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TADEUSZ NADZIEJA (Wroctaw)

Indywidualne Twierdzenie Ergodyczne
z topologicznego punktu widzenia

Celem artykulu jest spojrzenie na topologiczne aspekty Indywidualnego
Twierdzenia Ergodycznego. Twierdzenie to méwi, ze jesli $ jest przeksztat-
ceniem przestrzeni probabilistycznej (X, =, u) zachowujgcym miare p @ f €
Li(X), to zbidr Q(P, f) tych elementow x € X, dla ktérych cigg Srednich
czasowych Sy f(z) = —11\721\]:51 (®%(zx)) jest zbieiny, gdy N — oo, ma
miare 1. Przez &' oznaczyliSmy i-krotne zlozenie przeksztalcenia . Zacho-
wywanie miary p przez odwzorowanie @ oznacza, ze u(A) = p(~1(A4)) dla
kazdego A € =.

Jedli zalozymy dodatkowo, ze X jest przestrzenia metryczna, & prze-
ksztalceniem ciaglym tej przestrzeni w siebie, a f funkcja ciagla, to natu-
ralne jest pytanie o to, jak duzy jest zbiér Q(&®, f) z topologicznego punktu
widzenia.

Chcemy zwrdcié uwage na interesujacy kontrast miedzy miarowym i to-
pologicznym aspektem zagadnienia. Z jednej strony prawie wszystkie wa-
runki poczatkowe prowadza do zbieznych §rednich czasowych, a z drugiej
strony typowe — z punktu widzenia topologii — warunki poczatkowe moga
dawaé, w pewnym sensie, maksymalnie rozbiezne $rednie.

Poczatki problemu istnienia granic $rednich czasowych siegaja polowy
XIX wieku.

Z twierdzenia Liouville’a [Sz] wynika, ze potoki generowane ukladami
hamiltonowskimi majs miare niezmiennicza. W pracy [B] z 1868 roku L.
Boltzmann podat fizyczng interpretacje tej miary. Mozna uznaé, ze byl to
rok narodzin teorii ergodycznej. Uzywajac wspélczesnej terminologii pro-
blem rozpatrywany w tej pracy mozna przedstawié nastepujaco.

Dany jest uklad n jednakowych czastek materialnych modelujacych gaz
zawarty w naczyniu V C R3. Dla uproszczenia zakladamy, ze oddzialy-
Wujg one miedzy sobg tylko w momencie zderzenia (wymieniaja sie pred-
ko$ciami) i odbijaja sie sprezyscie od Scianek naczynia. Uklad ten jest de-
terministyczny, tzn. zadanie polozen ¢ = (q1,...,4q,), ¢ € R3, i predkosci
v = (v1,...,9,), v; € R3, wszystkich czastek w chwili ¢ = 0 wyznacza
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jednoznacznie cala ewolucje ukladu, czyli polozenia ¢(t) i predkosci v(t) w
dowolnej chwili t € R. Przestrzenia fazowa jest zbiér polozen, czyli pewien
podzbiér V™, pomnozony po kartezjaisku przez przestrzen predkoéci R3".
Ewolucja ukladu zadana jest grupa {y:} przeksztalcen mierzalnych prze-
strzeni fazowej w siebie, ¢:(q,v) = (¢(t),v(¢)).

Zadanie predkosci poczatkowych ustala energie catkowita uktadu, ktéra
wobec zalozenia o braku oddzialywan miedzy czasteczkami, redukuje sig
do energii kinetycznej E = } Y"1 | vZ (przyjeliémy, ze masy czastek réwne
s 1). Energia F jest zachowywana w czasie. Je§li warunek poczatkowy (g, v)
lezal na hiperpowierzchni Y'g, w przestrzeni fazowej wyznaczonej réwnoscia
E = Ey, to ¢4(q,v) nalezy do tej hiperpowierzchni dla kazdej chwili ¢. Potok
{¢+} zachowuje miare Lebesgue’a m na Yg,, tzn. m(A4) = m(p:(A)) dla
kazdego zbioru borelowskiego A C X, i kazdej chwili ¢. Istotne jest tez dla
dalszych rozwazan, ze m(Xg,) < oco. Dalej bedziemy zawsze zakladaé, ze
wszystkie miary sa unormowane.

