bc(Y ).

We use similar notation for a map ξ :Bc(XI ) → P (XI ) with maps δi :Bc(Xi) → P (Xi), writing ξ ∈ ⊗i∈Iδi if ξ(
∏

i∈I Ai) =∏
i∈I δi(Ai) for each product set

∏
i∈I Ai where Ai ∈ Bc(Xi) and Ai = Xi for all but finite collection of i ∈ I . If I := [n] :=

{1, . . . ,n} then we write ξ ∈ δ1 ⊗ · · · ⊗ δn .
We say that ϕI ∈ F (M(XI )) respects coordinates if for each proper ∅ �= J ⊆ I the inclusion ϕI (Bc(X J ) × X J c ) ⊆

Bc(X J ) × X J c holds true.
It can be easily seen that if ϕI respects coordinates then, for each ∅ �= J ⊆ I there is a uniquely determined subdensity

ϕ J ∈ F (M(X J )) given by ϕ J (A) × X J c = ϕI (A × X J c ), for all A ∈ Bc(X J ). And conversely, if for each ∅ �= J ⊆ I there is
a subdensity ϕ J on Bc(X J ) such that ϕI (A × X J c ) = ϕ J (A)× X J c , whenever A ∈ Bc(X J ), then ϕI respects coordinates. From
this point of view one could speak about a completely product subdensity instead of a subdensity respecting coordinates.

We recall a definition introduced by D.H. Fremlin, T. Natkaniec and I. Recław in [6]. A pair (X, Y ) of topological spaces is
a Kuratowski–Ulam pair (briefly K-U pair) or it has the Kuratowski–Ulam property, if the Kuratowski–Ulam theorem holds in
X × Y :

∀E ⊆ X × Y
[

E ∈ M(X × Y ) ⇒ {
x ∈ X: Ex /∈ M(Y )

} ∈ M(X)
]
.

Kuratowski and Ulam proved that if π(Y ) < add(M(X)), then the pair (X, Y ) is a K-U pair (see [14, Theorem 15.1]). In
particular, if Y has a countable π -basis, then for each topological space X the pair (X, Y ) is a K-U pair.

Throughout this paper we assume that X and Y are topological spaces such that X × Y is a Baire space.

2. The box-cross product

Before the next result we need a proposition as a preparation. The notion of the upper hull appears in the paper [7] of
J. Gapaillard, for the measure-theoretic case. For a map 
 :Bc(X) → P (X) we define the upper hull of 
 by means of(


m)
(A) :=

⋃
A⊇B∈Bc(X)


(B).

For given ξ ∈ F (M(X)) we denote by Λξ (M(X)) := {ρ ∈ Λ(M(X)): ξ � ρ} the set of all liftings generated by ξ .

Proposition 2.1. For given map 
 :Bc(X) → P (X) the map 
m :Bc(X) → P (X) has the following properties.

(i) 
m satisfies condition (O), 
 � 
m, and for any map ξ :Bc(X) → P (X) satisfying condition (O) and 
 � ξ follows 
m � ξ ;
(ii) 
m ∈ ϑ(M(X)) for all 
 ∈ F (M(X));

(iii) if 
 ∈ F (M(X)) satisfies also (U), then 
m = 
 ∈ Λ(M(X));
(iv) if 
 ∈ F (M(X)), then Λ
 (M(X)) = Λ
m (M(X)).

Proof. (i) is obvious and ad (ii) note that in the same way as in [7] the map 
m is a monotone lifting, hence 
m(A ∩ B) ⊆

m(A) ∩ 
m(B) for all A, B ∈ Bc(X), and it is sufficient to show that 
m ∈ F (M(X)).

Indeed, let A, B, C, D ∈ Bc(X) with A ⊇ C and B ⊇ D be given. It follows A ∩ B ⊇ C ∩ D , hence 
m(A ∩ B) ⊇ 
(C ∩ D) ⊇

(C) ∩ 
(D) and for fixed D we have 
m(A ∩ B) ⊇ (

⋃
A⊇C∈Bc(X) 
(C)) ∩ 
(D) hence 
m(A ∩ B) ⊇ 
m(A) ∩ 
(D) for

all D with B ⊇ D ∈ Bc(X), consequently 
m(A ∩ B) ⊇ 
m(A) ∩ ⋃
B⊇D∈Bc(X) 
(D), i.e. 
m(A ∩ B) ⊇ 
m(A) ∩ 
m(B).

Ad (iii): We first check that 
m ∈ Λ(M(X)). By (ii) we have only to show that 
m satisfies condition (U) and that

m = 
 . For all A ∈ Bc(X) we get by (i) that 
(A) ⊆ 
m(A), 
(Ac) ⊆ 
m(Ac) and by (U) for 


X = 
(A) ∪ 

(

Ac) ⊆ 
m(A) ∪ 
m(
Ac) ⊆ X .

Together with the consequence of (ii) that 
m(A) ∩ 
m(Ac) = ∅, these imply that 
(A) = 
m(A) and [
m(A)]c =

m(Ac).

Item (iv) follows from the minimality condition satisfied by 
m according to (i). �
Definition 2.2. For arbitrary maps υ :Bc(X) → P (X) and τ :Bc(Y ) → P (Y ) define the map υ � τ :Bc(X × Y ) → P (X × Y )

by means of

(υ � τ )(E) :=
⋃{

υ(A) × τ (B): A ∈ Bc(X), B ∈ Bc(Y ), A × B ⊆M E
}

for every E ∈ Bc(X × Y ).

The next result improves Proposition 4.1 from [2].
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Proposition 2.3. For arbitrary maps υ :Bc(X) → P (X) and τ :Bc(Y ) → P (Y ) we get

(i) υ � τ always satisfies condition (O);
(ii) υ � τ = υm � τm;

(iii) suppose that X, Y are topological groups and X × Y is Baire. If υ is left invariant for X and τ is left invariant for Y , then υ � τ
is left invariant for X × Y ;

(iv) if υ and τ are monotone liftings, then υ � τ ∈ υ ⊗ τ and υ � τ is separately additive;
(v) if υ and τ satisfy condition (F), so υ � τ does;

(vi) if υ and τ are strong, then υ � τ is also strong;
(vii) if υ ∈ F (M(X)) and τ ∈ F (M(Y )), then:

υ � τ ∈ ϑ
(

M(X × Y )
) ∩ (

υm ⊗ τm);[
(υ � τ )(E)

]
x ∈ Bc(Y ) and

[
(υ � τ )(E)

]
x ⊆ τm([

(υ � τ )(E)
]

x

)
for every E ∈ Bc(X × Y ) and x ∈ X;[

(υ � τ )(E)
]y ∈ Bc(X) and

[
(υ � τ )(E)

]y ⊆ υm([
(υ � τ )(E)

]y)
for every E ∈ Bc(X × Y ) and y ∈ Y .

Proof. Condition (i) is obvious by definition of υ � τ .
Ad (ii): For E ∈ Bc(X × Y ) we get with sets A, C ∈ Bc(X) and B, D ∈ Bc(Y ) that

(
υm � τm)

(E) =
⋃

A×B⊆M E

( ⋃
C⊆A

υ(C) ×
⋃
D⊆B

τ (D)

)

=
⋃

A×B⊆M E

⋃
C⊆A

⋃
D⊆B

(
υ(C) × τ (D)

) = (υ � τ )(E).

Ad (iii): For (x, y) ∈ X × Y and E ∈ Bc(X × Y ) we get

(x, y)(υ � τ )(E) = (x, y)
⋃{

υ(A) × τ (B): A ∈ Bc(X), B ∈ Bc(Y ), A × B ⊆M E
}

=
⋃{

xυ(A) × yτ (B): A ∈ Bc(X), B ∈ Bc(Y ), A × B ⊆M E
}

=
⋃{

υ(xA) × τ (yB): A ∈ Bc(X), B ∈ Bc(Y ), A × B ⊆M E
}

=
⋃{

υ(xA) × τ (yB): xA ∈ Bc(X), yB ∈ Bc(Y ), xA × yB ⊆M (x, y)E
}

= (υ � τ )
(
(x, y)E

)
.

Ad (iv): Apply [2, Lemma 2.2(g)] to find υ � τ ∈ υ ⊗ τ . Looking at the proof given in [2, Proposition 4.1(vii)] for densities
instead of monotone υ , τ , we see that monotonicity suffices to ensure separate additivity for υ � τ .

Ad (v): If υ and τ satisfy condition (F) we find with A, C ∈ Bc(X) and B, D ∈ Bc(Y ) and E, F ∈ Bc(X × Y ) that

(υ � τ )(E) ∩ (υ � τ )(F ) =
( ⋃

A×B⊆M E

[
υ(A) × τ (B)

]) ∩
( ⋃

C×D⊆M F

[
υ(C) × τ (D)

])

⊆
⋃

(A∩C)×(B∩D)⊆M E∩F

[
υ(A) ∩ υ(C)

] × [
τ (B) ∩ τ (D)

]
⊆

⋃
(A∩C)×(B∩D)⊆M E∩F

[
υ(A ∩ C) × τ (B ∩ D)

]
⊆ (υ � τ )(E ∩ F ).

