

On properties of families of sets

Lecture 2

Lajos Soukup

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences

<http://www.renyi.hu/~soukup>

7th Young Set Theory Workshop

Recapitulation

Recapitulation

Definition: A family $\mathcal{A} \subset \mathcal{P}(X)$ has **property B** iff $\chi(\mathcal{A}) = 2$,
where the **chromatic number** of \mathcal{A} is defined as follows:
 $\chi(\mathcal{A}) = \min\{\lambda \mid \exists f : X \rightarrow \lambda \ \forall A \in \mathcal{A} \ |f[A]| \geq 2\}.$

Recapitulation

Definition: A family $\mathcal{A} \subset \mathcal{P}(X)$ has **property B** iff $\chi(\mathcal{A}) = 2$, where the **chromatic number** of \mathcal{A} is defined as follows:

$$\chi(\mathcal{A}) = \min\{\lambda \mid \exists f : X \rightarrow \lambda \ \forall A \in \mathcal{A} \ |f[A]| \geq 2\}.$$

Theorem (E. W. Miller, 1937)

There is an almost disjoint $\mathcal{A} \subset [\omega]^\omega$ with $\chi(\mathcal{A}) = \omega$.

Recapitulation

Definition: A family $\mathcal{A} \subset \mathcal{P}(X)$ has **property B** iff $\chi(\mathcal{A}) = 2$, where the **chromatic number** of \mathcal{A} is defined as follows:

$$\chi(\mathcal{A}) = \min\{\lambda \mid \exists f : X \rightarrow \lambda \ \forall A \in \mathcal{A} \ |f[A]| \geq 2\}.$$

Theorem (E. W. Miller, 1937)

There is an almost disjoint $\mathcal{A} \subset [\omega]^\omega$ with $\chi(\mathcal{A}) = \omega$.

Theorem (Gy. Elekes, Gy Hoffman, 1973)

For all infinite cardinal κ there is an almost disjoint $\mathcal{A} \subset [X]^\omega$ with $\chi(\mathcal{A}) \geq \kappa$.

Recapitulation

Definition: A family $\mathcal{A} \subset \mathcal{P}(X)$ has **property B** iff $\chi(\mathcal{A}) = 2$, where the **chromatic number** of \mathcal{A} is defined as follows:

$$\chi(\mathcal{A}) = \min\{\lambda \mid \exists f : X \rightarrow \lambda \ \forall A \in \mathcal{A} \ |f[A]| \geq 2\}.$$

Theorem (E. W. Miller, 1937)

There is an almost disjoint $\mathcal{A} \subset [\omega]^\omega$ with $\chi(\mathcal{A}) = \omega$.

Theorem (Gy. Elekes, Gy Hoffman, 1973)

For all infinite cardinal κ there is an almost disjoint $\mathcal{A} \subset [X]^\omega$ with $\chi(\mathcal{A}) \geq \kappa$.

Definition: \mathcal{A} is **n -almost-disjoint** iff $|A \cap A'| < n$ for all $A \neq A' \in \mathcal{A}$

Recapitulation

Definition: A family $\mathcal{A} \subset \mathcal{P}(X)$ has **property B** iff $\chi(\mathcal{A}) = 2$, where the **chromatic number** of \mathcal{A} is defined as follows:

$$\chi(\mathcal{A}) = \min \{ \lambda \mid \exists f : X \rightarrow \lambda \ \forall A \in \mathcal{A} \ |f[A]| \geq 2 \}.$$

Theorem (E. W. Miller, 1937)

There is an almost disjoint $\mathcal{A} \subset [\omega]^\omega$ with $\chi(\mathcal{A}) = \omega$.

Theorem (Gy. Elekes, Gy Hoffman, 1973)

For all infinite cardinal κ there is an almost disjoint $\mathcal{A} \subset [X]^\omega$ with $\chi(\mathcal{A}) \geq \kappa$.

Definition: \mathcal{A} is **n -almost-disjoint** iff $|A \cap A'| < n$ for all $A \neq A' \in \mathcal{A}$

Theorem (E. W. Miller, 1937)

An **n -almost** disjoint family of infinite sets has **property B**.

Covering of the plain.

Covering of the plain.

Theorem (Sierpinski)

CH holds iff \mathbb{R}^2 is the union of countably many functions and their inverses.

Covering of the plain.

Theorem (Sierpinski)

CH holds iff \mathbb{R}^2 is the union of countably many functions and their inverses.

- $f^{-1} = R_{(90^\circ)}(-f)$

Covering of the plain.

Theorem (Sierpinski)

CH holds iff \mathbb{R}^2 is the union of countably many functions and their inverses.

- $f^{-1} = R_{(90^\circ)}(-f)$
- $R_{(\alpha)} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ the rotation by α degree around the origin.

Covering of the plain.

Theorem (Sierpinski)

CH holds iff \mathbb{R}^2 is the union of countably many functions and their inverses.

- $f^{-1} = R_{(90^\circ)}(-f)$
- $R_{(\alpha)} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ the rotation by α degree around the origin.
- If CH holds, then \mathbb{R}^2 is the union of countably many rotations of functions.

Covering of the plain.

Theorem (Sierpinski)

CH holds iff \mathbb{R}^2 is the union of countably many functions and their inverses.

- $f^{-1} = R_{(90^\circ)}(-f)$
- $R_{(\alpha)} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ the rotation by α degree around the origin.
- If CH holds, then \mathbb{R}^2 is the union of countably many rotations of functions.
- Sierpinski, 1951: Is the converse true?

Covering of the plain.

Theorem (Sierpinski)

CH holds iff \mathbb{R}^2 is the union of countably many functions and their inverses.

- $f^{-1} = R_{(90^\circ)}(-f)$
- $R_{(\alpha)} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ the rotation by α degree around the origin.
- If CH holds, then \mathbb{R}^2 is the union of countably many rotations of functions.
- Sierpinski, 1951: Is the converse true?

Theorem (Davies, 1963)

\mathbb{R}^2 is the union of countably many rotations of functions.

Covering of the plain.

Theorem (Sierpinski)

CH holds iff \mathbb{R}^2 is the union of countably many functions and their inverses.

- $f^{-1} = R_{(90^\circ)}(-f)$
- $R_{(\alpha)} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ the rotation by α degree around the origin.
- If CH holds, then \mathbb{R}^2 is the union of countably many rotations of functions.
- Sierpinski, 1951: Is the converse true?

Theorem (Davies, 1963)

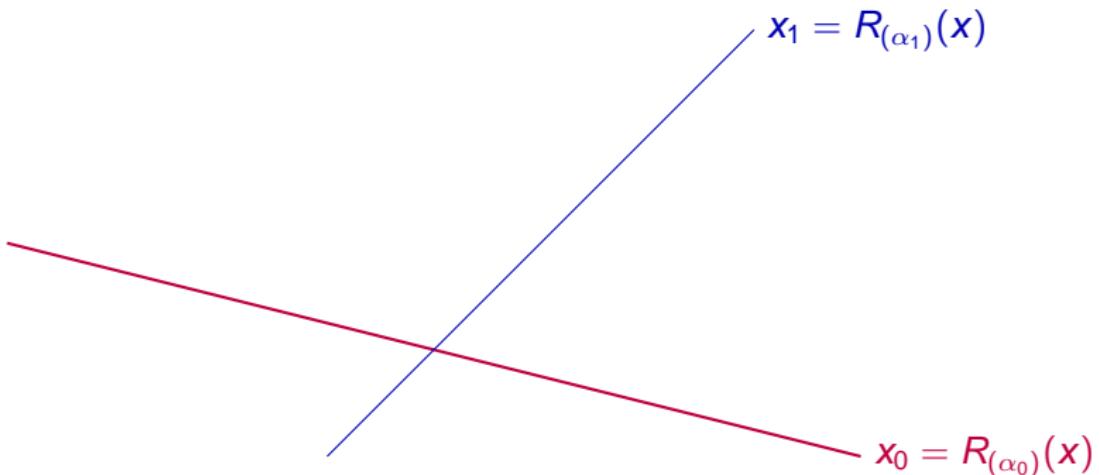
\mathbb{R}^2 is the union of countably many rotations of functions.

If $\alpha_0, \alpha_1, \dots$ are pairwise different angles between 0 and π , then there are functions f_0, f_1, \dots such that

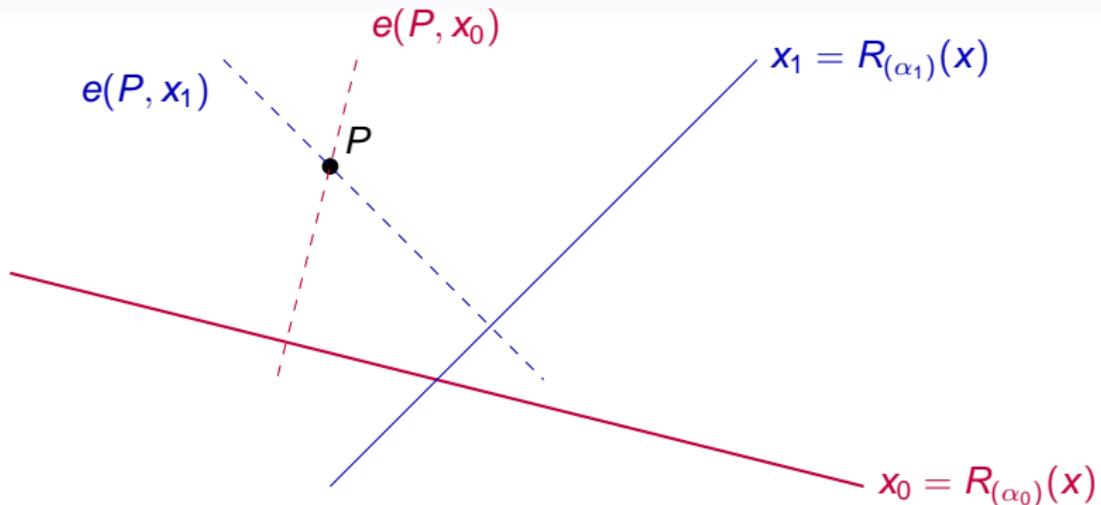
$$\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n).$$

Thm. There are function $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.

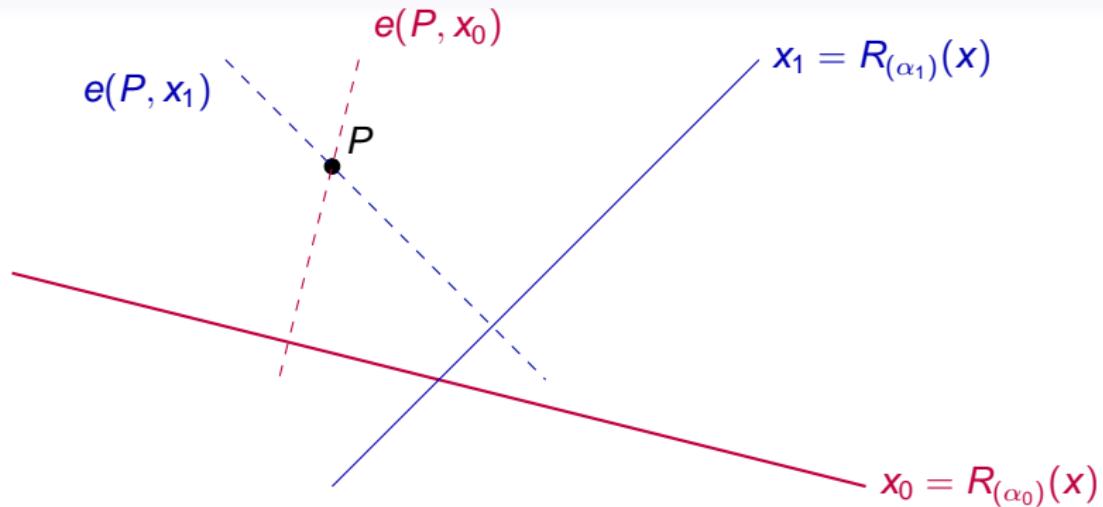
Thm. There are function $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.



Thm. There are function $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.

