Zad. 1 Recall some basic examples and non-examples of F_{σ} and G_{δ} sets in Polish spaces.

Zad. 2 Show that in Polish spaces every closed set is G_{δ} .

Zad. 3 Let (X, d) be a metric space. Then d' defined by $d'(x, y) = \min(d(x, y), 1)$ induces the same topology. Show that!

Zad. 4 Show that a separable metric space has a countable base. Conclude that any subspace of a separable metric space is separable.

Zad. 5 Show that 2^{ω} is homeomorphic to $2^{\omega} \times 2^{\omega}$ and \mathbb{R}^{ω} is homeomorphic to $\mathbb{R}^{\omega} \times \mathbb{R}^{\omega}$. Find continuum many pairwise disjoint homeomorphic copies of 2^{ω} in 2^{ω} .

Zad. 6 Let (X, d) be a separable metric space, and let $D = \{y_0, y_1, \dots\} \subseteq X$ be a countable dense set. Show that the mapping $f: X \to [0, 1]^{\omega}$ given by

$$f(x) = (d(x, y_0), d(x, y_1), \dots)$$

is a homeomorphic embedding.

Zad. 7 Suppose $(F_{\alpha})_{\alpha < \kappa}$ is a strictly decreasing sequence of closed subsets of a Polish space X. Show that κ is countable.

Zad. 8 Show that a metric space X is complete if and only if every decreasing sequence of closed sets in X with vanishing diameters has one-point intersection. Show an example of a Polish space and a descreasing sequence of its closed subsets whose intersection is empty.

Zad. 9 Show that ω^{ω} is homeomorphic to $\mathbb{R} \setminus \mathbb{Q}$. (This one is more difficult. One can think about continuous fractions....)