Ad (vi): It follows in the same way as in [2, Proposition 4.1].
Ad (vii): For υ ∈ F (M(X)) and τ ∈ F (M(Y )) we get υm ∈ ϑ(M(X)) and τm ∈ ϑ(M(Y )) by Proposition 2.1(ii), hence

υm � τm ∈ ϑ(M(X × Y )) and we get (vii) for υm � τm instead of υ � τ , by [2, Proposition 4.1]. But both are the same
by (ii). This completes the proof. �
3. Lifting of sections

Definition 3.1. For given τ ∈ P (Y )Bc(Y ) we define the set

τ•(E) := {
(x, y) ∈ X × Y : Ex ∈ Bc(Y ) ∧ y ∈ τ (Ex)

}
for all E ∈ Bc(X × Y ). Similarly for given υ ∈ P (X)Bc(X) we define the set

υ•(E) := {
(x, y) ∈ X × Y : E y ∈ Bc(X) ∧ x ∈ υ

(
E y)}

for all E ∈ Bc(X × Y ).
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Lemma 3.2. If E ∈ Bc(X × Y ) and (X, Y ) is a K-U pair, then {x: Ex /∈ Bc(Y )} ∈ M(X).

Proof. Let U be a regular open set such that E
U ∈ M(X × Y ). According to the K-U assumption, we have {x: [E
U ]x /∈
M(Y )} ∈ M(X). As U is open we have {x: Ex /∈ Bc(Y )} ⊆ {x: [E
U ]x /∈ M(Y )}. �
Proposition 3.3. For given τ ∈ P (M(Y )) we get for τ• the following properties.

(i) For A ∈ Bc(X) and B ∈ Bc(Y ) we get τ•(A × B) = A × τ (B), in particular τ• does not satisfy (L2);
(ii) τ• satisfies condition (N): τ•(∅) = ∅ and τ•(X × Y ) = X × Y ;

(iii) if τ satisfies (ϑ), then τ•(E) ∩ τ•(F ) = τ•(E ∩ F ) for all E, F ∈ Bc(X × Y ) such that Ex, Fx ∈ Bc(Y ) for all x ∈ X ;
(iv) if τ satisfies condition (F), then τ• satisfies (F) too;
(v) if τ ∈ Λ(M(Y )), then τ•(Ec) = [τ•(E)]c for all sets E ⊆ X × Y such that Ex ∈ Bc(Y ) for all x ∈ X.

If (X, Y ) has the Kuratowski–Ulam property, then the following properties are also satisfied:

(vi) if τ ∈ ϑ(M(Y )), then τ• satisfies (L1);
(vii) if E, F ∈ Bc(X × Y ), then E = F a.e. (M(X × Y )) implies for all y ∈ Y the equality [τ•(E)]y = [τ•(F )]y a.e. (M(X)).

If also (Y , X) has the Kuratowski–Ulam property we get in addition:

(viii) if τ ∈ ϑ(M(Y )), then for each E ∈ Bc(X ×Y ) there exists a set ME ∈ M(Y ) such that [τ•(E)]y ∈ Bc(X) and [τ•(E)]y =M E y ,
for all y /∈ ME .

Proof. The assertions (i)–(iii) can be easily proven.
Ad (iv): If E, F ∈ Bc(X × Y ) and (x, y) ∈ X × Y , then

(x, y) ∈ τ•(E) ∩ τ•(F ) ⇒ Ex, Fx ∈ Bc(Y ) ∧ y ∈ τ (Ex) ∩ τ (Fx)

⇒ (E ∩ F )x ∈ Bc(Y ) ∧ y ∈ τ
([E ∩ F ]x

) = [
τ•(E ∩ F )

]
x,

hence (x, y) ∈ τ•(E ∩ F ).
Ad (v): We have

τ•
(

Ec) = {
(x, y) ∈ X × Y : y ∈ τ

([
Ec]

x

)} = {
(x, y) ∈ X × Y : y /∈ τ (Ex)

}
= {

(x, y) ∈ X × Y : y ∈ τ (Ex)
}c = [

τ•(E)
]c

.

Ad (vi): Choose a υ ∈ ϑ(M(X)). Let E ∈ Bc(X × Y ) be arbitrary. According to Proposition 2.3(vii) we get ξ := υ � τ ∈
ϑ(M(X × Y )) and [ξ(E)]x ⊆ τ ([ξ(E)]x) for every x ∈ X . Due to the K-U property of (X, Y ) there is NE ∈ M(X) such that
[ξ(E)]x =M Ex , for every x /∈ NE . Define ξ1 by [ξ1(E)]x = τ ([ξ(E)]x). By [2, Proposition 4.2(a)], ξ1 ∈ ϑ(M(X × Y )) and for
x ∈ Nc

E follows [ξ1(E)]x = τ ([ξ(E)]x) = τ (Ex) = [τ•(E)]x . Thus, τ•(E)
ξ1(E) ⊆ NE × Y and so τ•(E) ∈ Bc X × Y . It follows

that τ•(E)
M= E .

Ad (vii): Since (X, Y ) satisfies the Kuratowski–Ulam property there exists a set NE ∈ M(X) such that Ex = Fx a.e. (M(Y ))

for all x /∈ NE , what yields [τ•(E)]y \ NE = [τ•(F )]y \ NE .
Condition (viii) is immediate from (vi) and Lemma 3.2 in case of (Y , X) possessing the K-U property. �

Proposition 3.4. If (X, Y ) has the Kuratowski–Ulam property then for τ ∈ ϑ(M(Y )) there exists ϕ ∈ ϑ(M(X × Y )) such that for
every E ∈ Bc(X × Y ) and every x ∈ X we get [ϕ(E)]x ∈ Bc(Y ) and τ ([ϕ(E)]x) = [ϕ(E)]x.

Proof. Define ϕ :Bc(X × Y ) → P (X × Y ) by ϕ(E) := τ•(ϕX×Y (E)) for each E ∈ Bc(X × Y ). It follows from Proposition 3.3(vi)
that ϕ(E) = ϕX×Y (E) = E a.e. (M(X × Y )), for all E ∈ Bc(X × Y ), i.e. ϕ satisfies (L1).

For E, F ∈ Bc(X × Y ) with E = F a.e. (M(X × Y )) we get ϕX×Y (E) = ϕX×Y (F ), hence ϕ(E) = ϕ(F ), i.e. (L2) for ϕ .
By Proposition 3.3(ii) ϕ satisfies condition (N), hence ϕ ∈ P (M(X × Y )). Since τ and ϕX×Y satisfy condition (ϑ) and

moreover ϕX×Y (E) is open, we have [ϕX×Y (E)]x ∈ Bc(X) for all x ∈ X , it follows by Proposition 3.3(iii), that ϕ also satis-
fies (ϑ). �
Definition 3.5. Once the basic topological spaces X and Y are fixed, we say that τ ∈ P (M(Y )) generates X-measurable
sections, if [τ•(E)]y ∈ Bc(X) for all E ∈ Bc(X × Y ) and all y ∈ Y .

Proposition 3.6. Let (X, Y ) be a K-U pair, and let τ ∈ ϑ(M(Y )) be arbitrary. Then τ generates X-measurable sections if and only if
the ϕ ∈ ϑ(M(X × Y )) from Proposition 3.4 can be taken such that [ϕ(E)]y ∈ Bc(X) for every y ∈ Y .
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Proof. Let be given ϕ ∈ ϑ(M(X × Y )) such that τ ([ϕ(E)]x) = [ϕ(E)]x for all E ∈ Bc(X × Y ) and all x ∈ X . Note that for
every E ∈ Bc(X × Y ) there exists a set P E ∈ M(X) such that Ex ∈ Bc(Y ) and Ex = [ϕ(E)]x a.e. (M(Y )) for all x /∈ P E . Now
for all y ∈ Y we obtain[

τ•(E)
]y ∩ P c

E = {
x ∈ P c

E : y ∈ τ (Ex)
} = {

x ∈ P c
E : y ∈ τ

([
ϕ(E)

]
x

)}
= {

x ∈ P c
E : y ∈ [

ϕ(E)
]

x

} = [
ϕ(E)

]y ∩ P c
E ,

hence [τ•(E)]y
[ϕ(E)]y ∈ M(X). So it follows that [ϕ(E)]y ∈ Bc(X) if and only if [τ•(E)]y ∈ Bc(X) for every y ∈ Y . �
Corollary 3.7. If w(Y ) < add(M(X)), then the canonical density ϕY generates X-measurable sections and (ϕY )•(E) ∈ Bc(X × Y )

for every E ∈ Bc(X × Y ). Moreover, if (Y , X) has the Kuratowski–Ulam property, then E y =M [(ϕY )•(E)]y , for M(Y )-almost every
y ∈ Y .

Proof. The result follows immediately from Proposition 3.6 and from [2, Proposition 3.1]. The equality E y =M [(ϕY )•(E)]y

is a direct consequence of the measurability of the set (ϕY )•(E) and of the Kuratowski–Ulam property of (Y , X). �
4. Fubini type products

Definition 4.1. For given υ ∈ P (M(X)) and τ ∈ P (M(Y )) we define a mapping υ � τ :Bc(X × Y ) → P (X × Y ) by the
formula

υ � τ (E) := {
(x, y) ∈ X × Y :

[
τ•(E)

]y ∈ Bc(X) and x ∈ υ
([

τ•(E)
]y)}

for all E ∈ Bc(X × Y ).
In a similar way we define a mapping τ �t υ :Bc(X × Y ) → P (X × Y ) by

τ �t υ(E) := {
(x, y) ∈ X × Y :

[
υ•(E)

]
x ∈ Bc(Y ) and y ∈ τ

([
υ•(E)

]
x

)}
for all E ∈ Bc(X × Y ).