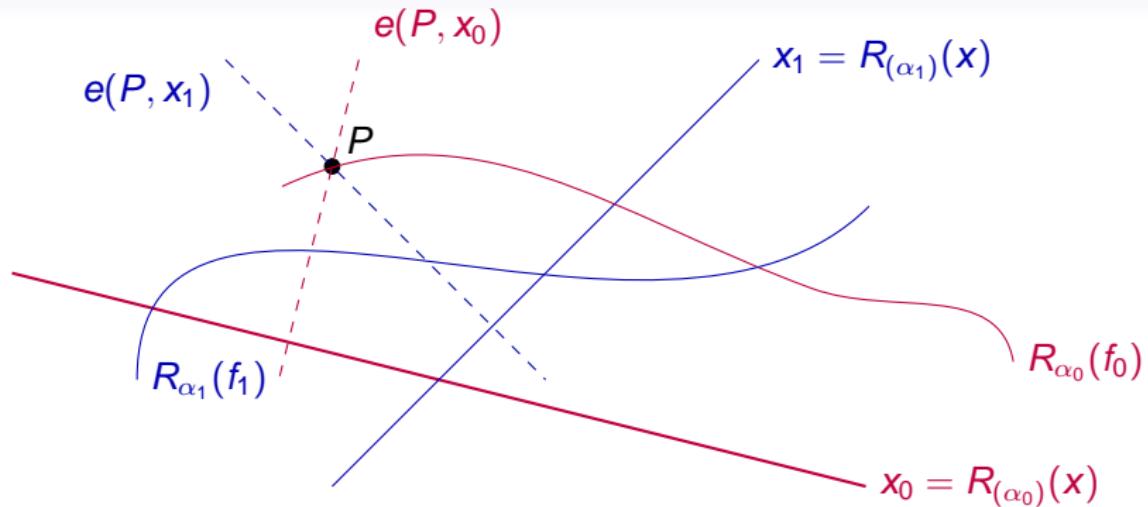


Thm. There are function $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.



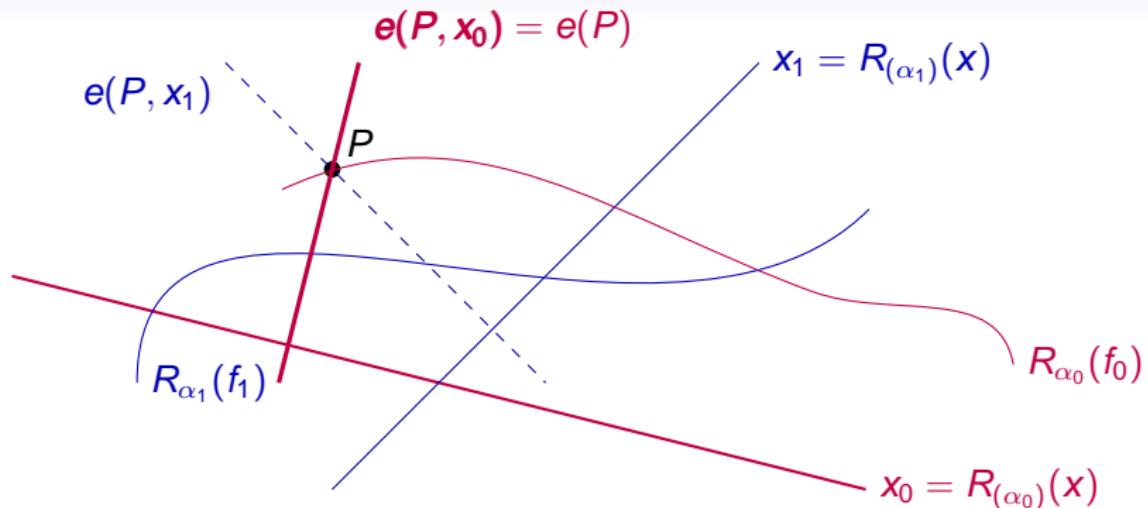
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$. Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.

Thm. There are function $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.



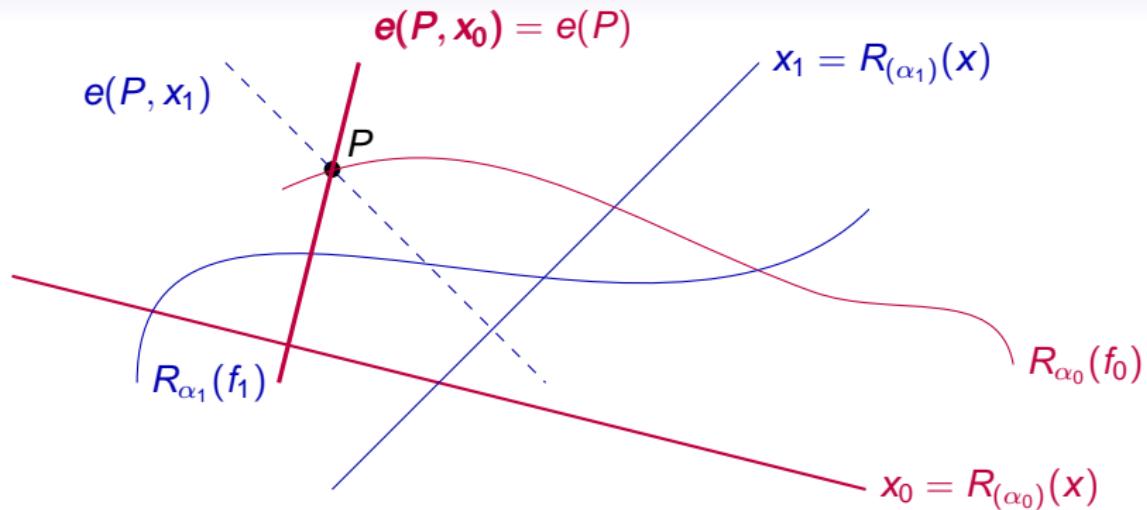
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$. Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.

Thm. There are function $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.



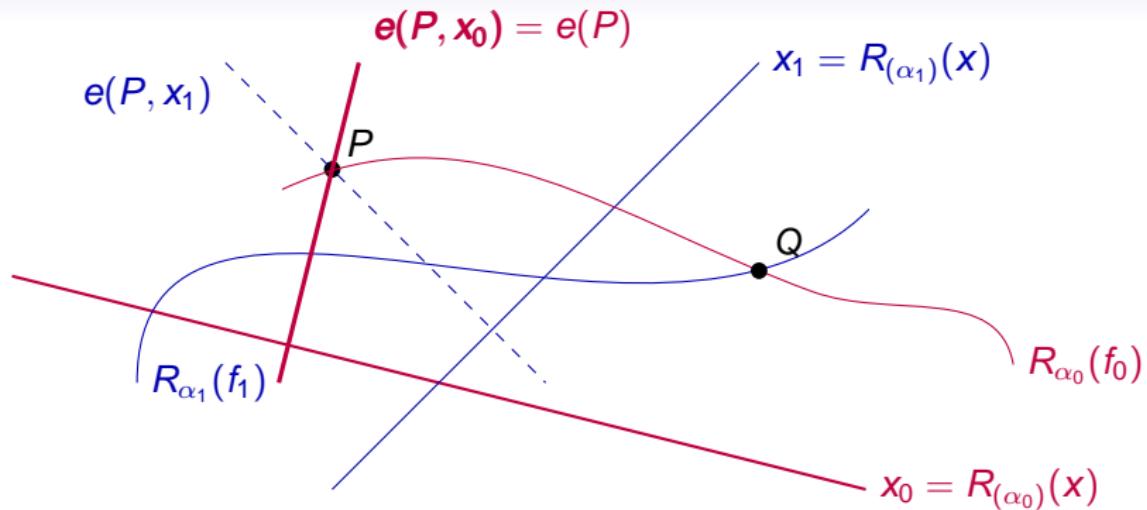
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$. Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.
- if $P \in R_{(\alpha_n)}(f_n)$, let $e(P) = e(P, x_n)$

Thm. There are function $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.



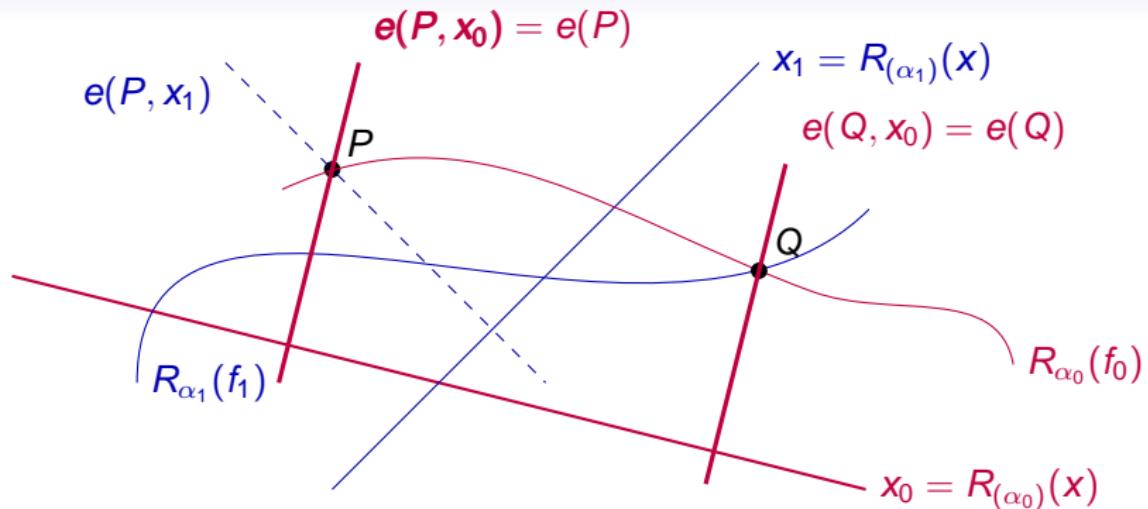
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$. Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.
- if $P \in R_{(\alpha_n)}(f_n)$, let $e(P) = e(P, x_n)$
- $P \neq Q$ implies $e(P) \neq e(Q)$.

Thm. There are function $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.



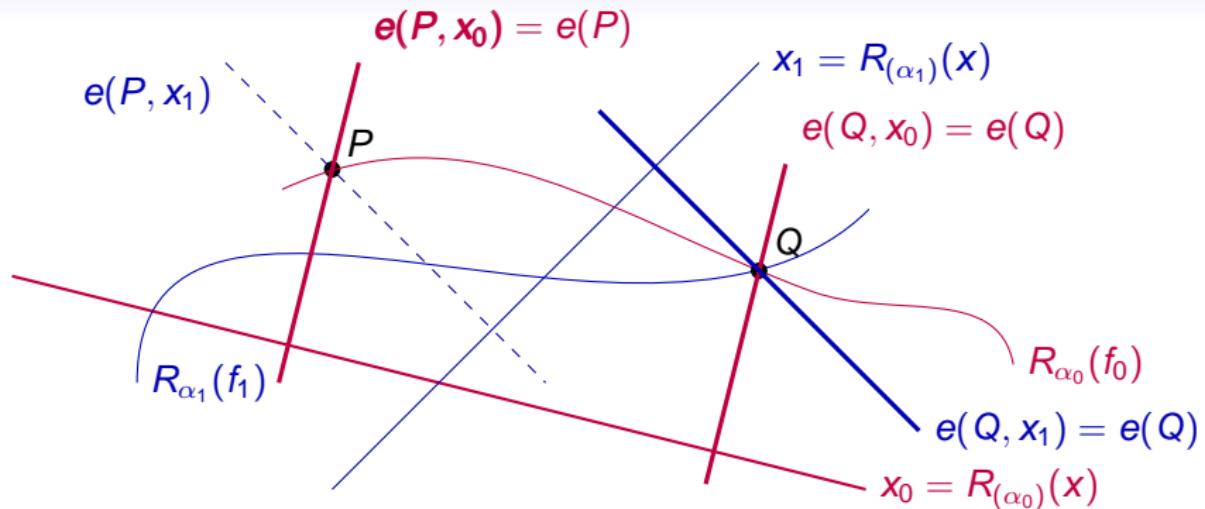
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$. Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.
- if $P \in R_{(\alpha_n)}(f_n)$, let $e(P) = e(P, x_n)$
- $P \neq Q$ implies $e(P) \neq e(Q)$.

Thm. There are function $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.



