Forcing 5 2025

- **Zad. 1** Consider the forcing $\mathbb{C}^{\kappa}_{\lambda}$ of partial functions $f : \kappa \times \lambda \to 2$ with $|\text{dom}(f)| < \lambda$ (here, $\kappa > \lambda$ are regular cardinals). Show that $\mathbb{C}^{\kappa}_{\lambda}$ does not collapse cardinals and that $M[G] \models 2^{\lambda} = \kappa$.
- **Zad. 2** Prove that it is consistent that $2^{\aleph_{67}} = \aleph_{69}$ and $2^{\aleph_{420}} = \aleph_{666}$ at the same time. Hint: use the previous exercise and product.
- **Zad. 3** Show that $\mathbb{P} \times \mathbb{Q}$ is forcing equivalent to $\mathbb{Q} \times \mathbb{P}$.
- **Zad. 4** Show that product of two ccc forcing notions is not necessarily ccc (Hint: think about Suslin trees).
- **Zad.** 5 Show that the product of two σ -closed forcing notions is σ -closed.
- **Zad. 6** Show that the product of two ccc forcing notions \mathbb{P} and \mathbb{Q} is ccc iff $1 \Vdash_{\mathbb{P}} \mathbb{Q}$ is ccc.
- **Zad. 7** Show that $\mathbb{C}_D = \mathbb{C}_A \times \mathbb{C}_B$, where $D = A \cup B$, A, B disjoint and \mathbb{C}_X consists of functions $f: X \to 2$ of finite domain.
- **Zad. 8** Let $\langle \mathbb{P}_n \rangle$ be a sequence of separative forcings. Let $\mathbb{P} = \{ p \in \prod_{n \in \omega} \mathbb{P}_n : \forall^{\infty} n \in \omega \ (p(n) = 1_{\mathbb{P}_n}) \}$ with the order $p \leq p'$ if and only if $p(n) \leq p'(n)$ for all $n \in \omega$.
 - a) Prove that, if each $\prod_{i < n} \mathbb{P}_i$ is c.c.c., then \mathbb{P} is c.c.c.
 - b) Prove that \mathbb{P} adds a Cohen real.
- **Zad. 9** Consider ω with the probability measure defined by $\mu(A) = \sum_{n \in A} \frac{1}{2^{n+1}}$, and let λ be the product measure on ω^{ω} . Let $M \subseteq N$ be two transitive models of ZFC and let $f \in \omega^{\omega} \cap N$ be a random real over M.
 - a) Prove that then there is $g \in M \cap \omega^{\omega}$ such that $f \leq g$.
 - b) Prove that, for all $g \in M \cap \omega^{\omega}$, $f \cap g$ is finite (i.e. f and g only agree on finitely many values).
- **Zad. 10** Let \mathbb{P} be a forcing, $n \in \omega$ and \dot{x} be a \mathbb{P} -name for an element of n. Let $P \subseteq \mathbb{P}$ be centered, and consider the set $A = \{k \in n : \exists p \in P(p \vdash "\dot{x} \neq k")\}$. Show that $A \neq n$.
- **Zad. 11** Use the previous exercise to prove that, if \mathbb{P} is a σ -centered forcing, $f \in \omega^{\omega}$ and \dot{g} is a \mathbb{P} -name for a function such that $\mathbb{P} \vdash "\dot{g} \leq f"$, then there is $h \in \omega^{\omega}$ such that $\mathbb{P} \vdash "\dot{g} \cap h$ is infinite".
- **Zad. 12** Prove that σ -centered forcings cannot add random reals (as defined in **Zad** 9).
- **Zad. 13** Let M, N be transitive models such that $M \subseteq N$ and that there is $f \in 2^{\omega} \cap N \setminus M$. Show that there is a MAD family \mathcal{A} in M such that is no longer MAD in

N. (Hint: Consider any MAD that extends the almost disjoint family of size \mathfrak{c} that you know how to construct)

Zad. 14 Let M, N be transitive models such that N contains a dominating real over M. Prove that there is no MAD families in M that are MAD in N.

Zad. 15 Let \mathcal{F} be a free filter. Consider the forcing

$$\mathbb{L}_{\mathcal{F}} = \{ T \subseteq \omega^{<\omega} : T \text{ is a tree,} \\ \forall s \in T(\text{stem}(T) \subseteq s \to \text{suc}_T(s) \in \mathcal{F}) \}$$

with the order $T \leq T'$ iff $T \subseteq T'$, where $\operatorname{suc}_T(s) = \{n \in \omega : s \cup \langle |s|, n \rangle \in T\}$ and $\operatorname{stem}(T)$ is the largest node in T that is \subseteq -comparable with every other node in T.

- a) Prove that $\mathbb{L}_{\mathcal{F}}$ is c.c.c.
- b) Prove that $\mathbb{L}_{\mathcal{F}}$ does not add a random real (as defined in **Zad 9**).
- c) Prove that $\mathbb{L}_{\mathcal{F}}$ adds a dominating real.