Definition. Given a poset \mathbb{P} add a name for a real \dot{f} (as an element of 2^{ω}), a \mathbb{P} -*interpretation for* \dot{f} is a pair $\langle g, \hat{P} \rangle$ where $g \in 2^{\omega}$ and \hat{P} is a decreasing sequence $\langle p_n : n \in \omega \rangle \subseteq \mathbb{P}$ such that for all $n \in \omega, p_n \Vdash "\dot{f}|_n = g|_n$ ".

Zad. 1 Prove that interpretations exist under any condition, i.e. that for every name for a real \dot{f} and $p \in \mathbb{P}$ there is an interpretation $\langle g, \hat{P} \rangle$ for \dot{f} such that, if $\hat{P} = \langle p_n : n \in \omega \rangle$, then for all $n \in \omega$, $p_n \leq p$.

Zad. 2 Assume that \dot{f} is a \mathbb{P} -name for an element of 2^{ω} , $p \in \mathbb{P}$ and $A \subseteq \omega$ such that $p \Vdash A \cap \dot{f}^{-1}(1)$ is infinite. Prove that there is an interpretation $\langle g, \hat{P} \rangle$ for \dot{f} such that $A \cap g^{-1}(1)$ is infinite.

Zad. 3 Prove that if \mathbb{P} is a poset such that $|\mathbb{P}| < \mathfrak{d}$ then \mathbb{P} does not add dominating reals (Hint: Use interpretations to try to guess the name of a potential function).

Zad. 4 Observe that the previous exercise is false if we change \mathfrak{d} for \mathfrak{b} and dominating real for unbounded real (i.e. the analogue of the previous exercise for \mathfrak{b} is false).

Zad. 5 (Destructibility of MAD families) Let \mathcal{A} be a MAD family extending $\{\{x|_n : n \in \omega\} : x \in 2^{\omega}\}$ and let \mathbb{P} be a poset that adds a new real. Prove that $1 \Vdash$ " \mathcal{A} is not a MAD family" (Hint: Use Zad. 2).

Definition (Kurilić) An AD family \mathcal{A} is ω -MAD if for every sequence $\langle X_n : n \in \omega \rangle \subseteq \mathcal{P}(\omega)$ of sets that cannot be covered by finitely many elements of \mathcal{A} there is an $A \in \mathcal{A}$ such that, for every $n \in \omega$, $|A \cap X_n|$ is infinite.

Zad. 6 Prove that ω -MAD families are MAD families.

Zad. 7 Prove that, under CH, there is an ω -MAD family.

Zad. 8 (ω -MAD families are Cohen indestructible) Prove that, if \mathcal{A} is ω -MAD, then $\mathbb{C} \Vdash \mathcal{A}$ is MAD" (Hint: Use interpretations!!!)

Zad. 9 Extend the previous result to \mathbb{C}_{κ} .