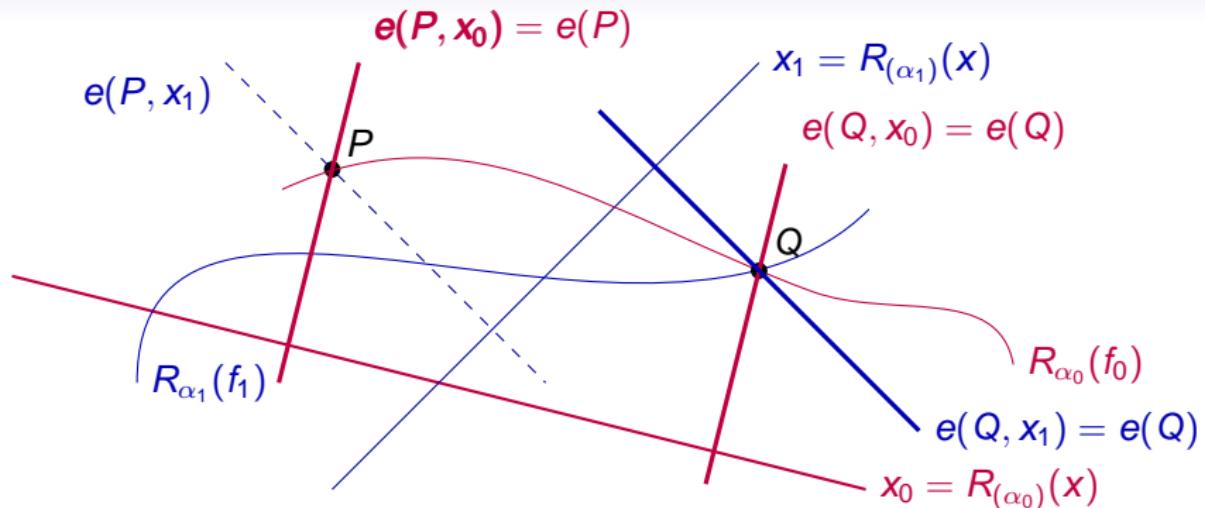
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$. Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.
- if $P \in R_{(\alpha_n)}(f_n)$, let $e(P) = e(P, x_n)$
- $P \neq Q$ implies $e(P) \neq e(Q)$.

Thm. There are function $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.

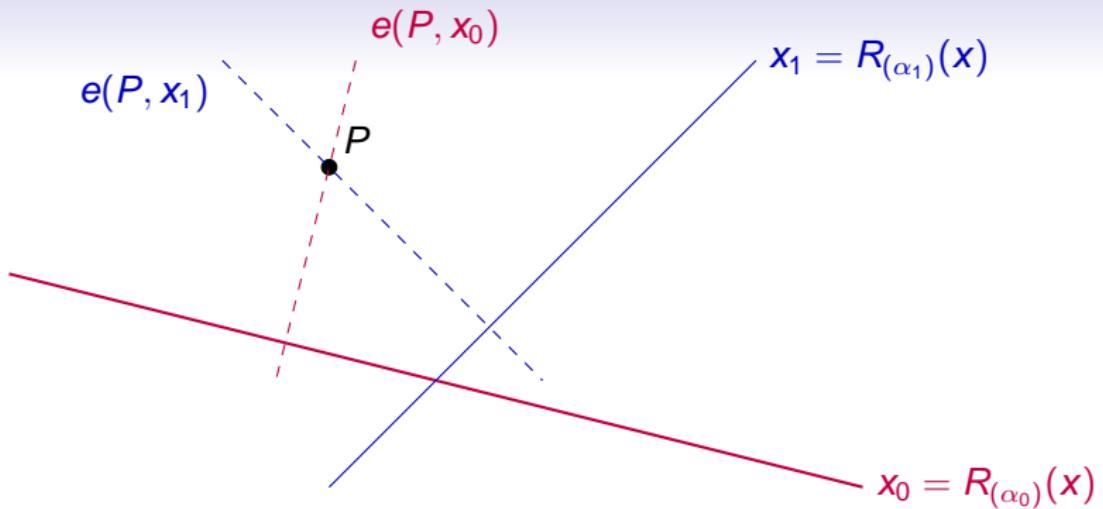


- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$. Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.
- if $P \in R_{(\alpha_n)}(f_n)$, let $e(P) = e(P, x_n)$
- $P \neq Q$ implies $e(P) \neq e(Q)$.

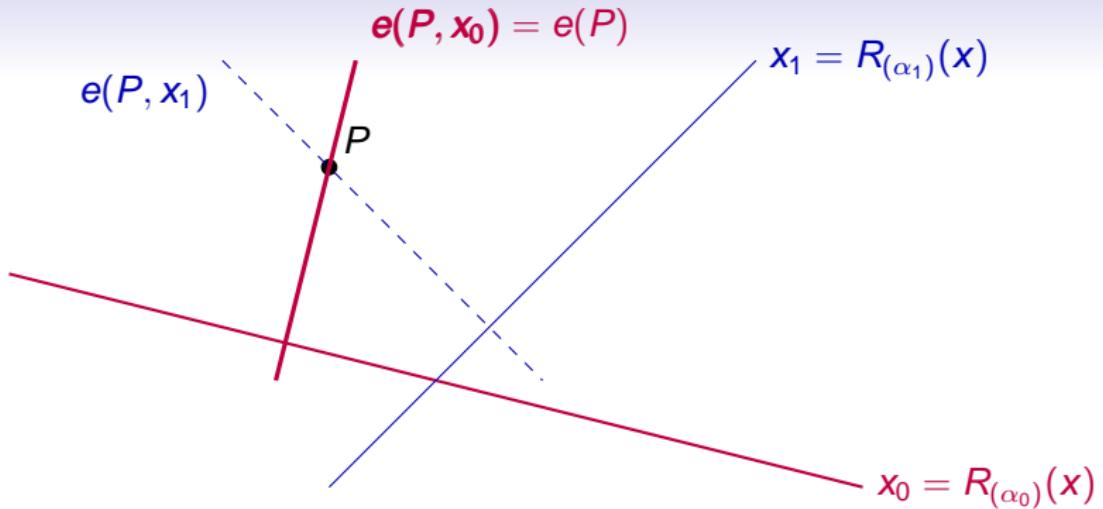
Thm. There are functions $f_0, f_1 \dots$ such that $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.



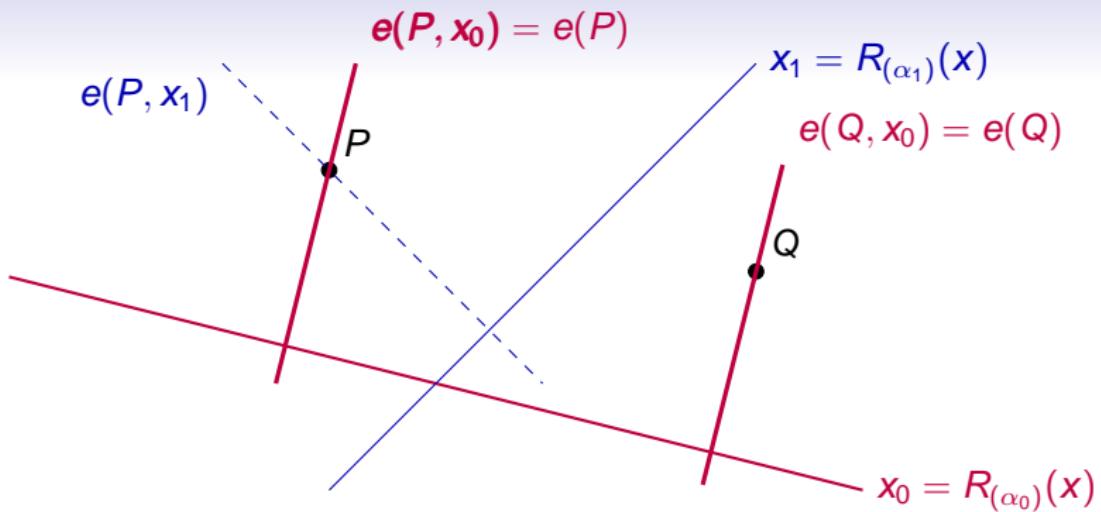
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$. Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.
- if $P \in R_{(\alpha_n)}(f_n)$, let $e(P) = e(P, x_n)$
- $P \neq Q$ implies $e(P) \neq e(Q)$.
- \mathbb{E} has a **transversal**, i.e. an injective choice function.



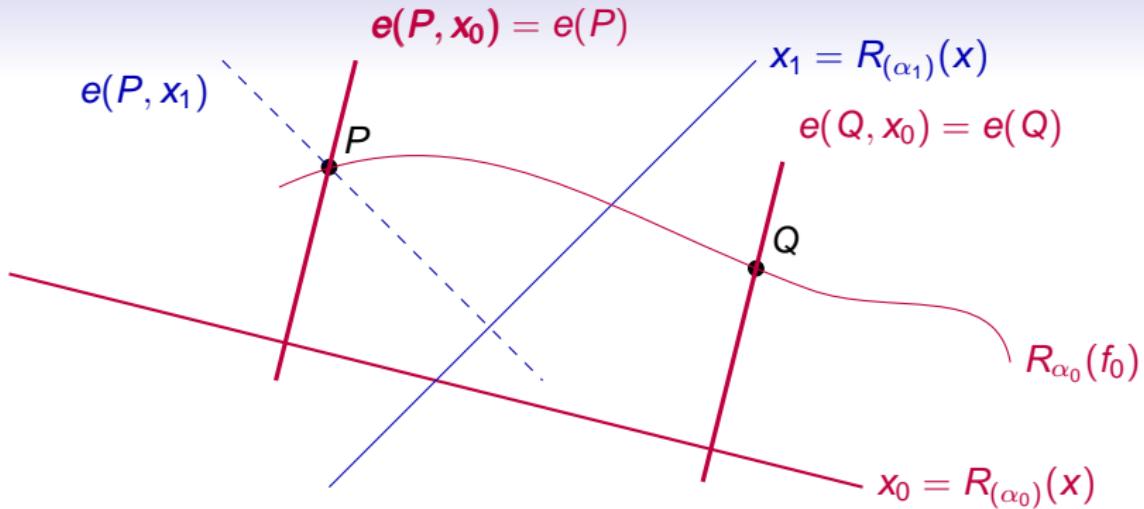
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$ Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.



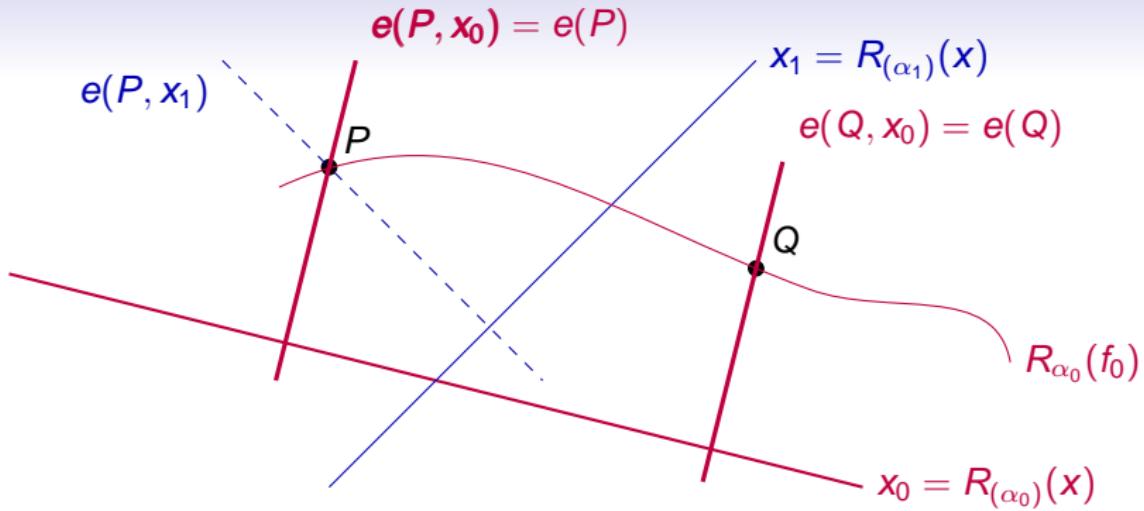
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$ Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume \mathbb{E} has a **transversal** (an injective choice function) e .



