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Theorem (Gy. Elekes, Gy Hoffman, 1973)
For all infinite cardinal κ there is an almost disjoint A ⊂

[

X
]ω

with
χ(A) ≥ κ.

Definition: A is n-almost-disjoint iff |A ∩ A′| < n for all A 6= A′ ∈ A

Theorem (E. W. Miller, 1937)
An n-almost disjoint family of infinite sets has property B.
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Theorem (Davies, 1963)
R2 is the union of countably many rotations of functions.
If α0, α1, . . . are pairwise different angles between 0 and π, then there
are function f0, f1 . . . such that
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• Need: there is a continuous chain 〈Mα : α < κ〉 of elementary
submodels s.t. if X is a set, and X ∩ Mα is uncountable, then
Mα ∩

[

X
]ω

6= ∅.

• “GCH + �∗∗
λ for all λ > cf (λ) = ω” ⊢ ∃ suitable chains.

• GCH is not enough. If GCH holds, then for all κ there is a
continuous chain 〈Mα : α < κ〉 of elementary submodels s.t. if X
is a set, and |X ∩ Mα| ≥ ω2, then Mα ∩
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X
]ω

6= ∅.
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Theorem (S, 2012)
If every µ-almost disjoint subfamily of

[

λ
]κ

is κ-ED, then χCF(A) ≤ κ

for all µ-almost disjoint A ⊂
[

λ
]≥κ

.

So the expected results hold.
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ω1-ED

TP B(ω1) χCF ≤ ω

B

χ ≤ ω

Theorem (Komjáth, 1984)
If every ω-almost disjoint subfamily of

[

λ
]ω1 has the transversal

property
then every ω-almost disjoint subfamily of

[

λ
]ω1 is ω-essentially

disjoint.
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Theorem (S, 2010)
Let µ < iω ≤ λ.

• If A ⊂
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]iω is a µ-almost disjoint family, then A is
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]≥iω is µ-almost disjoint, then χCF(A) ≤ iω.
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ρ
]ν

there is P ∈
[

B
]<ν
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Theorem (Shelah, Revised GCH)
If ρ ≥ iω, then ρ[ν] = ρ for each large enough regular ν < iω.
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• Let weak and strong be properties of families of sets,
strong(A) =⇒ weak(A).

• Let A be a reasonable collection of families of sets.
Prove/disprove

∀A ∈ A weak(A) =⇒ ∀A ∈ A strong(A)

• A1 = { µ-almost disjoint subfamilies of
[

λ
]κ

}.

• A2 = { ladder systems }.

Definition. Let S ⊂ κ.
A family A = {Aα : α ∈ S} is a ladder system on S iff

Aα is a cofinal subset of α (with order type cf (α)).

A ladder system is a ladder system on some S.
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• Prove implication theorems. Are there any?

• Prove separation theorems.

• Forcing: not hopeless up to continuum. But . . .
• Forcing: more compliceted above c. No nice iterations.
• Preservation theorems.

Given a model M, decide M
?

|= ∀A ∈ A weak(A)

Compactness argument:

• At singulars: Shelah’s Singular Compactness Theorem.

• At regulars:

• Independence result: large cardinals vs boxes
• Shelah’s Revised GCH
• Combinatorial principles
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Problems around ω-almost disjoint families A ⊂
[

λ
]ω1

ω-ED

TP B(≤ ω) χCF ≤ ω1

λ 6→ [A]1ω1

B

χ ≤ ω1

λ 6→ [A]1ω1

λ 6→ [A]1ω1
iff there is f : λ → ω1 s.t. f [A] = ω1 for all A ∈ A.



To be continued . . .