Lemma 4.2. For given υ ∈ P (M(X)) and τ ∈ P (M(Y )) we have

(i) υ([τ•(E)]y) = [(υ � τ )(E)]y for every y ∈ Y with [τ•(E)]y ∈ Bc(X);
(ii) [(υ � τ )(E)]y = υ([(υ � τ )(E)]y) for all E ∈ Bc(X × Y ) and all y ∈ Y ;

(iii) υ � τ ∈ υ ⊗ τ .

If (X, Y ) satisfies the Kuratowski–Ulam property, then

(iv) υ � τ satisfies (L2);
(v) if τ ∈ ϑ(M(Y )) then υ•(τ•(E)) = (υ � τ )(E) for every E ∈ Bc(X × Y ).

Proof. Condition (i) is easily seen. Taking into account the fact that [τ•(E)]y /∈ Bc(X) yields [(υ � τ )(E)]y = ∅, we obtain
condition (ii).

By Proposition 3.3(i) we have υ•(τ•(A × B)) = υ•(A × τ (B)) = υ(A) × τ (B), and this implies the product property (iii).
Condition (iv) is a consequence of Proposition 3.3(vii).
To prove condition (v), let us fix an arbitrary E ∈ Bc(X × Y ). Since (X, Y ) has the K-U property and τ ∈ ϑ(M(Y )), it

follows by Proposition 3.3(vi), that τ•(E) ∈ Bc(X × Y ), hence we may define υ•(τ•(E)). The equality υ•(τ•(E)) = (υ � τ )(E)

follows easily from the definition of υ � τ . �
Remark 4.3. Let (X, Y ) be a K-U pair. Since υ � τ satisfies (L2) by Lemma 4.2, and since for every E ∈ Bc(X × Y ) there
exists a (regular) open subset G of X × Y with E = G a.e. (M(X × Y )), we may restrict ourselves to work with (υ � τ )(G)

for G open subset of X × Y only, what we will do below without any further comment. Note that for every (regular) open
subset G of X × Y we have Gx open in Y , hence Gx ∈ Bc(Y ), for all x ∈ X and this simplifies the definition of (υ � τ )(G).

Proposition 4.4. Assume that (X, Y ) and (Y , X) have the Kuratowski–Ulam property. Then for υ ∈ ϑ(M(X)) and τ ∈ ϑ(M(Y )) we
get the following properties.

(i) υ � τ ∈ F (M(X × Y )) ∩ (υ ⊗ τ );
(ii) τ generates X-measurable sections if and only if υ � τ ∈ ϑ(M(X × Y )) and in this case υ � τ � υ � τ ;

(iii) if υ ∈ Λ(M(X)), then for every E ∈ Bc(X × Y ) there is a set K E ∈ M(Y ) such that for all y /∈ K E[
(υ � τ )

(
Ec)]y = ([

(υ � τ )(E)
]c)y

and
[
(υ � τ )(E)

]y ∪ [
(υ � τ )

(
Ec)]y = X .
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If moreover also τ ∈ Λ(M(Y )), then K E can be chosen in such a way that[
(υ � τ )(E)

]y ∪ [
(υ � τ )

(
Ec)]y = ∅ for all y ∈ K E .

Proof. The product property in (i) follows from Lemma 4.2(iii). (L2) for υ � τ follows from Lemma 4.2(iv) and (N) for υ � τ
is clear by Proposition 3.3(ii).

Applying K-U of (X, Y ) and (Y , X) we have by Proposition 3.3(vi) τ•(E) ∈ Bc(X × Y ) and υ•(τ•(E)) = τ•(E) a.e.
(M(X × Y )). Again τ•(E) = E a.e. (M(X × Y )) by Proposition 3.3(vi). Thus, (υ � τ )(E) = E a.e. (M(X × Y )), since
υ•(τ•(E)) = (υ � τ )(E). Consequently, υ � τ ∈ P (M(X × Y )).

To prove the condition (F) let us fix arbitrary sets E, F ∈ Bc(X × Y ). According to Remark 4.3 we may assume that
E , F are open subsets of X × Y . It then follows that the sections Ex and Fx have the Baire property for all x ∈ X , hence
τ•(E ∩ F ) = τ•(E) ∩ τ•(F ) by Proposition 3.3(iii). If [(υ � τ )(E)]y and [(υ � τ )(F )]y are non-empty then the sets [τ•(E)]y

and [τ•(F )]y have the Baire property. Whenever these sections do have the property of Baire, so does their intersection
[τ•(E)]y ∩ [τ•(F )]y = [τ•(E ∩ F )]y and we get

[
(υ � τ )(E)

]y ∩ [
(υ � τ )(F )

]y = υ
([

τ•(E)
]y) ∩ υ

([
τ•(F )

]y)
= υ

([
τ•(E)

]y ∩ [
τ•(F )

]y)
= υ

([
τ•(E ∩ F )

]y)
= [

(υ � τ )(E ∩ F )
]y

.

The above proves also the forward implication in (ii) and for (i) there remains only to note that if one of the sets
[(υ � τ )(E)]y , [(υ � τ )(F )]y is empty then we trivially have the inclusion[

(υ � τ )(E)
]y ∩ [

(υ � τ )(F )
]y ⊆ [

(υ � τ )(E ∩ F )
]y

.

To show the second part of (ii), let E ∈ Bc(X × Y ), A ∈ Bc(X), and B ∈ Bc(Y ) with A × B ⊆M E . It follows that
υ(A) × τ (B) = (υ � τ )(A × B) ⊆ (υ � τ )(E), the equality by Lemma 4.2(iii) and the inclusion since υ � τ is monotone.
By definition of υ � τ this implies υ � τ � υ � τ .

For the converse implication in (ii), we prove the contrapositive. If τ does not generate X-measurable sections, then
we can find X1 ∈ Bc(X) with Xc

1 /∈ Mc(X), y ∈ Y and X1 × Y ⊃ E ∈ Bc(X × Y ) such that [τ•(E)]y /∈ Bc(X). Setting E1 =
E ∪ (Xc

1 × Y ) and E2 = Xc
1 × Y we have (υ � τ )(E1 ∩ E2)

y = υ(Xc
1) �= ∅ while

(υ � τ )(E1)
y ∩ (υ � τ )(E2)

y = ∅.

Thus, υ � τ is not a density. This completes the proof of (ii).
Ad (iii): Let E ∈ Bc(X × Y ) be arbitrary. Then, according to (i) we have (υ � τ )(E)∪ (υ � τ )(Ec) =M X × Y . Since (Y , X)

has the K-U property, there is K E ∈ M(Y ) such that[
(υ � τ )(E)

]y ∪ [
(υ � τ )

(
Ec)]y =M X for every y /∈ K E .

But υ ∈ Λ(M(X)) and so taking into account Lemma 4.2(ii) we obtain[
(υ � τ )(E)

]y ∪ [
(υ � τ )

(
Ec)]y = X for every y /∈ K E ,

hence [
(υ � τ )

(
Ec)]y = ([

(υ � τ )(E)
]c)y

for all y /∈ K E .

Assume now also that τ ∈ Λ(M(Y )) and that E is regular open, we get then from Proposition 3.3(v) that [τ•(E)]y ∪
[τ•(Ec)]y = X , for every y ∈ Y . Consequently, [τ•(E)]y ∈ Bc(X) if and only if [τ•(Ec)]y ∈ Bc(X). It follows from Lemma 3.2
applied in case of (Y , X) possessing the K-U property that K E := {y ∈ Y : [τ•(E)]y /∈ Bc(Y )} ∈ M(X). Now it is obvious that[

(υ � τ )(E)
]y ∪ [

(υ � τ )
(

Ec)]y = X for every y /∈ K E ,

hence [
(υ � τ )

(
Ec)]y = ([

(υ � τ )(E)
]c)y

for every y /∈ K E .

Clearly[
(υ � τ )(E)

]y ∪ [
(υ � τ )

(
Ec)]y = ∅ for every y ∈ K E . �

Proposition 4.5. Suppose that X, Y are topological groups such that (X, Y ) is a K-U pair. If υ ∈ ϑ(M(X)) is left invariant for X and
τ ∈ ϑ(M(Y )) is left invariant for Y , then υ � τ is left invariant for X × Y .
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Proof. Let (x0, y0) ∈ X × Y and E regular open (this will suffice as explained in Remark 4.3) in X × Y . First we have
[(x0, y0)E]x = {y0η: η ∈ Ex−1

0 x} for all x ∈ X . Hence

τ•
(
(x0, y0)E

) = {
(x, y) ∈ X × Y : y ∈ τ

([
(x0, y0)E

]
x

)}
= {

(x, y) ∈ X × Y : y−1
0 y ∈ τ (Ex−1

0 x)
}

= {
(x0, y0)(ξ,η): η ∈ τ (Eξ )

} = (x0, y0)τ•(E),

i.e. we have shown τ•((x0, y0)E) = (x0, y0)τ•(E).
For (x, y) ∈ X × Y put ξ := x−1

0 x and η := y−1
0 y and get first [τ•((x0, y0)E)]y = x0[τ•(E)]η , therefore both or neither of

[τ•((x0, y0)E)]y , [τ•(E)]η have the Baire property and when they both have the property we have υ([τ•((x0, y0)E)]y) =
x0υ([τ•(E)]η) and hence x ∈ υ([τ•((x0, y0)E)]y) ⇔ ξ ∈ υ([τ•(E)]η). This implies

(υ � τ )
(
(x0, y0)E

) = {
(x0, y0)(ξ,η): (ξ,η) ∈ (υ � τ )(E)

} = (x0, y0)
(
(υ � τ )(E)

)
. �

Theorem 4.6. If w(Y ) < add(M(X)) and (Y , X) is a K-U pair, then υ�ϕY ∈ ϑ(M(X ×Y )) for arbitrary υ ∈ ϑ(M(X)). In particular
ϕX � ϕY ∈ ϑ(M(X × Y )) and ϕX×Y = ϕX � ϕY � ϕX � ϕY .

