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Indywidualne Twierdzenie Ergodyczne 
z topologicznego punktu widzenia

Celem artykułu jest spojrzenie na topologiczne aspekty Indywidualnego 
Twierdzenia Ergodycznego. Twierdzenie to mówi, że jeśli $  jest przekształ­
ceniem przestrzeni probabilistycznej (X , S, p) zachowującym miarę p i f  G 
Li(X),  to zbiór Q(<P,f) tych elementów x 6 X , dla których ciąg średnich
czasowych Sn J{x) := ^  S i ł o 1 f i ^ ( x )) Jesi zbieżny, gdy N —► oo, ma 
miarę 1. Przez oznaczyliśmy i-krotne złożenie przekształcenia^. Zacho­
wywanie miary p przez odwzorowanie $  oznacza, że p(A) =  p(Ś> *(.4)) dla 
każdego A £ S.

Jeśli założymy dodatkowo, że X  jest przestrzenią metryczną, $  prze­
kształceniem ciągłym tej przestrzeni w siebie, a /  funkcją ciągłą, to natu­
ralne jest pytanie o to, jak duży jest zbiór Q{$, f )  z topologicznego punktu 
widzenia.

Chcemy zwrócić uwagę na interesujący kontrast między miarowym i to­
pologicznym aspektem zagadnienia. Z jednej strony prawie wszystkie wa­
runki początkowe prowadzą do zbieżnych średnich czasowych, a z drugiej 
strony typowe — z punktu widzenia topologii — warunki początkowe mogą 
dawać, w pewnym sensie, maksymalnie rozbieżne średnie.

Początki problemu istnienia granic średnich czasowych sięgają połowy 
XIX wieku.

Z twierdzenia Liouville’a [Sz] wynika, że potoki generowane układami 
hamiltonowskimi mają miarę niezmienniczą. W pracy [B] z 1868 roku L. 
Boltzmann podał fizyczną interpretację tej miary. Można uznać, że był to 
rok narodzin teorii ergodycznej. Używając współczesnej terminologii pro­
blem rozpatrywany w tej pracy można przedstawić następująco.

Dany jest układ n jednakowych cząstek materialnych modelujących gaz 
zawarty w naczyniu V C M3, Dla uproszczenia zakładamy, że oddziały- 
wują one między sobą tylko w momencie zderzenia (wymieniają sie pręd­
kościami) i odbijają się sprężyście od ścianek naczynia. Układ ten jest de­
terministyczny, tzn. zadanie położeń q =  (91, . . . ,  ęn), Qi € M3, i prędkości 
v =  (vi V i  £ M3, wszystkich cząstek w chwili t =  0 wyznacza
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jednoznacznie całą ewolucję układu, czyli położenia q(t) i prędkości v(t) w 
dowolnej chwili t G I .  Przestrzenią fazową jest zbiór położeń, czyli pewien 
podzbiór Vn, pomnożony po kartezjańsku przez przestrzeń prędkości M3". 
Ewolucja układu zadana jest grupą {<£>*} przekształceń mierzalnych prze­
strzeni fazowej w siebie, ipt(Qiv) =  (q(t),v(t)).

Zadanie prędkości początkowych ustala energię całkowitą układu, która 
wobec założenia o braku oddziaływań między cząsteczkami, redukuje się 
do energii kinetycznej E  =  \ i vi (przyjęliśmy, że masy cząstek równe 
są 1). Energia E  jest zachowywana w czasie. Jeśli warunek początkowy (q, v) 
leżał na hiperpowierzchni E e 0 w przestrzeni fazowej wyznaczonej równością 
E =  E0, to <pt(q, v) należy do tej hiperpowierzchni dla każdej chwili t. Potok 
{ipt} zachowuje miarę Lebesgue’a m na E e0, tzn. m{A) =  m((pt(A)) dla 
każdego zbioru borelowskiego A C Eeq i każdej chwili t. Istotne jest też dla 
dalszych rozważań, że m(EE0) < oo. Dalej będziemy zawsze zakładać, że 
wszystkie miary są unormowane.

Boltzmann we wspomnianej pracy podał następującą fizyczną interpre­
tację miary m: średni czas przebywania trajektorii prawie każdego punktu 
x  =  (q,v) G E e0 w zbiorze A  C E e0 jest równy mierze tego zbioru.

