Mathias Forcing with Filters

David Chodounský

Institute of Mathematics AS CR

May 16, 2014

Joint work with L. Zdomskyy and D. Repovš.

Motivation: Given filter \mathcal{F} , add a pseudo-intersection of \mathcal{F} . This also covers destroying MAD systems. Be gentle.

Terminology

 $\mathcal F$ is a filter means $\mathcal F$ is filter on ω and $\mathcal F$ extends the Fréchet filter.

For $f, g \in \omega^{\omega}$ is $f <^* g$ defined by $\{n: g(n) \leq f(n)\}$ is finite.

$$\mathcal{P}(\omega) \simeq 2^{\omega}$$

 2^{ω} has the product topology.

Basic open sets $[q, n] = \{A \subset \omega \colon A \cap n = q\}$ for $n \in \omega, q \subset n$.

 $[\omega]^\omega$ embeds in ω^ω via enumerating functions.

For $F, G \in [\omega]^{\omega}$ define $F <^* G$ by $e_F <^* e_G$.

 $\mathcal{F} \subset \mathcal{P}(\omega)$ is unbounded, dominating, ...

Definition

Let \mathcal{F} be a filter. $P \subset \omega$ is a *pseudo-intersection* of \mathcal{F} iff $P \subset^* F$ for all $F \in \mathcal{F}$.

Remark

If P is a pseudo-intersection of $\mathcal F$ then P dominates $\mathcal F$.

Definition (Mathias forcing)

Let \mathcal{F} be a filter on ω .

$$\mathbb{M}_{\mathcal{F}} = \{ \langle a, F \rangle \colon a \in [\omega]^{<\omega}, F \in \mathcal{F} \}$$
$$\langle a, F \rangle < \langle b, H \rangle \text{ iff } b \sqsubseteq a, F \subseteq H, \text{ and } a \setminus b \subseteq H.$$

Fact

 $\mathbb{M}_{\mathcal{F}}$ adds a pseudo-intersection of \mathcal{F} .

$$P = \{ \} \{a: \langle a, F \rangle \} \in \mathcal{G}$$

Fact

 $M_{\mathcal{F}}$ is σ -centered.

Bounding-like properties

Definition

Let $\mathbb P$ be a forcing. We say that $\mathbb P$ (is):

ω^{ω} bounding	almost ω^{ω} bounding	does not add
		dominating reals
$\forall f \in \omega^{\omega} \cap V[G]$	$\forall \dot{f} \in V^{\mathbb{P}} \forall p \in \mathbb{P}$	$\forall f \in \omega^{\omega} \cap V[G]$
$\exists g \in \omega^{\omega} \cap V$	$\exists g \in V \forall A \in [\omega]^{\omega}$	$\exists g \in \omega^{\omega} \cap V$
f < g	$\begin{vmatrix} \exists q$	g ≮* f
	$q \Vdash g \upharpoonright A \not<^* \dot{f} \upharpoonright A$	
preserves dominating	preserves unbounded	preserves dominating
sets as dominating	sets as unbounded	sets as unbounded

Lemma

TFAE

- 1. \mathbb{P} is almost ω^{ω} bounding
- 2. $\forall \dot{f} \in V^{\mathbb{P}} \ \forall p \in \mathbb{P} \ \exists g \in V \ \forall A \in [\omega]^{\omega} \ \exists q < p$ $q \Vdash \{n \in A : \dot{f}(n) < g(n)\} \ is infinite$
- 3. preserves unbounded sets as unbounded

$$2 \Rightarrow 3$$
.

Let $\mathcal{A} \subset \omega^{\omega}$ be unbounded, $p \in \mathbb{P}$, $\dot{f} \in V^{\mathbb{P}}$.

There is g such that ...

There is $a \in A$ such that $A = \{n \in \omega : g(n) < a(n)\}$ is infinite.

There is q < p, $q \Vdash \{n \in A : f(n) < g(n)\}$ is infinite, hence $q \Vdash a \not<^* f$.

$$\neg 2 \Rightarrow \neg 3$$
.

$$\exists \dot{f} \in V^{\mathbb{P}} \ \exists p \in \mathbb{P} \ \forall g \in V \ \exists A_g \in [\omega]^{\omega} \ p \Vdash g \upharpoonright A_g <^* \dot{f} \upharpoonright A_g.$$

For $g \in \omega^{\omega}$ put g'(n) = g(n) for $n \in A_g$ and g'(n) = 0 otherwise.

