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Recapitulation

Definition: A family A C P(X) has property B iff x(.A) = 2,
where the chromatic number of A is defined as follows:
X(A)=min{\ | 3f : X — AVA € A|f[A]| > 2}.

Theorem (E. W. Miller, 1937)
There is an almost disjoint A C [w]” with x(A) = w.

Theorem (Gy. Elekes, Gy Hoffman, 1973)
For all infinite cardinal « there is an almost disjoint A C [X]” with

X(A) = k.
Definition: A is n-almost-disjoint iff ANA’| <nforall A#A € A

Theorem (E. W. Miller, 1937)
An n-almost disjoint family of infinite sets has property B.
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Theorem (Sierpinski)

CH holds iff R? is the union of countably many functions and their
inverses.

o =1 = Rgoe)(—f)
* R(,) : R? — R? the rotation by « degree around the origin.

e If CH holds, then IR? is the union of countably many rotations of
functions.

e Sierpinski, 1951: Is the converse true?

Theorem (Davies, 1963)

R? is the union of countably many rotations of functions.
If g, a1, ... are pairwise different angles between 0 and 7, then there
are function fg, f; ... such that

R? = Unew R(Ofn)(fn)
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Write £(P)= {e(P,Xn) : n € w} Let E= {&(P) : P € R?}.
Assume E has a transversal (an injective choice function) e.
Let F,={P : e(P) = e(P,xn)}.

There is function f, s.t. Fn C R(o,,)(fn):

Let f,= {R(—a,)(P) : P € Fq}

S0 R? = U, Rian)(fn)-

E is 2-almost disjoint.
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Definition

A family B has transversal property iff there is an injective choice
function on B.

Enough: every 2-almost disjoint family of infinite sets has the
transversal property.

e We have seen: An n-almost disjoint A C [X]“ has a property B.

e Same proof: An n-almost disjoint A C [X]w has a transversal.
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Beyond Property B and transversals
Definition: A family A is essentially disjoint (ED) iff foreach A € A
there is F (A) € [A] ™ such that {A\ F(A) : A € A} is disjoint.

e An essentially disjoint A has a transversal. If t(A) € A\ F(A),
then t is an injective choice function.

B\ F(B)

A\F(A)

ot(A) ot(B)

et(C)

C\F(C)

e There is a coloring ¢ such that c[X] = w for all X € A.
Enough: ¢[X \ F(X)] = w.
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Definition: A family A is essentially disjoint (ED) iff for each A € A
there is F(A) € [A] = such that {A\ F(A) : A € A} is disjoint. J

Theorem (Komjath, 1984)
Every n-almost disjoint family A ¢ [X]“ is essentially disjoint.
e The case A = {Ay: n <w}istrivial: let F(An) = An N (Uion AY)-
e Consider the case A = {A¢ : { <wi} C [wi]”
e AeMy <My--- <My <Mgq1 <--- < (H(k),€,<) (< wi)
e continuous chain of countable elementary submodels (Mg = ()

e Partition A into countable pieces:
A =Ug <o, Ao, Where A, = AN (Maq1\ My).
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How to guarantee ED?

e AC [wi]”isn-AD,
.AEMl%MZ"'<Ma<Ma+l<"'<<H(H)7€7q>

o A=J_. A, where A, = AN (Mayi1 \ My).

a<wy

e Key observation: If A € M,1 \ M, then A € M,4+1 and
[ANM,| <n

A\ M,

X\ Mg

\
u| m—

B\ M, \A

C\M, \ (AUB)

Ag Aq
MB Mg Ma+
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LetY = e, Xn- Then Y NB| = w for all B € B.
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Defineg: A »wst. fcgandg(x)=0forallx e \\Y.



Conflict free colorings of inhomogeneous n-ad families
If B.C [A]" is n-ad, then xcr(B) < w.

Any n-almost disjoint family B c [A]" has property B(w).

B has property B(w) iff 3X such that 0 < [X N B| < w for each B € 5.




Conflict free colorings of inhomogeneous n-ad families
If B.C [A]" is n-ad, then xcr(B) < w.

Any n-almost disjoint family B c [A]" has property B(w).

B has property B(w) iff 3X such that 0 < [X N B| < w for each B € 5.

e thereis 2-ad A C [w1]2“ s.t A does not have property B(w).



Conflict free colorings of inhomogeneous n-ad families
If B.C [A]" is n-ad, then xcr(B) < w.

Any n-almost disjoint family B c [A]" has property B(w).

B has property B(w) iff 3X such that 0 < [X N B| < w for each B € 5.

e thereis 2-ad A C [w1]2“ s.t A does not have property B(w).

W

w1



Conflict free colorings of inhomogeneous n-ad families
If B.C [A]" is n-ad, then xcr(B) < w.

Any n-almost disjoint family B c [A]" has property B(w).

