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Definition: Let A C P(X) be a family of sets. A has property B iff
e JY VAc A ANY #PandA\Y #10
* x(A)=2

where the chromatic number of A:
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Question:
Which families have property B?
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Thm: If V ¢ W are models of ZFC, W contains a new real r, and

{Xa
{aa

ta < Kk} = [w]¥ NV, then there is an almost disjoint family

ca <k} C [w]TinW st a, C X

Forallx € [w]“ NV let T(x) be a binary tree on x

Ify € [w]“ NV, thenB(x),={b € [T(X)]: |bNy|=w}is G,
Hence [B(x)y| < w OR B(x)y contains a perfect set.

If B(x)y contains a perfect set then |(B(x)y )W \ V| >k = (2¥)V.
Contstruct {a,, : @ < «} inductively. We will define ~,, b, as well
Let v, = min{y < a : B(X4)x, contains a perfect subset}

Pick boe (B(Xy)x, \ V) \ {b¢ : { < a} and let a,= b, N Xq,.
Since b, € B(x,)x, the set a, is infinite.

If o # B then |a, Nag| < w.

Case 2: v, < 3.

75 = min{y < 3 : B(X,)x, contains a perfect subset}

Ya < 78 SO [B(Xq, )xs| < wS0B(Xy,)x; CV SODb, ¢ B(X,, )x,
Thus b, Nxg is finite. So a, Na, C b, N Xz is also finite.
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Almost disjoint families with prescribed chromatic number

Theorem (Erdés, Shelah, 1972)
¥n > 2 there is an almost disjoint family G € [w]“ with x(G) = n + 1.

Let (Aq,...,An 1) be a partition of w into infinite sets

{Fl :a < 2%} c [A]” almost disjont family for 1 <i <n+1
{(D%,...,D"): a < 2¢)} partitions of w into n sets.

forall1 <i<n+1thereisl<j<ns.t F NDl isinfinite

there is_ 1 g_j <n an_d the_re are 1 <i; <ip < nsuch that
both F» N D!, and F}2 N D!, are infinite.

Let G,= D! N (F:UF?).

G={G, : a < 2¥} is almost disjoint and x(G) = n + 1.
GaNGp C Uscicnia(Fi NFp), and F, NF s finite.
G, c D, so (D},...,D") can not prove x(G) < n.
G, NA, DDl NF #(and G, NA, DD, NFL £
So (AL, ..., A Ex (@) <n+1
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Disjoint sets in almost disjoint families

Which almost disjoint families have property B?

Theorem (Erdés, Shelah, 1972)

If A c [X] “ is almost disjoint, and AN A’ # ( for all A, A’ € A, then
x(A) = 2.

Proof:

e Indirect: Assume that A C [XF“

forall A,A" € A, and x(A) > 2.

e Try to obtain a contradiction.

is almost disjoint, AN A’ # ()
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e Fix Ac A. Color X =B UR, choose Bg,R1,B>,R5,... from A
pick ro from B, b; from Ry, ...s.t.

e B,y "R =Byn ﬂAﬂR:{Qm},
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Y

e Fix Ac A. Color X =B UR, choose Bg,R1,B>,R5,... from A
pick ro from B, b; from Ry, ...s.t.

Bom "R=B,m NANR = {er},
R2m+1 NnB = R2m+1 NANB = {me}.

B UR is not a good coloring of A: 3Y € AY C B.
Y NRomi1 #* 0, so b2m+l eyY
{bomi1:mew} CY,soY NAisinfinite. Contradiction.
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e By and R; are constructed, rpe Bp N A, bie RiNA
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e By and R; are constructed, rpe Bp N A, bie RiNA
* R=(Ry\{bs})U{ro} and B = (Bo \ {ro}) U {bs}
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Ac [X]*isad, ANA #0for A+#A €A but x(A) > 2.

e By and R; are constructed, rpe Bp N A, bie RiNA
R = (Ry\{bs})U{ro} and B = (Bo \ {ro}) U {b1}
Need B,e A and r,e B, NA.

c =AnN(BygURy)is finite, so 3D € A s.t. DNc = 0.
Pick r, €e D NA.

Pick bg € Bo \ (AUD).
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Ac [X]*isad, ANA #0for A+#A €A but x(A) > 2.

Bo B,
B [ \

e 1pc BoNA, bie RiNA, bpe Bo\(AUD), rzeAmD\(B()UR]_)
e €= (DUAU BoURl)\{bo,bl,rz}.
e dB, c Ast.Bo,ne =40.
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B B
’b—f‘ —

ol Eat

e 10 BoNA bie RiNA bpe Bp\(AUD), r, e AND\ (BoURy)
e e=(DUAUByUR;)\ {bog,bs,r2}.

e dB, c Ast.Bo,ne =40.

e ThenDNBy; ={r;}. R1NB, = {b;}

e SOANB,; ={by,r}
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B B
’b—f‘ —

UF ________ e

0 B

e 10 BoNA bie RiNA bpe Bp\(AUD), r, e AND\ (BoURy)
e=(DUAUByUR)\ {bg, by, r2}.