Proof. It is immediate from Corollary 3.7 in connection with Proposition 4.4(ii) that υ �ϕY ∈ ϑ(M(X × Y )) and ϕX �ϕY �
ϕX � ϕY . The equality ϕX×Y = ϕX � ϕY follows from [2, Proposition 3.1]. �
Definition 4.7. For υ ∈ P (X)Bc(X) and τ ∈ P (Y )Bc(Y ) we define the �-product υ � τ :Bc(X × Y ) → P (X × Y ) by υ � τ :=
(υ � τ )m .

Lemma 4.8. For ϕ ∈ F (M(X × Y )) and υ ∈ O (M(X)) the following conditions hold true:

(i) From υ([ϕ(E)]y) ⊇ [ϕ(E)]y for all E ∈ Bc(X × Y ) and all y ∈ Y follows υ([ϕm(E)]y) ⊇ [ϕm(E)]y for all E ∈ Bc(X × Y ) and
all y ∈ Y .

If (Y , X) is a K-U pair, then

(ii) if for each E ∈ Bc(X × Y ) exists a set NE ∈ M(Y ) such that υ([ϕ(E)]y) ⊆ [ϕ(E)]y for every y /∈ NE then there exists a set
N̂E ∈ M(Y ) such that NE ⊆ N̂E and υ([ϕm(E)]y) ⊆ [ϕm(E)]y for every y /∈ N̂E

and

(iii) if for each E ∈ Bc(X × Y ) exists a set ME ∈ M(Y ) such that υ([ϕ(E)]y) = [ϕ(E)]y for every y /∈ ME then there exists a set
M̂E ∈ M(Y ) such that ME ⊆ M̂E and υ([ϕm(E)]y) = [ϕm(E)]y for every y /∈ M̂E .

Proof. Ad (i): For all E, F ∈ Bc(X × Y ) with F ⊆ E we get [ϕm(E)]y ⊇ [ϕ(F )]y , hence υ([ϕm(E)]y) ⊇ υ([ϕ(F )]y) ⊇ [ϕ(F )]y

for every y ∈ Y . This implies

υ
([

ϕm(E)
]y) ⊇ [

ϕm(E)
]y

for all y ∈ Y .

Ad (ii): For E ∈ Bc(X × Y ) we have ϕm(E) = ϕ(E) a.e. (M(X × Y )). Since (Y , X) is a K-U pair there exists a set
ÑE ∈ M(Y ) with [ϕm(E)]y = [ϕ(E)]y a.e. (M(Y )) for every y /∈ ÑE . Put N̂E := NE ∪ ÑE . This implies υ([ϕm(E)]y) =
υ([ϕ(E)]y) ⊆ [ϕ(E)]y ⊆ [ϕm(E)]y for every y /∈ N̂E .

Ad (iii): For all E, F ∈ Bc(X × Y ) with F ⊆ E and all y /∈ ME we have υ([ϕm(F )]y) ⊇ υ([ϕ(F )]y) = [ϕ(F )]y and this
implies υ([ϕm(E)]y) ⊇ [ϕm(E)]y . Put M̂E := ME ∪ N̂E . It then follows by (ii) the inverse equation for all y /∈ M̂E . �
Theorem 4.9. Let (X, Y ) and (Y , X) be K-U pairs and let υ ∈ ϑ(M(X)) and τ ∈ ϑ(M(Y )) be arbitrary densities. Then

(i) υ � τ � υ � τ ∈ ϑ(M(X × Y )) ∩ υ ⊗ τ and ϕ � υ � τ for all ϕ ∈ ϑ(M(X × Y )) with ϕ � υ � τ ;
(ii) υ � τ � υ � τ ;

(iii) [(υ � τ )(E)]y ⊆ υ([(υ � τ )(E)]y) for all y ∈ Y and all E ∈ Bc(X × Y );
(iv) if υ and τ are strong, then υ � τ is strong;
(v) for each E ∈ Bc(X × Y ) there exists ME ∈ M(Y ) such that

υ
([

(υ � τ )(E)
]y) = [

(υ � τ )(E)
]y

for every y /∈ ME ;

and

(vi) if υ ∈ Λ(M(X)), then for every E ∈ Bc(X × Y ) there is a set K E ∈ M(Y ) such that [(υ � τ )(Ec)]y = ([(υ � τ )(E)]c)y for all
y /∈ K E .
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Proof. Ad (i): All properties listed in this item with the exception of the product property υ � τ ∈ υ ⊗ τ are obvious from
the Propositions 4.4 and 2.1.

To prove the product property, let us fix arbitrary A ∈ Σ and B ∈ T . If F ⊆ A × B , then τ•(F ) ⊆ A × τ (B) = τ•(A × B),
by Proposition 3.3(i). It follows that if y ∈ τ (B) is arbitrary and [τ•(F )]y ∈ Bc(X), then [(υ � τ )(F )]y = υ([τ•(F )]y) ⊆
υ([A×τ (B)]y) = υ(A). Otherwise [(υ�τ )(F )]y = ∅. Hence, υ�τ (F ) ⊆ υ(A)×τ (B) = υ�τ (A× B). And so (υ�τ )(A× B) ⊆
(υ � τ )(A × B).

Conversely, by Lemma 4.2(iii) and Proposition 2.1(i) we get υ(A) × τ (B) = (υ � τ )(A × B) ⊆ (υ � τ )(A × B). Hence
υ � τ (A × B) = υ(A) × τ (B).

Ad (ii): Let us fix an arbitrary E ∈ Bc(X × Y ). Then applying υ � τ ∈ υ ⊗ τ from (i) we get

(υ � τ )(E) =
⋃{

υ(A) × τ (B): A × B ∈ Bc(X × Y ), A × B ⊆M E
}

=
⋃{

(υ � τ )(A × B): A × B ∈ Bc(X × Y ), A × B ⊆M E
}

⊆ (υ � τ )(E).

Condition (iii) follows from Lemmas 4.2(ii) and 4.8(i), whereas (v) follows from Lemmas 4.2(ii) and 4.8(iii).
Condition (iv) follows in the same way as condition (vi) of Proposition 4.1 from [2].
(vi) is a direct consequence of Proposition 4.4(iii) since (υ � τ ) � (υ � τ ). �

Proposition 4.10. Suppose that X, Y are topological groups such that (X, Y ) is a K-U pair. If υ ∈ ϑ(M(X)) is left invariant for X and
τ ∈ ϑ(M(Y )) is left invariant for Y , then υ � τ is left invariant for X × Y .

Proof. For E ∈ Bc(X × Y ) and (x0, y0) ∈ X × Y we have (υ � τ )((x0, y0)E) = ⋃{(υ � τ )(F ): F ⊆ (x0, y0)E} =⋃{(υ � τ )((x0, y0)G): G ⊆ E} = ⋃{(x0, y0)(υ � τ )(G): G ⊆ E} = (x0, y0)
⋃{(υ � τ )(G): G ⊆ E} = (x0, y0)(υ � τ )(E), where

we used Proposition 4.5. �
Theorem 4.11. If X , Y are Polish spaces, then

(i) ϕX×Y = ϕX � ϕY � ϕX � ϕY = ϕX � ϕY ∈ ϑ(M(X × Y )) ∩ ϕX ⊗ ϕY ;
(ii) [(ϕX � ϕY )(E)]y = ϕX ([(ϕX � ϕY )(E)]y) for all y ∈ Y and E ∈ Bc(X × Y );

(iii) [(ϕX � ϕY )(E)]x ∈ Bc(Y ) for all x ∈ X and all E ∈ Bc(X × Y ).

Proof. (i) follows from Theorem 4.6 and Lemma 4.2(iii). Condition (ii) follows from (i) and from Lemma 4.2(ii).
Ad (iii): Let us fix an arbitrary E ∈ Bc(X × Y ). We then have (ϕX � ϕY )(E)
ϕX×Y (E) ∈ M(X × Y ). Since (Y , X) is a K-U

pair, there exists a set M1 ∈ M(Y ) such that[
(ϕX � ϕY )(E)
ϕX×Y (E)

]y ∈ M(X) for all y /∈ M1.

But according to [2, Proposition 3.1], there exists a set M2 ∈ M(Y ) such that[
ϕX×Y (E)

]y = ϕX
([

ϕX×Y (E)
]y)

for all y /∈ M2.

For M := M1 ∪ M2 we get from the above

ϕX
([

(ϕX � ϕY )(E)
]y) = [

ϕX×Y (E)
]y

for all y /∈ M. (1)

Then for arbitrary x ∈ X we get[
(ϕX � ϕY )(E)

]
x ∩ Mc = {

y ∈ Y : x ∈ [
(ϕX � ϕY )(E)

]y} ∩ Mc

(ii)= {
y ∈ Y : x ∈ ϕX

([
(ϕX � ϕY )(E)

]y)} ∩ Mc

(1)= {
y ∈ Y : x ∈ [

ϕX×Y (E)
]y} ∩ Mc

= [
ϕX×Y (E)

]
x ∩ Mc .