Boltzmann we wspomnianej pracy podal nastepujaca fizyczng interpre-
tacje miary m: Srednt czas przebywania trajektorii prawie kazdego punktu
z = (q,v) € X'g, w zbiorze A C Xg, jest rdwny mierze tego zbioru.

Interpretacja ta prowadzi do tego co dzisiaj nazywamy hipotezg ergo-
dyczng : Jesli A jest podzbiorem borelowskim Xg,, to dla prawie kazdego
punktu T € X, mamy m(A) = imr_, 4o * fOT xA(ps(z)) ds, gdzie x4 jest
funkcjg charakterystyczng zbioru A.

Na przetomie wieku hipoteza ta byla przedmiotem zainteresowania wielu
matematykéw i fizykéw. Znane sa rézne, nie zawsze réwnowazne, jej sformu-
lowania. Obecny stan badan nad nig przedstawiony jest w [S], [S-S]. Historia
idei Boltzmanna i ich wplywu na rozwdéj teorii ergodycznej i, ogélniej, teorii
prawdopodobienistwa opisana jest w [P].

A priori nie jest jasue, czy granica $érednich czasowych Sp(z) :=
%foT Xa(ps(z) ds istnieje, a jesli tak, to czy jest réwna m(A) dla prawie
wszystkich z. Argumenty uzyte przez Boltzmanna odwolywaly sie do fi-
zycznych intuicji. W temperaturze pokojowej czastki gazu poruszaja sie z
predkoscig okoto 500 metréw na sekunde i w kazdej sekundzie w 1 cm?® na-
stepuje okoto 1027 zderzen. Trajektoria naszego ukladu przebiega bardzo
szybko po calej hiperpowierzchni stalej energii i rozlozona jest na niej réw-
nomiernie. Wydaje si¢ zatem sensownym zalozenie, ze czas przebywania w
zbiorze A C Y'g, jest réwny mierze tego zbioru.

Matematyczny dowéd istnienia granic Srednich czasowych podal w la-
tach 30-tych G. Birkhoff. W kilka lat pézniej E. Hopf i A. Chinczyn udo-
wodnili, Ze w miejsce funkcji charakterystycznej zbioru A mozna podstawié
dowolng funkcje calkowalng i otrzymana w ten spos6b $rednia réwniez be-
dzie zbiezna. Wykazali w ten sposéb, dla potokéw zachowujacych miare
nastepujace twierdzenie
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INDYWIDUALNE TWIERDZENIE ERGODYCZNE. Zatdzmy, ze (X, =, u) jest
przestrzeniq probabilistyczng i {p} potokiem na X zachowujgcym miare p,
tzn. u(A) = p(pi(A)) dla kazdego zbioru mierzalnego A i kazdego t € R.
Wtedy dla kazdej funkcji f € L1(X) istnieje limp_, 4o %— fOT fpe(z))dt =:
fX(z) dla p-prawie wszystkich x € X. Ponadto f*op, = f* i [\ f = [, f*.

Przypomnijmy, ze miare niezmiennicza nazywamy ergodyczng wzgledem
grupy przeksztalcen {y;}, jeSli jedynymi mierzalnymi zbiorami niezmienni-
czymi (tzn. takimi, ze A = ¢;(A) dla kazdego t) sa zbiory miary pelnej
i zerowej. Z powyzszego twierdzenia wynika, ze hipoteza ergodyczna jest
w istocie pytaniem o ergodyczno§é miary Lebesgue’a. JeSli bowiem A jest
zbiorem niezmienniczym, to x4 (z) =1dlaz e Aixj(z) =0dlaz ¢ A, a
wiec jedynymi zbiorami niezmienniczymi sa zbiory miary 0 lub miary pei-
nej. Je$li m jest miarg ergodyczna, to jedynymi funkcjami niezmienniczymi
sg funkcje stale, a wige x% = const = | 5, Xa = m(A). Hipotezg ergodyczny
Boltzmanna mozna wiec sformulowaé nastepujaco: miara Lebesgue’a m na
Yk, jest miarg ergodyczng.

Ruch n czastek w naczyniu jest przyktadem procesu deterministycznego,
ale nieprzewidywalnego lub, jak to ujal J. C. Maxwell, deterministycznego
w teorii, ale niedeterministycznego w praktyce. Wynika to nie tylko z tego,
ze przestrzen fazowa ma bardzo duzy wymiar, ale réwniez z faktu, ze male
zmiany warunkéw poczatkowych powoduja w krétkim czasie duze zmiany w
przebiegu trajektorii.