B has property B(w) iff 3X such that 0 < [X N B| < w for each B € 5.

e thereis 2-ad A C [w1]2“ s.t A does not have property B(w).

Ay = wy X {n}

___________________

w1



Conflict free colorings of inhomogeneous n-ad families
If B.C [A]" is n-ad, then xcr(B) < w.

Any n-almost disjoint family B c [A]" has property B(w).

B has property B(w) iff 3X such that 0 < [X N B| < w for each B € 5.

e thereis 2-ad A C [w1]2“ s.t A does not have property B(w).

-E.E.. An:wlx{n}

B¢ = {(} xw

w1



Conflict free colorings of inhomogeneous n-ad families
If B.C [A]" is n-ad, then xcr(B) < w.

Any n-almost disjoint family B c [A]" has property B(w).

B has property B(w) iff 3X such that 0 < [X N B| < w for each B € 5.

e thereis 2-ad A C [w1]2“ s.t A does not have property B(w).

w ceaa,
.;.E.. An:wlx{n}
. Be ={¢} xw
... . A:{An,BC:n<w,C<w1}

w1



Conflict free colorings of inhomogeneous n-ad families
If B.C [A]" is n-ad, then xcr(B) < w.

Any n-almost disjoint family B c [A]" has property B(w).

B has property B(w) iff 3X such that 0 < [X N B| < w for each B € 5.

e thereis 2-ad A C [w1]2“ s.t A does not have property B(w).

W

An:wlx{n}
B ={C} xw

A={An,Br:n<w,(<w}




Conflict free colorings of inhomogeneous n-ad families
If B.C [A]" is n-ad, then xcr(B) < w.

Any n-almost disjoint family B c [A]" has property B(w).

B has property B(w) iff 3X such that 0 < [X N B| < w for each B € 5.

e thereis 2-ad A C [w1]2“ s.t A does not have property B(w).

W

An:wlx{n}
B ={C} xw

A={An,Br:n<w,(<w}

Theorem (Komjath, 2012)
xcr(A) < w for each n-almost disjoint A C x| =
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A is wi-essentially disjoint iff for each A € A there is F(A) € [A] <wJ

such that {A\ F(A) : A € A} is disjoint.

Definition
A has property B(w,) iff 3X such that 0 < [X NA| < w; forall A € A.

Consider an arbitrary family B of uncountable sets.
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TP B(w1) Xcrk Sw

/




How to prove positive results?



How to prove positive results?

e Everyn-ad A C [w]” is ED.



How to prove positive results?

e Everyn-ad A C [w]” is ED.

e Consider a continuous chain (M, : @ < w1) of elementary
submodels ...



How to prove positive results?

e Everyn-ad A C [w]” is ED.

e Consider a continuous chain (M, : @ < w1) of elementary
submodels ...

e Key observation:
IfAeM <H(0),and A e A\ M, then ANM| < n ([ANM]| < w).



How to prove positive results?
Every n-ad A C [w;]” is ED.

Consider a continuous chain (M,, : « < w;) of elementary
submodels ...

Key observation:
IfAeM <H(0),and A e A\ M, then ANM| < n ([ANM]| < w).

If M < H(60), X is a set, and X N M is infinite, then for all n € w
we have M N [X]" # 0.



How to prove positive results?

Every n-ad A C [w;]” is ED.

Consider a continuous chain (M,, : « < w;) of elementary
submodels ...

Key observation:
IfAeM <H(0),and A e A\ M, then ANM| < n ([ANM]| < w).

If M < H(60), X is a set, and X N M is infinite, then for all n € w
we have M N [X]" # 0.

Want to prove: Every w-ad A C [x]“* is w;-ED.



How to prove positive results?
Every n-ad A C [w;]” is ED.

Consider a continuous chain (M,, : « < w;) of elementary
submodels ...

Key observation:
IfAeM <H(0),and A e A\ M, then ANM| < n ([ANM]| < w).

If M < H(60), X is a set, and X N M is infinite, then for all n € w
we have M N [X]" # 0.

Want to prove: Every w-ad A C [x]“* is w;-ED.

Need: there is a continuous chain (M,, : a < &) of elementary
submodels s.t. if X is a set, and X N M,, is uncountable, then
M, N [X] # 0.



How to prove positive results?
Every n-ad A C [w;]” is ED.

Consider a continuous chain (M,, : « < w;) of elementary
submodels ...

Key observation:
IfAeM <H(0),and A e A\ M, then ANM| < n ([ANM]| < w).

If M < H(60), X is a set, and X N M is infinite, then for all n € w
we have M N [X]" # 0.

Want to prove: Every w-ad A C [x]“* is w;-ED.

Need: there is a continuous chain (M,, : a < &) of elementary
submodels s.t. if X is a set, and X N M,, is uncountable, then
Mo N [X]% # 0.