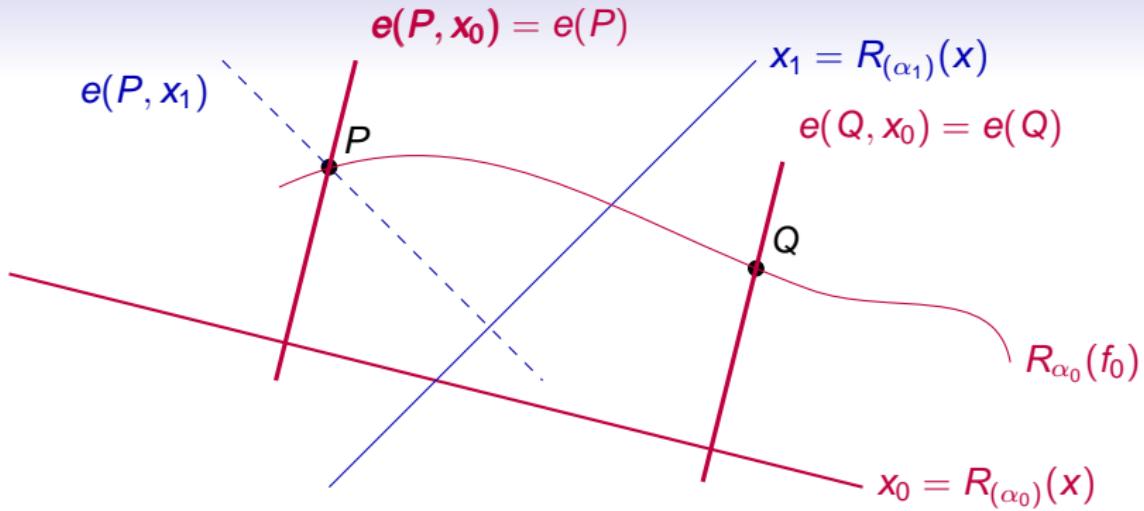
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$ Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume \mathbb{E} has a **transversal** (an injective choice function) e .
- Let $F_n = \{P : e(P) = e(P, x_n)\}$.



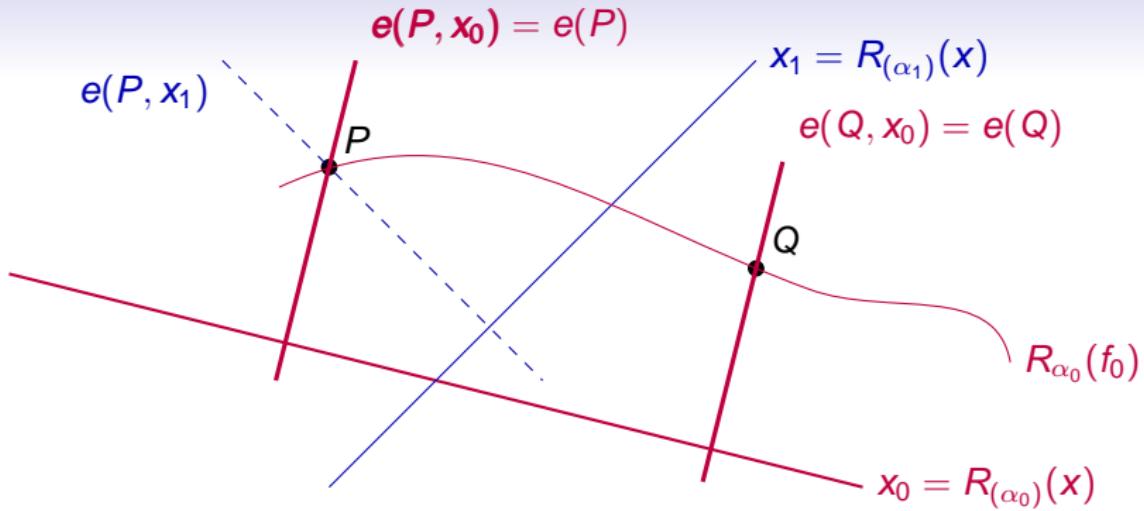
- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$ Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume \mathbb{E} has a **transversal** (an injective choice function) e .
- Let $F_n = \{P : e(P) = e(P, x_n)\}$.
- There is function f_n s.t. $F_n \subset R_{(\alpha_n)}(f_n)$:



- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$ Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume \mathbb{E} has a **transversal** (an injective choice function) e .
- Let $F_n = \{P : e(P) = e(P, x_n)\}$.
- There is function f_n s.t. $F_n \subset R_{(\alpha_n)}(f_n)$:
- Let $f_n = \{R_{(-\alpha_n)}(P) : P \in F_n\}$



- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$ Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume \mathbb{E} has a **transversal** (an injective choice function) e .
- Let $F_n = \{P : e(P) = e(P, x_n)\}$.
- There is function f_n s.t. $F_n \subset R_{(\alpha_n)}(f_n)$:
- Let $f_n = \{R_{(-\alpha_n)}(P) : P \in F_n\}$
- So $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.



- Write $\mathcal{E}(P) = \{e(P, x_n) : n \in \omega\}$ Let $\mathbb{E} = \{\mathcal{E}(P) : P \in \mathbb{R}^2\}$.
- Assume \mathbb{E} has a **transversal** (an injective choice function) e .
- Let $F_n = \{P : e(P) = e(P, x_n)\}$.
- There is function f_n s.t. $F_n \subset R_{(\alpha_n)}(f_n)$:
- Let $f_n = \{R_{(-\alpha_n)}(P) : P \in F_n\}$
- So $\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}(f_n)$.
- \mathbb{E} is 2-almost disjoint.

Beyond Property *B*.

Beyond Property B .

Definition

A family \mathcal{B} has *transversal property* iff there is an *injective choice function* on \mathcal{B} .

Beyond Property B .

Definition

A family \mathcal{B} has *transversal property* iff there is an *injective choice function* on \mathcal{B} .

Enough: every 2-almost disjoint family of infinite sets has the transversal property.

Beyond Property *B*.

Definition

*A family \mathcal{B} has **transversal property** iff there is an **injective choice function** on \mathcal{B} .*

Enough: every 2-almost disjoint family of infinite sets has the transversal property.

- We have seen: An *n*-almost disjoint $\mathcal{A} \subset [X]^\omega$ has a **property B**.

Beyond Property *B*.

Definition

*A family \mathcal{B} has **transversal property** iff there is an **injective choice function** on \mathcal{B} .*

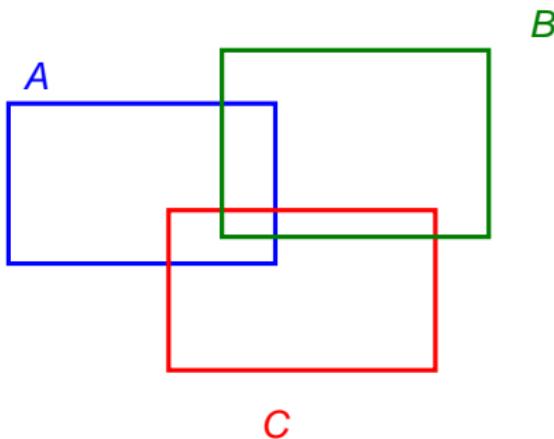
Enough: every 2-almost disjoint family of infinite sets has the transversal property.

- We have seen: An *n-almost disjoint* $\mathcal{A} \subset [X]^\omega$ has a **property B**.
- Same proof: An *n-almost disjoint* $\mathcal{A} \subset [X]^\omega$ has a **transversal**.

Beyond Property *B* and transversals

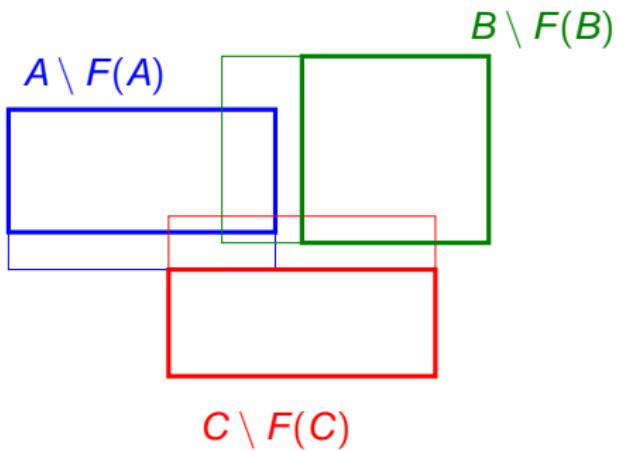
Beyond Property *B* and transversals

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.



Beyond Property *B* and transversals

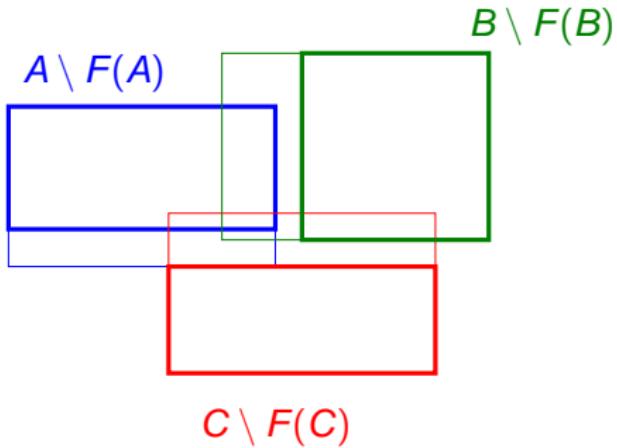
Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.



Beyond Property *B* and transversals

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

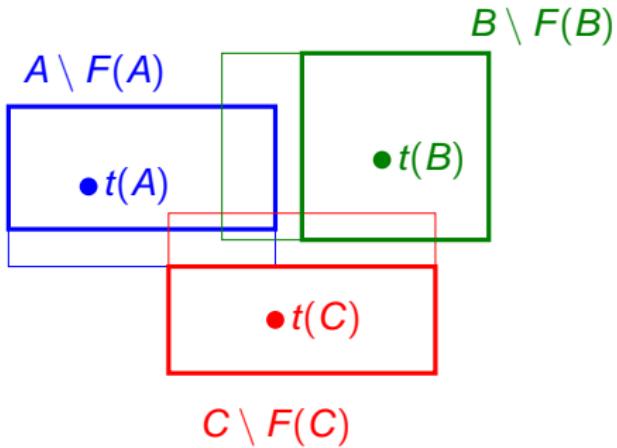
- An essentially disjoint \mathcal{A} has a transversal. If $t(A) \in A \setminus F(A)$, then t is an **injective choice function**.



Beyond Property B and transversals

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

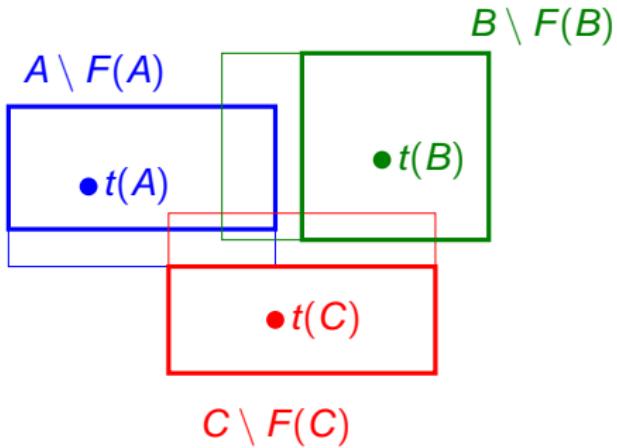
- An essentially disjoint \mathcal{A} has a transversal. If $t(A) \in A \setminus F(A)$, then t is an **injective choice function**.



Beyond Property B and transversals

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

- An essentially disjoint \mathcal{A} has a transversal. If $t(A) \in A \setminus F(A)$, then t is an **injective choice function**.



- There is a coloring c such that $c[X] = \omega$ for all $X \in \mathcal{A}$.
Enough: $c[X \setminus F(X)] = \omega$.

Property ED

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Property ED

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Theorem (Komjáth, 1984)

Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is essentially disjoint.

