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1. Basics

The basics can be found e.g. in https://www.math.toronto.edu/sunger/ucla/
LogicSummerSchool/ForcingNotes.pdf (although our notation is slightly different).

In what follows,

• V be our ground model (think about V as a countable transitive model of
rich enough part of ZFC or think about V as our mathematical universe, a
model of ZFC, I don’t care),
• P will be a partial order (with 1, separative), an element of V ,
• G will be a P-generic over V . As P is separative, G /∈ P.

1.1. Names and their interpretations. We are going to investigate V [G] living in
V . It’s going to be a delicate matter as we don’t have any direct access to elements
of V [G]. Instead, we will use something called names.

A P-name ẋ is any collection of ordered pairs 〈ẏ, p〉, where p ∈ P and ẏ is a P-name.
Sounds like too much self-reference? Let’s see some examples:

• ∅ is definitely a P-name regardless of P.
• Once we have one P-name, we can produce another, say ẋ = {〈∅, p〉}, where
p ∈ P (we could consider here some concrete example of P and p but I don’t
think it would help now).
• Once we have ẋ, let’s produce ẏ = {〈∅, r〉, 〈∅, q〉, 〈ẋ, p〉}.
• OK, it becomes complicated, so we will not give go further now. But, don’t
panic: the formal definition of ordinal numbers is also not very handsome and
I bet you haven’t written 9 using only {, } and ∅ in your life. But you do use
9 from time to time and you will be able to use names without noticing much
of the above recursive non-sense.

So what is a name and what it is for? Without an interpretation it is just a piece
of meaningless crap. It gains value only when interpreted by a generic filter:

A interpretation of a P-name ẋ with respect to a generic filter G is defined as

ẋG = {ẏG : ∃p ∈ G 〈ẏ, p〉 ∈ ẋ}.

Again, the pain of recursion. . . Let interpret the examples above:

• ∅G = ∅, no doubt.
• ẋG =. . .Well, it depends. It depends on the one fact: whether p ∈ G. If yes,
then ẋG = {∅}. If not, ẋG = ∅. For example if p = 1, then ẋG = {∅} regardless
of what G is.
• ẏG can be ∅ or {∅} or {∅, {∅}} depending on p, q, r and whether they belong
to G or not. For example, imagine that {p, q, r} is a maximal antichain in P.
Then we don’t know if ẏG is {∅} or {∅, {∅}} but we know that V [G] |= ẏG 6= ∅.
So, we don’t know how ẏG does exactly look like, but we have some piece
of information about ẏG. This is a common situation when you do forcing:

https://www.math.toronto.edu/sunger/ucla/LogicSummerSchool/ForcingNotes.pdf
https://www.math.toronto.edu/sunger/ucla/LogicSummerSchool/ForcingNotes.pdf
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you cannot fully understand the objects you are talking about, but you know
enough to derive some conclusions.

A name is an element of the ground model. An interpretation of a name is
an element of the forcing extension.

By V P we will denote the class of all P-names.

V [G] = {ẋG : ẋ ∈ V P}.

There is a way of thinking about names: elements of a P-name are of the form
〈ẏ, p〉. You can think about it as an element ẏ belonging to ẋ with probability p. It
doesn’t make much sense, since p is an element of P, not a real number. But somehow
it grasps the sense of names. The generic filter transforms those amorphous things
into objects which are concrete (particularly for observers from V [G]) but still quite
inaccessible for observers from V .

Big part of forcing praxis is the management of names. Fortunately in many cases
we are able to look at names in a quite concrete way.

Remark 1.1. Notice that V P is really full of rubbish. For example, think about the
names which will be interpreted as {∅} by each generic G. How many of them are
there? Consider ẋ = {〈ż, p〉} and ẏ = {〈ẋ, q〉, 〈∅, 1〉}. Suppose that p ⊥ q. Then,
regardless of what ż is, ẏG = {∅}. But look, the name ż can be any P-name. So, there
are class many names which have to interpreted as {∅}!

Finally, we will present two particularly important types of names.
Standard name for an object in V : let x ∈ V . The standard name x̌ for x is of

the form
{〈y̌, 1〉 : y ∈ x}.

The point is that x̌G = x regardless of G. In fact if you look closer x̌ looks exactly
like x modulo those artificial 1’s we glued to elements of x (and to elements of its
elements, etc).

Name for the generic. Consider the name

Ġ = {〈p̌, p〉 : p ∈ P}

Then ĠG = G. This is fun, isn’t it?

1.2. The forcing extension. Here we will only list what we will need further
on, without proving anything. All the proofs you can find in https://www.math.
toronto.edu/sunger/ucla/LogicSummerSchool/ForcingNotes.pdf

• V ⊆ V [G] and G ∈ V [G] (just look at the standard names and the name for
the generic),
• V [G] and V have the same ordinal numbers,
• V [G] satisfies all the ZFC axioms (satisfied by V ).

We will use the following (Main Forcing) Theorem:

https://www.math.toronto.edu/sunger/ucla/LogicSummerSchool/ForcingNotes.pdf
https://www.math.toronto.edu/sunger/ucla/LogicSummerSchool/ForcingNotes.pdf
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Theorem 1.2. The relation 
 defined by

p 
 ϕ(ẋ) ⇐⇒ V [G] |= ϕ(ẋG) for each generic G 3 p

is definable in V . If V [G] |= ϕ(ẋG), then there is p ∈ G such that p 
 ϕ(ẋ).
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2. Tools.

A chaotic sequence of basic facts which will be useful, usually without proof.

Fact 2.1. • p 
 ϕ if and only if {q ≤ p : q 
 ϕ} is dense below p,
• if p 
 ϕ and q ≤ p, then q 
 ϕ,
• if p does not force ϕ, then there is q ≤ p such that q 
 ¬p.
• if V [G] |= ϕ (for each G), then 1 
 ϕ.

Proof. It follows directly from the definition of 
 and forcing theorems. �

Proposition 2.2. V [G] is the minimal model such that V ⊆ V [G] and G ∈ V [G].

Proof. V [G] consists of objects of the form ẋG. To define such object, it is enough to
have V (to define ẋ) and G (to interpret ẋ). And that’s it. �

Theorem 2.3 (Maximum Principle). If p 
 ∃x ϕ(x), then there is ẋ such that
p 
 ϕ(ẋ).

We will use the above theorem all the time. It follows from the definition of 
:
we have that p 
 ∃x ϕ(x) iff the set

{q ≤ p : exists ẋq q 
 ϕ(ẋq)}

is dense below p. We just have to clean ẋq’s and amalgamate them into one name,
see e.g.



6

3. Cohen forcing

This is a good moment to force something and see what it is all about. In this
section we will kill CH.

3.1. Adding single Cohen real. Define

C = {p : p : ω → {0, 1}, dom(p) is finite }

and order it with reverse inclusion: p ≤ q iff p ⊇ q. In particular, 1C is the empty
function.

This is the famous Cohen forcing, mother of all forcing notions.
Let G be a C-generic. Let c =

⋃
G (of course, writing it, we present ourselves in

V [G]). In fact c, which we will call the generic real will be more important than G
itself. Note that since G is a filter, c is a function.

Let’s be slow. Let’s try to devise a name for c. First of all, denote by pin, n ∈ ω,
i ∈ {0, 1}, the function with domain {n} and such that pin(n) = i. (In other words:
pin = {〈n, i〉}.)

ċ = {〈 ˇ〈n, i〉, pin〉 : n ∈ ω, i ∈ {0, 1}}.
First, notice that ċ is really a C-name: it is collection of appropriate ordered pairs.
Then, notice that ċ is a C-name for an element of 2ω: just because the domain of ċ
consists of elements of ω × {0, 1} (like elements of 2ω usually do). Finally, evaluate
ċG. Suppose p ∈ G and n ∈ dom(p). Then ċG(n) = p(n) (as G can choose either p0n
or p1n and she can choose only something smaller than p and thus something which
p extends).

Let’s play a little bit.

Example 3.1. Suppose that dom(p) = {0, 1, 2} and p(0) = 0, p(1) = 1. What p forces
about c? Well

p 
 ċ(0) = 0.

Also,
p 
 ċ(1) = 1,

and so whenever p ∈ G we have V [G] |= c(0) = 0 ∧ c(1) = 1. But, p knows nothing
about c(4) or c(17). So, what p knows (i.e. forces) is that ċ extends p and this is more
less all of its knowledge. We will see that we can deduce from it surprisingly many
properties of c.

At this point we can make an important observation. At the beginning you might
wonder why partial orders are so important in the forcing theory. Why it is partial
order who induce forcing extension, not anything else? Now, in the case of C you see
that the partial order is used to construct certain object (in this case c) and elements
of the partial order (conditions) can be seen as approximations of this object. For
most forcing notions (at least which you will see at this course) this is the case: we
want to approximate some new object using a partial order.
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Proposition 3.2. V [G] |= dom(c) = ω.

Proof. For n ∈ ω let Dn = {p ∈ C : n ∈ dom(p)}. It is plain to check that Dn is dense
in C for every n (take p; if n ∈ dom(p) do nothing; otherwise take p ∪ {〈n, 0〉}). So,
if G is a C-generic, then G ∩Dn 6= ∅. But this exactly means that n ∈ dom(c). �

We have just performed the so called density argument. This is what you do more
less all the time doing forcing. We know nothing about the concrete values of c (like
we know nothing about c(0) in V [G] since it depends on G). But! Some properties
of c does not depend on G. These are the properties for which the density argument
works. It is not an accidents that the most important feature of G is generecity: the
ability to intersect every dense subset.

Let’s come back to Example 3.1 and the question: how much a single condition p
knows about c. As we pointed out, p only knows that p ⊆ c. But actually p knows
much more. E.g. it knows that dom(c) = ω!

By Proposition 3.2 and Fact 2.1, we have that p 
 dom(ċ) = ω for every p ∈ C. So,
p knows that c is a total function even though it seems to have only finite information.
The point is that p ’inherits’ the knowledge of its extensions, provided this knowledge
is spread in a dense way.

What else we can deduce about c using density arguments? It will be convenient
to look at c in a slightly different way: from c we can get C ⊆ ω in the usual way: by
taking c−1[1].