Since [ϕX×Y (E)]x ∩ Mc ∈ Bc(Y ), we get [(ϕX �ϕY )(E)]x ∩ Mc ∈ Bc(Y ), hence [(ϕX �ϕY )(E)]x ∈ Bc(Y ) for arbitrary x ∈ X
by completion of Bc(Y ). Consequently, condition (iii) holds true. �

Property (ii) of the above theorem improves the corresponding property for the �-product ϕX � ϕY .

Theorem 4.12. Assume the K-U property of (X, Y ) and (Y , X). If ρ ∈ Λ(M(X)) and σ ∈ Λ(M(Y )) then, there exists π2 ∈
Λ(M(X × Y )) such that:

(i) π2 ∈ ρ ⊗ σ and π2 � ρ � σ ;
(ii) [π2(E)]y = ρ([π2(E)]y) for all y ∈ Y and E ∈ Bc(X × Y );



M.R. Burke et al. / Topology and its Applications 156 (2009) 1253–1270 1263
(iii) if ρ and σ are strong, then π2 is strong;
(iv) for each E ∈ Bc(X × Y ) there exists ME ∈ M(Y ) such that[

π2(E)
]y = [

ρ � σ(E)
]y

for every y /∈ ME .

Proof. Let

Φ := {
ϕ ∈ ϑ

(
M(X × Y )

)
: ∀y ∈ Y ∀E ∈ Bc(X × Y )

[
ϕ(E)

]y ⊆ ρ
([

ϕ(E)
]y)

and ρ � σ(E) ⊆ ϕ(E)
}
.

Notice first that Φ �= ∅ since by Theorem 4.9 we have ρ � σ ∈ Φ .
We consider Φ with inclusion as the partial order: ϕ � ϕ̃ if ϕ(E) ⊆ ϕ̃(E) for each E ∈ Bc(X × Y ). One can easily see

that there exists a maximal element in Φ , which we denote by π2. We shall prove first that if E ∈ Bc(X × Y ) and y ∈ Y
then [π2(E)]y ∪ [π2(Ec)]y =M X . So suppose that there is H ∈ Bc(X × Y ) and y0 ∈ Y such that W := ρ[([π2(H)]y0 ∪
[π2(Hc)]y0 )c] �= ∅. Then set for each E ∈ Bc(X × Y )[

π̂ (E)
]y :=

{ [π2(E)]y if y �= y0,

[π2(E)]y0 ∪ (W ∩ [π2(H ∪ E)]y0) if y = y0.

It is clear, that π2(E) ⊆ π̂ (E) for each E ∈ Bc(X × Y ) and π̂ ∈ ϑ(M(X × Y )). It follows directly from the definition that
[π̂ (Hc)]y0 = [π2(Hc)]y0 ∪ W �= [π2(Hc)]y0 and so π2 and π̂ are different densities. In order to get a contradiction with our
hypothesis it is enough to show that [π̂ (E)]y0 ⊆ ρ([π̂ (E)]y0 ), but this is immediate. If E ∈ Bc(X × Y ), then

ρ
([

π̂ (E)
]y0

) = ρ
([

π2(E)
]y0

) ∪ ρ
(
W ∩ [

π2(H ∪ E)
]y0

)
⊇ [

π2(E)
]y0 ∪ [

ρ(W ) ∩ ρ
([

π2(H ∪ E)
]y0

)]
⊇ [

π2(E)
]y0 ∪ (

W ∩ [
π2(H ∪ E)

]y0
)

= [
π̂ (E)

]y0
.

To finish the proof of the first part let us notice that π̃ defined by [π̃ (E)]y := ρ([π2(E)]y) also is an element of Φ and so
the condition (ii) is satisfied.

According to Theorem 4.9(vi) for each E ∈ Bc(X × Y ) there exists ME ∈ M(Y ) such that[
(ρ � σ)

(
Ec)]y = ([

(ρ � σ)(E)
]c)y

for every y /∈ ME . (2)

Now, if y /∈ ME , then by (i) we have [π2(E)]y ⊇ [(ρ � σ)(E)]y . Eq. (2) yields now the required equality. �
5. Non-existence results

There is now a natural question: Can ρ � σ be a lifting at least for some liftings ρ and σ ? We are going to show that
in general the answer to this question is to the negative.

In the sequel we denote by P (N) the space of all subsets of N endowed with the ordinary product metric topology.
It follows in the same way as in Theorem 6.8 and Corollary 6.9 in [2] that the following two results hold true. We note

that the proof of Theorem 6.8 in [2] was not presented in an entirely clear way. It is given as an immediate consequence
of Proposition 6.7 of [2] but the obvious proof requires the version of Proposition 6.7 where y is the point ȳ given by
Theorem 6.8(j). The reason we have this is that the proof of Proposition 6.7 works as long as U = {A ∈ Bc(Y ): y ∈ θ(A)}
is not countably complete. By the proof of Proposition 6.4, this is true in the context of Theorem 6.8 for any choice of y
because of the small cellularity.

Theorem 5.1. Let X be a Baire separable metric space without isolated points. If ρ ∈ Λ(M(X)) and ϕ ∈ ϑ(M(X × P (N))) are such
that for each E ∈ Bc(X × P (N)) there exists a set ME ∈ M(P (N)) such that[

ϕ(E)
]y = ρ

([
ϕ(E)

]y)
for each y /∈ ME ,

then for each x ∈ X there exists a set E ∈ Bc(X × P (N)) such that[
ϕ(E)

]
x /∈ Bc

(
P (N)

)
.

Corollary 5.2. Let X be a Baire separable metric space without isolated points. If ρ , σ and π2 are liftings satisfying Theorem 4.12 (with
Y = P (N)), then for each x ∈ X there exists E ∈ Bc(X × P (N)) such that [π2(E)]x /∈ Bc(P (N)).

There exists also a set E ∈ Bc(X × P (N)) such that{
x ∈ X:

[
π2(E)

]
x �= σ

([
π2(E)

]
x

)}
/∈ M(X).

Even if σ ∈ ϑ(M(Y ))\Λ(M(Y )) but ρ ∈ Λ(M(X)), then there exists a set E ∈ Bc(X × P (N)) such that {x ∈ X: [ρ �σ(E)]x �=
σ([ρ � σ(E)]x)} /∈ M(X).

It follows from the above corollary, that Theorem 4.12 cannot be in general improved.
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Proposition 5.3. Let X be a separable metric space without isolated points. Then no σ ∈ Λ(M(X)) generates P (N)-measurable
sections.

Proof. Assume, if possible, that there exists σ ∈ Λ(M(X)) generating P (N)-measurable sections. It then follows by Propo-
sition 3.4 that there exists a map

ψ ∈ ϑ
(

M
(

P (N) × X
))

such that for each E ∈ Bc(P (N) × X) and all y ∈ P (N) we get σ([ψ(E)]y) = [ψ(E)]y . But then applying [2, Theorem 6.8],
we infer that for each x ∈ X there exists a set E ∈ Bc(P (N) × X) such that [ψ(E)]x /∈ Bc(P (N)), a contradiction to Proposi-
tion 3.6. �
Proposition 5.4. Let (X, Y ) and (Y , X) be K-U pairs, and let υ ∈ Λ(M(X)) and τ ∈ Λ(M(Y )) be arbitrary. Then the following
conditions are equivalent.

(i) τ generates X-measurable sections;
(ii) υ � τ ∈ Λ(M(X × Y )).

Proof. If τ generates X-measurable sections then for all E ∈ Bc(X × Y ) and all y ∈ Y we have [τ•(E)]y ∈ Bc(X). It follows
from Lemma 4.2(ii), that υ � τ ∈ ϑ(M(X × Y )). According to Proposition 2.1(iii) it will suffice to show (υ � τ )(Ec) =
[(υ � τ )(E)]c for all open subsets E of X × Y to get υ � τ ∈ Λ(M(X × Y )). We have

(x, y) ∈ (υ � τ )
(

Ec) ⇔ x ∈ υ
([

τ•
(

Ec)]y) = υ
([

τ•(E)c]y) = υ
([[

τ•(E)
]y])c

⇔ x /∈ υ
([

τ•(E)
]y) ⇔ (x, y) ∈ [

(υ � τ )(E)
]c

for all (x, y) ∈ X × Y . Hence (i) implies (ii).
For the converse implication note that (υ � τ )(Ec) = [(υ � τ )(E)]c for all E ∈ Bc(X × Y ) yields for each y either

[(υ � τ )(E)]y �= ∅ or [(υ � τ )(Ec)]y �= ∅ and so [τ•(E)]y ∈ Bc(X) for every y, i.e. τ generates X-measurable sections. �
The next result says that in many situations the Fubini type product as well as the box product of liftings is never

a lifting.

Theorem 5.5. Let X be a Baire separable metric space without isolated points. If τ ∈ Λ(M(X)) and υ ∈ Λ(M(P (N))). Then υ � τ ∈
F (M(P (N) × X)) but υ � τ /∈ Λ(M(P (N) × X)).

Proof. The existence of υ � τ ∈ F (M(P (N) × X)) follows from Proposition 4.4, and the rest from Proposition 5.3 in con-
nection with Proposition 5.4. �
6. Densities in finite products

If K , L ⊆ N then write K < L if sup{k: k ∈ K } < inf{l: l ∈ L}.
Throughout what follows, for an arbitrary n ∈ N, 〈Xi〉i∈[n] is a finite sequence of topological spaces such that the product

space X[n] is Baire and for each k ∈ [n] with 1 < k � n the pair (X[k−1], Xk) has the Kuratowski–Ulam property.
〈υi〉i∈[n] is a finite sequence such that υi ∈ ϑ(M(Xi)) for i ∈ [n].

