Zad. 1 Show that for every alphabet A the space A^{ω} is zero-dimensional, i.e. it has a base of clopen sets.

Zad. 2 Try to characterize those trees $T \subseteq \omega^{<\omega}$ for which

- a) [T] does not have an isolated point,
- b) [T] has empty interior,
- c) [T] is compact.

Zad. 3 Consider $X \subseteq 2^{<\omega}$ (note that X need not be a tree). The set

$$\{x \in 2^{\omega} \colon \exists^{\infty} n \ x | n \in X\}$$

is called a G_{δ} closure of X. Show that it deserves its name.

Zad. 4 Show that for every closed $F \subseteq 2^{\omega}$ there is a continuous function $f: 2^{\omega} \to F$ such that f(x) = x for each $x \in F$ (such a function is called a *retraction*). Hint: use the fact that F = [T] for some tree $T \subseteq 2^{<\omega}$ and try to define, level by level, a mapping $g: 2^{<\omega} \to T$ from which you can cook up f.

Zad. 5 Show that for each function $f : \mathbb{R} \to \mathbb{R}$ the set of continuity points of f is a G_{δ} set. Hint: the *oscillation* of f at x is defined as

$$osc_f(x) = \inf\{diamf[U] \colon x \in U, U \text{ - open}\}.$$

Notice that x is a continuity point of f iff $osc_f(x) = 0$.

Zad. 6 Use the above fact to show that under Continuum Hypothesis there is an outrageously non-continuous function $f : \mathbb{R} \to \mathbb{R}$, i.e. such that f|C is not continuous for each $C \subseteq \mathbb{R}$ of size \mathfrak{c} .

Zad. 7 Show that 2^{ω} is a continuous bijective image of ω^{ω} .