Proposition 3.3. For each N ∈ [ω]ω∩V we have V [G] |= |C∩N | =∞ and |N\C| =
∞. [The jargon formulation: the C-generic real is splitting]

Proof. Fix N as above. Let n ∈ ω. The set

Dn = {p ∈ C : ∃m > n m ∈ A ∧ p(m) = 1}

is dense. So, for each n we have G ∩Dn 6= ∅. And it means that there are infinitely
many m’s such that m ∈ C ∩N and so C ∩N is infinite. By taking

Dn = {p ∈ C : ∃m > n m ∈ A ∧ p(m) = 0}

we obtain the second part of the proposition. �

The conclusion is that C does not belong to V . This is not a surprise as it was
defined using generic. But the above proposition says that it is something really new.

3.2. Adding many Cohen reals. We have just added a new subset of ω (so, a new
real). In fact adding this one, we added many more (can you see them?). But not
too many. In particular, Continuum Hypothesis is not destroyed (provided it was
modeled by V ).

But if we know how to add one real, adding many of them is not so difficult Define

Cω2 = {p : p : ω · ω2 → {0, 1}, dom(p) is finite }
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and order it in the same way as in the case of C.

Remark 3.4. Of course instead of ω2 we could take any cardinal (or even ordinal)
number κ.

Again, let c =
⋃
G and again c is a function, c : ω · ω2 → {0, 1}. The proof that

dom(c) = ω · ω2 is the same as in the case of C. Also, p 
 p̌ ⊆ ċ.
Now, for α < ω2 define cα ∈ 2ω by cα(n) = c(ω · α + n). The following is crucial:

Proposition 3.5. For α < β < ω2 we have

V [G] |= cα 6= cβ.

Proof. Fix α < β < ω2. Let

Dα
β = {p ∈ Cω2 : ∃n p(ω · α + n) 6= p(ω · β + n)}.

It is clear that Dα
β is dense. Also, if p ∈ Dα

β , then

p 
 ċα 6= ċβ.

For each Cω2-generic, G ∩Dα
β 6= ∅ and we are done. �

It means that we have just added ω2 new reals (elements of 2ω) to V . But, Contin-
uum Hypothesis is not yet completely dead. At this point all we know is that in V [G]

the value of c is not smaller that ω2 but . . . which ω2? The poset Cω2 is defined in
V , so when I say “adding ω2 reals” I really mean adding ωV2 reals). How do we know
that V [G] will have the same opinion about ω2? In other words, how do we know
that adding all those new reals, we have not added a function f : ω1 → ω2 which is a
surjection and so which would witness that ωV2 = ω

V [G]
1 ? (If it sounds absurd, notice

that f is an element of V [G] and ω1 and ω2 are elements of V . Also, see the next
section for an example of a forcing notion which adds precisely such function).

Fortunately, there is a theorem we can use. But first recall that a partial order is
ccc if it does not contain an uncountable antichain (where A ⊆ P is an antichain if
p ⊥ q whenever p, q ∈ A, p 6= q).

A piece of terminology: suppose A,B are elements of V [G] and f : A → B is a
function, again in V [G]. Suppose ḟ is a P-name for f and ȧ ia P-name for some a ∈ A.
We say that p decides f(a) if p 
 ḟ(ȧ) = ḃ for some ḃ, a P-name for an element of B.

Proposition 3.6. For each f , a as above the set

D = {p ∈ P : p decides f(a)}

is dense.

Proof. Let p ∈ P and G be a P-generic, such that p ∈ G. Of course there is b ∈ B
such that V [G] |= f(a) = b. So, there is p′ ∈ G forcing it, i.e. such that

p′ 
 ḟ(ȧ) = ḃ,
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where ḃ is a P-name for b. Let r ≤ p, p′. Then r ≤ p and

r 
 ḟ(ȧ) = ḃ.

�

And here is the tool we can put Continuum Hypothesis out of its misery.

Theorem 3.7. If P is a ccc forcing notion, G is a P-generic and κ is a cardinal
number in V , then V [G] |= κV = κV [G]. (jargon formulation: ccc forcing notions
do not collapse cardinals, in the lowersilesian dialect of Polish: forcingi ccc nie
kolapsują kardynałów)

Proof. Suppose in V [G] there is a function f : λ → κ, where λ < κ. Let ḟ be a P-
name for such f . For each α < λ there is a set Dα of conditions deciding f(α). By the
proposition above, each Dα is dense. For every α fix a maximal antichain Aα ⊆ Dα

(we can find such an antichain exactly because Dα is dense, by transfinite induction).
For each p ∈ Aα let βαp be such that

p 
 ḟ(α̌) = β̌αp .

Now, since Aα is countable (by ccc), the set Kα = {βαp : p ∈ Aα} is countable.
And notice that Kα lists all the possible values of f(α) (more precisely, if γ /∈ Kα,
then there is no p ∈ P which can think that f(α) = γ, by maximality of Aα). So,
K =

⋃
α<λKα lists all the possible values f can ever attain, for any argument. But

|K| < κ and so there is no way f can be surjective. �

Of course C is ccc (as it is just countable). But what about Cω2?

Proposition 3.8. Cκ is ccc (for any κ).

Proof. Consider (pα)α<ω1 ⊆ Cκ. By ∆-system lemma, we may assume that dom(pα)

forms a ∆-system, i.e. there is (a root) r such that dom(pα) ∩ dom(pβ) = r for every
α 6= β (just throw out anything which is not in the ∆-system). Again, without loss
of generality we may assume that for each α, β, pα agrees with pβ on r (as there
are only finitely many possible shapes of a condition on r and we have ω1 conditions
on the table). But now, what we have is very far from being an antichain: just take
α, β and let r = pα ∪ pβ. Then r is an element of Cω2 (it is a function as pα and pβ
agrees on the intersection of their domains) and r witnesses that pα is compatible
with pβ. �

That’s it. Travesting the classic: Das Continuum Hypothese ist tot.
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4. Few further illuminating examples of forcing notions

From this point on we will assume that the Reader is already mature enough and
we will skip writing ’checks’ to indicate standard names.

4.1. Resurrecting Continuum Hypothesis, the collapsing forcing. This time
we suppose that V |= c = ω2. Can we force the Continuum Hypothesis? Of course
we cannot throw out real numbers from V . So, the only way is to add a surjection
f : ωV1 → ωV2 . This is exactly the function we wanted to avoid in the previous section,
when we were killing CH.

How to add such a function? We will do it quite brutally: we will consider a partial
order consisting of approximations of such function:

P = {p : p : ω1 → ω2, dom(p) is countable}.

Why we use functions of countable domains and not of finite domains? You will see
in a moment. . .

Let G be a P-generic and let f =
⋃
G. As in the case of Cohen forcing, f is a

function (since G is a filter) and dom(f) = ω1 (just use the same argument as in
the case of the Cohen forcing). The analogous argument shows that rng(f) = ω2.
Just notice that Dβ = {p : β ∈ rng(p)} is dense. Look, we didn’t even try to impose
surjectivity of the generic function in the definition of P. It comes for free.

So, we managed to collapse ω2 to ω1. This is not the end. We have to check if we
haven’t added too many new real numbers. If we add ω3 new reals, then it might
happen that ωV3 = ω

V [G]
2 and so the continuum is still big. Fortunately, P doesn’t add

any real numbers.

Definition 4.1. A forcing notion P is σ-closed if for every countable decreasing
sequence p0 ≥ p1 ≥ p2 ≥ . . . there is p such that p ≤ pn for each n.

Theorem 4.2. If P is σ-closed, then P does not add real numbers, i.e. for each
P-name ṙ for a real number and each p ∈ P there is q ≤ p and x ∈ 2ω ∩ V such
that q 
 ṙ = x.

Proof. Let ṙ be a name for an element of 2ω and let p ∈ P.
Let p0 ≤ p and i0 ∈ {0, 1} be such that p0 
 ṙ(0) = i0 (recall, from the previous

section that the set of conditions deciding a value of a function is dense). Let p1 ≤ p0
be such that p1 
 ṙ(1) = i1 and so on. As P is σ-closed, there is q such that q ≤ pn
for each n. Let x ∈ 2ω ∩ V be defined by x(n) = in. Then q 
 ∀n ṙ(n) = x(n). �

It is plain to check that our P collapsing ω2 is σ-closed. So, that’s it. We have CH
in V [G] (where G is P-generic).

Remark 4.3. Notice that if we take functions of finite domains in the definition of
P, then we would not have σ-closedness and we could not use the above theorem.
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Remark 4.4. Such P as above is usually denoted by Coll(ω1, ω2). Of course you can
define analogously Coll(κ, λ) for other cardinals κ, λ.

Actually, this is not the end of the story. The fascinating thing about forcing is
that the partial order used to approximate some object (as in the case of P) brings
us not only the approximated object but the whole set theoretic universe. So, many
times, after forcing something you obtain a lot of surprising bonuses. Here is an
example. The poset P not only forces CH, but much more: the diamond principle.

Recall that the diamond principle (♦) says that there is a sequence (Aα)α<ω1 such
that

• Aα ⊆ α for each α < ω1,
• for each A ⊆ ω1, the set {α : A ∩ α = Aα} is stationary (i.e. it meets every
closed unbounded (club) subset of ω1).

♦ is much stronger than CH (it holds under V = L). It is a strong guessing principle
implying the existence of many pathological objects.

Theorem 4.5. Let P = Coll(ω1, ω2) and let G be P-generic. Then V [G] |= ♦.

Proof. First, for each ω ≤ α < ω1 fix a bijection gα : [α, α + ω)→ α.
Now work in V [G]. Let f be the generic function. Let

Aα = gα[f−1[{0}] ∩ [α, α + ω)].

(Here, we just want to produce a ’generic’ subset of α using f . Instead of f−1[{0}]
we could take f−1[(17, 23)}] or whatever.)

We will show that (Aα)α<ω1 is a guessing sequence.
Now, we step down to V . Let Ȧ be a name for a subset of ω1 and let Ċ be a name

for a club subset of ω1. Start with p0 ∈ P. We may assume that dom(p) = β for some
β < ω1 (density). In fact we will assume that domains of all the conditions below will
be of this form (i.e. will be initial segments of ω1).