Property ED

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Theorem (Komjáth, 1984)

Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is essentially disjoint.

- The case $\mathcal{A} = \{A_n : n < \omega\}$ is trivial: let $F(A_n) = A_n \cap (\bigcup_{i < n} A_i)$.

Property ED

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Theorem (Komjáth, 1984)

Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **essentially disjoint**.

- The case $\mathcal{A} = \{A_n : n < \omega\}$ is trivial: let $F(A_n) = A_n \cap (\bigcup_{i < n} A_i)$.
- Consider the case $\mathcal{A} = \{A_\zeta : \zeta < \omega_1\} \subset [\omega_1]^\omega$

Property ED

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Theorem (Komjáth, 1984)

Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **essentially disjoint**.

- The case $\mathcal{A} = \{A_n : n < \omega\}$ is trivial: let $F(A_n) = A_n \cap (\bigcup_{i < n} A_i)$.
- Consider the case $\mathcal{A} = \{A_\zeta : \zeta < \omega_1\} \subset [\omega_1]^\omega$
- $\mathcal{A} \in M_1 \prec M_2 \cdots \prec M_\alpha \prec M_{\alpha+1} \prec \cdots \prec \langle H(\kappa), \in, \preccurlyeq \rangle \quad (\alpha < \omega_1)$

Property ED

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Theorem (Komjáth, 1984)

Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **essentially disjoint**.

- The case $\mathcal{A} = \{A_n : n < \omega\}$ is trivial: let $F(A_n) = A_n \cap (\bigcup_{i < n} A_i)$.
- Consider the case $\mathcal{A} = \{A_\zeta : \zeta < \omega_1\} \subset [\omega_1]^\omega$
- $\mathcal{A} \in M_1 \prec M_2 \cdots \prec M_\alpha \prec M_{\alpha+1} \prec \cdots \prec \langle H(\kappa), \in, \preccurlyeq \rangle \quad (\alpha < \omega_1)$
- continuous chain of countable elementary submodels

Property ED

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Theorem (Komjáth, 1984)

Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **essentially disjoint**.

- The case $\mathcal{A} = \{A_n : n < \omega\}$ is trivial: let $F(A_n) = A_n \cap (\bigcup_{i < n} A_i)$.
- Consider the case $\mathcal{A} = \{A_\zeta : \zeta < \omega_1\} \subset [\omega_1]^\omega$
- $\mathcal{A} \in M_1 \prec M_2 \cdots \prec M_\alpha \prec M_{\alpha+1} \prec \cdots \prec \langle H(\kappa), \in, \preccurlyeq \rangle \quad (\alpha < \omega_1)$
- continuous chain of countable elementary submodels $(M_0 = \emptyset)$

Property ED

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Theorem (Komjáth, 1984)

Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **essentially disjoint**.

- The case $\mathcal{A} = \{A_n : n < \omega\}$ is trivial: let $F(A_n) = A_n \cap (\bigcup_{i < n} A_i)$.
- Consider the case $\mathcal{A} = \{A_\zeta : \zeta < \omega_1\} \subset [\omega_1]^\omega$
- $\mathcal{A} \in M_1 \prec M_2 \cdots \prec M_\alpha \prec M_{\alpha+1} \prec \cdots \prec \langle H(\kappa), \in, \preccurlyeq \rangle \quad (\alpha < \omega_1)$
- continuous chain of countable elementary submodels $(M_0 = \emptyset)$
- Partition \mathcal{A} into countable pieces:
 $\mathcal{A} = \bigcup_{\alpha < \omega_1}^* \mathcal{A}_\alpha$, where $\mathcal{A}_\alpha = \mathcal{A} \cap (M_{\alpha+1} \setminus M_\alpha)$.

Property ED

Definition: A family \mathcal{A} is **essentially disjoint (ED)** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Theorem (Komjáth, 1984)

Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **essentially disjoint**.

- The case $\mathcal{A} = \{A_n : n < \omega\}$ is trivial: let $F(A_n) = A_n \cap (\bigcup_{i < n} A_i)$.
- Consider the case $\mathcal{A} = \{A_\zeta : \zeta < \omega_1\} \subset [\omega_1]^\omega$
- $\mathcal{A} \in M_1 \prec M_2 \cdots \prec M_\alpha \prec M_{\alpha+1} \prec \cdots \prec \langle H(\kappa), \in, \preccurlyeq \rangle \quad (\alpha < \omega_1)$
- continuous chain of countable elementary submodels $(M_0 = \emptyset)$
- Partition \mathcal{A} into countable pieces:
 $\mathcal{A} = \bigcup_{\alpha < \omega_1}^* \mathcal{A}_\alpha$, where $\mathcal{A}_\alpha = \mathcal{A} \cap (M_{\alpha+1} \setminus M_\alpha)$.
- **Key observation:**
If $A \in M_{\alpha+1} \setminus M_\alpha$ then $A \subset M_{\alpha+1}$ and $|A \cap M_\alpha| < n$

How to guarantee ED?

- $\mathcal{A} \subset [\omega_1]^\omega$ is n -AD,
 $\mathcal{A} \in M_1 \prec M_2 \cdots \prec M_\alpha \prec M_{\alpha+1} \prec \cdots \prec \langle H(\kappa), \in, \triangleleft \rangle$
- $\mathcal{A} = \bigcup_{\alpha < \omega_1}^* \mathcal{A}_\alpha$, where $\mathcal{A}_\alpha = \mathcal{A} \cap (M_{\alpha+1} \setminus M_\alpha)$.
- Key observation: If $A \in M_{\alpha+1} \setminus M_\alpha$ then $A \subset M_{\alpha+1}$ and
 $|A \cap M_\alpha| < n$

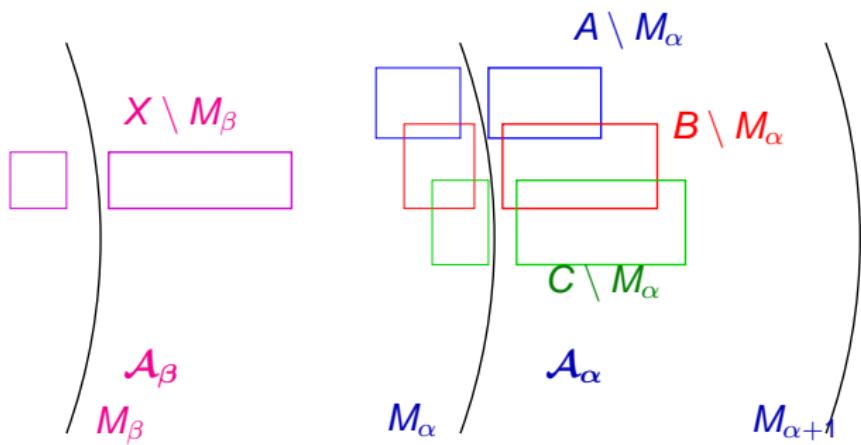
How to guarantee ED?

- $\mathcal{A} \subset [\omega_1]^\omega$ is n -AD,
 $\mathcal{A} \in M_1 \prec M_2 \cdots \prec M_\alpha \prec M_{\alpha+1} \prec \cdots \prec \langle H(\kappa), \in, \triangleleft \rangle$
- $\mathcal{A} = \bigcup_{\alpha < \omega_1}^* \mathcal{A}_\alpha$, where $\mathcal{A}_\alpha = \mathcal{A} \cap (M_{\alpha+1} \setminus M_\alpha)$.
- Key observation: If $A \in M_{\alpha+1} \setminus M_\alpha$ then $A \subset M_{\alpha+1}$ and $|A \cap M_\alpha| < n$



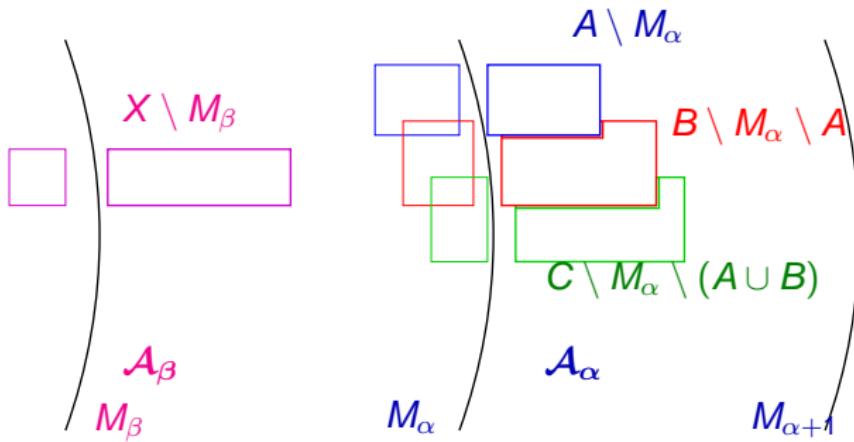
How to guarantee ED?

- $\mathcal{A} \subset [\omega_1]^\omega$ is n -AD,
 $\mathcal{A} \in M_1 \prec M_2 \cdots \prec M_\alpha \prec M_{\alpha+1} \prec \cdots \prec \langle H(\kappa), \in, \triangleleft \rangle$
- $\mathcal{A} = \bigcup_{\alpha < \omega_1}^* \mathcal{A}_\alpha$, where $\mathcal{A}_\alpha = \mathcal{A} \cap (M_{\alpha+1} \setminus M_\alpha)$.
- Key observation: If $A \in M_{\alpha+1} \setminus M_\alpha$ then $A \subset M_{\alpha+1}$ and $|A \cap M_\alpha| < n$



How to guarantee ED?

- $\mathcal{A} \subset [\omega_1]^\omega$ is n -AD,
 $\mathcal{A} \in M_1 \prec M_2 \cdots \prec M_\alpha \prec M_{\alpha+1} \prec \cdots \prec \langle H(\kappa), \in, \triangleleft \rangle$
- $\mathcal{A} = \bigcup_{\alpha < \omega_1}^* \mathcal{A}_\alpha$, where $\mathcal{A}_\alpha = \mathcal{A} \cap (M_{\alpha+1} \setminus M_\alpha)$.
- Key observation: If $A \in M_{\alpha+1} \setminus M_\alpha$ then $A \subset M_{\alpha+1}$ and $|A \cap M_\alpha| < n$



How to guarantee Property B ?

\mathcal{A} is essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

If $\mathcal{A} \subset [X]^\omega$ is ED then \mathcal{A} has property B .

Miller: Every n -almost disjoint family $\mathcal{A} \subset [X]^{\geq\omega}$ has property B

Komjáth: Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is essentially disjoint

How to guarantee Property B ?

\mathcal{A} is essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

If $\mathcal{A} \subset [X]^\omega$ is ED then \mathcal{A} has property B .

Miller: Every n -almost disjoint family $\mathcal{A} \subset [X]^{\geq\omega}$ has property B

Komjáth: Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is essentially disjoint

- Komjáth's result implies Miller's Theorem:
- if a family \mathcal{A} **refines** a family \mathcal{B} , then $\chi(\mathcal{B}) \leq \chi(\mathcal{A})$.
- **Def:** \mathcal{A} **refines** \mathcal{B} iff $\forall B \in \mathcal{B} \ \exists A \in \mathcal{A} \ A \subset B$.

How to guarantee Property B ?

\mathcal{A} is essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

If $\mathcal{A} \subset [X]^\omega$ is ED then \mathcal{A} has property B .

Miller: Every n -almost disjoint family $\mathcal{A} \subset [X]^{\geq\omega}$ has property B

Komjáth: Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is essentially disjoint

- Komjáth's result implies Miller's Theorem:
- if a family \mathcal{A} refines a family \mathcal{B} , then $\chi(\mathcal{B}) \leq \chi(\mathcal{A})$.
- Def: \mathcal{A} refines \mathcal{B} iff $\forall B \in \mathcal{B} \ \exists A \in \mathcal{A} \ A \subset B$.

Theorem (Gy. Hoffmann, P. Komjáth, 1976):

If a family of infinite sets has a transversal, then it has Property B .

How to guarantee Property B ?

\mathcal{A} is essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

If $\mathcal{A} \subset [X]^\omega$ is ED then \mathcal{A} has property B .

