Forcing 4 2025

Zad. 1 Let $i: \mathbb{P} \to \mathbb{Q}$ be a dense embedding. Let H be a \mathbb{Q} -generic and let $G = i^{-1}[H]$. Show that G is a generic filter.

Zad. 2 Show that every countable (separative) forcing notion is forcing equivalent to the Cohen forcing.

Zad. 3 Suppose that we have $M \subseteq N$ and $N \models \exists a \in \mathbb{R} \setminus M$. Show that whenever $N \models \mathbb{R} \cap M$ is measurable, then $N \models \mathbb{R} \cap M$ is null. (Hint: use Steinhaus theorem)

Zad. 4 Check if

$$[\![\exists n \in \omega \ \varphi(n)]\!] = \bigvee_n [\![\varphi(n)]\!],$$
$$[\![\neg \varphi]\!] = [\![\varphi]\!]^c$$

Zad. 5 Let G be a \mathbb{C} -generic (where \mathbb{C} is the Cohen forcing). Show an example of a new real in V[G] which is not a Cohen real (i.e. which does not avoid all ground model meager sets).

Zad. 6 Let G be as above. Show an example of an open subsets of 2^{ω} , in V[G], which is not coded in the ground model.

Zad. 7 Propose some coding for Borel sets.

Zad. 8 Let \mathcal{A} be an infinite maximal pairwise almost disjoint family. Define a forcing which will add an infinite subset of ω which is almost disjoint with each element of \mathcal{A} . What kind of properties this forcing has?

Zad. 9 Consider the forcing by $\mathbb{P} = \mathcal{P}(\omega)/fin$ (so the Boolean algebra of equivalence classes of the relation $A \sim B \iff A \triangle B$ is finite). Let G be a \mathbb{P} -generic. Let \mathcal{U} be an ultrafilter (in the extension) defined by $U \in \mathcal{U}$ is $[U]_{\sim} \in G$.

- Show that \mathbb{P} is σ -closed.
- ullet Show that $\mathcal U$ is a non-principal ultrafilter.
- Show that \mathcal{U} is a selective ultrafilter, i.e. if we color $[\omega]^2$ by two colors, then there is $X \in \mathcal{U}$ which is homogeneous, i.e. all elements of $[X]^2$ have one color. (Hint: by σ -closedness every such coloring is in the ground model).

Zad. 10 Let G be as above and let c be the generic real. Let $A \subseteq 2^{\omega}$, $A \in \Sigma_{\alpha}^{0}$. Show that there is $A' \in V$, $A' \in \Sigma_{\alpha}^{0}$, $A' \subseteq 2^{\omega} \times 2^{\omega}$ such that

$$A'_c = A$$
.

Hint: consider a universal Σ_{α}^{0} set U. In V[G]: let x be such that $U_{x} = A$. Find $f: D \to 2^{\omega}$ such that f(c) = x. Cook up A' using U and g.

Zad. 11 Show that Cohen forcing $\mathbb C$ adds $\mathfrak c$ many Cohen reals.

Zad. 12 Show that the random forcing $\mathbb{M} = \text{Bor}(2^{\omega})/\mathcal{N}$ is not σ -centered.

Zad. 13 Let $\mathbb{M}_{\omega_2} = \text{Bor}(2^{\omega_2})_{/\lambda_{\omega_2}=0}$. Let G be \mathbb{M}_{ω_2} -generic and assume that $V \models CH$. Show that $V[G] \models \mathfrak{c} = \omega_2$.

Zad. 14 Is the generic real of the random forcing splitting?