Now let pn+1 be such that pn+1 decides all the values of Ȧ and Ċ on dom(pn)

(we can find one by density and σ-closedness). Moreover, we want to have αn ∈
dom(pn+1) \ dom(pn) such that pn+1 
 αn ∈ Ċ (we use that C is unbounded and we
extend pn+1 if necessary).

Now let p =
⋃
pn and let α = dom(p). Then p ∈ P, p knows everything about Ȧ∩α

and Ċ ∩ α, and p 
 α ∈ Ċ (here we use the fact that C is closed and α = limn αn).
Now notice that we can extend p to q, where dom(q) = α + ω. And we can do

everything we want on [α, α+ ω)! In particular we can do the following: if n is such
that p 
 gα(n) ∈ Ȧ, then let q(α + n) = 0. Otherwise, let q(α + n) be anything but
0. Then q 
 Ȧ ∩ α = Ȧα. �

4.2. Mathias-Prikry forcing. Now we will show an example of forcing notion with
elements of slightly more complicated form.
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We will consider filters on ω and we will assume they do not contain finite sets.
First, recall that P is a pseudointersection of a filter F on ω if P ⊆∗ F for each F ∈ F .
Examples of filters without infinite pseudointersections are: ultrafilters, the density
filter, the summable filter (i.e. the filter dual to the summable ideal). In general,
filters containing a finite set are those we consider completely non-interesting. Filters
with an infinite pseudointersection are only slightly higher in the hierarchy. Those
really interesting are filters without infinite pseudointersection (the dual ideals of
such filters are called tight or dense).

The Mathias-Prikry forcing for a filter F is defined in the following way:

M(F) = {〈s, F 〉 : s ∈ [ω]<ω, F ∈ F ,max s < minF}.

We say that 〈s′, F ′〉 ≤ 〈s, F 〉 if
• s ⊆ s′,
• F ′ ⊆ F ,
• s′ \ s ⊆ F .

Let G be a M(F)-generic. Let S =
⋃
{s : ∃F ∈ F 〈s, F 〉 ∈ G}.

Proposition 4.6. V [G] |= S is infinite.

Proof. Exercise. �

Proposition 4.7. V [G] |= S is a pseudointersection of F (jargon formulation:
M(F) destroys (or diagonalizes) F).

Proof. Let p = 〈s, F 〉 ∈ M(F). Suppose F0 ∈ F . Let q = 〈s, F ∩ F0〉. Notice that
q ∈M(F) and q ≤ p. But

q 
 Ṡ \max s ⊆ F0.

So, by density argument for each F0 ∈ F , 1 
 Ṡ ⊆∗ F0 and we are done. �

So this is how it works: conditions of M(F) have two coordinates. The first one is
a working part of the condition: it will be used to approximate the desired object.
The second one is to guide the working part of the condition in the way we want.

What are the properties of M(F)? It is usually nice to know that the forcing we
are using does not too much damage to the universe (e.g. that it does not collapse
ω1). The forcing M(F) is ccc, so it won’t. Actually it has even stronger property.

Definition 4.8. A partial order P is σ-centered if P =
⋃
n Pn, where each Pn is

centered (meaning: for every finite p0, . . . , pk ∈ Pn there is p ∈ Pn such that p ≤
p0, . . . , pk).

It is easy to see that each σ-centered poset is ccc.

Proposition 4.9. M(F) is σ-centered.

Proof. Just let Ps = {〈s, F 〉 : F ∈ F ,minF > max s} for s ∈ [ω]<ω. It is centered
since F is ⊆-centered. �
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4.3. Adding dominating real. We say that a function f ∈ ωω∩V [G] is dominating
if for each g ∈ ωω ∩ V we have g ≤∗ f . Before reading the definition below try to
inspire yourself by the Mathias-Prikry forcing and to invent a forcing for adding a
dominating function by yourself.

This is what we invented ad hoc during the lecture. It can be done in other ways
(see e.g. Hechler forcing).

Define

P = {〈s, g〉 : s, g : ω → ω, |dom(s)| < ω, |ω \ dom(g)| < ω, dom(s) ∩ dom(g) = ∅}.

Let 〈s′, g′〉 ≤ 〈s, g〉 iff
• s ⊆ s′,
• g(n) ≤ g′(n) if n ∈ dom(g′)

• s′(n) ≤ g(n) for n ∈ dom(g).
Let f =

⋃
{s : ∃g ∈ ωω, 〈s, g〉 ∈ G}.

Proposition 4.10. V [G] |= f is dominating.

Proof. Exercise. �

4.4. Forcing with Suslin tree. So you have seen already several examples of forcing
notions. All of them were produced to construct some concrete object (new real
number, surjection f : ω1 → ω2, a pseudo-intersection of a filter, . . . ). But you can
take any partial order and ask, what kind of universe it produces!

Let’s take for example a Suslin tree. It forms a forcing notion (in this sense tree
grows from up to down). Recall that a tree is Suslin if it is of height ω1, it is ccc and
it does not have a cofinal branch. It is a stronger version of Aronszajn tree. Suslin
conjectured that there are no Suslin trees and for many years it was an open problem
if the Suslin Hypothesis is true. Finally, it turned out to be independent. Btw, Suslin
tree is one of the objects guaranteed by ♦ and in fact ♦ was invented by Ronald
Jensen exactly to show that consistently there is a Suslin tree.

There are different Suslin trees, some of them have nodes which cannot be ex-
tended. We don’t want to force with those (as then for some generic filters G, we
would have V = V [G]). So, we take a Suslin tree and we add branches here and there
to obtain a normal Suslin tree S, so a tree which is separative and such that for each
p ∈ S and α < ω1 there is q ≤ s such that q is from the α’s level. (That you can
normalize a Suslin tree, you can read e.g. in Jech’s book).

Now let G be a S-generic. For α < ω1 let Dα = {p ∈ S : level(p) > α} and
notice that Dα is dense. So G ∩ Dα 6= ∅ for each α and since G is a filter, it means
that G produces a branch in S of length ω1. In the jargon we called it shooting a
branch through S). In a sense many forcing notions is shooting branches through
some structures.

Shooting a branch through a Suslin tree makes it no Suslin. Of course there may
be many other Suslin trees around but we can kill them as well in the same manner.
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This is the beginning of the story of Martin’s Axiom and proving the consistency of
Suslin Hypothesis. We will (hopefully) come back to it later.
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5. Forcing equivalence and forcing with Boolean algebras

As you can guess, some partial orders may give the same forcing extensions (e.g.
if they are isomorphic). We say that P and Q are forcing equivalent if for each
P-generic G there is a Q-generic H such that V [G] = V [H] and vice versa.

We say that i : P→ Q is a dense embedding if

• p ≤ p′ ⇐⇒ i(p) ≤ i(p′),
• p ⊥ p′ ⇐⇒ i(p) ⊥ i(p′) and
• i[P] is dense in Q.

Notice that I used “≤” and “⊥” above in two different meanings (once this is ≤ in P,
once in Q). I hope there is no confusion.

The main theorem here:

Theorem 5.1. If P can be densely embedded in Q, then P and Q are forcing
equivalent.

The proof is rather simple (and boring). I will sketch the basic idea omitting
proofs of simple claims.

Proof. Let G be a P-generic. Define

H = {q ∈ Q : ∃p ∈ G i(p) ≤ q}.

We have to check that H is a filter (easy) and that is generic (easy).
Let’s check that V [H] ⊆ V [G]. To do that, it is enough to show that H ∈ V [G]

(by Proposition 2.2). And, well, this is kind of obvious - H is defined by G. So, let’s
check that G ∈ V [H] (and so we will have that V [G] = V [H]). So we have to define
G by H. Here you are: G = {p ∈ P : ∃q ∈ H q ≤ i(p)}. That “⊆” part is obvious. So,
suppose that p is such that q ≤ i(p) for q ∈ H. The set D = {r ∈ P : r ≤ p∨ r ⊥ p} is
dense in P. So there is r ∈ G ∩D. But it cannot happen that r ⊥ p (then i(r) ⊥ i(p)

but both i(r) ∈ H and i(p) ∈ H). So r ≤ p and so p ∈ G.
Now, suppose that H is a Q-generic. Define

G = i−1[H].

Again, we have to show that it is a filter: fix p0, p1 ∈ G. Then i(p0), i(p1) ∈ H.
Consider a maximal antichain A of conditions q with the property: q ≤ i(p0), i(p1),
q ∈ i[P]. The genericity implies that there is q ∈ A such that q ∈ H. Then there is
p ∈ P such that i(p) = q. Of course p ∈ G and p ≤ p0, p1.

The proofs of genericity of G and that V [G] = V [H] are analogous to the above.
�

5.1. Boolean algebras of regular open sets. Recall that each Boolean algebra B
can be treated as a partial order. So, we can force with it (of course we rather force
with B \ {0} than B itself, to avoid trivialities).
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What is interesting is that every partial order has his own complete Boolean
algebra which is forcing equivalent with it.

Let P be a partial order and let p ∈ P. By [p] we will denote the cone generated
by p, i.e. [p] = {q : q ≤ p}. For us the default topology on a partial order P is the
topology generated by cones.

We say that A ⊆ X, where X is a topological space, is regular open if Int(A) = A.
Of course every regular open set is open. An example is (0, 1) (as a subset of R with
euclidean topology). An anti-example is (0, 1) ∪ (1, 2).

Now, let RO(P) denote the set of all regular open subsets of P (with the de-
fault topology). We can endow RO(P) with a Boolean structure as follows: A ∨B =

Int(A ∪B), A ∧ B = Int(A ∩B), −A = Int(Ac). Actually, this is always a complete
algebra:

∨
A = Int(

⋃
A). (The proof of completeness is not very romantic. Fortu-

nately you can find it in many places, e.g. [1, Theorem 2.3.10]). We are not going to
check any of these statements, but note that we need P to be separative if we don’t
want to have problems with defining complement.

Consider now the function i : P→ RO(P) defined by i(p) = [p]. Does this definition
make sense? This is the point, where we again need that P is separative. Imagine,
that there is p, q ∈ P such that q is the only immediate successor of p (and so P is not
separative). Then p ∈ [q] and also p ∈ Int([q] and thus [q] is not regularly open. If P
is separative, then this kind of problems disappear and i is well defined. It is clearly
an embedding and since cones forms the base of topology it is dense.