Miller: Every n -almost disjoint family $\mathcal{A} \subset [X]^{\geq\omega}$ has property B

Komjáth: Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is essentially disjoint

- Komjáth's result implies Miller's Theorem:
- if a family \mathcal{A} refines a family \mathcal{B} , then $\chi(\mathcal{B}) \leq \chi(\mathcal{A})$.
- Def: \mathcal{A} refines \mathcal{B} iff $\forall B \in \mathcal{B} \ \exists A \in \mathcal{A} \ A \subset B$.

Theorem (Gy. Hoffmann, P. Komjáth, 1976):

If a family of infinite sets has a transversal, then it has Property B .

essentially disjoint \longrightarrow transversal \longrightarrow property B

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.
- By the Zorn lemma, $\langle P, \subset \rangle$ has a maximal element c .

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.
- By the Zorn lemma, $\langle P, \subset \rangle$ has a maximal element c .
- We claim that $t(A) \in \text{dom}(c)$ for all $A \in \mathcal{A}$.

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.
- By the Zorn lemma, $\langle P, \subset \rangle$ has a maximal element c .
- We claim that $t(A) \in \text{dom}(c)$ for all $A \in \mathcal{A}$.
- Case 1: there is $A \in \mathcal{A}$ s.t $t(A) \notin \text{dom}(c)$ and $A \cap \text{dom}(c) \neq \emptyset$.

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.
- By the Zorn lemma, $\langle P, \subset \rangle$ has a maximal element c .
- We claim that $t(A) \in \text{dom}(c)$ for all $A \in \mathcal{A}$.
- Case 1: there is $A \in \mathcal{A}$ s.t $t(A) \notin \text{dom}(c)$ and $A \cap \text{dom}(c) \neq \emptyset$.
- Pick $x \in A \cap \text{dom}(c)$. Then $c' = c \cup \{\langle t(A), 1 - c(x) \rangle\} \in P$. Contradiction.

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.
- By the Zorn lemma, $\langle P, \subset \rangle$ has a maximal element c .
- We claim that $t(A) \in \text{dom}(c)$ for all $A \in \mathcal{A}$.
- Case 1: there is $A \in \mathcal{A}$ s.t $t(A) \notin \text{dom}(c)$ and $A \cap \text{dom}(c) \neq \emptyset$.
- Pick $x \in A \cap \text{dom}(c)$. Then $c' = c \cup \{\langle t(A), 1 - c(x) \rangle\} \in P$. Contradiction.
- Case 2: $t(A) \notin \text{dom}(c)$ implies $A \cap \text{dom}(c) = \emptyset$.

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.
- By the Zorn lemma, $\langle P, \subset \rangle$ has a maximal element c .
- We claim that $t(A) \in \text{dom}(c)$ for all $A \in \mathcal{A}$.
- Case 1: there is $A \in \mathcal{A}$ s.t $t(A) \notin \text{dom}(c)$ and $A \cap \text{dom}(c) \neq \emptyset$.
- Pick $x \in A \cap \text{dom}(c)$. Then $c' = c \cup \{\langle t(A), 1 - c(x) \rangle\} \in P$. Contradiction.
- Case 2: $t(A) \notin \text{dom}(c)$ implies $A \cap \text{dom}(c) = \emptyset$.
- $Y_0 = \{t(A)\}$ s.t. $t(A) \notin \text{dom } c$

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.
- By the Zorn lemma, $\langle P, \subset \rangle$ has a maximal element c .
- We claim that $t(A) \in \text{dom}(c)$ for all $A \in \mathcal{A}$.
- Case 1: there is $A \in \mathcal{A}$ s.t $t(A) \notin \text{dom}(c)$ and $A \cap \text{dom}(c) \neq \emptyset$.
- Pick $x \in A \cap \text{dom}(c)$. Then $c' = c \cup \{\langle t(A), 1 - c(x) \rangle\} \in P$. Contradiction.
- Case 2: $t(A) \notin \text{dom}(c)$ implies $A \cap \text{dom}(c) = \emptyset$.
- $Y_0 = \{t(A)\}$ s.t. $t(A) \notin \text{dom } c$
- $Y_{n+1} = Y_n \cup \{A \in \mathcal{A} : t(A) \in Y_n\}$.

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.
- By the Zorn lemma, $\langle P, \subset \rangle$ has a maximal element c .
- We claim that $t(A) \in \text{dom}(c)$ for all $A \in \mathcal{A}$.
- Case 1: there is $A \in \mathcal{A}$ s.t $t(A) \notin \text{dom}(c)$ and $A \cap \text{dom}(c) \neq \emptyset$.
- Pick $x \in A \cap \text{dom}(c)$. Then $c' = c \cup \{\langle t(A), 1 - c(x) \rangle\} \in P$. Contradiction.
- Case 2: $t(A) \notin \text{dom}(c)$ implies $A \cap \text{dom}(c) = \emptyset$.
- $Y_0 = \{t(A)\}$ s.t. $t(A) \notin \text{dom } c$
- $Y_{n+1} = Y_n \cup \{A \in \mathcal{A} : t(A) \in Y_n\}$.
- $Y = \bigcup_{n \in \omega} Y_n \in [X \setminus \text{dom } c]^\omega$ such that $t(A) \in Y$ implies $A \subset Y$.

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.
- By the Zorn lemma, $\langle P, \subset \rangle$ has a maximal element c .
- We claim that $t(A) \in \text{dom}(c)$ for all $A \in \mathcal{A}$.
- Case 1: there is $A \in \mathcal{A}$ s.t $t(A) \notin \text{dom}(c)$ and $A \cap \text{dom}(c) \neq \emptyset$.
- Pick $x \in A \cap \text{dom}(c)$. Then $c' = c \cup \{\langle t(A), 1 - c(x) \rangle\} \in P$. Contradiction.
- Case 2: $t(A) \notin \text{dom}(c)$ implies $A \cap \text{dom}(c) = \emptyset$.
- $Y_0 = \{t(A)\}$ s.t. $t(A) \notin \text{dom } c$
- $Y_{n+1} = Y_n \cup \{A \in \mathcal{A} : t(A) \in Y_n\}$.
- $Y = \bigcup_{n \in \omega} Y_n \in [X \setminus \text{dom } c]^\omega$ such that $t(A) \in Y$ implies $A \subset Y$.
- Choose $d : Y \rightarrow 2$ s. t. $d[A] = 2$ whenever $t(A) \in Y$.

If a family \mathcal{A} of infinite sets has a transversal, then it has Property B.

- We can assume that $\mathcal{A} \subset [X]^\omega$. Let $t : \mathcal{A} \rightarrow X$ be a transversal (injective choice function)
- Let $P = \{c \in Fn(X, 2) : t(A) \in \text{dom}(c) \text{ implies } c[A] = 2\}$.
- By the Zorn lemma, $\langle P, \subset \rangle$ has a maximal element c .
- We claim that $t(A) \in \text{dom}(c)$ for all $A \in \mathcal{A}$.
- Case 1: there is $A \in \mathcal{A}$ s.t $t(A) \notin \text{dom}(c)$ and $A \cap \text{dom}(c) \neq \emptyset$.
- Pick $x \in A \cap \text{dom}(c)$. Then $c' = c \cup \{\langle t(A), 1 - c(x) \rangle\} \in P$. Contradiction.
- Case 2: $t(A) \notin \text{dom}(c)$ implies $A \cap \text{dom}(c) = \emptyset$.
- $Y_0 = \{t(A)\}$ s.t. $t(A) \notin \text{dom } c$
- $Y_{n+1} = Y_n \cup \{A \in \mathcal{A} : t(A) \in Y_n\}$.
- $Y = \bigcup_{n \in \omega} Y_n \in [X \setminus \text{dom } c]^\omega$ such that $t(A) \in Y$ implies $A \subset Y$.
- Choose $d : Y \rightarrow 2$ s. t. $d[A] = 2$ whenever $t(A) \in Y$.
- Then $c \subsetneq c \cup d \in P$. Contradiction.

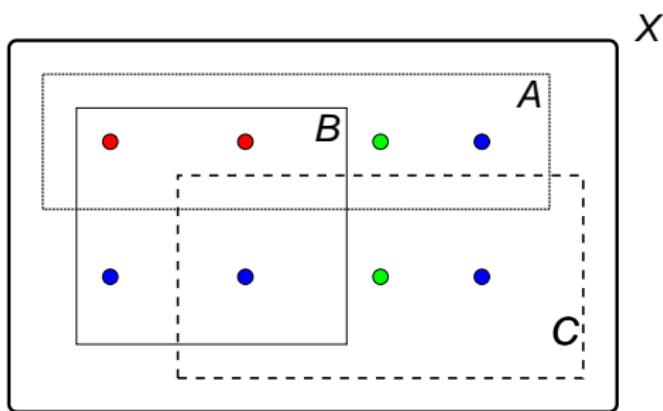
Colorings

Colorings

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets,

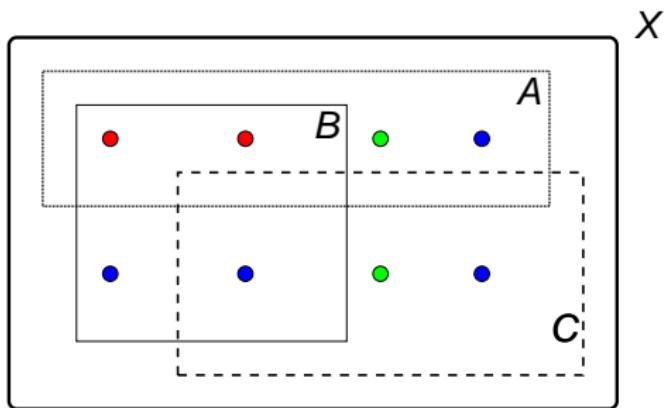
Colorings

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f : X \rightarrow \rho$ function



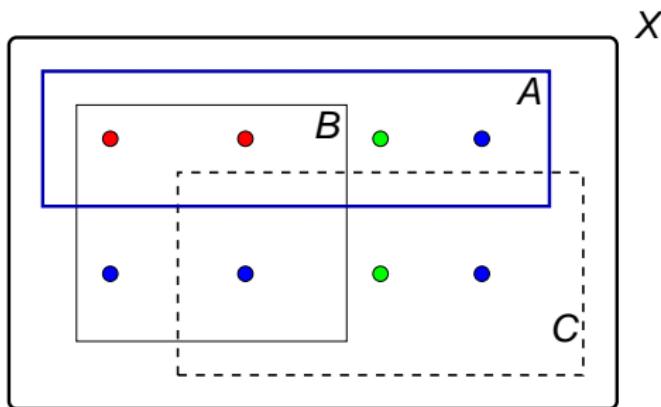
Colorings

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f : X \rightarrow \rho$ function
- f is a **proper coloring** of \mathcal{A} iff $|f''A| \geq 2$ for each $A \in \mathcal{A}$.



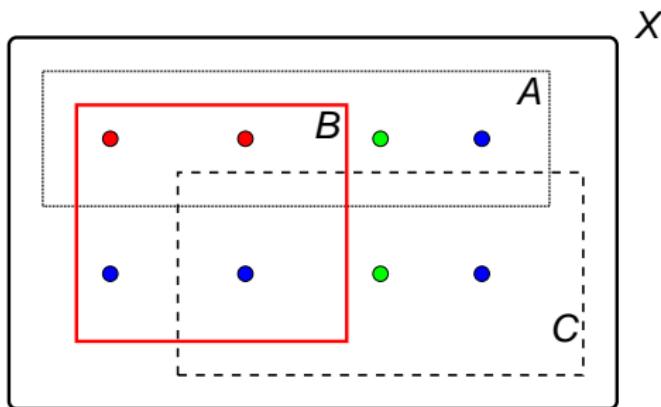
Colorings

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f : X \rightarrow \rho$ function
- f is a **proper coloring** of \mathcal{A} iff $|f''A| \geq 2$ for each $A \in \mathcal{A}$.
- f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \exists \xi \in \rho \exists! a \in A f(a) = \xi$.