Jednym z najwigkszych sukceséw teorii ukladéw dynamicznych w ostat-
nim éwieréwieczu bylo odkrycie i zbadanie potokéw i dyfeomorfizméw okre-
Slonych na przestrzeniach fazowych niskiego wymiaru, ktérych przebieg tra-
Jektorii jest bardzo czuly na warunki poczatkowe.

Pionierskg byla praca E. Lorenza [L}, w ktérej podal on przyktad uktadu
réwnain rézniczkowych w R3 posiadajacego te ceche. Uklad ten modelowal
przebieg proceséw atmosferycznych i jego duza niestabilno$é wzgledem wa-
runkéw poczatkowych wyjasniala problemy zwiazane z postawieniem wia-
rygodnej krétkoterminowej prognozy pogody. W ostatnich latach pojawilo
sig¢ wiele prac po$wieconych uktadom dynamicznym (potoki, dyfeomorfizmy)
charakteryzujacych sie podobng cecha co model Lorenza.

Matematyczne modele proceséw deterministycznych zbudowane sg na
0g0}! wedlug nastepujacego schematu. Dana jest przestrzer fazowa X (roz-
maitosé, przestrzen metryczna), bedaca zbiorem parametréw charakteryzu-
Jacych proces fizyczny, nastepnie potok fazowy {y:} na X opisujacy jego
ewolucje i funkcja rzeczywista f na X. Funkcje f mozna interpretowaé jako
pewna mierzalng fizycznie wielkosé, zatem f(p¢(z)) jest wartoicia pomiaru
w chwili ¢ procesu, ktéry w chwili ¢ = 0 by} w stanie x. Zalézmy, ze przebieg
zjawiska jest czuly na warunki poczatkowe (nieprzewidywalny). Znaczy to,
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ze mala zmiana warunku poczatkowego z powoduje duze zmiany, w krét-
kim czasie, przebiegu trajektorii w;(z) a wigc i wynikéw pomiaréw f(¢¢(z)).
Niedokladnoéé pomiaru powoduje, ze nie odrézniamy dostatecznie bliskich
stanéw poczatkowych z, Z. Natomiast po chwili, w zaleznosci od tego czy
proces zaczynal sie w ¢ czy Z, otrzymujemy istotnie rézne wyniki pomiaru.
Sprawia to wrazenie, ze mamy do czynienia z procesem niedeterministycz-
nym.

Wiele zjawisk w przyrodzie charakteryzuje si¢ opisana wyzej niestabilno-
écig i trudno w trakcie ich przebiegu przewidywaé wyniki pomiaréw. Wydaje
si¢ jednak, ze $rednia warto$¢ pomiaru % fOT f(o:i(z)) dt dazy do pewnej
granicy f*(z) gdy T — oo. Odwzorowanie przyporzadkowujace funkcji cig-
glej f liczbe f*(z) definiuje ciagly funkcjonal liniowy na C°(X,R), a wigc
pewna miare p, taka, ze f*(x) = [y f(y)pz(dy). Spodziewamy si¢ wiec,
ze dla kazdego punktu z € X istnieje mlara Le taka, ze dla kazdej funk-
cji ciaglej f, [y fF(W)ua(dy) = lim7 00 7 fo f(pe(z)) dt. Miara ta opisuje
prawdopodobienistwo znalezienia ¢;(z) dla duzych t w réznych obszarach
przestrzeni fazowej. Przy zalozeniu prawdziwosci hipotezy ergodycznej, tak
jest w opisanym modelu Boltzmanna, yu, = m dla prawie wszystkich z w
sensie miary Lebesgue’a m. Srednia warto§é pomiaru % fOT flo(z)) dt dazy
do f*(z) = [g, [f(y)m(dy) dla m-p.w. z.

Sadzimy, ze tak tez jest w modelu Lorenza, tzn. istnieje miara p taka, ze
dla kaz'dej funkcji ciaglej f i dla p.w. z (w sensie miary 4 i miary Lebesgue’a)
F fo (pe(z)) dt — [gs f(y)1(dy) gdy T — oo. Wskazuja na to pewne re-
zultaty matematyczne [Bu], jak tez tzw. zdrowy rozsadek. Podpowiada on,
ze np. nie mozemy przewidzie¢ z doktadnoscia do 1 stopnia temperatury we
Wroctawiu w konkretnym dniu, znajac rozklad temperatur w catej Europie
dwa dni wczesniej. Mozemy jednak przewidziec, jaka bedzie érednia tempe-
ratura dziesieciolecia z dokladnoscia do 0,1 stopnia i $rednia ta nie zalezy
od tego jaki byl rozklad temperatur w dniu rozpoczecia pomiaréw.

