Zad. 1 Show that $(2^{\omega})^{\omega}$ is homeomorphic to 2^{ω} .

Zad. 2 Consider the space of continuous functions $f: 2^{\omega} \to 2^{\omega}$ (with the supremum metric). Is it homeomorphic to 2^{ω} ?

Zad. 3 Let X be a Polish space and let F be an F_{σ} subset of X. Show that for every $\varepsilon > 0$ there is a sequence (F_n) of pairwise disjoint F_{σ} sets such that

- a) $diam(F_n) < \varepsilon$ for each n,
- b) $\overline{F_n} \subseteq F$ for each n,
- c) $\bigcup_n F_n = F$.

Zad. 4 Use the above to show that in every non-empty Polish space we can perform a Lusin scheme $(F_s)_{s \in \omega^{\leq \omega}}$ such that

- $F_{\emptyset} = X$,
- F_s is F_σ for each $s \in \omega^{<\omega}$,
- $F_s = \bigcup_n F_{s \frown n}$ for each $s \in \omega^{<\omega}$.

Zad. 5 Use the above to show that for each Polish space X there is a closed set $F \subseteq \omega^{\omega}$ and a continuous bijection $f: F \to X$.

Zad. 6 Use the above to show that every Polish space is a continuous image of ω^{ω} .

Zad. 7 (Brouwer theorem) Show that 2^{ω} is the unique (modulo homeomorphism) nonempty, perfect, compact metrizable, zero-dimensional space. (Recall that a space is zerodimensional if it has a base consisting of clopen sets). Hint: use certain Cantor scheme.

Zad. 8 (Alexandrov-Urysohn theorem) Show that ω^{ω} is the unique (modulo homeomorphism) nonempty, Polish, zerodimnesional space for which all compact sets have empty interior.