Forcing 3 2025

- **Zad. 1** Check that Mathias-Prikry forcing is ccc.
- **Zad. 2** Let $S \subseteq \omega_1$ be stationary. Find a forcing \mathbb{P} such that in $M[G] \models$ "there is a club in S".
- **Zad. 3** Mathias forcing \mathbb{M} consists of the conditions of the form $\langle s, N \rangle$, where s is finite, N is infinite and $\max s < \min N$. The ordering is defined as in the case of Mathias-Prikry forcing. Show that the generic real M induced by \mathbb{M} is unsplit, i.e. for each $X \in P(\omega) \cap V$ we have $X \subseteq^* M$ or $X \cap M =^* \emptyset$.
- **Zad.** 4 Show that Mathias forcing (defined in the previous exercise) is not ccc.
- **Zad. 5** Prove that $M(\mathcal{F})$, where \mathcal{F} is generated by a countable family, does not add a dominating real.
- **Zad. 6** Let \mathbb{P} be the poset for adding a dominating real considered on the lecture. Let $f \in \omega^{\omega}$ be the \mathbb{P} -generic real. Let $A = f^{-1}$ [Even numbers]. What are the properties of A? (Splitting, unsplit, dominating?)
- **Zad. 7** (for lovers of model theory) Let T be a complete theory and let M, N be models of T. We say that M and N are twins if M and N are not isomorphic, but there is a forcing \mathbb{P} which forces that they are. Find examples of twins.