Theorem 5.2. Forcing notions P and Q are forcing equivalent iff RO(P) is iso-
morphic to RO(Q).

Proof. The reverse implication is a direct corollary of Theorem 5.1. �

5.2. Forcing is just the Baire theorem. There is an urban legend in Wrocław
about Ryll-Nardzewski: when the manuscript with Cohen’s proof of independence
of Continuum Hypothesis came to Wrocław, Ryll-Nardzewski took it home for the
evening. Next day he came to the Institute and commented “Well, it is just the Baire
theorem”.

Let us comment on his comment. Let M be a countable transitive model of ZFC.
Consider the Cohen forcing C ∈ M . This time we may look at it as the Boolean
algebra of clopen subsets of 2ω since the ’usual’ Cohen forcing as defined before
embeds densely in C:

i(p) = {x ∈ 2ω : x extends p}.

If D ⊆ C is a dense set, then D′ =
⋃
D is a dense open subset of 2ω.

By Baire theorem, there is x ∈ 2ω such that x ∈
⋂
{D′ : D ∈ M is dense}. Such

x is C-generic over M , when viewed as an ultrafilter on the Cantor algebra. So,
Rasiowa-Sikowski Lemma is really just the Baire theorem.
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5.3. Truth values. We will force with a Boolean algebra B (and you already under-
stand that we are abusing notation here and indeed we force with B \ {0}).

One of the biggest advantage of forcing with a Boolean algebra is the existence of
so called truth values.

Definition 5.3. For a sentence ϕ, the truth value of ϕ is defined by

JϕK =
∨
{p ∈ B : p 
 ϕ}.

Recalling the analogy with probability, the truth value of ϕ refers to the ’probabil-
ity’ of the fact that ϕ holds (with all the reservations I mentioned when I introduced
the definition of the generic interpretations of names). As we will see in a moment
using truth values makes our life easier. First, notice the following fact.

Proposition 5.4.
p 
 ϕ ⇐⇒ p ≤ JϕK.

Proof. ( =⇒ ) is clear.
To see the reverse implication, just notice that JϕK 
 ϕ (then clearly p 
 ϕ).

Indeed, if not, then (by Proposition 2.1) we would find q ≤ JϕK such that q 
 ¬ϕ. But
then JϕK would not be the smallest upper bound for {p : p 
 ϕ}, a contradiction. �

Using the above fact may reduce the need to use the symbol ”
”. In general, the
truth values enable more brainless calculations, like:

Proposition 5.5.
J∃n ∈ ω ϕ(n)K =

∨
n

Jϕ(n)K,

J¬ϕK = JϕKc

Proof. Exercise. �

A nice application of truth values is the form of names. Consider a name Ṅ for a
subset of ω. Define

N = {〈n, Jn ∈ ṄK〉 : n ∈ ω}.
Notice that N is a B-name for a subsets of ω. In fact:

Proposition 5.6.
1 
 Ṅ = N.

Proof. Take n ∈ ω, p ∈ B and suppose that p 
 n ∈ Ṅ . Then, by the definition of
truth value, p ≤ Jn ∈ ṄK. So, whenever a generic G chooses p (and so he thinks that
n ∈ Ṅ), it has to choose Jn ∈ ṄK (and so he has to think that n ∈ N).

Similarly, you can prove that 1 
 N ⊆ Ṅ . �

By the above proposition, when you consider a name for a subset of ω, you are
allowed to think that it is in the above form. Quite soon we will see a concrete
example of such names.
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5.4. Cohen forcing once again: Cohen algebra. In Subsection 5.2 we have seen
that forcing with the (traditional) Cohen forcing C is equivalent to forcing with the
Cantor algebra. But the Cantor algebra is very far from being complete, so it is not
RO(C). So what is RO(C)?

There are many ways of approaching this question.
First, notice that RO(C) is isomorphic to RO(2ω), the Boolean algebra of regular

open subsets of 2ω. First, use i defined in Subsection 5.2 and then extend it to
isomorphism (by using e.g. Sikorski theorem or by noticing that there is no moral
difference between open sets in C and open sets in 2ω as both are unions of cones,
although formally those cones are very different).

To discover what is RO(2ω) recall the following theorem.

Theorem 5.7. For every Borel B ⊆ 2ω there is a regular open set U and a
meager set M such that B = U4M .

You may know the above theorem formulated for open sets instead of regular open
(it says that every Borel set has the Baire property). But if you look at the proof
of it, in fact you have regularity for free. (Or you can notice that every open set is
regular open modulo a meager set).

Using the above, and a little glance at what is happening with the operations, we
have:

Theorem 5.8. RO(C) is isomorphic to Bor(2ω)/M.

Also, we have the following corollary.

Corollary 5.9. C is forcing equivalent to Bor(2ω) \M.

Proof. The natural embedding of

i : Bor(2ω) \M → .Bor(2ω)/M

is dense. �

So, if you want to use Cohen forcing, you may look at it as C, Bor(2ω) \ M,
Bor(2ω)/M or e.g. any separative countable partial order.

Now we can take a second look at Proposition 5.6. If you want to consider a C-
name for a subsets of ω, you can think about the sequences of Borel subsets of 2ω!
It is a good exercise to consider various sequences of Borel subsets and check what
kind of names it gives us.
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6. Coding things and more about names

Let’s contemplate subsets of 2ω. Usually in V [G] we have many new subsets of 2ω.
E.g. if P adds reals, then 2ω is not an element of V . But on the other hand it is difficult
to treat 2ω as something really new. This is just the set of all real numbers. It is
new but it can be coded in the ground model. Usually, the codes are real numbers,
in this or that form, treated as a recipe (for a set or a function).

6.1. Codes for sets and functions. If we want to start our adventure with codes
for subsets of 2ω, it is better to start with the simplest case: open sets. Start with
enumerating all the basic clopen subsets of 2ω (and let it be induced by the simplest
possible enumeration e : 2<ω → ω). Let U ⊆ 2ω be open. Then U =

⋃
{[s] : s ∈ S} for

certain S ⊆ 2<ω. Then c = e[S] is a subset of ω (so a real). We will treat it as a code
for U . Any model (containing c) can take it and decode it (knowing e and knowing
the procedure).

In this way we can speak about open subsets of 2ω coded in V . These are exactly
those open sets whose codes are elements of V . E.g. 2ω is definitely coded in V (as it
is coded e.g. by ω).

Now, try to code a continuous function f : 2ω → 2ω. If s ∈ 2<ω, then f−1[[s]] is
an open set, so it can be coded by a real, as above. Using the enumeration e we can
produce a sequence of reals coding all the preimages of basic clopen sets. Of course
you can encode this sequence in a single real. This real will have full information
about f and you can decode it in every model containing this real.

You see, it is not so important how exactly you encode things, as long as you use
computable methods.

Once you can encode open sets, you can encode the closed ones. Also, you can
encode Gδ sets: these are just countable intersections of open sets. At this point you
may think that you can encode all the Borel sets and you would be right. However,
this is a more delicate and descriptive set theoretic matter as the Borel hierarchy is
longer than ω.

There are several approaches to Borel codes. You can proceed as above and try
to code Borel set inductively. Or you may try to use the universal Π1

1 set. See e.g. [2,
Section 29], https://arxiv.org/pdf/math/9401202.pdf.

A piece of notations: if c ∈ 2ω is a code for an object, then by c#M we will mean
this object decoded in a model M . Actually, in the literature usually the difference
between Borel sets and their codes is ignored, but for some time I will try to remember
about #’s.

What is important is that the set of Borel codes is Π1
1 and so (by Schoenfiled

absolutness theorem) it is absolute. This means that whatever we can say about the
decoded set in the ground model, provided we say it in the Π1

1 way, it will be true in
the extension. For example

• z#V = x#V ∪ y#V if and only if z#V [G] = x#V [G] ∪ y#V [G],

https://arxiv.org/pdf/math/9401202.pdf


20

• V |= x#V is meager if and only if V [G] |= x#V [G] is meager,

and so on. . .

6.2. Continuous reading of names for the Cohen forcing. We will treat C as
Bor(2ω)/M. Let G be a generic. Consider the following C-name:

ċ = {〈〈n, i〉, [{x ∈ 2ω : x(n) = i}]M〉 : n ∈ ω, i ∈ 2}.

Perhaps you recognize echoes of the definition of the generic real from Section 3.1.
Now, we have the following:

Proposition 6.1. Suppose b ∈ V is a code for a Borel set. Then

Jċ ∈ b#V [G]K = [b#V ]M.

Proof. Suppose b is a code for a basic clopen set. Then the above holds because of
the form of ċ (see Example 3.1) The rest follows from the fact that basic clopen sets
generate (in the sense of σ-algebra) all Borel sets, Proposition 5.5 or something like
this, and the absoluteness of codes. �

The above proposition has the following bone-shaking corollary:

Proposition 6.2. 1 
 ċ omits all the meager subsets of 2ω coded in V .

Proof. If b codes a meager subset of 2ω, then by Proposition 6.1 Jċ ∈ b#V [G]K = 0. It
means that 1 
 ċ /∈ b#V [G]. �

Remark 6.3. In fact the above can be proved also in the setting of Section 3.1, see
the problem list.

We are ready for the definition of the Cohen real:

Definition 6.4. A real r ∈M is a Cohen real over N ⊆M if it omits all the meager
sets coded in N (or, equivalently, it belongs to all the comeager sets coded in N).

( If you think about C as of Bor(2ω) \M you may define the generic real in one
more way:

{c} =
⋂
{b#V [G] : b is a code for a Borel set such that b#V ∈ G}.

This intersection is nonempty because certain Cohen real (this which ’follows’ G)
will be there and that it cannot have more than 1 element follows from genericity of
G).

A moral comment: if you have understood shooting a branch through the Suslin
tree, you may look at the above in the similar way. Forcing with Bor(2ω)/M is like
shooting a branch through all the comeager subsets of 2ω. And then this branch
induces a real.
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6.3. An application: consistency of t < c. We have already seen that looking at
the Cohen forcing as Bor(2ω) \M provided a nice names for subsets of ω. Now we
will see yet another approach to Cohen names for reals, which is even nicer.