Zajmijmy sie teraz ,uSrednieniem” wynikéw pomiaréw z miarowego i
topologicznego punktu widzenia. Czasami wygodniej jest zamiast potokéw
rozwazaé iteracje przeksztalcen ciaglych. Wszystkie wyniki latwo jednak
przenie§é na przypadek ciagglych potokdw.

Zalézmy, ze X jest zwarty przestrzenia metryczna, @ przeksztalceniem
cigglym przestrzeni X w siebie, a f ciaggla funkcja rzeczywista na X. Wszyst-
kie miary na X, jakie bedziemy rozwazaé beda unormowanymi miarami bo-
relowskimi. WprowadZmy oznaczenie Q(®, f) := {z € X: ciag Sy f(z) =
e SV F(@(2)) jest zbiezny}. Oczywiscie

a@.n=NU N {o:188/@ - Sus@) < 3},

kEN!leN N,M>l1
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skad natychmiast wynika, ze Q(®, f) jest zbiorem borelowskim. Jesli & za-
chowuje miare p, to z Indywidualnego Twierdzenia Ergodycznego wynika,
ze p(Q(P, f)) = 1.

Interesowaé nas bedzie to, jak duzy jest zbiér Q(®) := ({Q(S,f): f €
C%X,R)} tj. zbiér tych z € X, dla ktérych ciagg {Sn f(z)} jest zbiezny dla
kazdej funkcji ciaglej f. Zbiér Q(P) mozna tez zdefiniowaé jako zbidr tych
z € X, dla ktérych cigg miar 8y(z) := & év_l 6(®%(z)) jest zbieiny w
stabej topologii. Przez §(y) oznaczyliémy miare skupiong w punkcie y.

Punkt z € Q(®) bedziemy nazywaé punktem statystycznie reqularnym.
Zauwazmy, ze jesli {f,} jest ciagiem gestym w C°(X,R) (z topologia zbiez-
noéci jednostajnej), to Q(P) = ey Q(P, frn). Wynika stad, ze Q(P) jest
zbiorem borelowskim i dla dowolnej miary niezmienniczej p wzgledem prze-
ksztalcenia @ jest przeliczalnym przekrojem zbioréw miary pelnej, a wiec i
on sam jest zbiorem takiej miary. Mozna wiec powiedziec, ze z punktu widze-
nia miar niezmienniczych zbiér punktéw statystycznie regularnych jest zbio-
rem duzym. Pokazemy, ze w pewnych sytuacjach zbidér ten jest I-kategorii,
a wiec maly z topologicznego punktu widzenia.

TWIERDZENIE 1 [D-G-S]. Jesli istnieje punkt x ¢ Q(P), ktdrego pditra-
jektoria dodatnia {P*(z) : i > 0} jest gesta w X, to Q(P) jest I-kategorii.

Dowdd. Z zalozenia wynika istnienie funkcji cigglej f oraz liczb a i b
takich, ze limy_,  Snf(z) < a < b < imy 0o Sn f(z). Zdefiniujmy zbi6r

E:{yEX lim SNf(y)<a<b<NHn_ SNf(y)}
N-—-oco

= N U{reX:Smuf) <ou () Uty € X+ Surifw) > b}

n>0:>0 n>03>0

Zbiory Uso{y € X : Sntif(y) < a} 1 Ujsoly € X+ Sny;f(y) > b} sa
otwarte 1 geste bo zawierajg trajektorie punktu z. Wynika stad, ze F jest

zbiorem gestym typu Gs a wigc X \ E jest I-kategorii, ale Q(®) ¢ X \ E, i
tym samym Q(®P) jest I-kategorii.

Pozostaje podaé przyklad spelniajacy warunki Twierdzenia 1.

Przyktad 1. Przestrzemq 12 bedzie zbidr wszystkich ciagéw {a,} 13,
zero-jedynkowych a,n = 0,1. Metryka na {2 okre§lona jest nastepujaco
d({an},{b}) = Zz—() “"|ay, — by|. Odwzorowanie ciagle o dziala na ciag
{ar} przesuwajac go o jedno miejsce w lewo, tzn. (¢({an})); = a41. Skon-
struujemy element Z € §2 nie bedacy punktem statystycznie regularnym,
ktérego péttrajektoria dodatnia jest gesta w £2.