 $\{g' : g \in \omega^{\omega}\}\$ is unbounded. $p \Vdash g' \leq^* f$ for each $g \in \omega^{\omega}$.

Simple properties of Mathias forcing

Fact

 $\mathbb{M}_{\mathcal{F}}$ is not ω^{ω} bounding.

Proof.

 $\mathbb{M}_{\mathcal{F}}$ is σ -centered.

(Let $RO(\mathbb{P}) = \bigcup \{\mathcal{U}_n : n \in \omega\}, \mathcal{U}_n \text{ ultrafilter.}$

Define $\dot{f} \in \omega^{\omega}$ such that if $p \in \mathbb{P}$ decides $\dot{f}(n)$ then $p \notin \mathcal{U}_n$.)

Fact

If $\mathcal F$ unbounded then $\mathbb M_{\mathcal F}$ not almost ω^ω bounding.

Fact

If $\mathcal F$ dominating then $\mathbb M_{\mathcal F}$ adds a dominating real.

Fact

If \mathcal{F} dominating then $\mathbb{M}_{\mathcal{F}}$ adds a dominating real.

Fact

If $\mathcal F$ unbounded then $\mathbb M_{\mathcal F}$ not almost ω^ω bounding.

Theorem

 $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals iff \mathcal{F} is Menger.

Theorem

 $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} bounding iff \mathcal{F} is Hurewicz.

Let *X* be a topological space.

Definition

X is Menger if no continuous image of X in ω^{ω} is dominating.

Definition

X is *Hurewicz* if every continuous image of *X* in ω^{ω} is bounded.

${\mathcal F}$ Hurewicz	${\mathcal F}$ Menger	
all images of	no images of	
${\mathcal F}$ bounded	${\mathcal F}$ dominating	
$\mathbb{M}_{\mathcal{F}}$ preserves unbounded	$\mathbb{M}_{\mathcal{F}}$ preserves dominating	
sets as unbounded	sets as unbounded	
$\mathbb{M}_{\mathcal{F}}$ almost ω^{ω} bounding	$\mathbb{M}_{\mathcal{F}}$ does not add	
	dominating reals	

Applications

Hurewicz and Menger classes are closed with respect to closed subsets, countable unions, products with compacts, continuous images, . . .

Proposition

Let $\mathcal F$ be an analytic filter on ω . $\mathbb M_{\mathcal F}$ does not add a dominating real if and only if $\mathcal F$ is σ -compact.

Theorem

It is consistent with ZFC that every \mathfrak{b} -scale set is a γ -space.

Proposition

There exists a MAD family A on ω such that $\mathbb{M}_{\mathcal{F}(A)}$ adds a dominating real.

Proposition

If $\mathfrak{d}=\mathfrak{c}$, then there exists an infinite MAD family $\mathcal A$ such that $\mathbb M_{\mathcal F(\mathcal A)}$ does not add a dominating real.

Cover of *X* means countable open cover of *X*.

Definition

 \mathcal{U} is a γ -cover of X if \mathcal{U} is a cover of X and for every $x \in X$ the family $\{U \in \mathcal{U} : x \notin U\}$ is finite.

Definition

X is *Menger* if for every sequence $\{U_n: n \in \omega\}$ of covers of *X* there is $\{V_n \in [U_n]^{<\omega}: n \in \omega\}$ such that $\{\bigcup V_n: n \in \omega\}$ is a cover of *X*.

Definition

X is *Hurewicz* if for every sequence $\{U_n: n \in \omega\}$ of covers of *X* there is $\{V_n \in [U_n]^{<\omega}: n \in \omega\}$ such that $\{\bigcup V_n: n \in \omega\}$ is a γ -cover of *X*.

Example

 $X \subset \omega^{\omega}$, X Hurewicz $\Rightarrow X$ bounded.

Proof.

Put $U_n = \{U_n^i = \{f \in X : f(n) < i\} : i \in \omega\}.$

Pick V_n as in the definition.

Put $g(n) = \max\{i: U_n^i \in \mathcal{V}_n\}$, g dominates X.