Proposition 6.1. If (X1, X2), (X2, X3), (X1, (X2 × X3)), ((X1 × X2), X3) are K-U pairs, then υ1 � (υ2 � υ3) = (υ1 � υ2) � υ3 .

Proof. Let us fix E ∈ Bc(X1 × X2 × X3). Then

(x1, x2, x3) ∈ (
(υ1 � υ2) � υ3

)
(E) ⇔ (x1, x2) ∈ (υ1 � υ2)

([
(υ3)•(E)

]x3
)

⇔ x1 ∈ υ1
([

(υ2)•
([

(υ3)•(E)
]x3

)]x2
)

⇔ x1 ∈ υ1
{

x̄1 ∈ X1: x2 ∈ υ2
([[

(υ3)•(E)
]x3

]
x̄1

)}
⇔ x1 ∈ υ1

{
x̄1 ∈ X1: y ∈ υ

{
x̄2 ∈ X2: x3 ∈ υ3

([E](x̄1,x̄2)

)}}

and
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(x1, x2, x3) ∈ (
υ1 � (υ2 � υ3)

)
(E) ⇔ x1 ∈ υ1

([
(υ2 � υ3)•(E)

](x2,x3))
⇔ x1 ∈ υ1

{
x̄1 ∈ X1: (x2, x3) ∈ (υ2 � υ3)

([E]x̄1

)}
⇔ x1 ∈ υ1

{
x̄1 ∈ X1: x2 ∈ υ2

([
(υ3)•

([E]x̄1

)]x3
)}

⇔ x1 ∈ υ1
{

x̄1 ∈ X1: x2 ∈ υ2
({

x̄2 ∈ X2: x3 ∈ υ3
([E](x̄1,x̄2)

)})}
,

where in the first argument, (υ3)• is defined on subsets of (X1 × X2) × X3 while in the second argument, (υ3)• is defined
on subsets of X2 × X3. �
Definition 6.2. If for each k � n also the pair (Xk, X[k−1]) is K-U, we define υ1 � · · · � υn recursively by υ1 � · · · � υn+1 :=
(υ1 � · · · � υn) � υn+1 for all n ∈ N and in case n = 2 by Definition 4.1.

It follows by Proposition 4.4(i) and by induction on n, that υ1 � · · · � υn is a uniquely defined subdensity on Bc(X[n]).
We call �i∈[n]υi the �-product subdensity of the densities υi .

Corollary 6.3. The product υ1 � · · · � υn will remain unchanged if we put brackets in a different manner in this product, where
accordingly assumptions over K-U are assumed.

Theorem 6.4. Assume that n ∈ N is quite arbitrary and that for all non-empty disjoint sets K , L ⊂ [n] both pairs (XK , XL) and (XL, XK )

have the Kuratowski–Ulam property. Then we have

(i) � j∈[n]υ j respects coordinates;
(ii) for each J = [m], 1 � m < n, E ∈ Bc(X[n]) and x J c ∈ X J c we have[� j∈[n]υ j(E)

]
x Jc

= � j∈ J υ j
([� j∈[n]υ j(E)

]
x Jc

)
.

Proof. Ad (i): The proof of (i) follows by induction on n ∈ N \ {1}.
Define ηn := υ1 � · · · � υn recursively by ηn+1 := ηn � υn+1 for n ∈ N.
The case n = 2 follows by Lemma 4.2(iii). For the inductive step from n to n + 1, let J := {i1, . . . , ik} ⊆ [n + 1] and

E = E J × X J c , E J ∈ Bc(X J ). We distinguish two cases.
First case n+1 ∈ J c implies E = E J × X J c\{n+1} × Xn+1, hence ηn+1(E) = ηn(E J × X J c\{n+1})× Xn+1 since ηn+1 ∈ ηn ⊗υn+1,

implying ηn+1(E) = E∗
J × X J c\{n+1} × Xn+1 by the inductive hypothesis.

Second case n + 1 ∈ J implies J c ⊆ [n]. Writing X := X[n] we have

ηn+1(E) = {
(x, xn+1) ∈ X × Xn+1: x ∈ ηn

([
(υn+1)•(E J × X J c )

]xn+1
)}

= {
(x, xn+1) ∈ X × Xn+1: x ∈ ηn

({
x ∈ X: xn+1 ∈ υn+1

([E J × X J c ]x
)})}

= {
(x, xn+1) ∈ X × Xn+1: x ∈ ηn

({̃
x ∈ X[n]\ J c : xn+1 ∈ υn+1

([E J ]̃x
)} × X J c

)}
= {

(x, xn+1) ∈ X × Xn+1: x ∈ X J c × η J\{n+1}
({̃

x ∈ X[n]\ J c : xn+1 ∈ υn+1
([E J ]̃x

)})}
= X J c × {

(̂x, xn+1) ∈ X J\{n+1} × Xn+1: x̂ ∈ η J\{n+1}
([

υn+1
([E J ] J\{n+1})]xn+1

)}
= X J c × E∗

J ,

where E∗
J ∈ Bc(X J ), because of K-U property of (X J\n+1, Xn+1) and Proposition 4.4(i). Hence ηn+1 respects coordinates.

Condition (ii) follows from Corollary 6.3 and Proposition 4.4(i), if we notice that � j∈[n]υ j(E) = (� j∈ J υ j) �
(� j∈ J c υ j)(E). �
Definition 6.5. Let 〈Xi〉i∈I be a non-empty family of topological spaces such that the product space XI is Baire. For an arbi-
trary non-empty subset J of I and an arbitrary family 〈υi〉i∈ J of densities υi ∈ ϑ(M(Xi)) define the map �i∈ J υi: Bc(X J ) →
Bc(X J ) by means of

�i∈ J υi(E) :=
⋃{∏

i∈K

υi(Ai) × X J\K :
∏
i∈K

Ai × X J\K ⊆ E a.e.
(

M(X J )
)
, K ∈ Fin( J )

}
,

where Fin( J ) denotes the collection of all non-empty finite subsets of J ⊆ I . It follows from [2, Theorem 7.2], that �i∈ J υi is
a uniquely defined density on Bc(X J ). We call �i∈ J υi the �-product density of the densities υi .

Definition 6.6. If for each k � n also the pair (Xk, X[k−1]) is K-U, we define υ1 � · · · � υn recursively by υ1 � · · · � υn+1 :=
(υ1 � · · · � υn) � υn+1 for all n ∈ N and in case n = 2 by Definition 4.7.

It follows by Theorem 4.9 and by induction on n, that �i∈[n]υi is a uniquely defined density on Bc(X[n]). We call �i∈[n]υi
the �-product density of the densities υi .
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Theorem 6.7. Assume n ∈ N is arbitrary and that for all non-empty disjoint subsets K , L of [n] both pairs (XK , XL) and (XL, XK ) have
the Kuratowski–Ulam property. Then

(i) �i∈[n]υ j � � j∈[n]υ j ;
(ii) � j∈[n]υ j � � j∈[n]υ j ;

(iii) for each J = [m], 1 � m < n, E ∈ Bc(X[n]) and x J c ∈ X J c we have[
� j∈[n]υ j(E)

]
x Jc

⊆ � j∈ J υ j
([

� j∈[n]υ j(E)
]

x Jc

);
(iv) for each J = [m], 1 � m < n and E ∈ Bc(X[n]) there exists a set ME ∈ M(X J c ) such that for all x J c /∈ ME we have[

� j∈[n]υ j(E)
]

x Jc
= � j∈ J υ j

([
� j∈[n]υ j(E)

]
x Jc

);
(v) if υ j ( j ∈ [n]) are strong, then � j∈[n]υ j is strong;

(vi) � j∈[n]υ j ∈ ⊗ j∈[n]υ j ;
(vi) for each non-empty proper subset M of [n] and for each E = E M × XMc with E M ∈ Bc(XM) we have

�i∈[n]υi(EM × XMc ) ⊇ � j∈Mυ j(EM) × XMc .

If υ j ∈ Λ(M(X j)) for all j ∈ [n], then there exists π ∈ Λ(M(X[n])) ∩ (⊗ j∈[n]υ j) with π � � j∈[n]υ j .

Proof. The existence of the density � j∈K υ j satisfying properties (i)–(vi) follows by Theorem 4.9 and by induction.
To show property (vii), let E = EM × XMc with EM ∈ Bc(XM). We get

�i∈[n]υi(EM × XMc ) =
⋃{�i∈[n]υi(F ): F ⊆ EM × XMc

}
⊇

⋃{�i∈[n]υi(F M × XMc ): F M ⊆M EM
}

=
⋃{� j∈Mυ j(F M) × XMc : F M ⊆M EM

}
=

⋃{� j∈Mυ j(F M): F M ⊆M EM
} × XMc

= � j∈Mυ j(EM) × XMc ,

hence property (vii) holds true. �
Theorem 6.8. Let 〈X j〉 j∈[n] be a finite sequence of Polish spaces. Then

(i) � j∈[n]ϕX j ∈ ϑ(M(X[n]));
(ii) ϕX[n] = � j∈[n]ϕX j � � j∈[n]ϕX j = � j∈[n]ϕX j ;

(iii) � j∈[n]ϕX j respects coordinates;
(iv) for each J = [m], 1 � m < n, E ∈ Bc(X[n]) and x J c ∈ X J c we have[

� j∈[n]υ j(E)
]

x Jc
= � j∈ J υ j

([
� j∈[n]υ j(E)

]
x Jc

);
(v) for each J = [m], 1 � m < n we have[

� j∈[n]υ j(E)
]

x J
∈ Bc(X J c ) for all E ∈ Bc(X[n]) and all x J ∈ X J .