Interpretacja ta prowadzi do tego co dzisiaj nazywamy hipotezą ergo- 
dyczną : Jeśli A jest podzbiorem borelowskim Ee0 , to dla prawie każdego
punktu x  G EEo mamy m(A) =  limx-++oo ^  f 0 X a ( (P s ( % ) )  ds, gdzie x a  jest 
funkcją charakterystyczną zbioru A.

Na przełomie wieku hipoteza ta była przedmiotem zainteresowania wielu 
matematyków i fizyków. Znane są różne, nie zawsze równoważne, jej sformu­
łowania. Obecny stan badań nad nią przedstawiony jest w [S], [S-S]. Historia 
idei Boltzmanna i ich wpływu na rozwój teorii ergodycznej i, ogólniej, teorii 
prawdopodobieństwa opisana jest w [P].

A priori nie jest jasne, czy granica średnich czasowych S t (x ) :=
T Jo X a ( <P s ( x ) ds istnieje, a jeśli tak, to czy jest równa m(A) dla prawie 
wszystkich x. Argumenty użyte przez Boltzmanna odwoływały się do fi­
zycznych intuicji. W temperaturze pokojowej cząstki gazu poruszają się z 
prędkością około 500 metrów na sekundę i w każdej sekundzie w 1 cm3 na­
stępuje około 1027 zderzeń. Trajektoria naszego układu przebiega bardzo 
szybko po całej hiperpowierzchni stałej energii i rozłożona jest na niej rów­
nomiernie. Wydaje się zatem sensownym założenie, że czas przebywania w 
zbiorze A C E e0 jest równy mierze tego zbioru.

Matematyczny dowód istnienia granic średnich czasowych podał w la­
tach 30-tych G. Birkhoff. W kilka lat później E. Hopf i A. Chinczyn udo­
wodnili, że w miejsce funkcji charakterystycznej zbioru A można podstawić 
dowolną funkcję całkowalną i otrzymana w ten sposób średnia również bę­
dzie zbieżna. Wykazali w ten sposób, dla potoków zachowujących miarę 
następujące twierdzenie
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I n d y w i d u a l n e  T w i e r d z e n i e  E r g o d y c z n e . Załóżmy, że (X, S, p) jest 
przestrzenią probabilistyczną i {y>t} potokiem na X  zachowującym miarę p,
tzn. p(A) =  p((pt(A)) dla każdego zbioru mierzalnego A i każdego f 6 1 .T
Wtedy dla każdej funkcji f  E L\(X) istnieje limy^+oo ^ lo f{<Pt(x))dt =: 
f*(x) dla p-prawie wszystkich x E X . Ponadto f*  °(pt =  f* i Jx  f  =  Jx  /*•

Przypomnijmy, że miarę niezmienniczą nazywamy ergodyczną względem 
grupy przekształceń {<pt}, jeśli jedynymi mierzalnymi zbiorami niezmienni­
czymi (tzn. takimi, że A =  tpt(A) dla każdego t) są zbiory miary pełnej 
i zerowej. Z powyższego twierdzenia wynika, że hipoteza ergodyczną jest 
w istocie pytaniem o ergodyczność miary Lebesgue’a. Jeśli bowiem A jest 
zbiorem niezmienniczym, to Xa (x ) =  1 dla x E A i x *a(x ) =  ® dla x £ A, & 
więc jedynymi zbiorami niezmienniczymi są zbiory miary 0 lub miary peł­
nej. Jeśli m jest miarą ergodyczną, to jedynymi funkcjami niezmienniczymi 
są funkcje stałe, a więc x *a ~  const =  JXa XA =  m(A). Hipotezę ergodyczną 
Boltzmanna można więc sformułować następująco: miara Lebesgue’a m na 
Xe0 jest miarą ergodyczną.

Ruch n cząstek w naczyniu jest przykładem procesu deterministycznego, 
ale nieprzewidywalnego lub, jak to ujął J. C. Maxwell, deterministycznego 
w teorii, ale niedeterministycznego w praktyce. Wynika to nie tylko z tego, 
że przestrzeń fazowa ma bardzo duży wymiar, ale również z faktu, że małe 
zmiany warunków początkowych powodują w krótkim czasie duże zmiany w 
przebiegu trajektorii.