Theorem 6.5. Suppose that ẋ is a C-name for an element of 2ω. Then there is
a comeager D ⊆ 2ω and a continuous function f : D → 2ω (and f,D ∈ V ) such
that V [G] |= f(ċ) = ẋ.

Literally, the above does not make sense. If f ∈ V , then we cannot evaluate it on
ċ. So, what we really mean is that there is a ground model continuous function coded
as f (and a Borel set coded as D) then decoding it in V [G] we got f#V [G](ċ) = ẋ.

Proof. We treat C as Bor(2ω) \ M. Let U i
n = Jẋ(n) = iK. We may assume that U i

n

is open (by Theorem 5.7) and let D =
⋂
n(U0

n ∪ U1
n). For every n U0

n ∪ U1
n is dense

(otherwise the generic would not decide the value of ẋ(0). Then D is a dense Gδ.
Define f : D → 2ω by f(x)(n) = i if x(n) ∈ U i

n. Then f is continuous (just notice
that f−1[{x ∈ 2ω : x(n) = i}] = U i

n). Now, jump to V [G]. Let c be the generic real
and let n ∈ ω. Then f(c)(n) = i iff U i

n ∈ G. But U i
n ∈ G iff 1 
 ẋ(n) = i. Therefore

1 
 f(ċ) = ẋ. �

The above theorem says that instead of thinking about C-names for a reals you
may think about . . . continuous functions. Let’s play a little bit. Consider the function
f : 2ω → 2ω defined by f(x) = r. What is the name associated with f? Just evaluate
this function on the generic real c and you get nothing else but r. What if f =

rχC + sχCc (where C is a clopen subset of 2ω)? Then it depends on the generic, but
whatever it is, it is either r or s. What if f is the identity? Well, the evaluation is
quite easy.

Ok, so now let’s prove something more serious. Recall that (Tα)α<κ is a tower if
it is ⊆∗-decreasing and it has no (infinite) pseudo-intersection.

Theorem 6.6. Let G be a C-generic. Suppose that (Tα)α<κ is a tower (in V ).
Then V [G] |= (Tα)α<κ is still a tower.

In other words, C does not destroy towers. The following proof is due to James
Hirschorn.

Proof. Suppose not, i.e. suppose that

V [G] |= ∃T ∈ [ω]ω ∀α < T ⊆∗ Tα.

Then
1 
 ∃Ṫ ∈ [ω]ω ∀α < κ Ṫ ⊆∗ Tα.

By Maximum Principle (see . . . ) there is a name Ṫ for an infinite subset of ω such
that

1 
 ∀α < κ Ṫ ⊆∗ Tα.
Now, by Theorem 6.5, there are f,D coded in V such that f : D → [ω]ω and f(ċ) = Ṫ .
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Then for each α < κ the set

Bα = {x ∈ D : f(x) ⊆∗ Tα}

is comeager. Indeed,
Jċ ∈ BαK = [Bα]M.

And Jċ ∈ BαK = 1 since 1 
 f(ċ) = Ṫ and 1 
 Ṫ ⊆∗ Tα.
It is an important moment. The fact that Bα is comeager is a groundmodel state-

ment and the rest of the proof will also done from the groundmodel view.
Notice that for every n and α < κ the set

Bn
α = {x ∈ D : f(x) \ n ⊆ Tα}

is closed (because of continuity of f and the fact that ⊆ is a closed relation). By the
Baire theorem there is a nonempty basic open Uα and nα such that Uα ∩D ⊆ Bn

α.
Notice that κ is regular (or at least we can assume it it regular) and uncountable.

So, there is a set Γ ⊆ κ, cofinal in κ, n and U such that for every α ∈ Γ we have
n = nα, U = Uα.

But then if you take x ∈ U ∩D, you have that f(x) \ n ⊆ Tα for every α ∈ Γ, and
so f(x) ⊆∗ Tα for α ∈ Γ. Since Γ is cofinal in κ we have f(x) ⊆∗ Tα for every α < κ.
So, we have defined, in the groundmodel, an infinite set which is a pseudointersection
of (Tα)α<κ! A contradiction. �

In the above proof you can see what is nice in Theorem 6.5: of course we love
forcing but we also like when the statements about the extension are being translated
into statements expressed in the ’human language’.

The tower number t is defined as the minimal cardinality of a tower. Clearly,
ω1 ≤ t ≤ c.

Theorem 6.7. Consistently, t = ω1 < c.

Proof. Start with a model V with CH. Then there is a tower (Tα)α<ω1 in V . Let G
be a Cω2-generic. Then V [G] |= c = ω2. We claim that V [G] thinks that (Tα)α<ω1 is
still a tower. Suppose not. Then there is a name Ṫ for a subset of ω such that 1 
 Ṫ

is a pseudo-intersection of (Tα)α<ω1 . (Btw: here we really take elements of the ground
model, we don’t use any codes here).

By the fact from the Exercise List, a Cω2-name for a real is added by a forcing
with C. But, Theorem 6.6, says that C does not destroy towers. A contradiction. �
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7. Random forcing

If you can force with Bor(2ω)/M, then you have to be able to force with M =

Bor(2ω)/N , where N is the ideal of the (Lebesgue) measure zero sets. Well, this is a
prominent forcing notion called random forcing (or, sometimes, Solovay forcing).

If you see a partial order (or a Boolean algebra) and you want to force with it, the
first question should be: is it separative? Yes, the random forcing is clearly separative.
The next question: does it collapse cardinals? No, the random forcing is ccc (this is
very clear from the definition: you cannot have uncountably many pairwise disjoint
sets of positive measure), so it collapses nothing.

So, consider M and let G be M-generic. Define the generic real:

ṙ = {〈〈n, i〉, [{x ∈ 2ω : x(n) = i}]N 〉 : n ∈ ω, i ∈ 2}.

Notice that this is almost the same definition as for the generic Cohen real. The only
difference is that now me mod out null sets.

Also, as in the case of the Cohen real we have:

Proposition 7.1. If B ∈ V is a Borel subset of 2ω, then

Jṙ ∈ BK = [B]N .

Notice that this time I already skipped using notation using codes. But the codes
are still there: by B ∈ V I mean a Borel set coded in the ground model (and then B
in J·K means the set decoded in V [G] and B at the right side means the set decoded
in V ).

And again, the analogous thing:

Proposition 7.2. 1 
 ṙ omits all the meager subsets of 2ω coded in V .

Definition 7.3. A real r is a random real over a model M if r omits all the null
sets coded in M .

The fact that our forcing is defined in terms of measure is sometimes very conve-
nient.

Proposition 7.4. TFAE:

• 1 
 ϕ,
• ∀ε > 0 ∃B λ(B) > 1− ε ∧ B 
 ϕ

Proof. Exercise (of course only one implication is not completely trivial). �

Definition 7.5. A forcing P is ωω-bounding if

1 
 ∀ḟ ∈ ωω ∃g ∈ V ∩ [ω]ωḟ ≤ g.

In other words, a forcing P is ωω-bounding if it does not add an unbounded real.

Theorem 7.6. The random forcing is ωω-bounding.
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Proof. Let ḟ be a name for an element of ωω. Let Bk
n = Jḟ(n) = kK.

Fix n. Then there is ln big enough so that

λ(
⋃
k≤ln

Bk
n) > 1− ε/2n+1.

Let
B =

⋂
n

⋃
k≤ln

Bk
n.

Clearly, λ(B) > 1− ε and B 
 ḟ(n) ≤ ln.
So, the function g : ω → ω defined by g(n) = ln is such that B 
 ḟ ≤ g.
So, by Proposition 7.4, we have 1 
 ∃g ∈ V ∩ [ω]ω ḟ ≤ g. �

Now, we will define higher dimension analogous of M. Recall that for each cardinal
κ there is a (unique) measure λκ on 2κ such that λκ({x ∈ 2κ : x(α) = 0}) = 1/2 (for
any α < κ). Let Nκ be the ideal of λκ-null sets and let

Mκ = Bor(2κ)/Nκ.

In the jargon we say that Mκ is the forcing adding κ random reals (for κ ≥ ω).

Proposition 7.7. Let κ ≥ ω. Then

• Mκ is ccc,
• Mκ is ωω-bounding.

Proof. Just notice that the proofs for κ = ω work for the general case. �

Proposition 7.8. Mκ adds at least κ reals.

Proof. Exercise. Confront the proof for Cohen forcing in case of problems. �

Recall that the dominating number d is the smallest cardinality of a family
A ⊆ ωω which is dominating, i.e. such that for each f ∈ ωω there is g ∈ A such that
f ≤ g.

Proposition 7.9. Let V |= CH and let G be a Mω2-generic. Then V [G] |= d =

ω1 < c.

Proof. Consider A = ωω in V . In V [G] the family A is still dominating, as Mω2 is
ωω-bounding. �

7.1. Magic world of Cohen and random reals. Note that if you have a generic
real c and you forgot the generic filter which induced it, then you can recover it from
the real c. Consider V [c] (so, the smallest model containing V and c) and just take
all the Borel non-meager sets B in V such that c ∈ B (or, more formally we take
all B#V such that c ∈ B#V [c]). The same applies to the random forcing. This is the
reason why we will call V [c] the model obtained by forcing with the Cohen forcing,
and V [r], the model obtained by forcing with the random algebra.
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Let ϕ(x) be a predicate, where x ∈ 2ω. We say that a typical real number is ϕ
if the set {x ∈ 2ω : ϕ(x)} is comeager. Analogously, a random real numbers has ϕ if
{x ∈ 2ω : ϕ(x)} is co-null.

Now, the Cohen reals have, by its very definition, all the typical properties and
random reals have all the random properties of real numbers.

Let’s see an example. Treat a random real R as a subset of ω. You may ask about
the asymptotic density of R. What is it? By Weak Law of Large Numbers we have
λ({X ⊆ ω : d(X) = 1/2}) = 1. The set {X ⊆ ω : d(X) = 1/2} is coded in V , so R
has to belong to it. Hence, d(R) = 1/2. On the other side, the family of subsets of
ω which does not have density is comeager. So, if C ⊆ ω is Cohen, then C does not
have asymptotic density.