IB, € Ast.Bone=0.

ThenDNBy; = {r;}. R1NB, = {b;}

So ANB; = {by,r}

LetR = (Ry \ {b1})U{ro,r2} and

B =(Bo\ {ro}) U {bo} U (B2 \ {rz})




Ac [X]*isad, ANA #0for A+#A €A but x(A) > 2.

e Fix A € A. Color X =B UR, choose Bg,R1,B2, R, ... from A
pick ro and bg from By, r; and b; from Ry, ...s.t.

e BobhnNR=B,nNANR = {er},
Romt1 NB =Rompr NANB = {me}.
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Almost disjoint families with large chromatic number

Erdds, Hajnal, 1961: Do there exist almost disjoint systems of
countable sets with arbitrarily large chromatic number?

Gy. Elekes, Gy Hoffman, 1973: YES.

Theorem (Komjath)
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Erdds, Hajnal, 1961: Do there exist almost disjoint systems of
countable sets with arbitrarily large chromatic number?

Gy. Elekes, Gy Hoffman, 1973: YES.
Theorem (Komjath)
There is an almost disjoint family A C [R]“ which refines [R]** (i.e.
for all X € [R]** there is A € A with A C X), and so x(A) = 2~.
e Let 9 = {P € [R]” : P is dense-in-itself.}
e Foreach P € Q pick xp € P s.t. Xxp # xp for P # P’.
e ForeachP € Q pick Ap C P\ {xp} s.t. Ap — Xp.
o Let A={Ap:P € Q}.
e If X € [R]**, then there is a dense-in-itself P € [X]”.
e S0 Ap C X.



E. W. Miller’s result

Question: Which uncountable families .A ¢ [X]“ have property B?

It is not enough to assume that A is almost disjoint.




E. W. Miller’s result

Question: Which uncountable families .A ¢ [X]“ have property B?

It is not enough to assume that A is almost disjoint.

Definition: A is n-almost-disjoint iff ANA’| < nforall A£A € A



E. W. Miller’s result

Question: Which uncountable families .A ¢ [X]“ have property B?

It is not enough to assume that A is almost disjoint.

Definition: A is n-almost-disjoint iff ANA’| < nforall A£A € A

Theorem (E. W. Miller, 1937)
An n-almost disjoint family of infinite sets has property B.



E. W. Miller’s result

Question: Which uncountable families .A ¢ [X]“ have property B?

It is not enough to assume that A is almost disjoint.

Definition: A is n-almost-disjoint iff ANA’| < nforall A£A € A

Theorem (E. W. Miller, 1937)
An n-almost disjoint family of infinite sets has property B.

o The case A C [w]“ is trivial: [A] < |[w]"] = w.



E. W. Miller’s result

Question: Which uncountable families .A ¢ [X]“ have property B?

It is not enough to assume that A is almost disjoint.

Definition: A is n-almost-disjoint iff ANA’| < nforall A£A € A

Theorem (E. W. Miller, 1937)
An n-almost disjoint family of infinite sets has property B.

o The case A C [w]“ is trivial: [A] < |[w]"] = w.

* Consider the next special case: A C [w;]“ (and so |A| = wy),



E. W. Miller’s result

Question: Which uncountable families .A ¢ [X]“ have property B?

It is not enough to assume that A is almost disjoint.

Definition: A is n-almost-disjoint iff ANA’| < nforall A£A € A

Theorem (E. W. Miller, 1937)
An n-almost disjoint family of infinite sets has property B.

o The case A C [w]“ is trivial: [A] < |[w]"] = w.
* Consider the next special case: A C [w;]“ (and so |A| = wy),

e The proof is the prototype of the proofs of many positive results.



E. W. Miller’s result

Question: Which uncountable families .A ¢ [X]“ have property B?

It is not enough to assume that A is almost disjoint.

Definition: A is n-almost-disjoint iff ANA’| < nforall A£A € A

Theorem (E. W. Miller, 1937)
An n-almost disjoint family of infinite sets has property B.

o The case A C [w]“ is trivial: [A] < |[w]"] = w.
* Consider the next special case: A C [w;]“ (and so |A| = wy),

e The proof is the prototype of the proofs of many positive results.

e Convention: we say that N is a elementary submodel iff N is an
elementary submodel of #(#) for some large enough regular
cardinal ¥
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e AeM; <My <My <Myi1 < -+ < (H(k), €,<)
e continuous chain of countable elementary submodels

e Partition A into countable pieces:
A = U, <o, Ao, Where A, = AN (Maq1\ My).

e Key observation:

IfAeMyi1\MythenAC M, and [ANM,| <n

A\ M,

\

B\ M,

C\M,

Ma+1

X \ Ma+l
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e Partition A into countable pieces:
A = U, <o, Ao, Where A, = AN (Maq1\ My).

e Key observation:
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To be continued ...