Jednym z największych sukcesów teorii układów dynamicznych w ostat­
nim ćwierćwieczu było odkrycie i zbadanie potoków i dyfeomorfizmów okre­
ślonych na przestrzeniach fazowych niskiego wymiaru, których przebieg tra­
jektorii jest bardzo czuły na warunki początkowe.

Pionierską była praca E. Lorenza [L], w której podał on przykład układu 
równań różniczkowych w M3 posiadającego tę cechę. Układ ten modelował 
przebieg procesów atmosferycznych i jego duża niestabilność względem wa­
runków początkowych wyjaśniała problemy związane z postawieniem wia­
rygodnej krótkoterminowej prognozy pogody. W ostatnich latach pojawiło 
się wiele prac poświęconych układom dynamicznym (potoki, dyfeomorfizmy) 
charakteryzujących się podobną cechą co model Lorenza.

Matematyczne modele procesów deterministycznych zbudowane są na 
ogół według następującego schematu. Dana jest przestrzeń fazowa X  (roz­
maitość, przestrzeń metryczna), będąca zbiorem parametrów charakteryzu­
jących proces fizyczny, następnie potok fazowy {ipt} na X  opisujący jego 
ewolucję i funkcja rzeczywista /  na X.  Funkcję /  można interpretować jako 
pewną mierzalną fizycznie wielkość, zatem f((pt(x)) jest wartością pomiaru 
w chwili t procesu, który w chwili t =  0 był w stanie x. Załóżmy, że przebieg 
zjawiska jest czuły na warunki początkowe (nieprzewidywalny). Znaczy to,
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że mała zmiana warunku początkowego x  powoduje duże zmiany, w krót­
kim czasie, przebiegu trajektorii ipt{x) a więc i wyników pomiarów f(<pt(x)). 
Niedokładność pomiaru powoduje, że nie odróżniamy dostatecznie bliskich 
stanów początkowych x, x. Natomiast po chwili, w zależności od tego czy 
proces zaczynał sie w x  czy x, otrzymujemy istotnie różne wyniki pomiaru. 
Sprawia to wrażenie, że mamy do czynienia z procesem niedeterministycz- 
nym.

Wiele zjawisk w przyrodzie charakteryzuje się opisaną wyżej niestabilno­
ścią i trudno w trakcie ich przebiegu przewidywać wyniki pomiarów. Wydaje 
się jednak, że średnia wartość pomiaru ^ f 0 f((pt (x))dt dąży do pewnej 
granicy f*(x)  gdy T  —* oo. Odwzorowanie przyporządkowujące funkcji cią­
głej /  liczbę f* (x)  definiuje ciągły funkcjonał liniowy na C°(X,  K), a więc 
pewną miarę jix taką, że f*(x)  =  f x  f ( y ) y x(dy)- Spodziewamy się więc, 
że dla każdego punktu x G X  istnieje miara fix taka, że dla każdej funk­
cji ciągłej / ,  f x f(y)pix{dy) =  limT-oo  t  Jo f(<Pt(x ) ) dL Miara ta °PisuJe 
prawdopodobieństwo znalezienia ipt(x) dla dużych t w różnych obszarach 
przestrzeni fazowej. Przy założeniu prawdziwości hipotezy ergodycznej, tak 
jest w opisanym modelu Boltzmanna, fix =  m dla prawie wszystkich x  w 
sensie miary Lebesgue’a m. Średnia wartość pomiaru ^ f Q f((pt(x)) dt dąży 
do f*(x)  =  f g  f(y)m(dy)  dla m-p.w. x.

Sądzimy, że tak też jest w modelu Lorenza, tzn. istnieje miara fi taka, że 
dla każdej funkcji ciągłej /  i dla p.w. x  (w sensie miary y  i miary Lebesgue’a)
T Jo / M x )) dt - »  / r > f(y)y,(dy) gdy T  —̂ oo. Wskazują na to pewne re­
zultaty matematyczne [Bu], jak też tzw. zdrowy rozsądek. Podpowiada on, 
że np. nie możemy przewidzieć z dokładnością do 1 stopnia temperatury we 
Wrocławiu w konkretnym dniu, znając rozkład temperatur w całej Europie 
dwa dni wcześniej. Możemy jednak przewidzieć, jaka będzie średnia tempe­
ratura dziesięciolecia z dokładnością do 0,1 stopnia i średnia ta nie zależy 
od tego jaki był rozkład temperatur w dniu rozpoczęcia pomiarów.