Now I will formulate several nice facts about names for reals and for Borel sets in
the Cohen and random extensions.

Theorem 7.10. Suppose ẋ is an M-name for a real. Then there is a Borel
function f coded in V such that f(ṙ) = ẋ.

This is analogous to Theorem . . . and the proof is also analogous (but this time
you have to deal with codes for Borel sets, not only open sets). We have the following
nice corollary:

Theorem 7.11. Suppose Ḃ is an M-name for a Borel (Σ0
α) subset of 2ω. Then,

there is B̃ ⊆ 2ω × 2ω, a Borel (Σ0
α) set coded in V such that B̃ṙ = Ḃ.

The similar theorem holds for the Cohen forcing. The proofs are analogous. See
the Exercise List.

7.2. Application: non(N ) < c.

Theorem 7.12. Suppose Ḃ is an M-name for a Borel null subset of 2ω. Then
there is H ∈ V , a null Borel set such that Ḃ ∩ V ⊆ H.

Note that in the above theorem we are not talking about any code for H, we deal
we an actual set from the ground model.

Proof. Let Ḃ be an M-name for a Borel null subset of 2ω. Use Theorem 7.11 to get
B̃. Now, define, in V

H = {y ∈ 2ω : B̃y /∈ N}.

We claim that H is as desired.
First, note that H is null. Otherwise, by Fubini theorem, we would have that the

set X = {x ∈ 2ω : B̃x /∈ N} is not null. But then, there is a generic filter containing
X and then the generic real r ∈ X. But then B̃r /∈ N (Here we use the fact that
that fact that if b is a code for a Borel set, then b#V is null iff b#V [G] is null.) A
contradiction as Ḃ is a name for a null set.
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Now, let y ∈ 2ω ∩ V . Suppose that V [r] |= y ∈ Ḃ. It means that the set {x ∈
2ω : 〈x, y〉 ∈ B̃} is not null (otherwise r would omit it as a Borel set coded in the
ground model). And so y ∈ H. �

Again, analogously (using Kuratowiski-Ulam theorem instead of Fubini theorem)
we can prove:

Theorem 7.13. Suppose Ḃ is an C-name for a Borel meager subset of 2ω. Then
there is H ∈ V , a meager Borel set such that Ḃ ∩ V ⊆ H.

Corollary 7.14. • V [r] |= R ∩ V is non-measurable.
• V [c] |= R ∩ V does not have the Baire property.

Proof. We will prove it only for the case of the random forcing. We will first prove
that R ∩ V is not null. Suppose V [r] |= R ∩ V ∈ N . Then, there is, in V [G], a Gδ

set F such that R ∩ V ⊆ F . But, by Theorem 7.12, there is H ∈ V , a null set such
that V [r] |= F ∩ V ⊆ H. A contradiction. That R ∩ V cannot have positive measure
follows from the Steinhaus theorem ((R∩V )− (R∩V ) contains an interval, but each
interval has to contain a new real, see also Problem List . . . ). �

To derive a nice corollary out of the above, we will need the following general
theorem.

Theorem 7.15. If ẋ is a Mκ-name for a real (for a Borel set), then there is a
countable X ⊆ κ such that ẋ is a MX-name. In particular, every real added by
Mκ can be added by a single random forcing M.

The analogous fact is true for Cohen (see Problem list). We will just sketch a
proof of the above.

Proof. (Sketch) Let ẋ be a name for a real. Without loss of generality (see Proposition
5.6) we may assume that it is a nice name, e.g. of the form

ẋ = {〈〈n, i〉, Jẋ(n) = iK〉 : n ∈ ω, i ∈ 2}

Now, we need a fact from pure measure theory. For every Borel set B ⊆ 2κ there is
a set B′ ⊆ 2κ such that λκ(B4B′) = 0 and B′ depends on countably many coordinates
(i.e. there is a countable set I ⊆ κ such that if x ∈ B′ and y ∈ 2κ and x, y agree on
I, then y ∈ B′).

So, for each n ∈ ω, i ∈ 2 we may assume that Jẋ(n) = iK depends on count-
ably many coordinates X i

n (here, formally we make a jump from Bor(2κ)/λκ = 0 to
Bor(2κ)). So the whole name ẋ depends only on X =

⋃
n,iX

i
n which is a countable

set of coordinates.
Now, if Ḃ is an Mκ-name for a Borel subset of 2ω, then instead of Ḃ we may think

about its code, which is again a real number (which has to be added by a single
random forcing). �
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Corollary 7.16. Let G be an Mω2-generic and let H be a Cω2-generic. Then

• V [G] |= R ∩ V is non-measurable.
• V [H] |= R ∩ V does not have the Baire property.

Proof. Upgrade Theorem 7.12 and 7.13 using Theorem 7.15 (and the analogous fact
for Cohen forcing). Then proceed as in Corollary 7.14. �

Recall that non(I) (where I is an ideal) is the minimal cardinality of a set outside
of I.

Corollary 7.17. Let G be an Mω2-generic and let H be a Cω2-generic. Suppose
that V |= CH. Then

• V [G] |= non(N ) = ω1

• V [H] |= non(M) = ω1.

Proof. Clearly R ∩ V has cardinality ω1. Use Corollary 7.16. �

7.3. More on ground model objects in the extension. In the previous subsection
we studied properties of the set of old reals in the extension. It often turns out that
this kind of the objects have peculiar properties. E.g. as we have seen R ∩ V in the
random extension is non-measurable.

Theorem 7.18. V [c] |= R ∩ V ∈ N .

Proof. Let ε > 0. Define Pε as the family of all finite unions of rational intervals⋃
k∈F Ik such that λ(

⋃
k∈F Ik) < ε. Define p ≤ q as p ⊇ q. This is a separative partial

order and we can force with it.
Let G be a Pε-generic. Then U =

⋃
G is an open set such that λ(U) ≤ ε. We claim

that R∩ V ⊆ U . Indeed, if x ∈ 2ω ∩ V , then the set Dx = {p ∈ Pε : x ∈ p} is dense in
Pε. So G ∩Dx 6= ∅ and so x ∈ U .

OK, you may ask, but what it has to do with the Cohen forcing? Well, Pε is
a countable separative forcing and so (Exercise List) it is forcing equivalent to the
Cohen forcing!

So, for each ε > 0, the Cohen forces that λ(R∩V ) ≤ ε. So V [c] |= λ(R∩V ) = 0. �

I think the above proof is due to Cichoń. The similar fact holds for the random
forcing. This time the proof will be due to Kunen, but I will only sketch it.

Theorem 7.19. V [r] |= R ∩ V ∈M.

Proof. (Sketch) Fix x ∈ 2ω. Let

Ax = {y ∈ 2ω : ∃∞n y|[n,2n) = z|[n,2n)}.

Check that Ax is a dense Gδ. Consider Ar, where r is a random real. Then R∩V ∩Ar =

∅. �
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Now, I would like to mention something not so standard.
Suppose that we force with a complete Boolean algebra B over a model V . Let

A be a Boolean algebra in V . Then, in V [G], where G is B-generic, A also forms a
Boolean algebra. Typically, in V [G], there are new ultrafilters on A.

A priori the access to those ‘new’ ultrafilters is quite remote. You know, ultrafilters
in the ground model are rather complicated objects and names for objects are usually
more complicated that the objects itself. So if you want to consider forcing names
for ultrafilters, it should end up with a complete mess. Surprisingly, to the contrary:
there are very elegant names for ultrafilters.

First, recall that there is a natural correspondence between ultrafilters on A and
Boolean homomorphisms h : A → {0, 1} (in fact, in some parts of mathematics the
Stone spaces are not spaces of ultrafilters but of such homomorphisms, and it makes
sense).

The point is that if you force with a complete Boolean algebra B you can think
about the names for ultrafilters on A (as an object from the ground model) as
. . . Boolean homomorphisms h : A→ B! It is as easy as this.

Indeed, assume U̇ is a B-name for an ultrafilter on a Boolean algebra A. Define
ϕ : A→ B by ϕ(A) = JA ∈ U̇K. It is plain to check that ϕ is a Boolean homomorphism.
On the other hand, fix a homomorphism ϕ : A→ B and let

U̇ = {〈A,ϕ(A)〉 : A ∈ A}.

Then U̇ is a B-name for an ultrafilter on A.
So, every homomorphism ϕ : A → B can be interpreted as an B-name for an

ultrafilter on A. Also, if U̇ is an B-name for an ultrafilter on A, then we may assume
that it is of the above form for homomorphism ϕ defined by ϕ(A) = JA ∈ U̇K).

I have mentioned it is not standard. In fact for some time I thought that it is
my invention. However, I found the above remark in my old notes from the forcing
course by Anastasis Kamburelis.

Using the above, we will prove the following classical result: forcing with M makes
M a σ-centered Boolean algebra. First, recall that a Boolean algebra A is σ-centered if
A\{0} is a countable union of ultrafilters on A. Also, notice that M is not σ-centered
(see Problem List . . . ).

There will be a little surprise in the following proof. We will use a fact from
dynamical systems.

Theorem 7.20. Let G be an M-generic. Then

V [G] |= M ∩ V is σ-centered.

Proof. We will see M as Bor(S1)/N , where S1 is just the unit circle. Recall that there
is f : S1 → S1 which is ergodic, i.e. whenever A,B ⊆ S1 are of positive measure,
then there is n such that f (n)[A] ∩ B is of positive measure. (Just take an irrational
rotation).



29

Such f induces naturally a Boolean homomorphism ϕ : M → M. Let U̇n be the
M-name for an ultrafilter induced by ϕn in the way described above.. We claim that

1 
 M+ =
⋃
n

U̇n.

Indeed, let A ∈ M+ and let p ∈ M+. There is n such that q = (ϕn(A) ∩ p) 6= 0. But
then q 
 A ∈ U̇n. By the density argument we are done. �
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8. Sacks forcing: an example of a tree forcing

Tree forcings are important class of forcing notions, particularly for the set theory
of the real line. Tree forcing means that the conditions are trees (usually subtrees
of 2<ω or ω<ω) not that the forcing is tree itself (as in the case of forcing with Suslin
trees).