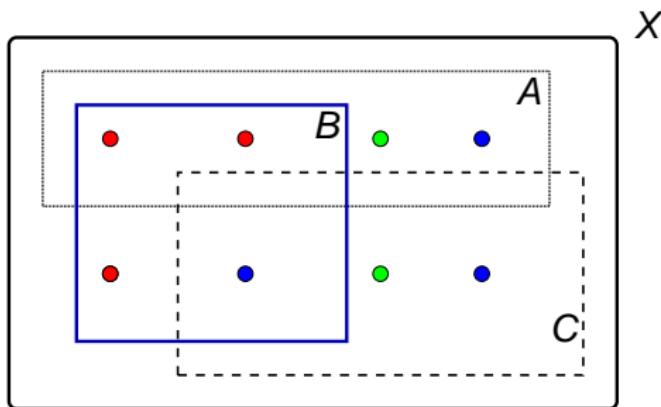
Colorings

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f : X \rightarrow \rho$ function
- f is a **proper coloring** of \mathcal{A} iff $|f''A| \geq 2$ for each $A \in \mathcal{A}$.
- f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \exists \xi \in \rho \exists! a \in A f(a) = \xi$.



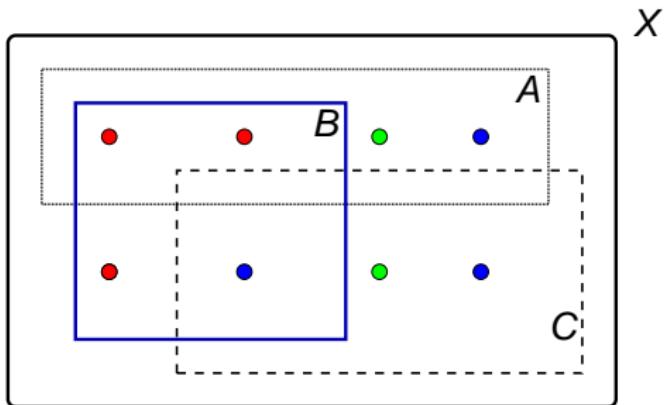
Colorings

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f : X \rightarrow \rho$ function
- f is a **proper coloring** of \mathcal{A} iff $|f''A| \geq 2$ for each $A \in \mathcal{A}$.
- f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists! a \in A \ f(a) = \xi$.



Colorings

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f : X \rightarrow \rho$ function
- f is a **proper coloring** of \mathcal{A} iff $|f''A| \geq 2$ for each $A \in \mathcal{A}$.
- f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \exists \xi \in \rho \exists! a \in A f(a) = \xi$.
- $\chi_{\text{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \rightarrow \rho \text{ conflict free coloring}\}$



Conflict free colorings

- c is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi_A \ \exists !a \in A \ c(a) = \xi_A$.
- $\chi_{\text{CF}}(\mathcal{A}) = \min\{\rho : \exists c : X \rightarrow \rho \text{ conflict free coloring}\}$

Conflict free colorings

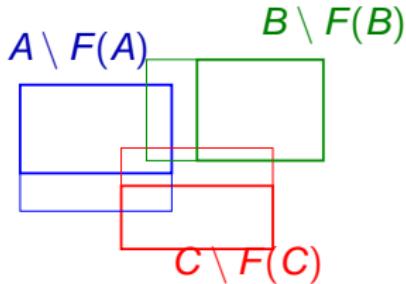
- c is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi_A \ \exists !a \in A \ c(a) = \xi_A$.
- $\chi_{\text{CF}}(\mathcal{A}) = \min\{\rho : \exists c : X \rightarrow \rho \text{ conflict free coloring}\}$
- $\chi(\mathcal{A}) \leq \chi_{\text{CF}}(\mathcal{A})$

Conflict free colorings

- c is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi_A \ \exists !a \in A \ c(a) = \xi_A$.
- $\chi_{\text{CF}}(\mathcal{A}) = \min\{\rho : \exists c : X \rightarrow \rho \text{ conflict free coloring}\}$
- $\chi(\mathcal{A}) \leq \chi_{\text{CF}}(\mathcal{A})$
- If a family $\mathcal{A} \subset [\lambda]^\omega$ is **ED**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$

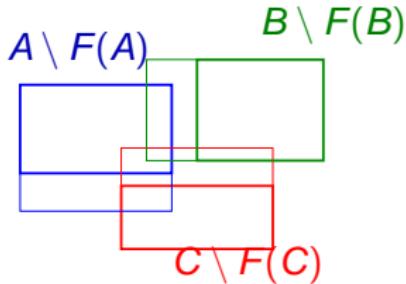
Conflict free colorings

- c is a conflict free coloring iff $\forall A \in \mathcal{A} \exists \xi_A \exists! a \in A c(a) = \xi_A$.
- $\chi_{\text{CF}}(\mathcal{A}) = \min\{\rho : \exists c : X \rightarrow \rho \text{ conflict free coloring}\}$
- $\chi(\mathcal{A}) \leq \chi_{\text{CF}}(\mathcal{A})$
- If a family $\mathcal{A} \subset [\lambda]^\omega$ is **ED**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$



Conflict free colorings

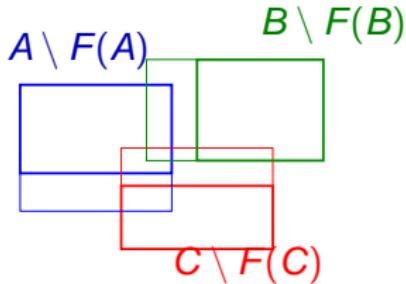
- c is a conflict free coloring iff $\forall A \in \mathcal{A} \exists \xi_A \exists! a \in A c(a) = \xi_A$.
- $\chi_{\text{CF}}(\mathcal{A}) = \min\{\rho : \exists c : X \rightarrow \rho \text{ conflict free coloring}\}$
- $\chi(\mathcal{A}) \leq \chi_{\text{CF}}(\mathcal{A})$
- If a family $\mathcal{A} \subset [\lambda]^\omega$ is **ED**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$



- There is $f : \lambda \rightarrow \omega$ such that $f \upharpoonright A \setminus F(A)$ is **1-to-1** for all $A \in \mathcal{A}$.

Conflict free colorings

- c is a conflict free coloring iff $\forall A \in \mathcal{A} \exists \xi_A \exists! a \in A c(a) = \xi_A$.
- $\chi_{\text{CF}}(\mathcal{A}) = \min\{\rho : \exists c : X \rightarrow \rho \text{ conflict free coloring}\}$
- $\chi(\mathcal{A}) \leq \chi_{\text{CF}}(\mathcal{A})$
- If a family $\mathcal{A} \subset [\lambda]^\omega$ is **ED**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$



- There is $f : \lambda \rightarrow \omega$ such that $f \upharpoonright A \setminus F(A)$ is **1-to-1** for all $A \in \mathcal{A}$.
- $f \upharpoonright A$ is **almost 1-to-1** for all $A \in \mathcal{A}$.

Conflict free colorings of n -ad families

- c is a conflict free coloring iff $\forall A \in \mathcal{A} \exists \xi_A \exists !a \in A c(a) = \xi_A$.
- $\chi_{CF}(\mathcal{A}) = \min\{\rho : \exists c : X \rightarrow \rho \text{ conflict free coloring}\}$
- If $\mathcal{A} \subset [\lambda]^\omega$ is **ED**, then $\chi_{CF}(\mathcal{A}) \leq \omega$.

Conflict free colorings of n -ad families

- c is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi_A \ \exists ! a \in A \ c(a) = \xi_A$.
- $\chi_{\text{CF}}(\mathcal{A}) = \min\{\rho : \exists c : X \rightarrow \rho \text{ conflict free coloring}\}$
- If $\mathcal{A} \subset [\lambda]^\omega$ is **ED**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.
- If $\mathcal{A} \subset [\lambda]^\omega$ is n -ad, then \mathcal{A} is **ED**, so $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.

Conflict free colorings of n -ad families

- c is a conflict free coloring iff $\forall A \in \mathcal{A} \exists \xi_A \exists ! a \in A c(a) = \xi_A$.
 - $\chi_{\text{CF}}(\mathcal{A}) = \min\{\rho : \exists c : X \rightarrow \rho \text{ conflict free coloring}\}$
 - If $\mathcal{A} \subset [\lambda]^\omega$ is **ED**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.
-
- If $\mathcal{A} \subset [\lambda]^\omega$ is n -ad, then \mathcal{A} is **ED**, so $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.
 - (Hajnal, Juhász, S, Szentmiklóssy, 2009)
If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

Conflict free colorings of n -ad families

- c is a conflict free coloring iff $\forall A \in \mathcal{A} \exists \xi_A \exists! a \in A c(a) = \xi_A$.
 - $\chi_{\text{CF}}(\mathcal{A}) = \min\{\rho : \exists c : X \rightarrow \rho \text{ conflict free coloring}\}$
 - If $\mathcal{A} \subset [\lambda]^\omega$ is **ED**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.
-
- If $\mathcal{A} \subset [\lambda]^\omega$ is n -ad, then \mathcal{A} is **ED**, so $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.
 - (Hajnal, Juhász, S, Szentmiklóssy, 2009)
If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.
 - “ \mathcal{A} refines \mathcal{B} ” does not imply $\chi_{\text{CF}}(\mathcal{A}) \geq \chi_{\text{CF}}(\mathcal{B})$

Conflict free colorings of n -ad families

Thm: If $\mathcal{A} \subset [\lambda]^\omega$ is n -ad, $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.

Theorem

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

Conflict free colorings of n -ad families

Thm: If $\mathcal{A} \subset [\lambda]^\omega$ is n -ad, $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.

Theorem

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

- **Definition.** A family \mathcal{B} has property $B(\omega)$ iff there is a set X such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.

Conflict free colorings of n -ad families

Thm: If $\mathcal{A} \subset [\lambda]^\omega$ is n -ad, $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.

Theorem

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

- **Definition.** A family \mathcal{B} has property $B(\omega)$ iff there is a set X such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.
- **Theorem (Erdős-Hajnal, 1961)** Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.

Conflict free colorings of n -ad families

Thm: If $\mathcal{A} \subset [\lambda]^\omega$ is n -ad, $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.

Theorem

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

- **Definition.** A family \mathcal{B} has property $B(\omega)$ iff there is a set X such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.
- **Theorem (Erdős-Hajnal, 1961)** Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.
- Construct pairwise disjoint sets $X_0, X_1, \dots \subset \lambda$ such that for all $B \in \mathcal{B}$ we have $0 < |(B \setminus \bigcup_{i < n} X_n) \cap X_n| < \omega$.

Conflict free colorings of n -ad families

Thm: If $\mathcal{A} \subset [\lambda]^\omega$ is n -ad, $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.

Theorem

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

- **Definition.** A family \mathcal{B} has property $B(\omega)$ iff there is a set X such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.
- **Theorem (Erdős-Hajnal, 1961)** Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.
- Construct pairwise disjoint sets $X_0, X_1, \dots \subset \lambda$ such that for all $B \in \mathcal{B}$ we have $0 < |(B \setminus \bigcup_{i < n} X_n) \cap X_n| < \omega$.
- Let $Y = \bigcup_{n \in \omega} X_n$. Then $|Y \cap B| = \omega$ for all $B \in \mathcal{B}$.

Conflict free colorings of n -ad families

Thm: If $\mathcal{A} \subset [\lambda]^\omega$ is n -ad, $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.

Theorem

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

- **Definition.** A family \mathcal{B} has property $B(\omega)$ iff there is a set X such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.
- **Theorem (Erdős-Hajnal, 1961)** Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.
- Construct pairwise disjoint sets $X_0, X_1, \dots \subset \lambda$ such that for all $B \in \mathcal{B}$ we have $0 < |(B \setminus \bigcup_{i < n} X_n) \cap X_n| < \omega$.
- Let $Y = \bigcup_{n \in \omega} X_n$. Then $|Y \cap B| = \omega$ for all $B \in \mathcal{B}$.
- Let $f : Y \rightarrow \omega \setminus \{0\}$ be a conflict-free coloring for $\{B \cap Y : B \in \mathcal{B}\}$.

Conflict free colorings of n -ad families

Thm: If $\mathcal{A} \subset [\lambda]^\omega$ is n -ad, $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$.