Zajmijmy się teraz „uśrednieniem” wyników pomiarów z miarowego i 
topologicznego punktu widzenia. Czasami wygodniej jest zamiast potoków 
rozważać iteracje przekształceń ciągłych. Wszystkie wyniki łatwo jednak 
przenieść na przypadek ciągłych potoków.

Załóżmy, że X  jest zwartą przestrzenią metryczną, $  przekształceniem 
ciągłym przestrzeni X  w siebie, a /  ciągłą funkcją rzeczywistą na X.  Wszyst­
kie miary na X , jakie będziemy rozważać będą unormowanymi miarami bo- 
relowskimi. Wprowadźmy oznaczenie Q($, / )  := {x  € X:  ciąg :=

E i l ó 1 f ( ^ i(x)) jest zbieżny}. Oczywiście

«*,/)= nu n {x:isN/(z)-sM/(x)i<i},
k e N i e N  n ,m > i
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skąd natychmiast wynika, że Q{$>, f )  jest zbiorem borelowskim. Jeśli Ф za­
chowuje miarę (i, to z Indywidualnego Twierdzenia Ergodycznego wynika, 
że

Interesować nas będzie to, jak duży jest zbiór
tj. zbiór tych X G X j  dla których ciąg { 5 л г / ( ж ) }  jest zbieżny dla 

każdej funkcji ciągłej / .  Zbiór Q(<&) można też zdefiniować jako zbiór tych 
dla których ciąg miar sn (x ) := jjT ,o  10{Фг(х)) jest zbieżny w 

słabej topologii. Przez S(y) oznaczyliśmy miarę skupioną w punkcie y.
Punkt X G С}{Ф) będziemy nazywać punktem statystycznie regularnym. 

Zauważmy, że jeśli { / „ }  jest ciągiem gęstym w C°(X,  E) (z topologią zbież­
ności jednostajnej), to С̂ {Ф) =  fln€iv Q(&i fn )• Wynika stąd, że С}(Ф) jest 
zbiorem borelowskim i dla dowolnej miary niezmienniczej p względem prze­
kształcenia Ф jest przeliczalnym przekrojem zbiorów miary pełnej, a więc i 
on sam jest zbiorem takiej miary. Można więc powiedzieć, że z punktu widze­
nia miar niezmienniczych zbiór punktów statystycznie regularnych jest zbio­
rem dużym. Pokażemy, że w pewnych sytuacjach zbiór ten jest I-kategorii, 
a więc mały z topologicznego punktu widzenia.

T w i e r d z e n i e  1 [D-G-S]. Jeśli istnieje -punkt x $  Q fë), którego półtra- 
jektoria dodatnia {Фъ(х) : i > 0} jest gęsta w X , to Q fê) jest I-kategorii.

D o w ó d .  Z założenia wynika istnienie funkcji ciągłej f  oraz liczb a i b 
takich, że lim^ .^Swf(x )  < a < b <  Итдг-юоSn Î ( x). Zdefiniujmy zbiór

Zbiory Ц >0{г/ G X  : Sn+if {y)  < a} i Uj>o{v £ X  : Sn+jf (y)  >  b} są 
otwarte i gęste bo zawierają trajektorię punktu x. Wynika stąd, że E  jest 
zbiorem gęstym typu Gs a więc X  \ E jest I-kategorii, ale 
tym samym С}(Ф) jest I-kategorii.

Pozostaje podać przykład spełniający warunki Twierdzenia 1.

P r z y k ł a d  1. Przestrzenią Q będzie zbiór wszystkich ciągów 
zero-jedynkowych an =  0,1. Metryka na Q określona jest następująco

Odwzorowanie ciągłe er działa na ciąg 
przesuwając go o jedno miejsce w lewo, tzn. (<r({an}))i =  a>i+i• Skon­

struujemy element x  G i? nie będący punktem statystycznie regularnym, 
którego półtrajektoria dodatnia jest gęsta w Q.

