Zad. 1 Show that the iteration of κ many Cohen forcings is isomorphic to the product of κ many Cohen forcings. Show that they are isomorphic to \mathbb{C}_{κ} .

Zad. 2 Prove that $\mathbb{B} * \mathbb{B}$ does not add Cohen reals. (In particular $\mathbb{B} * \mathbb{B}$ and $\mathbb{B} \times \mathbb{B}$ are not equivalent).

Zad. 3 Show that if \mathbb{P} is σ -closed and $1 \Vdash \dot{Q}$ is σ -closed, then $\mathbb{P} * \dot{\mathbb{Q}}$ is σ -closed.

Zad. 4 Let \mathbb{M} be the Mathias forcing and let $\mathbb{M}_{\mathcal{U}}$ be the Mathias forcing parametrized by an ultrafilter. Prove that \mathbb{M} is equivalent to $\mathcal{P}(\omega)/\operatorname{Fin}*\mathbb{M}_{\mathcal{U}_{gen}}$ where \mathcal{U}_{gen} is the generic filter added by $\mathcal{P}(\omega)/\operatorname{Fin}$.

Zad. 5 Prove that finite support (infinite) iterations of non-trivial forcing notions add Cohen reals.

Zad. 6 Prove that full support (infinite) iterations of non-trivial forcing notions are not ccc.

Zad. 7 Let $\mathbb{P}_{\omega} = \langle \mathbb{P}_n, \dot{\mathbb{Q}}_n : n \in \omega \rangle$ be the finite support iteration of non-c.c.c forcings (i.e. $1_{\mathbb{P}_n} \Vdash "\dot{Q}_n$ is not c.c.c."). Prove that \mathbb{P}_{ω} collapses ω_1 .

Zad. 8 Let $\mathbb{P}_{\omega_1} = \langle \mathbb{P}_{\alpha}, \hat{\mathbb{Q}}_{\alpha} : \alpha < \omega_1 \rangle$ be the countable support iteration of non-trivial forcings. Prove that $1_{\mathbb{P}_{\omega_1}} \Vdash \text{``CH''}$. (extra) Prove that $1_{\mathbb{P}_{\omega_1}} \Vdash \text{``} \Diamond \text{''}$.