Proof. It follows by Theorems 4.6 and 6.4 that � j∈[n]ϕX j is a density in ϑ(M(X[n])), hence condition (i) holds true.
Ad (ii): The first equality follows from [2, Proposition 3.1], the inequality follows by Theorem 4.6 and by induction, while

the last equality follows by the definition of the �-product and by induction.
Condition (iii) is an immediate consequence of condition (ii) and of Theorem 6.4(i).
Condition (iv) follows from condition (ii) and from Theorem 6.4(ii).
Condition (v) consists of a slight modification of that of condition (iii) from Theorem 4.11. We have only to apply

[2, Corollary 3.5] here, instead of [2, Proposition 3.1] there. �
7. Countably multiplicative densities and liftings

In this section, we address questions raised by the results in Section 6 of [2] and in [16].
We begin with some observations concerning [16]. The results of that paper are worded in the language of the structures

which are called in [4] measurable spaces with negligibles which are triples (X,Σ, I) where Σ is a σ -algebra of subsets of X
and I ⊆ Σ is a σ -ideal. We also include in the definition the non-triviality condition X /∈ I . The notions of density and
lifting are defined for measurable spaces with negligibles by replacing the sets having the property of Baire and the meager
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sets in our definitions by the members of the given σ -algebra and the given σ -ideal respectively. By analogy to category
densities and liftings, we denote by ϑ(I) and Λ(I) the collection of all densities and liftings on (X,Σ, I), respectively.

Given densities δ, τ for measurable spaces with negligibles (X,Σ, I), (Y , T , J ), respectively, we say that a set E ⊆ X × Y
has (δ, τ )-sub-invariant sections if the vertical sections of E are in T , its horizontal sections are in Σ and for each x ∈ X ,
y ∈ Y we have Ex ⊇ τ (Ex) and E y ⊇ δ(E y).

Given Boolean algebras A, B , we say that δ : A → B is continuous at zero3 if
∧

n δ(an) = 0 whenever {an} is a decreasing
sequence in A such that

∧
n an = 0.

In [16, p. 475], the claim is made that if the quotient algebra Σ/I is ccc and non-atomic then a density δ for (X,Σ, I)

cannot be continuous at zero. As we verify in this section, the claim is in fact equivalent to the Souslin Hypothesis4 and
hence is independent of ZFC. This observation leads to some minor adjustments to the results of [16]. We describe the ones
that are relevant to the present paper. The main result of [16] is the following theorem.

Theorem 7.1. ([16, Theorem 5]) Assume that (X,Σ, I), (Y , T , J ) and (X × Y ,Ξ, K) are measurable spaces with negligibles satisfying
the following properties.

• (Rectangles with measurable sides are measurable) Σ × T ⊆ Ξ .
• (Fubini property) For each K ∈ K,

{x ∈ X: Kx /∈ J } ∈ I and
{

y ∈ Y : K y /∈ I
} ∈ J .

Suppose also that we are given densities δ ∈ ϑ(I), τ ∈ ϑ(J ) and ϕ ∈ ϑ(K) and that the sets ϕ(E) have (δ, τ )-sub-invariant sections
for E ∈ Ξ . Then at least one of the densities δ, τ is continuous at zero.

In [16] there was the additional assumption that the quotient algebras Σ/I and T /J are ccc, but this was not used in
the proof.

In the setting of Baire topological spaces of interest to us, we get the following corollary. Recall that we assume through-
out that X × Y is Baire.

Corollary 7.2. Let X and Y be topological spaces such that both (X, Y ) and (Y , X) are K-U pairs. Let

δ ∈ ϑ
(

M(X)
)
, τ ∈ ϑ

(
M(Y )

)
, ϕ ∈ ϑ

(
M(X × Y )

)
.

If the sets ϕ(E) have (δ, τ )-sub-invariant sections for E ∈ Bc(X × Y ), then at least one of the densities δ, τ is continuous at zero.

Concerning the possibility of a density being continuous at zero, we note that the proof of Proposition 6.2 of [2], with
only minor changes, gives the following statement.

Proposition 7.3. Suppose Y is a regular Baire space in which some non-empty open set has a dense meager subset. If θ :Bc(Y ) →
Bc(Y ) satisfies (L1) and (L2) of Section 1, then θ is not continuous at zero.

This proposition applies in particular to non-void Baire metric spaces without isolated points (cf. Remark 6.3 of [2]).

Corollary 7.4. Let X and Y be non-void Tychonoff spaces without isolated points. If (X, Y ) and (Y , X) are K-U pairs and each of X
and Y has a dense meager subset, then there do not exist δ ∈ ϑ(M(X)), τ ∈ ϑ(M(Y )) and ϕ ∈ ϑ(M(X × Y )) such that the sets ϕ(E)

have (δ, τ )-sub-invariant sections.

Proof. Apply Proposition 7.3 and Corollary 7.2. �
We now consider the question of when a measurable space with negligibles (X,Σ, I) such that Σ/I is ccc can have

a density which is continuous at zero. Relevant examples can be constructed using a standard topology on partial orders
which we now recall. Let (P ,�) be a partial order. Equip P with the topology in which the basic open neighborhood of

3 In [16] the term I -continuous is used for the property of a density δ :Σ → Σ for a measurable space with negligibles (X,Σ, I) that
⋂∞

n=1 δ(An) = ∅
whenever {An} is a decreasing sequence in Σ with

⋂∞
n=1 An ∈ I . The fact that δ is a selector for the equivalence classes easily implies the equivalence

of I -continuity and continuity at zero in this context. If δ is moreover a lifting, then it is not hard to see that continuity at zero is equivalent to the
countable multiplicativity requirement that δ(

⋂
n An) = ⋂

n δ(An) whenever {An} is a sequence in Σ and this is again equivalent to the countable additivity
requirement, that is δ(

⋃
n An) = ⋃

n δ(An) whenever {An} is a sequence in Σ . An example of a density which is continuous at zero but not countably
multiplicative can be constructed as follows. Start with a non-atomic measurable space with negligibles (X,Σ, I) which has a countably multiplicative
density δ. (See Example 7.12.) Fix any strictly (modulo I ) decreasing sequence {An} in Σ with

⋂
n An /∈ I . Add a new point p to get X̃ = X ∪ {p} and

define Σ̃ = Σ ∪ {E ∪ {p}: E ∈ Σ}, Ĩ = {E ⊆ X̃: E ∩ X ∈ I}. The density δ̃ for ( X̃, Σ̃, Ĩ) defined by setting δ̃(E) = δ(E ∩ X) ∪ {p} when for some n we have
An ⊆I E ∩ X , and δ̃(E) = δ(E ∩ X) otherwise, is continuous at zero but not countably multiplicative.

4 The Souslin Hypothesis states that every ccc dense linear ordering is separable, or equivalently no Souslin algebras exist.
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p ∈ P is the cone U p = {q ∈ P : q � p}. A set is open in this topology precisely if it is downward closed. If U is a collection
of open sets in P , then

⋂
U is open. It follows that if U is a collection of regular open sets in P , then

⋂
U is regular open.

[Proof: Let V = ⋂
U . For each U ∈ U , we have int cl V ⊆ int cl U = U and hence V ⊆ int cl V ⊆ ⋂

U = V .]
If P equipped with this topology is a Baire space, then the canonical density on the category algebra of P preserves

arbitrary intersections.
Let us say that a density which preserves arbitrary intersections is completely multiplicative.
The following example shows that in Proposition 6.4 of [2], “lifting” cannot be weakened to “density”.

Example 7.5. Let T = 2<ω1 (the set of all transfinite binary sequences of countable length), ordered by reverse inclusion.
Then T , equipped with the partial order topology defined above, is a Baire space whose category algebra is non-atomic and
has a completely multiplicative density.

Proof. T is Baire because if Gn , n ∈ N, are dense open sets and U is a non-empty open set, then we can inductively choose
xn ∈ U ∩ Gn so that xn ⊆ xn+1. Then p = ⋃

n xn satisfies p ∈ U ∩ ⋂
n Gn . The regular open algebra of T is non-atomic since

every node in T has two immediate successors. �
Example 7.6. Suppose there is a Souslin tree T , i.e., a tree of height ω1 in which the chains and antichains are all countable.
Then there is a non-atomic Baire ccc space whose category algebra has a completely multiplicative density.

We do not know whether the example can be made Tychonoff.

Proof. This follows by pruning T slightly and giving it the partial order topology corresponding to the reverse order on T .
All of this is standard. To make this section self-contained, we recall the arguments. The levels of T are antichains and
hence countable. It follows that uncountable subsets of T have elements of arbitrarily large height. The basic property of
Souslin trees that we need is the following.

Fact 7.7. Let X ⊆ T be uncountable. Then there is a countable set S ⊆ T such that for each p ∈ S, U p ∩ X is countable and for each
p ∈ T \ ⋃

p∈S U p , U p ∩ X is uncountable.

Proof. Let A = {p ∈ T : U p ∩ X is countable}. Let S consist of the minimal nodes of A. Then S is an antichain and hence
countable. S is as desired. �

Fact 7.7 has the following consequences.