Zbiór wszystkich skończonych ciągów zer i jedynek jest zbiorem przeli­
czalnym. Ustawmy go w ciąg {х\,Х2 , хз , . . . } .  Szukany element 
można wybrać w postaci
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Na początku kładziemy ciąg xi, a za nim tyle jedynek, aby średnia arytme­
tyczna tych wszystkich wyrazów była większa od 3/4. Następnie kładziemy 
ciąg x 2 a za nim tyle zer, aby średnia arytmetyczna elementów a?i, x 2 oraz 
wstawionych zer i jedynek była mniejsza od 1/4 itd. Łatwo zauważyć, że 
jeśli funkcja /  zdefiniowana jest wzorem f { { a n}) =  ao, to x nie należy do 
Q(a, / ) .  Z konstrukcji x wynika, że jego półtrajektoria dodatnia jest gęsta, 
a tym samym spełnione są założenia Twierdzenia 1.

Przykład 1 jest dosyć prosty, ale wydać się może nieco egzotyczny i od­
legły od układów pojawiających się w zastosowaniach. Dlatego warto podać 
przykład następny, oparty w istocie na tym samym pomyśle, ale bliższy 
układom opisującym realne zjawiska.

P r z y k ł a d  2. A t r a k t o r  S m a l e ’ a . Zacznijmy od zbadania zbioru 
punktów statystycznie regularnych dwukrotnego nawinięcia okręgu jednost­
kowego S1 na siebie, t.j. odwzorowania zadanego wzorem <£>(e27rła;) — e47r?a. 
Wprowadźmy oznaczenia Jo :=  { e27rtQ : 0 < a < 1/2}, Ii := {e27ria : 
1/2 < a <  1}, Ś 1 :=  { e27Tl0t : a ^  k/2n}. Każdemu elementowi z £ Ś 1 

można w jednoznaczny sposób przyporządkować element h(z) £ fi, kładąc 
(h(z))n — i , jeśli <pn(z) £ Ii. Odwzorowanie h jest homeomorfizmem S1 na 
fi fi \ (fi0 U fii), gdzie fii := {{a n} 6 fi : an =  i dla dostatecznie 
dużych n}. Nietrudno też wykazać, że h sprzęga odwzorowania a i <p, tzn. 
h o tp =  a o h. Wynika stąd, że h~1 (x) spełnia założenia Twierdzenia 1, a 
więc Q(tp) jest zbiorem I-kategorii. Jego miara Lebesgue’a jest równa 1, bo 
<p jest przekształceniem zachowującym tę miarę.

Wykorzystując odwzorowanie tp skonstruujemy przykład odwzorowania 
różnowartościowego ^  podzbioru otwartego Y  C K3 w siebie, którego zbiór 
punktów statystycznie regularnych będzie zbiorem I-kategorii, miary Lebes- 
gue’a pełnej. Istotne jest, że w przeciwieństwie do odwzorowania (p, 1/ miary 
tej nie zachowuje, a więc nie można powołać się wprost na Twierdzenie Er- 
godyczne.

Zbiór Y  jest produktem okręgu 5 1 i dysku dwuwymiarowego D 2. Odwzo­
rowanie W zadane jest wzorem lPr(e2,rm,rz:,y) =  (y?(e27rm), a:/10 -f (coso;)/2, 
^/10-l-(sina)/2). Sens geometryczny, odzorowania ^  jest jasny, na S1 działa 
jako dwukrotne nawinięcie okręgu na siebie, a na D 2 jak podobieństwo 
ze współczynnikiem 1/10. Zbiór A =  nazywamy atraktorem
Smale’a. Jest to zbiór niezmienniczy o skomplikowanej strukturze topolo­
gicznej. Lokalnie jest to produkt zbioru Cantora i odcinka [K-H]. Półtra­
jektoria dodatnia I/n(p) każdego punktu p £ Y  dąży do A gdy n —*• oo. 
Zauważmy, że to czy punkt p £ Y  jest statystycznie regularny zależy tylko 
od jego współrzędnej a , na której działa odwzorowanie <p. Wynika stąd, że 
Q(&) =  Q(<p) x D 2, a więc Q(W) jest I-kategorii, miary Lebesgue’a pełnej.
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W ostatnim przykładzie zbiór tych p € Y  dla których ciąg miar (jp)} 
jest rozbieżny w słabej topologii jest zbiorem rezydualnym (dopełnieniem 
zbioru I-kategorii). Naturalne jest pytanie, jak bardzo rozbieżne są te ciągi, 
tzn. jak duży jest ich zbiór punktów skupienia. Można wykazać [D-G-S], 
że punkty p E Y, dla których zbiór punktów skupienia ciągu {6jv(p)} jest 
zbiorem wszystkich miar niezmienniczych, tworzą zbiór rezydualny. Wynika 
stąd, że z topologicznego punktu widzenia, prawie wszystkie punkty dają 
maksymalnie rozbieżne średnie czasowe.

