Zad. 1 Let G be a \mathbb{C} -generic (where \mathbb{C} is the Cohen forcing). Show an example of a new real in V[G] which is not a Cohen real (i.e. which does not avoid all ground model meager sets).

Zad. 2 Let G be as above. Show an example of an open subsets of 2^{ω} , in V[G], which is not coded in the ground model.

Zad. 3 Propose some coding for F_{σ} sets.

Zad. 4 Check if

$$\llbracket \exists n \in \omega \ \varphi(n) \rrbracket = \bigvee_{n} \llbracket \varphi(n) \rrbracket$$
$$\llbracket \neg \varphi \rrbracket = \llbracket \varphi \rrbracket^{c}$$

Zad. 5 Let G be as above and let c be the generic real. Let $A \subseteq 2^{\omega}$, $A \in \Sigma_{\alpha}^{0}$. Show that there is $A' \in V$, $A' \in \Sigma_{\alpha}^{0}$, $A' \subseteq 2^{\omega} \times 2^{\omega}$ such that

 $A'_c = A.$

Hint: consider a universal Σ^0_{α} set U. In V[G]: let x be such that $U_x = A$. Find $f: D \to 2^{\omega}$ such that f(c) = x. Cook up A' using U and g.

Zad. 6 Show that Cohen forcing \mathbb{C} adds \mathfrak{c} many Cohen reals.

Zad. 7 Show that the random forcing $\mathbb{M} = \text{Bor}(2^{\omega})/\mathcal{N}$ is not σ -centered.

Zad. 8 Let $\mathbb{M}_{\omega_2} = \text{Bor}(2^{\omega_2})_{\lambda_{\omega_2}=0}$. Let G be \mathbb{M}_{ω_2} -generic and assume that $V \models CH$. Show that $V[G] \models \mathfrak{c} = \omega_2$.

Zad. 9 Is the generic real of the random forcing splitting?