(a) There is a countable open set A ⊆ T such that every open set of T \ A is uncountable. In particular, since chains of T
are countable, the regular open algebra of T \ A is non-atomic.
Take X = T in Fact 7.7. We have that A = ⋃

p∈S U p is countable and hence for each p ∈ T \ A we have that U p \ A is
uncountable.

(b) If every non-empty open set of a Souslin tree T is uncountable then T is Baire.
The point is that every dense open set G includes all but countably many elements of T (and hence U ∩⋂

n Gn includes
all but countably many points of U for any non-empty open set U and dense open sets Gn). Indeed, let X ⊆ T be
uncountable. We will show that G cannot omit all of X . With S as in Fact 7.7, take any q ∈ T \ ⋃

p∈S U p of height
greater than the height of any element of S . (The difference is uncountable since it includes all but countably many
points of X .) Then for any r � q, we have that r ∈ T \ ⋃

p∈S U p . (If r ∈ U p for some p ∈ S , then we must have either
p � q or q � p. The former is impossible because q /∈ U p . The latter is impossible because q was chosen to have height
greater than then height of p.) Thus, X ∩ Ur is uncountable and in particular non-empty. This shows that X ∩ Uq is
dense in Uq and hence has non-empty intersection with G .

Now given any Souslin tree T , we can replace T by T \ A as in (a) to get a tree whose non-empty open sets are uncountable
and whose regular open algebra is non-atomic. By (b), the resulting tree is Baire. This gives the desired example. �
Proposition 7.8. Let (X,Σ, I) be a measurable space with negligibles. Assume that A = Σ/I is ccc and that A \ {0} has a sequence
of dense open sets (in the sense of the partial order topology defined above) Dn ⊆ A \ {0} such that

⋂
n Dn = ∅. Then no selector

θ : A → Σ is continuous at zero.

Proof. Inductively choose maximal cellular families An ⊆ Dn so that An+1 refines An . There is a set Y with X \ Y ∈ I
such that for each n, the sets θ(e) ∩ Y , for e ∈ An are pairwise disjoint and for each e ∈ An+1, there is an e′ ∈ An such that
θ(e)∩ Y ⊆ θ(e′)∩ Y . Choose any point x ∈ ⋂

n(
⋃{θ(e): e ∈ An})∩ Y . (There is such a point because Y and each of the unions

is co-negligible.) For each n, there is unique en ∈ An such that x ∈ θ(en). Then {en} is decreasing,
⋂

n θ(en) is non-empty but∧
n en = 0 since otherwise

∧
n en belongs to each Dn . �
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Notice that Proposition 7.8 generalizes a standard argument for the non-existence of a countably additive lifting for the
measure algebra of a non-atomic probability space. (In this setting Dn consists of all non-zero elements of A of measure at
most 1/n.)

Recall that a Souslin algebra is a complete Boolean algebra B which is non-atomic, ccc and has the property that the
intersection of any sequence of dense open sets of B \ {0} contains a dense open set of B \ {0}. The existence of a Souslin
algebra is equivalent to the existence of a Souslin tree and is independent of the axioms of ZFC. The next proposition records
two simple well-known properties of Boolean algebras.

Proposition 7.9. Let B be a complete Boolean algebra.

(i) If B is ccc and non-atomic and there is no a ∈ B \ {0} such that B � a is Souslin, then B \ {0} has a sequence of dense open sets
Dn ⊆ B \ {0} such that

⋂
n Dn = ∅.

(ii) If B \ {0} has a countable dense set, then there is no a ∈ B \ {0} such that B � a is Souslin.

Proof. (i) Each of the algebras B � a is ccc and non-atomic. Since they are not Souslin, it follows that below every element a
of B \ {0}, there is a sequence of dense open sets {Dn: n ∈ N} of (B � a) \ {0} and a non-zero b � a below which there are
no elements of

⋂
n Dn . We thus get a maximal cellular family F of elements b ∈ B \ {0} for which there are dense-below-b

open sets Db
n ⊆ {c � b: c �= 0}, n ∈ N, such that

⋂
n Db

n = ∅. The sets Dn = ⋃
b∈F Db

n are dense open in B \ {0} and have
empty intersection.

(ii) Each B � a has a countable dense set, so it suffices to show that B itself is not Souslin. B is ccc since B \ {0} has a
countable dense set. We may assume that B is also non-atomic since otherwise we are done by the definition of Souslin
algebra. Let {an: n ∈ N} be a dense set in B \ {0}. Let Dn be the downward closure in B \ {0} of the set of atoms of the
algebra generated by {a1, . . . ,an}. Each Dn is dense open and

⋂∞
n=1 Dn = ∅. Thus, B is not Souslin. �

We now verify that Corollary 6 of [16] is correct. (Its proof in [16] contains an implicit error.) This result does not
assume any separation properties for the spaces X and Y . If they are Tychonoff, then the result follows more readily from
Corollary 7.4 using the fact that spaces with a countable π -base are separable.

Corollary 7.10. Let X and Y be topological spaces each having a countable π -base and a non-atomic regular open algebra. Then there
do not exist δ ∈ ϑ(M(X)), τ ∈ ϑ(M(Y )) and ϕ ∈ ϑ(M(X × Y )) such that the sets ϕ(E) have (δ, τ )-sub-invariant sections.

Proof. The existence of the countable π -bases ensures that (X, Y ) and (Y , X) are K-U pairs. (See for example the comments
following Theorem 15.1 in [14].) The existence of the countable π -bases is also precisely the hypothesis of Proposition 7.9(ii)
for the regular open algebras of X and Y . By Proposition 7.9 ((ii) and (i)), we can apply Proposition 7.8 to conclude that δ

and τ are not continuous at zero. Now apply Corollary 7.2. �
In [2, Question 6.1] asks whether the category algebra of a non-empty Baire space without isolated points can have

a lifting which is countably additive. The question was answered affirmatively by D.H. Fremlin. With his permission we
include the example here. Fremlin’s example was not compact. For the following compact version the authors acknowledge
a helpful discussion with W.A.R. Weiss. The example uses a compact cardinal. A regular uncountable cardinal κ is called
compact if every κ-complete filter on any set S can be extended to a κ-complete ultrafilter on S . (U is κ-complete if⋂

α<λ Aα ∈ U whenever Aα ∈ U for α < λ < κ .) The text [9] has the basic facts about these, but we only need the definition.
It was shown in [2] that the construction of an example requires a measurable cardinal. In terms of consistency strength,
a compact cardinal is much more than a measurable. We do not know whether an example can be constructed from just
a measurable cardinal.

Example 7.11. There is a compact Hausdorff space without isolated points whose category algebra has a countably additive
lifting.

Proof. Fix a compact cardinal κ and define the space X = {0,1}κ equipped with the order topology induced by the lex-
icographic order. The order is Dedekind complete with smallest and largest elements the constant sequences 0 and 1,
respectively. Notice that for each point p we have that at least one of the sets{

i < κ: p(i) = 0
}
,

{
i < κ: p(i) = 1

}
has cardinality κ . In the first case (p,1] has coinitiality κ (i.e., κ is the minimum cardinality of a set in (p,1] with no
lower bound) and in the second [0, p) has cofinality κ . Notice also that if x < y are adjacent (i.e., there is no z such that
x < z < y) then there is an α < κ such that

(i) x(i) = y(i) for i < α,
(ii) x(α) = 0, y(α) = 1,

(iii) x(i) = 1, y(i) = 0 for α < i < κ .
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Thus, [0, x) has cofinality κ and (y,1] has coinitiality κ . To get the desired lifting, proceed as follows.

(a) For p ∈ X , define a κ-complete filter F p extending the neighborhood filter at p.
If {i < κ: p(i) = 0} has cardinality κ , let I p = (p,1]. Otherwise, let I p = [0, p). Then let F p denote the filter generated
by the neighborhoods of p and I p .

(b) The filter of dense open sets is κ-complete.
Let Gα , α < λ < κ , be dense open sets. For x < y which are not adjacent we need to check that

⋂
α<λ Gα contains

a non-empty open subinterval of (x, y). Recursively define 〈xα: α � λ〉 and 〈yα: α � λ〉 so that
• x0 = x, y0 = y,
• α < β � λ implies xα < xβ < yβ < yα ,
• (xα, yα) ⊆ Gα .
The induction continues at a limit stage α because if we let x′

α = supβ<α xβ and y′
α = infβ<α yβ then the cofinality of

[0, x′
α) and the coinitiality of (y′

α,1] are both < κ and hence x′
α = y′

α is impossible. Thus x′
α < y′

α and the two points
are not adjacent because then [0, x′

α) would have cofinality κ as noted above.
(c) For each point p, the filter generated by F p and the dense open sets is κ-complete, so it extends to a κ-complete

ultrafilter F̃ p . Define a lifting from these ultrafilters in the usual way. The κ-completeness of the filters gives the
κ-additivity of the lifting. �

We can extract from the foregoing proof a similar example for densities which can be obtained in ZFC.

Example 7.12. There is a non-empty compact Hausdorff space without isolated points whose category algebra has a count-
ably multiplicative density.

Proof. This is similar to Example 7.11 except that we now require of κ only that it is a regular uncountable cardinal. The
formula for the density θ is θ(E) = {p ∈ X: E ∈ F̃ p}, where this time F̃ p is the filter generated by F p and the dense open
sets rather than an ultrafilter extending it. The resulting density is κ-multiplicative. �
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