Zbiér wszystkich skonczonych ciaggéw zer i jedynek jest zbiorem przeli-
czalnym. Ustawmy go w ciag {z1,Z2,T3,...}. Szukany element Z = {a,}
mozna wybraé w postaci

(z111...112200...00z311...112400...00z511...).
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Na poczatku kladziemy ciag z1, a za nim tyle jedynek, aby $rednia arytme-
tyczna tych wszystkich wyrazéw byla wigksza od 3/4. Nastepnie kladziemy
ciag T, a za nim tyle zer, aby érednia arytmetyczna elementéw z;, o oraz
wstawionych zer i jedynek byla mniejsza od 1/4 itd. Latwo zauwazy¢, ze
jeéli funkcja f zdefiniowana jest wzorem f({an}) = ao, to Z nie nalezy do
Q(o, f). Z konstrukcji Z wynika, ze jego péitrajektoria dodatnia jest gesta,
a tym samym spelnione sg zalozenia Twierdzenia 1.

Przyktad 1 jest dosyé prosty, ale wydaé si¢ moze nieco egzotyczny i od-
legty od uktadéw pojawiajacych si¢ w zastosowaniach. Dlatego warto podaé
przyklad nastepny, oparty w istocie na tym samym pomysle, ale blizszy
ukltadom opisujacym realne zjawiska.

Przykltad 2. ATRAKTOR SMALE’A. Zacznijmy od zbadania zbioru
punktéw statystycznie regularnych dwukrotnego nawiniecia okregu jednost-
kowego S! na siebie, t.j. odwzorowania zadanego wzorem p(e™'®) = e*mix,
Wprowadsmy oznaczenia Iy := {€?™* : 0 < a < 1/2}, I; :
1/2 < a < 1}, 8* := {e¥™ : o # k/2"}. Kazdemu elementowi z € S*
mozna w jednoznaczny sposéb przyporzadkowaé element h(z) € (2, kladac
(M(z2))n = i, je§li ¢™(2) € I;. Odwzorowanie h jest homeomorfizmem S! na
2 = 02\ (2 U ), gdzie 2; := {{an} € 2 : a, = i dla dostatecznie
duzych n}. Nietrudno tez wykazaé, ze h sprzega odwzorowania o i ¢, tzn.
h oy = oo h. Wynika stad, ze h~1(Z) spelnia zalozenia Twierdzenia 1, a
wiec Q(¢p) jest zbiorem I-kategorii. Jego miara Lebesgue’a jest réwna 1, bo
© jest przeksztalceniem zachowujgcym t¢ miare.

Wykorzystujac odwzorowanie ¢ skonstruujemy przyktad odwzorowania
réznowartosciowego ¥ podzbioru otwartego Y C R? w siebie, ktérego zbiér
punktéw statystycznie regularnych bedzie zbiorem I-kategorii, miary Lebes-
gue’a pelnej. Istotne jest, ze w przeciwienistwie do odwzorowania ¢, ¥ miary
tej nie zachowuje, a wiec nie mozna powolaé si¢ wprost na Twierdzenie Er-
godyczne.

Zbiér Y jest produktem okregu S? i dysku dwuwymiarowego D%, Odwzo-
rowanie ¥ zadane jest wzorem ¥ (e z,y) = (¢(e*™*®),z/10 + (cos ) /2,
y/10+(sin @)/2). Sens geometryczny, odzorowania ¥ jest jasny, na S* dziala
jako dwukrotne nawiniecie okregu na siebie, a na D? jak podobienstwo
ze wspélczynnikiem 1/10. Zbidr 4 = ;5 ¥Y(Y) nazywamy atraktorem
Smale’a. Jest to zbiér niezmienniczy o skomplikowanej strukturze topolo-
gicznej. Lokalnie jest to produkt zbioru Cantora i odcinka [K-H]. Péltra-
jektoria dodatnia ¥™(p) kazdego punktu p € Y dazy do A gdy n — oc.
Zauwazmy, ze to czy punkt p € Y jest statystycznie regularny zalezy tylko
od jego wspolrzednej a, na ktérej dziala odwzorowanie . Wynika stad, ze
Q(¥) = Q(yp) x D?, a wiec Q(¥) jest I-kategorii, miary Lebesgue’a pelnej.

