Forcing 1 2025

Zad. 1 Prove that if M satisfies Axiom of Choice, then M[G] satisfies Axiom of Choice. Hint: it is enough to show that for each $\dot{x}_G \in M[G]$ there is an ordinal number α and a function f (in M[G]) such that $\text{dom}(f) = \alpha$ and $\dot{x}_G \subseteq \text{rng}(f)$. Hint of the second order: well order \dot{x} and let α be the order type.

Zad. 2 Show that a filter G is \mathbb{P} -generic iff it intersects every maximal antichain.

Zad. 3 Let $\mathbb C$ be the Cohen forcing. Suppose that \dot{C} is a $\mathbb C$ -name such that $1 \Vdash \dot{C} \subseteq \omega$. For each n let A_n be a maximal antichain of conditions deciding if $n \in C$.

$$\dot{B} = \{ \langle n, p \rangle \colon n \in \omega, p \in A_n, p \Vdash n \in \dot{A} \}.$$

Show that

$$1 \Vdash \dot{A} = \dot{B}$$
.