“GCH + 01" for all A > cf(\) = w” I 3 suitable chains.



How to prove positive results?
Every n-ad A C [w;]” is ED.

Consider a continuous chain (M,, : « < w;) of elementary
submodels ...

Key observation:
IfAeM <H(0),and A e A\ M, then ANM| < n ([ANM]| < w).

If M < H(60), X is a set, and X N M is infinite, then for all n € w
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Need: there is a continuous chain (M,, : a < &) of elementary
submodels s.t. if X is a set, and X N M, is uncountable, then
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GCH is not enough. If GCH holds, then for all  there is a
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If V=L, then every AD subfamily of [A]“* is w,-ED

If GCH holds, then every AD subfamily of [A]“* is w;-ED

2. Corollary:
If V=L, then xcr(A) < w; forall AD A C [A]" forallwy <k <A

If GCH, then xcr(A) < w; forall AD A C [A]" for all wp, < & < A

(Erdés, Hajnal, 1961) If GCH, every AD subfamily of [A]" has
property B(w,) for all w, < x < A
If & > wi, A C [A]"is AD, then IX st {ANX : A€ A} C [X]™.

w2

If & > wp, A C [A]" is AD, then 3X st {ANX : A€ A} C [X]
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If V=L, then xcr(A) < wy forall AD A C [A]" forallwy < & < A

If GCH, then ycr(A) < w, for all AD A C [A]” for all wp < k < A

1. (Hajnal, Juhasz, Shelah (2000) ) It is consistent (modulo a
supercompact cardinal), that GCH holds and

o there is an almost disjoint family A C [X,,41]“* with
X(A) = (xcr(A)) = Nyi1

2. (Hajnal, Juhasz, S, Szentmiklossy, (2010) It is consistent
(modulo a supercompact cardinal), that GCH holds and

o there is an almost disjoint family B C [Nwﬂ]wz with
Xcr(B) = wa.
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Inhomogeneous systems

e every n-ad subfamily of [\]“ is ED
e If V=L, then every almost disjoint subfamily of [A\]“* is w;-ED.

e If GCH holds, then every almost disjoint subfamily of [A]“* is
wz-ED.

* xcr(A) < w for all n-almost disjoint family A C [A] =2

Expected results: If V=L, then xcr(A) < w; for all w-almost disjoint
family A C [A] Z“If GCH, then xcr(A) < w, for all w-almost disjoint
family A C [A] =z,

Theorem (S, 2012)

If every p-almost disjoint subfamily of [A]" is x-ED, then xcr(A) < &
for all pi-almost disjoint A C [] =

So the expected results hold.



An unexpected result



An unexpected result

wl-ED

e

N

TP B(w1) Xcr <w

/




An unexpected result

2N

TP B(w1) Xcr <w

/




An unexpected result

/) w1-ED
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TP B(w1) Xcr Sw
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X <w

Theorem (Komjath, 1984)

If every w-almost disjoint subfamily of [A\]“* has the transversal
property

then every w-almost disjoint subfamily of [A\]“* is w-essentially
disjoint.
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Properties of p-almost disjoint families for p > w

Theorem (S, 2010)
Letu <3, <A\

o If AC [} = is a u-almost disjoint family, then A is
J.-essentially disjoint.

o If AC [} =2 is y-almost disjoint, then xcr(A) < J...
Definition

pll = p iff there is a family B ¢ [p]é” of size p such that for all
ue [p]” thereis P € [B]~" such that u = UP.

Theorem (Shelah, Revised GCH)
If p > 3, then pl*] = p for each large enough regular v < 3.
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What does “reasonable” mean?

e Let weak and strong be properties of families of sets,
strong(A) = weak(A).

e Let A be areasonable collection of families of sets.
Prove/disprove

VA € A weak(A) = VA € A strong(.A)

o Ay = { u-almost disjoint subfamilies of [A]" }.
e A, = { ladder systems }.

Definition. Let S C &.
A family A = {A, : « € S} is a ladder system on S iff
A, is a cofinal subset of « (with order type cf(«)).

A ladder system is a ladder system on some S.
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Degustation
Prove/disprove: VA € A weak(A) — VA € A strong(.A)

e Prove implication theorems. Are there any?
e Prove separation theorems.

e Forcing: not hopeless up to continuum. But ...
e Forcing: more compliceted above ¢. No nice iterations.
e Preservation theorems.

?
Given a model M, decide M = V.A € A weak(A)

Compactness argument:
e At singulars: Shelah’s Singular Compactness Theorem.
e Atregulars:

¢ Independence result: large cardinals vs boxes
e Shelah’s Revised GCH
e Combinatorial principles
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A A [ALL iffthereis f : X — wy s.t. f[A] = w; forall A € A.

Problems around w-almost disjoint families A C [A]

B(< w)

=

T

Xcr < wq

# AL,

X < wq

w1



To be continued ...