— {621”204 .



Twierdzenie Ergodyczne 33

W ostatnim przykladzie zbiér tych p € Y dla ktérych cigg miar {6n(p)}
jest rozbiezny w slabej topologii jest zbiorem rezydualnym (dopelnieniem
zbioru I-kategorii). Naturalne jest pytanie, jak bardzo rozbiezne s3 te ciagi,
tzn. jak duzy jest ich zbiér punktéw skupienia. Mozna wykazaé [D-G-§],
ze punkty p € Y, dla ktérych zbiér punktéw skupienia ciagu {6n(p)} jest
zbiorem wszystkich miar niezmienniczych, tworza zbiér rezydualny. Wynika
stad, ze z topologicznego punktu widzenia, prawie wszystkie punkty daja
maksymalnie rozbiezne $rednie czasowe.

Atraktor Smale’a jest przykladem atraktora hiperbolicznego i wszystkie
wtasnosci zbioru Q(¥) udowodnione powyzej uogélniaja si¢ na wspomniang
klase atraktoréw [R], [B-R], [D-G-S].

Przejdziemy teraz do ukladu réwnan rézniczkowych, dla ktérych zbiér
punktéw statystycznie regularnych ma miare Lebesgue’a 0. Uklad o tej wla-
snosci znany byl od wielu lat i nalezal do tzw. folkloru matematycznego.
Dowiedzialem si¢ o nim od F. Takensa, ktéry przypisuje go R. Bowenowi
[T]. Wydaje sig, ze znany byl tez od dawna C. Zeemanowi [G].

Przyktad 3. ATRAKTOR HETEROKLINICZNY. Przyklad ten zostal za-
czerpniety z teorii gier i zwigzany jest z modelami genetyki populacyjnej
[H-5), [G].

Zal6zmy, ze w danej populacji kazdy z osobnikéw stosuje jedna z trzech
mozliwych strategii zachowania (walki). Przez analogie do popularnej gry
»kamien, nozyczki, papier’, pierwsza strategie oznaczmy K, druga N, a trze-
cig P. Jak we wspomnianej grze, K wygrywa z N, Nz Pi P z K a spotkanie
dwdéch osobnikéw stosujgcych ta sama strategie konczy sie remisem. Zakla-
damy, ze nagroda za sukces réwna jest 1, porazka kosztuje —1, a remis nie
przynosi zadnych zyskéw ani strat. Macierz tej gry ma postaé

0 1 -1
A=1-1 0 1
1 -1 0

Oznaczmy przez z;(t) stosunek ilosci osobnikéw stosujacych i-ta strategie
do wielko$ci calej populacji. Zakladamy, ze predko§é wzrostu i-tej frakcji
z;(t) do z;(t) réwna jest éredniej wyplacie dla osobnika stosujacego i-ta
strategie (Az); minus érednia wyptata dla osobnika w calej populacji z Az,
czyli o /z; = (Az); — zAz. Otrzymujemy stad uklad réwnan rézniczkowych

(1) z, = 1;((Az); — zAz), i=1,2,3

opisujacy ewolucje frakcji z;. Poniewaz z1(t) + z2(t) + z3(t) = 1, to cala
ewolucja ukladu przebiega na sympleksie S = {z = (z1,22,23) € R? :
T1 + T3 + 23 = 1}, ktory jest przestrzenia fazows naszego procesu. Brzeg
sympleksu S jest zbiorem niezmienniczym ztozonym z trzech punktéw sta-
cjonarnych p; = (1,0,0) py = (0, 1,0) ps = (0,0, 1) bedacych wierz-
chotkami S oraz trzech orbit laczacych te wierzchotki. Uktad (1) ma calke
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pierwsza z1z223 = C. Latwo stad wywnioskowac, ze wszystkie orbity le-
zace wewnatrz S, z wyjatkiem punktu stacjonarnego p = (1/3,1/3,1/3), sa
okresowe. Portret fazowy uktadu (1) przedstawiony jest na rysunku 1.

Rys. 1

Latwo wykazaé, ze dla warunkéw poczatkowych nie lezacych na brzegu
S érednia frakcja osobnikéw stosujacych i-ta strategie jest réwna 1/3. Za-
16zmy bowiem, ze z(t) = (z1(t), z2(t), z3(t)) jest rozwigzaniem okresowym
o okresie L. Przepiszmy réwnanie (1) w postaci
(2) (Inz;(t))’ = (Az); —zAz i=1,2,3.