For $a \subset \omega$ denote $\uparrow a = \{x \subset \omega : a \subset x\}$.

Fact

 \uparrow a is compact a is finite $\Rightarrow \uparrow$ a is open

Definition

 \mathcal{U} is an \uparrow -cover of $X \subset 2^{\omega}$ if \mathcal{U} is a cover of X consisting of sets of form $\uparrow a, a \in [\omega]^{<\omega}$.

Lemma

Let $\mathcal{F} \subset 2^{\omega}$ be a filter, \mathcal{U} a cover of \mathcal{F} (consisting of open subsets of 2^{ω}). There is an \uparrow -cover \mathcal{O} of \mathcal{F} , such that $\mathcal{F} \subset \bigcup \mathcal{O} \subset \bigcup \mathcal{U}$.

X is *Menger* if for every sequence $\{U_n: n \in \omega\}$ of covers of *X* there is $\{V_n \in [U_n]^{<\omega}: n \in \omega\}$ such that $\{\bigcup V_n: n \in \omega\}$ is a cover of *X*.

Definition

X is *Hurewicz* if for every sequence $\{U_n: n \in \omega\}$ of covers of *X* there is $\{V_n \in [U_n]^{<\omega}: n \in \omega\}$ such that $\{\bigcup V_n: n \in \omega\}$ is a γ -cover of *X*.

Lemma

Let $\mathcal{F} \subset 2^{\omega}$ be a filter, \mathcal{U} a cover of \mathcal{F} (consisting of open subsets of 2^{ω}). There is an \uparrow -cover \mathcal{O} of F, such that $F \subset \bigcup \mathcal{O} \subset \bigcup \mathcal{U}$.

Corollary

For X filter, we can replace $(\gamma$ -)cover by $(\gamma$ -) \uparrow -cover in definitions of Menger and Hurewicz.

Corollary

Let $\mathcal F$ be a Menger (Hurewicz) filter. Then all finite powers of $\mathcal F$ are Menger (Hurewicz).

Lemma

Let $\mathcal{F} \subset 2^{\omega}$ be a filter, \mathcal{U} a cover of \mathcal{F} (consisting of open subsets of 2^{ω}). There is an \uparrow -cover \mathcal{O} of \mathcal{F} , such that $\mathcal{F} \subset \bigcup \mathcal{O} \subset \bigcup \mathcal{U}$.

Proof.

Assume that \mathcal{U} consists of basic open sets in 2^{ω} .

For each $F \in \mathcal{F}$ find a finite set $\mathcal{U}_F = \{[q_i, n_i] : i \in I_F\} \subset \mathcal{U}$, such that $\uparrow F \subset \bigcup \mathcal{U}_F$.

Put $n_F = \max\{n_i : i \in I_F\}$.

Claim

$$\uparrow (F \cap n_F) \subset \bigcup \mathcal{U}_F$$

If $A \in \uparrow (F \cap n_F)$, then $(A \cap n_F) \cup (\omega \setminus n_F) \in \uparrow F$, there $i \in I_F$ such that $(A \cap n_F) \cup (\omega \setminus n_F) \in [q_i, n_i]$ hence $A \in [q_i, n_i]$.

Put $\mathcal{O} = \{\uparrow (F \cap n_F) \colon F \in \mathcal{F}\}.$

X is *Menger* if for every sequence $\{U_n: n \in \omega\}$ of covers of *X* there is $\{V_n \in [U_n]^{<\omega}: n \in \omega\}$ such that $\{\bigcup V_n: n \in \omega\}$ is a cover of *X*.

Theorem

 $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals iff \mathcal{F} is Menger.

Proof.

Theorem (Hrušák, Minami)

 $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals iff $\mathcal{F}^{<\omega}$ is a P^+ -filter.

 $\mathcal{F}^{<\omega}$ positive sets (i.e. $\mathcal{F}^{<\omega^+}$) are exactly \uparrow -covers of \mathcal{F} . $\mathcal{F}^{<\omega}$ is a P^+ -filter iff \mathcal{F} is Menger (with respect to \uparrow -covers).