The standard example here is Sacks forcing S. It consists of subtrees of 2<ω which
are perfect, i.e. such that it splits above every node. The ordering is just inclusion.

The partial order S is separative so it is decent enough to consider it. But it is
not ccc. So, a priori, it may collaps cardinals.

Proposition 8.1. There is an antichain of size c in S.

Proof. Take a pairwise almost disjoint family {Aα : α < c} ⊆ P(ω). For α < c let Tα
be such that s ∈ Tα iff s(i) = 0 for each i ∈ Aα. So, Tα is a tree splits exactly on
levels from Aα and whose nodes chooses 0 on the levels outside Aα. If Aα ∩ Aβ = ∅,
then the only tree included in Tα∩Tβ consists of only one branch. If Aα∩Aβ is finite,
then Tα ∩ Tβ does not contain a perfect tree. So (Tα)α forms an antichain. �

Nevertheless, under CH, Sacks forcing does not collaps cardinals. The reason lies
in the following definition.

Definition 8.2. A forcing notion P has the Sacks property if for every p ∈ P and
every P-name for a function f : ω → V , there is q ≤ p and S : ω → [ω]<ω, S ∈ V such
that |S(n)| ≤ 2n and q 
 ∀n ḟ(n) ∈ S(n).

The function S as above is called slalom.
(see . . . for the nice picture of slaloms, the name was invented by Tomek Bartoszyń

ski in this paper). Sacks property means that we cant localise function from the
extension by small slaloms from the ground model.

Sacks property is quite strong. It implies that the forcing in question is ωω-
bounding (just consider the ’up-most branch’ of the slalom). Also, it implies that
the forcing does not collapse ω1.

Proposition 8.3. Suppose that P has Sacks property. Then P does not collapse
ω1. If, additionally |P| = ω1, then P does not collapse cardinals.

Proof. Indeed, suppose that ḟ is a P-name for a function f : ω → ω1. We want to
show that it is not onto. Let p ∈ P. Use Sacks property to find an appropriate slalom
S and q ≤ p forcing that S catches ḟ . Then q 
 ḟ [ω] ⊆

⋃
n S(n). But

⋃
n S(n) is

countable and we are done.
The second part follows from the fact that κ-cc implies that no cardinals above κ

are destroyed. �

So, we have that the Sacks forcing does not collapse cardinals. As Sacks forcing
does have the Sacks property, right? Well, we have to prove it. This proof is important,
since it uses something called fusion.
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Figure 1. A picture of slalom in Bartoszynski’s paper Combinatorial
aspects of measure and category, where the slaloms were defined for
the first time.

Theorem 8.4. Sacks forcing has the Sacks property.

Proof. Let p ∈ P and let f : ω → V . Someone below p, say p∅, decides ḟ(0) to be
(some) k∅. Let S(0) = {k∅}.

Now, consider s = stem(p∅). Let q0 = p∅ ∩ [s_0] and q1 = p∅ ∩ [s_1]. There is
p0 ≤ q0 deciding ḟ(1) (to be k0) and p1 ≤ q1 deciding ḟ(1) (to be k1; of course it may
happen that k0 = k1). Let S(1) = {k0, k1}.

Now, proceed as above, obtaining ps, ks for s ∈ 2<ω in such a way that

• each ps decides ḟ(n) (to be ks), where n is the length of s.
• for each s ∈ 2<ω and i ∈ 2 we have ps_i ≤ ps ∩ [stem(ps)

_i].

Now define

qn =
⋃
{ps : s ∈ 2n}.

Notice that qn is a perfect tree and for each n we have qn+1 ≤ qn.
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If we let S(n) = {ks : s ∈ 2n}, then each qn forces that ḟ(n) ∈ S(n). The problem
is that we need one condition which forces it for each n. It would be nice if there is
q which is below each qn but we don’t have σ-closedness here.

Nevertheless, and this is the important moment, such q does exist. The point is
that qn+1 is not only stronger than qn: it looks like qn on its initial fragment. More
precisely, qn+1 and qn has the same set of nodes which have been split n times (this
relation is denoted by ≤n). It means that each qm, for m > n, will also have the
same set of nodes split n times. So, the q can be defined as the condition whose set
of nodes split n times looks like the set of nodes of qn split n times. If you draw a
picture, it makes sense.

Clearly, q forces what we want. �

A sequence as in the above theorem, i.e. such that qn+1 ≤n qn is called a fusion
sequence and the condition q is called the fusion of this sequence. Most of the proofs
concerning Sacks forcing (and also some other tree forcings) uses fusion.

8.1. Sacks preserves P-points. Let’s see one other example of the fusion argu-
ment. We will show that Sacks forcing preserves P-points. It means that whenever
an ultrafilter U is a P-point, and we look at U in the Sacks extension, then the re-
sulting family will generate a filter which is still an ultrafilter. Notice that if a forcing
adds a splitting real (like the Cohen forcing), then it destroys all the ultrafilters: the
splitting real (seen as a subset of ω cannot be automatically decided to be in or out
of a filter generated by a ground model family).

So, when we say that a forcing preserves P-points, the accent should be rather on
’point’ (=ultrafilter), not on ’P’.

I will present a proof which I learned on Martin Goldstern’s tutorial on one of the
Young Set Theory Workshops.

We need to know Laflamme’s P-point game. Suppose U is an ultrafilter. Consider
the following game: Adam plays an element X0 of U and Eve responds with a finite
subset F0 ofX0. Then Adam playsX1 (not necessarily connected neither toX0 neither
to F0) and so on. Eve wins if

⋃
n Fn ∈ U . The theorem is: U is a P-point if and only

if Adam does not have a winning strategy.
Another handy stuff is the notion of interpretation. This is not the interpretation

by generic we were talking about at the beginning. Let Ȧ be a name for a subsets
of ω. For each n we can find qn deciding A ∩ n. We say that A? is an interpretation
of Ȧ if there is a descending sequence (qn) such that qn 
 Ȧ ∩ n = A? ∩ n. Notice
that usually no condition forces that Ȧ = A? (that would mean that Ȧ is from the
ground model). So, sincerely speaking, A? has not much in common with Ȧ and even
the name ’interpretation’ is not the best choice. But I don’t have any better idea (I
thought about ’approximation’ but A? is hopelessly bad approximation of Ȧ). And
interpretations are useful here and there (see Problem List 5).

Theorem 8.5. Sacks forcing preserves P-points.
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Proof. Let U be a P-point. Let Ȧ be a Sacks name for a subset of ω and let p ∈ S.
We are going to show that there is q ≤ p such that

q 
 ∃U ∈ U U ⊆ Ȧ ∨ U ⊆ ω \ Ȧ.

Clearly, it is enough.
Now, for every r ≤ p choose an interpretation A?r of Ȧ such that A?r ∈ U if possible

(and choose any other interpretation if it is not possible). Then either every A?r ∈ U or
there is r′ ≤ p such that every ω \A?r ∈ U for r ≤ r′ (since if there is no interpretation
in U under r′, then each interpretation under each r ≤ r′ has to be outside U).

Suppose, without loss of generality, that A?r ∈ U for each r ≤ p and let’s start the
game.

Let s be the stem of p. For i ∈ 2 find an interpretation A?i ∈ U of Ȧ below
p ∩ [s_i]. Let’s Adam play A?0 ∩ A?1 in his first move. Let’s F0 be Eve’s response.
Now, find pi ≤ p∩ [s_i] forcing that F0 is a subset of Ȧ (using the fact that A?i is an
interpretation of Ȧ).

Then, we continue, in a similar manner as in the proof of Theorem 8.4. We consider
stems of p0 its left an right choice, obtaining A?00 and A?01, and similarly with p1
obtaining A?10 A?11. Then we let Adam play with A?00∩A?01∩A?10∩A?11. Let F1 be Eve’s
response and let ps, s ∈ 22 be conditions forcing that F1 ⊆ Ȧ.

Continue and let qn =
⋃
{ps : s ∈ 2n}. Then (qn) is a fusion sequence and for each

n we have qn 
 Fn ⊆ Ȧ. Take a fusion q of this sequence. Then q 

⋃
Fn ⊆ Ȧ. But

Adam does not have a winning strategy in the game, so we can take a sequence (Fn)

witnessing that. Then
⋃
n Fn ∈ U and we are done. �

You may wonder, why the above fact is interesting. Why do we care that something
does not destroy an ultrafilter. Imagine, that we start with a model of CH. THen
we force with a Sacks forcing. And then again, and we repeat it ω2 times. Then, the
above fact + a couple of other facts, imply that in the resulting model we have an
ultrafilter which is generated by less than c many sets.

This is easy to say but not so easy to perform. What does it mean to repeat a
forcing ω2 times? Well, this is the point when we have to think about learning iterated
forcing. Iterated forcing is something which allows us to repeat forcings without really
doing anything many times.

The model obtained by ’repeating’ (whatever it means) Sacks forcing ω2 times
is called Sacks model. It behaves in an anti-Martin axiom manner: it makes all the
cardinal coefficients small. In fact, there is an axiom which tries to capture all the
combinatorial features of the Sacks model: it is called CPA (Covering Property Axiom
or Ciesielski-Pawlikowski Axiom).

There is a very nice survey article on the Sacks forcing: [?]
https://www.researchgate.net/publication/226615377_On_Sacks_forcing_and_
the_Sacks_property,

https://www.researchgate.net/publication/226615377_On_Sacks_forcing_and_the_Sacks_property
https://www.researchgate.net/publication/226615377_On_Sacks_forcing_and_the_Sacks_property
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9. Complete embeddings

In this small section I will define complete embeddings. In the category of forcing
notions, the complete embeddings are ’homomorphisms’ (whereas dense embeddings
are like ’isomorphisms’). In particular, if a forcing P can be embedded completely to
Q, then Q is reacher than P.

There is a problem with complete embeddings: find at random two set theorists
and ask them about the definition of complete embedding. Very probably you get
two different answers (though usually equivalent) and very probably they will be
quite technical.

I think the easiest way to understand what complete embedding is, is to look at
Boolean algebras.

Definition 9.1. We say that A is a complete subalgebra of B if A is a subalgebra of
B and for every family A ⊆ A its supremum taken in B belongs to A.