Calkujac (2) po przedziale [0, L] dostajemy uklad réwnan dla Srednich cza-
sowych 1 fOL z;(t) dt, z ktérego wynika, ze kazda z nich jest réwna 1/3. W
konsekwencji otrzymujemy, ze limp_, o -11—, foT z;(s)ds =1/3.

Zmodyfikujmy opisang gre. Zalézmy, ze premia za zwycigstwo w grze jest
réwna 1 — g, a przegrana, tak jak poprzednio kosztuje —1. Macierz nowej
gry ma postaé

0 1-¢ -1
A, = -1 0 1-¢],
1-¢ -1 0
gdzie ¢ jest dowolng liczbg dodatnig mniejsza od 1. Dynamika na S opisana
jest teraz ukladem réwnan rézniczkowych

(3) z; = z;((Aez); — zA.z), 1=1,2,3.

Mozna wykazaé [G], ze portret fazowy réwnania (3) ma postaé przedsta-
wiong na rysunku 2.

Podobnie jak w ukladzie (2), brzeg sympleksu S sklada sie z trzech punk-
téw stacjonarnych i trzech trajektorii laczacych te punkty. Réznica polega
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Rys. 2

na tym, ze brzeg ten stal sie zbiorem przyciagajacym (atraktorem hetero-
klinicznym). Orbita z(t) kazdego punktu z wnetrza S, z wyjatkiem punktu
stacjonarnego p, dazy do brzegu S, gdy t — oo, a tym samym przebiega
coraz blizej punktéw stacjonarnych p;. Czas pobytu trajektorii w malych
otoczeniach punktéw p; roénie wraz z t wykladniczo [G], a czas przejicia
od jednego takiego otoczenia do nastepnego zmienia si¢ bardzo nieznacz-
nie. Powoduje to, ze bliskie orbity moga opuszczaé otoczenie p; w réznych,
dalekich od siebie momentach czasu. Uklad jest tym samym nieprzewidy-
walny. Precyzyjnie mozna to wyrazi¢ badajac oscylacje $rednich czasowych
—}- fOT z(t) dt. Srednie te sg rozbiezne, a ich zbiér skupienia tworzy pewien
tréjkat zawarty w S [G]. Nie istnieje wiec miara okreslajaca dla duzych ¢
prawdopodobienstwo znalezienia si¢ orbity z(¢) w danym podzbiorze S.

Zbiér punktéw statystycznie regularnych sklada sie z punktu stacjonar-
nego p i brzegu sympleksu. Jest wiec maly z topologicznego punktu widzenia,
a jego miara Lebesgue’a jest 0.

Istnieje zasadnicza réznica miedzy przykladem 2 i 3. Ten pierwszy jest
stabilny. Mate C! zaburzenie ¥ przeksztalcenia ¥ rozcigga Y w kierunku
zmiennej « i $ciska w kierunku transwersalnym do niego. Nietrudno stad
wywnioskowaé [N-S], ze zbiory Q(¥) i Q(¥) maja te same topologiczne i
miarowe wlasnosci.

Uklad (3) nie jest C'-stabilny. Malymi C! zaburzeniami mozemy ,,znisz-
czy¢” orbity laczace punkty stacjonarne p;, p;41. Jesli ograniczymy sie jed-
nak do zaburzer specjalnego typu, to moze okazaé sie, ze uktad (3) bedzie
wzgledem nich stabilny [G], [G-H]. Wlasno$é ta oraz fakt, ze uklady tego
typu pojawiaja si¢ w zastosowaniach sprawia, ze s3 one intensywnie badane

[G], [H-S], [Si].
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Badajac zbiér punktéw statystycznie regularnych dyfeomorfizméw zwar-
tej rozmaitoéci Riemanna M pojawia si¢ w naturalny sposéb nastgpujace
pytanie.

PROBLEM. Tensor metryczny zadaje na M forme objetosci a tym samym
miare, ktéra mozemy nazwaé miara Lebesgue’a. Oznaczmy przez Diff(M)
zbiér wszystkich dyfeomorfizméw M z C! topologia. Czy zbiér dyfeomorfi-
zméw &, dla ktérych Q(P) ma miare Lebesgue’a pelna, jest zbiorem rezy-
dualnym w Diff(M)?
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