Atraktor Smale’a jest przykładem atraktora hiperbolicznego i wszystkie 
własności zbioru Q(&) udowodnione powyżej uogólniają się na wspomnianą 
klasę atraktorów [R], [B-R], [D-G-S].

Przejdziemy teraz do układu równań różniczkowych, dla których zbiór 
punktów statystycznie regularnych ma miarę Lebesgue’a 0. Układ o tej wła­
sności znany był od wielu lat i należał do tzw. folkloru matematycznego. 
Dowiedziałem się o nim od F. Takensa, który przypisuje go R. Bowenowi 
[T]. Wydaje się, że znany był też od dawna C. Zeemanowi [G].

P r z y k ł a d  3. A t r a k t o r  h e te r o k l in ic zn y . Przykład ten został za­
czerpnięty z teorii gier i związany jest z modelami genetyki populacyjnej 
[H-S], [G],

Załóżmy, że w danej populacji każdy z osobników stosuje jedną z trzech 
możliwych strategii zachowania (walki). Przez analogię do popularnej gry 
„kamień, nożyczki, papież, pierwszą strategię oznaczmy K, drugą N, a trze­
cią P. Jak we wspomnianej grze, K  wygrywa z IV, N z P i P z K a ,  spotkanie 
dwóch osobników stosujących tą samą strategię kończy sie remisem. Zakła­
damy, że nagroda za sukces równa jest 1, porażka kosztuje —1, a remis nie 
przynosi żadnych zysków ani strat. Macierz tej gry ma postać

0 1 _ 1

-1 0 1
1 -1 0

Oznaczmy przez Xi(t) stosunek ilości osobników stosujących i-tą strategię 
do wielkości całej populacji. Zakładamy, że prędkość wzrostu i-tej frakcji 
x'i(t) do Xi(t) równa jest średniej wypłacie dla osobnika stosującego i-tą 
strategię (Ax)i minus średnia wypłata dla osobnika w całej populacji xAx, 
czyli x ,i/xi =  {Ax)i — xAx. Otrzymujemy stąd układ równań różniczkowych
(1) x\ — Xi{(Ax)i — xAx), i =  1,2,3
opisujący ewolucję frakcji X{. Ponieważ x\(t) +  xi(t) +  x^(t) =  1, to cała 
ewolucja układu przebiega na sympleksie S =  {x =  (xi,X2 ,xz) € R3 : 
1̂ +  2̂ +  £3 =  1}, który jest przestrzenią fazową naszego procesu. Brzeg 

sympleksu S jest zbiorem niezmienniczym złożonym z trzech punktów sta­
cjonarnych pi =  (1, 0, 0) p2 =  (0, 1, 0) p3 =  (0, 0, 1) będących wierz­
chołkami S oraz trzech orbit łączących te wierzchołki. Układ (1) ma całkę
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pierwszą X\X2 ^ 3 == C. Łatwo stąd wywnioskować, że wszystkie orbity le­
żące wewnątrz S, z wyjątkiem punktu stacjonarnego p =  (1 /3 ,1 /3 ,1 /3), są 
okresowe. Portret fazowy układu (1) przedstawiony jest na rysunku 1.