This means that A and B agree on suprema (of subsets of A). A complete embed-
ding e : A→ B is an embedding whose image is a complete subalgebra.

Proposition 9.2. Suppose that A is a complete subalgebra of B and let G be a
B-generic. Then H = G ∩ A is an A-generic.

Proof. Clearly H is a filter on A. Instead of showing that it intersects dense sets, we
will show that it intersects maximal antichains. So let A be a maximal antichain in
A. Then it is an antichain in B and, by the fact that A is a complete subalgebra, its
supremum has to be 1, which means that it is maximal in B. So G intersects it and
so G ∩ A = H intersects it. �

The above fact says that if we force with B, then we have all the objects which
can be achieved forcing with A. For example, if A adds a dominating real, then B
too. If A adds a measure zero sets containing old reals, then B too.

Example 9.3. The Cohen algebra C = Bor(2ω)/M is a subalgebra of the random
algebra M. Just take an equivalence class of C, choose a regular open representative,
and send it to the equivalence class with respect to measure.

But, C is not a complete subalgebra of M. Forcing reason: C adds an unbounded
real, but M is ωω-bounding. Simpler reason: take An = (qn − 1/4n, qn + 1/4n), where
Q = {qn : n ∈ ω}. The supremum of {An : n ∈ ω} in C is 1. But in M it is much
smaller.

The above approach to complete embeddings can be extended for partial orders: P
can be completely embedded in Q if RO(P) can be embedded completely into RO(Q).
The problem with this definition is that it is difficult to check it (many times it is
difficult to handle RO(P)). This is the reason why we have to invent other, more
technical, definitions of complete embeddings.
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Instead of presenting any of the those definitions (you can find them in many
places) I will define something ’contravariant’.

Definition 9.4. We say that π : Q→ P is a projection if
• π is onto,
• if q′ ≤ q, then π(q′) ≤ π(q),
• if p ≤ π(q), then there is q′ ≤ q such that π(q′) = p.

The connection with complete embeddings is explained by the following:

Proposition 9.5. If π : Q → P is a projection, then e : RO(P) → RO(Q)) defined
by e(A) = π−1[A] is a complete embedding.

Proof. Exercise. �

So, combining the above with Proposition 9.2, if Q can be projected onto P, then
whatever can be added by P, can be added by Q as well.

Example 9.6. Consider the Hechler forcing, i.e. H = {(n, f) : n ∈ ω, f ∈ ωω} with
the ordering: (n′, f ′) ≤ (n, f) if f ′|n = f |n and f ′(i) ≥ f(i) for each i ≤ n. This is the
simplest forcing for adding a dominating real. We will show that it can be projected
onto the Cohen forcing (seen as

⋃
n s

n). Let π : H→ C be defined by π(n, f) = s ∈ 2n

such that s(i) = f(i)mod2 for each i < n. It is plain to check that this is a projection.
So, in particular, the Hechler forcing adds a Cohen real. But Cohen real does not add
a dominating real, so the Hechler forcing does not embed completely into the Cohen
forcing.
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10. Products

Suppose P and Q are forcing notions. The product forcing P × Q is what you
expect it to be: P × Q with the ordering defined coordinatewise: 〈p′, q′〉 ≤ 〈p, q〉 if
p′ ≤ p and q′ ≤ q (of course in the above the sign ’≤’ typically means three different
orderings but I believe that you will not be confused).

Proposition 10.1. Filters on P×Q are rectangles, i.e. if G is a filter on P×Q,
then G = πP[G]× πQ[G].

Proof. Plain. �

So, every P×Q-generic is of the form G×H. What is less expectable is that it is
not enough that G is P-generic and H is Q-generic!

Theorem 10.2 (Product Lemma). TFAE
• G×H is a P×Q-generic.
• G is P-generic (over V ) and H is Q-generic over V [G].
• H is Q-generic (over V ) and G is P-generic over V [H].

So, the intermediate model V [G] (or V [H]) comes into the picture automatically.
Notice that the above means that whenever we take P × P and G is a P-generic,
usually G×G is not P× P-generic!

I will not prove the above. The reason is that you can find excellent notes about
products (and iterations) by Itay Neeman:
https://www.math.ucla.edu/~ineeman/223s.1.11s/223s-spring11-lecture-notes-6-5.
pdf

Just read the proof there.

Proposition 10.3. M ×M adds a Cohen real (here M is of course the random
forcing..

Proof. Let ṙ0 be the generic real added by M (over V ) and let ṙ1 be the generic real
added by M over V [r0].

Let 〈A,B〉 ∈M→M. By Steinhaus theorem, A+B contains an interval I.
Let F be a closed nowhere dense set (in V ). Then, by continuity of the addition,

we can find A′ ⊆ A and B′ ⊆ B of positive measure such that A′ +B′ ⊆ I \ F . Then
〈A′, B′〉 
 ṙ0 + ṙ1 /∈ F .

It means that 1 
 ṙ0 + ṙ1 omits all the nowhere dense sets coded in V (and so it
is a Cohen real over V ). �

https://www.math.ucla.edu/~ineeman/223s.1.11s/223s-spring11-lecture-notes-6-5.pdf
https://www.math.ucla.edu/~ineeman/223s.1.11s/223s-spring11-lecture-notes-6-5.pdf
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11. Iterations

11.1. Finite support iterations and the consistency of Martin’s Axiom. Just
read Itay Neeman’s notes. I can’t do any better.
https://www.math.ucla.edu/~ineeman/223s.1.11s/223s-spring11-lecture-notes-6-5.
pdf

In particular you will need to read

• the definition of iteration,
• the proof of the iteration lemma (on how the generics looks like),
• the proof that finite support iteration of ccc forcing notions is ccc,
• the proof of the consistency of Martin’s Axiom.

11.2. Few short examples of finite support iterations. The proof of consistency
of Martin’s Axiom is important for two reasons: 1) Martin’s Axiom is important, 2)
it is complicated enough. In fact many uses of finite support iterations are easier than
that one. Many times you force with the same forcing all the time.

Nice way to see how the iterations work is to see how they can be used to settle
the values of cardinal coefficient. Some of the cardinal coefficients already appeared
on this course. In general, I strongly recommend the chapter by Andreas Blass:
https://dept.math.lsa.umich.edu/~ablass/hbk.pdf

Martin’s Axiom makes ’all’ coefficients from the Cichoń’s diagram and van Douwen
diagram big. (In fact it is a good exercise to force p = c in a direct way, without using
Martin’s Axiom. Hint: instead of forcing with all possible (and not too big) ccc forcing
notions, use only Mathias-Prikry forcings for all the possible filters, with appropriate
bookkeeping).

Here is an easy example of how we can make a coefficient small.

Proposition 11.1. It is consistent that d = ω1 < c.

Proof. Start with a model with a big continuum (let’s say a model of Martin’s Axiom
+ non CH). Now, apply finite support iteration of length ω1 of Hechler’s forcings.
We claim that in the resulting model, d and c are as desired.

First of all, notice that Hechler’s forcing is ccc (it is even σ-centered, the argument
is analogous to the proof that the Mathias-Prikry forcing is σ-centered). So, finite
support iteration of Hechler forcings does not collapse any cardinals. In particular, c
is still big in the final extension.

Now, each round of the iteration adds a function which dominates all the elements
of ωω from the actual model. As objects which are added on the initial steps of the
iterations stays with us to the very end of the iteration, we obtain in this way a family
{fα : α < ω1} of functions. Suppose that f ∈ ωω∩V [G], where G is the generic for the
iteration. Then, f will appear in V [Gα] (where Gα is the generic at α-s step of the
iteration). The reason is that you can consider a nice name for f (which bears only
’countable’ information). But then in the α’s step of the iteration the Hechler forcings

https://www.math.ucla.edu/~ineeman/223s.1.11s/223s-spring11-lecture-notes-6-5.pdf
https://www.math.ucla.edu/~ineeman/223s.1.11s/223s-spring11-lecture-notes-6-5.pdf
https://dept.math.lsa.umich.edu/~ablass/hbk.pdf
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adds fα which dominates everybody from V [Gα], including f . So {fα : α < ω1} is a
dominating family and so it witnesses d = ω1. �

Another example of a similar sort.

Proposition 11.2. It is consistent that s < b.

Proof. Again, start with a model of MA + non CH. Then s = b = c. Now, apply the
finite support iteration of random forcings, of length ω1. Random forcing is ccc, so
the iteration does not collapse cardinals.

Then b will stay big, because the random forcing is ωω-bounding. So, if we have
a family of elements of ωω, of size ω1, in the final model, then we could find a family
of elements of ωω, of the same size, from the ground model which dominates it. But,
as b > ω1 in the ground model, this family can be dominated.

On the other hand the set of the random reals R = {rα : α < ω1} forms a set which
is not null. Otherwise, we could cover R by a Borel null set. But this Borel set could
be coded as a real number. This real number would appear at some intermediate
(say, α’s) step of the iteration (nice names, ’countable’ information). But then rα
would omit this set, a contradiction.

This R seen as a family of subsets of ω is splitting: this is because every family
which is not splitting is null (just write what does it mean that a family does not
split a particular set). So, we have a splitting family of size ω1. �

11.3. A small sip of proper forcing. The above examples are quite easy. Usually,
to distinguish some cardinal coefficients, you need much more work and often finite
support iterations are not enough. The reason is that finite support iterations will
always add Cohen reals (so, for example, it is impossible to make cov(M) small).

The problem is that if we force with countable support iterations, then we can’t
preserve ccc. This is the reason why mankind had to invent some other condition
than ccc, strong enough to preserve cardinalities but weaker than ccc. And mankind
has invented it (unless you consider Shelah as a representative of another specie).

On the lecture, I gave a definition of the proper forcing and I showed that it pre-
serves stationary subsets of ω1 (and so it does not collapse ω1). This is written in a
very nice way in Joerg Brendle’s Bogota lectures :
https://www.math.uni-hamburg.de/personen/khomskii/ST2013/bogotalecture.pdf

Proper forcing is a subject for another course (or seminar) but it is worth you get
a flavour of it. As you can see this notion is slightly more involved than ccc.

https://www.math.uni-hamburg.de/personen/khomskii/ST2013/bogotalecture.pdf
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