X is *Hurewicz* if for every sequence $\{U_n: n \in \omega\}$ of covers of *X* there is $\{V_n \in [U_n]^{<\omega}: n \in \omega\}$ such that $\{\bigcup V_n: n \in \omega\}$ is a γ -cover of *X*.

Theorem

 $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} bounding (preserves unbounded as unbounded) iff \mathcal{F} is Hurewicz.

$$\neg \Leftarrow \neg$$
.

Let $U_n = \{\uparrow q_m(n) \colon m \in \omega\}$, where $q_m(n) \in [\omega]^{<\omega}$ be an \uparrow -cover witnessing non-Hurewicz of \mathcal{F} .

For $F \in \mathcal{F}$ define $x_F \in \omega^{\omega}$ by $x_F(n) = \min\{m : q_m(n) \subset F\}$.

 $X = \{x_F \colon F \in \mathcal{F}\}$ is unbounded.

Let *P* be the generic pseudo-intersection added by $M_{\mathcal{F}}$.

For every n there exists g(n) such that $q_{g(n)}(n) \subset P \setminus n$ (by genericity).

Fix $F \in \mathcal{F}$. For any n such that $P \setminus n \subset F$ is

$$q_{g(n)}(n) \subset G \setminus n \subset F$$

i.e. $x_F(n) \le g(n)$ and X is bounded by g.

X is *Hurewicz* if for every sequence $\{U_n: n \in \omega\}$ of covers of *X* there is $\{V_n \in [U_n]^{<\omega}: n \in \omega\}$ such that $\{\bigcup V_n: n \in \omega\}$ is a γ -cover of *X*.

Theorem

 $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} bounding (preserves unbounded as unbounded) iff \mathcal{F} is Hurewicz.

Suppose there exists an unbounded $X\subset\omega^\omega,\,X\in V$, and a $\mathbb{M}_{\mathcal{F}}$ -name \dot{g} for a function dominating X.

For every $x \in X$ there is $n_x \in \omega$, $\langle s_x, F_x \rangle \in \mathbb{M}_{\mathcal{F}}$ such that

$$\langle s_x, F_x \rangle \Vdash x(n) < \dot{g}(n) \text{ for } n \geq n_x$$

We can assume $s_x = s^*$, $n_x = n^*$ for all $x \in X$.

Let \mathcal{U}_m be set of those $s \in [\omega]^{<\omega}$, $s^* < s$ such that there is $F_s \in \mathcal{F}$,

$$\langle s^* \cup s, F_s \rangle \Vdash \dot{g}(m) = g_s(m).$$

 \mathcal{U}_m is an \uparrow -cover of \mathcal{F} .

Suppose there exists an unbounded $X\subset\omega^\omega,\,X\in V$, and a $\mathbb{M}_{\mathcal{F}}$ -name \dot{g} for a function dominating X.

For every $x \in X$ there is $n_x \in \omega$, $\langle s_x, F_x \rangle \in \mathbb{M}_{\mathcal{F}}$ such that

$$\langle s_x, F_x \rangle \Vdash x(n) < \dot{g}(n) \text{ for } n \geq n_x$$

We can assume $s_x = s^*$, $n_x = n^*$ for all $x \in X$. Let \mathcal{U}_m be set of those $s \in [\omega]^{<\omega}$, $s^* < s$ such that there is $F_s \in \mathcal{F}$,

$$\langle s^* \cup s, F_s \rangle \Vdash \dot{g}(m) = g_s(m).$$

 \mathcal{U}_m is an \uparrow -cover of \mathcal{F} .

There are $V_m \in [U_m]^{<\omega}$, such that $\{\bigcup V_m : m \in \omega\}$ is a γ -cover of \mathcal{F} . Put $f(m) = \max\{g_s(m) : s \in V_m\}$.

Fix $x \in X$.

There is $k_x \ge n^*$ such that for each $m \ge k_x$ there is $s_m \in \mathcal{V}_m$, $s_m \subset F_x$. Now for $m \ge k_x$:

$$\langle s^*, F_{\mathbf{x}} \rangle \Vdash \mathbf{x}(m) < \dot{\mathbf{g}}(m)$$
 and $\langle s^* \cup s_m, F_{\mathbf{s}_m} \rangle \Vdash \dot{\mathbf{g}}(m) < f(m)$

hence x(m) < f(m), ... X is bounded by f.