Łatwo wykazać, że dla warunków początkowych nie leżących na brzegu 
S średnia frakcja osobników stosujących ż-tą strategię jest równa 1/3. Za­
łóżmy bowiem, że x(t) =  (xi(t) ,X2 { t ) ,x3 (t)) jest rozwiązaniem okresowym 
o okresie L. Przepiszmy równanie (1) w postaci
(2) (In Xi(t))f =  (Ax)i — xAx i =  1,2,3.
Całkując (2) po przedziale [0, L] dostajemy układ równań dla średnich cza­
sowych £ f^Xi(t)dt,  z którego wynika, że każda z nich jest równa 1/3. W
konsekwencji otrzymujemy, że limr-»oo y  Jo x i( s) ^s =  V 3-

Zmodyfikujmy opisaną grę. Załóżmy, że premia za zwycięstwo w grze jest 
równa 1 — e, a przegrana, tak jak poprzednio kosztuje —1. Macierz nowej 
gry ma postać

/  0 1 - e  -1  \
A£ =  ( - 1  0 1 - e  ,

\ l - £  -1  0 /
gdzie e jest dowolną liczbą dodatnią mniejszą od 1. Dynamika na S opisana 
jest teraz układem równań różniczkowych
(3) x\ — Xi((Aex)i -  xAex), i =  1,2,3.
Można wykazać [G], że portret fazowy równania (3) ma postać przedsta­
wioną na rysunku 2.

Podobnie jak w układzie (2), brzeg sympleksu S składa się z trzech punk­
tów stacjonarnych i trzech trajektorii łączących te punkty. Różnica polega
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na tym, że brzeg ten stał się zbiorem przyciągającym (atraktorem hetero- 
klinicznym). Orbita x(t) każdego punktu z wnętrza S, z wyjątkiem punktu 
stacjonarnego p, dąży do brzegu 5, gdy t —> oo, a tym samym przebiega 
coraz bliżej punktów stacjonarnych pi. Czas pobytu trajektorii w małych 
otoczeniach punktów pi rośnie wraz z t wykładniczo [G], a czas przejścia 
od jednego takiego otoczenia do następnego zmienia się bardzo nieznacz­
nie. Powoduje to, że bliskie orbity mogą opuszczać otoczenie pi w różnych, 
dalekich od siebie momentach czasu. Układ jest tym samym nieprzewidy­
walny. Precyzyjnie można to wyrazić badając oscylacje średnich czasowych 
-f f Q x(t) dt. Średnie te są rozbieżne, a ich zbiór skupienia tworzy pewien 
trójkąt zawarty w S [G]. Nie istnieje więc miara określająca dla dużych t 
prawdopodobieństwo znalezienia się orbity x(t ) w danym podzbiorze S.

Zbiór punktów statystycznie regularnych składa się z punktu stacjonar­
nego p i brzegu sympleksu. Jest więc mały z topologicznego punktu widzenia, 
a jego miara Lebesgue’a jest 0.

Istnieje zasadnicza różnica między przykładem 2 i 3. Ten pierwszy jest 
stabilny. Małe C l zaburzenie ^  przekształcenia W rozciąga Y  w kierunku 
zmiennej a i ściska w kierunku transwersalnym do niego. Nietrudno stąd 
wywnioskować [N-S], że zbiory Q{&) i Q(&) mają te same topologiczne i 
miarowe własności.

Układ (3) nie jest C^-stabilny. Małymi C 1 zaburzeniami możemy „znisz­
czyć” orbity łączące punkty stacjonarne pi, Pi+i. Jeśli ograniczymy się jed­
nak do zaburzeń specjalnego typu, to może okazać się, że układ (3) będzie 
względem nich stabilny [G], [G-H]. Własność ta oraz fakt, że układy tego 
typu pojawiają się w zastosowaniach sprawia, że są one intensywnie badane 
[G]> [H-S], [Si],
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Badając zbiór punktów statystycznie regularnych dyfeomorfizmów zwar­
tej rozmaitości Riemanna M  pojawia się w naturalny sposób następujące 
pytanie.

PR O B LE M . Tensor metryczny zadaje na M  formę objętości a tym samym 
miarę, którą możemy nazwać miarą Lebesgue’a. Oznaczmy przez Diff(M) 
zbiór wszystkich dyfeomorfizmów M  z C 1 topologią. Czy zbiór dyfeomorfi­
zmów dla których Q($) ma miarę Lebesgue’a pełną, jest zbiorem rezy­
dualnym w Diff(M)?
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