Theorem

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

- **Definition.** A family \mathcal{B} has property $B(\omega)$ iff there is a set X such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.
- **Theorem (Erdős-Hajnal, 1961)** Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.
- Construct pairwise disjoint sets $X_0, X_1, \dots \subset \lambda$ such that for all $B \in \mathcal{B}$ we have $0 < |(B \setminus \bigcup_{i < n} X_n) \cap X_n| < \omega$.
- Let $Y = \bigcup_{n \in \omega} X_n$. Then $|Y \cap B| = \omega$ for all $B \in \mathcal{B}$.
- Let $f : Y \rightarrow \omega \setminus \{0\}$ be a conflict-free coloring for $\{B \cap Y : B \in \mathcal{B}\}$.
- Define $g : \lambda \rightarrow \omega$ s.t. $f \subset g$ and $g(x) = 0$ for all $x \in \lambda \setminus Y$.

Conflict free colorings of inhomogeneous n -ad families

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.

\mathcal{B} has property $B(\omega)$ iff $\exists X$ such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.

Conflict free colorings of inhomogeneous n -ad families

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.

\mathcal{B} has property $B(\omega)$ iff $\exists X$ such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.

- there is 2-ad $\mathcal{A} \subset [\omega_1]^{\geq\omega}$ s.t \mathcal{A} does not have property $B(\omega)$.

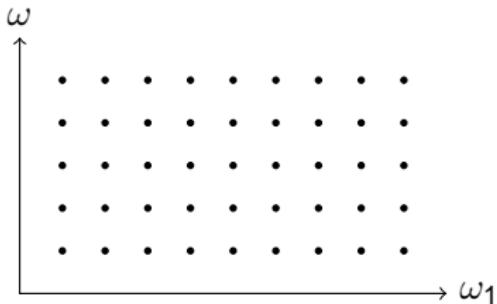
Conflict free colorings of inhomogeneous n -ad families

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.

\mathcal{B} has property $B(\omega)$ iff $\exists X$ such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.

- there is 2-ad $\mathcal{A} \subset [\omega_1]^{\geq\omega}$ s.t \mathcal{A} does not have property $B(\omega)$.



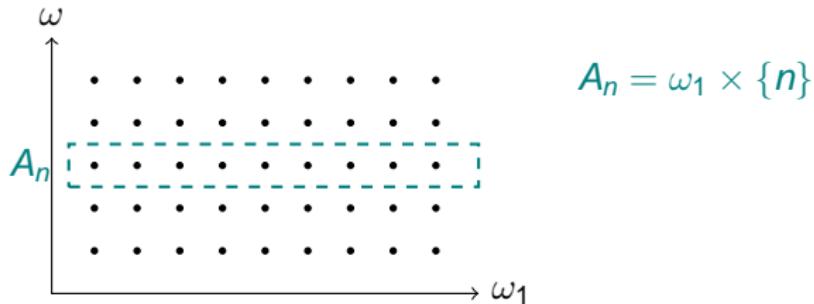
Conflict free colorings of inhomogeneous n -ad families

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.

\mathcal{B} has property $B(\omega)$ iff $\exists X$ such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.

- there is 2-ad $\mathcal{A} \subset [\omega_1]^{\geq\omega}$ s.t \mathcal{A} does not have property $B(\omega)$.



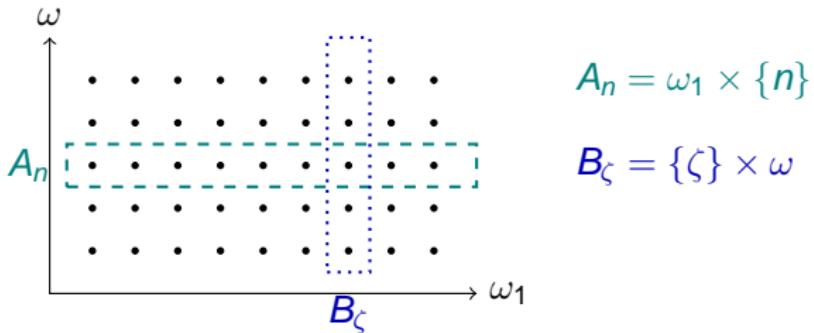
Conflict free colorings of inhomogeneous n -ad families

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.

\mathcal{B} has property $B(\omega)$ iff $\exists X$ such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.

- there is 2-ad $\mathcal{A} \subset [\omega_1]^{\geq \omega}$ s.t \mathcal{A} does not have property $B(\omega)$.



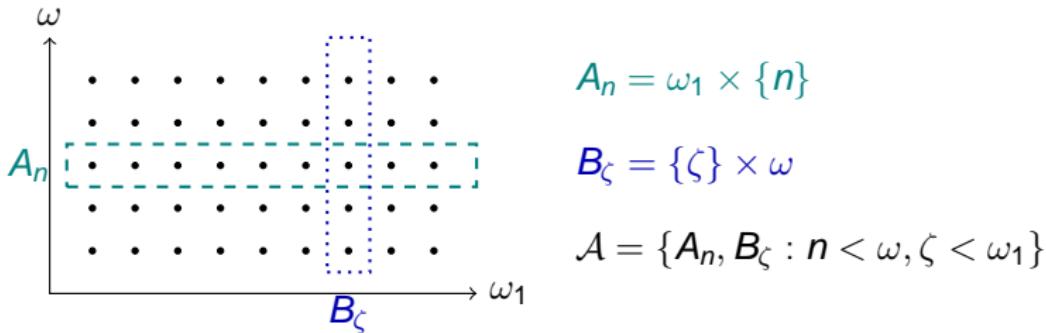
Conflict free colorings of inhomogeneous n -ad families

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.

\mathcal{B} has property $B(\omega)$ iff $\exists X$ such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.

- there is 2-ad $\mathcal{A} \subset [\omega_1]^{\geq \omega}$ s.t \mathcal{A} does not have property $B(\omega)$.



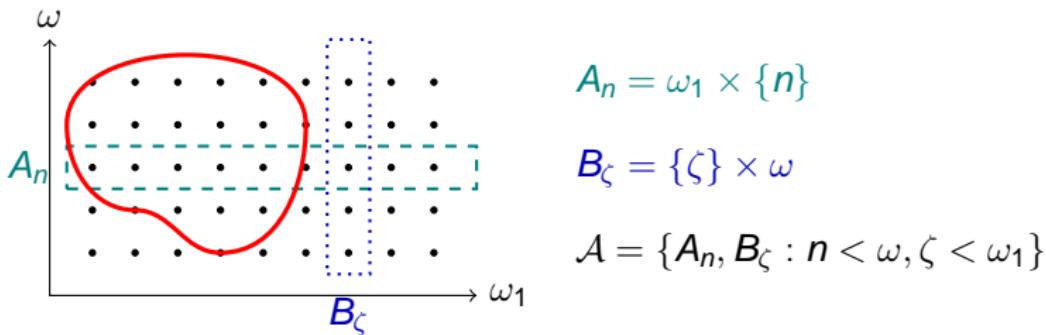
Conflict free colorings of inhomogeneous n -ad families

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.

\mathcal{B} has property $B(\omega)$ iff $\exists X$ such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.

- there is 2-ad $\mathcal{A} \subset [\omega_1]^{\geq \omega}$ s.t \mathcal{A} does not have property $B(\omega)$.



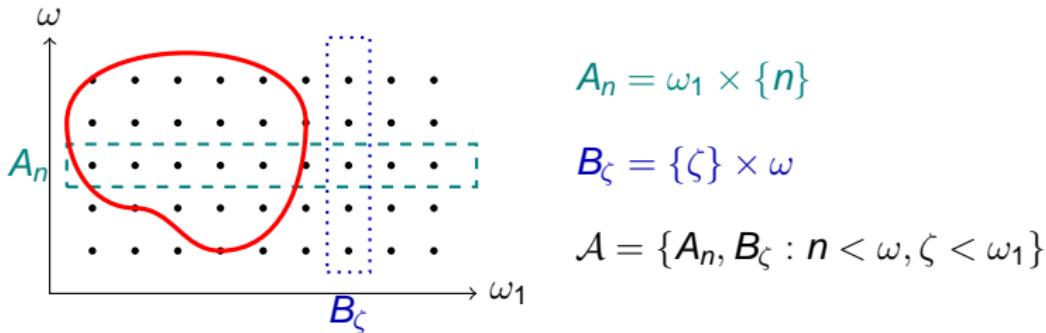
Conflict free colorings of inhomogeneous n -ad families

If $\mathcal{B} \subset [\lambda]^\kappa$ is n -ad, then $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$.

Any n -almost disjoint family $\mathcal{B} \subset [\lambda]^\kappa$ has property $B(\omega)$.

\mathcal{B} has property $B(\omega)$ iff $\exists X$ such that $0 < |X \cap B| < \omega$ for each $B \in \mathcal{B}$.

- there is 2-ad $\mathcal{A} \subset [\omega_1]^{\geq\omega}$ s.t \mathcal{A} does not have property $B(\omega)$.



Theorem (Komjáth, 2012)

$\chi_{\text{CF}}(\mathcal{A}) \leq \omega$ for each n -almost disjoint $\mathcal{A} \subset [\kappa]^{\geq\omega}$.

Stepping up

Stepping up

- Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **ED**.

Stepping up

- Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **ED**.
- $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$ for every n -almost disjoint family of infinite sets.

Stepping up

- Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **ED**.
- $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$ for every n -almost disjoint family of infinite sets.
- **Stepping up:** What about **almost disjoint families of uncountable sets**? In particular, what about $\mathcal{A} \subset [X]^{\omega_1}$?

Stepping up

- Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **ED**.
- $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$ for every n -almost disjoint family of infinite sets.
- **Stepping up:** What about **almost disjoint families of uncountable sets**? In particular, what about $\mathcal{A} \subset [X]^{\omega_1}$?
- Assume that $\mathcal{A} \subset [X]^{\omega_1}$ is almost disjoint.

Stepping up

- Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **ED**.
- $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$ for every n -almost disjoint family of infinite sets.
- **Stepping up:** What about **almost disjoint families of uncountable sets**? In particular, what about $\mathcal{A} \subset [X]^{\omega_1}$?
- Assume that $\mathcal{A} \subset [X]^{\omega_1}$ is almost disjoint.
 - $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$?

Stepping up

- Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **ED**.
- $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$ for every n -almost disjoint family of infinite sets.
- **Stepping up:** What about **almost disjoint families of uncountable sets**? In particular, what about $\mathcal{A} \subset [X]^{\omega_1}$?
- Assume that $\mathcal{A} \subset [X]^{\omega_1}$ is almost disjoint.
 - $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$?
 - Does \mathcal{A} have the **transversal property**?

Stepping up

- Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **ED**.
- $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$ for every n -almost disjoint family of infinite sets.
- **Stepping up:** What about **almost disjoint families of uncountable sets**? In particular, what about $\mathcal{A} \subset [X]^{\omega_1}$?
- Assume that $\mathcal{A} \subset [X]^{\omega_1}$ is almost disjoint.
 - $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$?
 - Does \mathcal{A} have the **transversal property**?
 - Is \mathcal{A} **ω_1 -essentially disjoint**?

Stepping up

- Every n -almost disjoint family $\mathcal{A} \subset [X]^\omega$ is **ED**.
- $\chi_{\text{CF}}(\mathcal{B}) \leq \omega$ for every n -almost disjoint family of infinite sets.
- **Stepping up:** What about **almost disjoint families of uncountable sets**? In particular, what about $\mathcal{A} \subset [X]^{\omega_1}$?
- Assume that $\mathcal{A} \subset [X]^{\omega_1}$ is almost disjoint.
 - $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$?
 - Does \mathcal{A} have the **transversal property**?
 - Is \mathcal{A} **ω_1 -essentially disjoint**?
- \mathcal{A} is **ω_1 -essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\omega_1}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Stepping up: easy implications

\mathcal{A} is ω_1 -essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{\leq\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Stepping up: easy implications

\mathcal{A} is ω_1 -essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{\leq\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Definition

\mathcal{A} has property $B(\omega_1)$ iff $\exists X$ such that $0 < |X \cap A| < \omega_1$ for all $A \in \mathcal{A}$.

Stepping up: easy implications

\mathcal{A} is ω_1 -essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{\leq\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Definition

\mathcal{A} has property $B(\omega_1)$ iff $\exists X$ such that $0 < |X \cap A| < \omega_1$ for all $A \in \mathcal{A}$.

Consider an arbitrary family \mathcal{B} of uncountable sets.

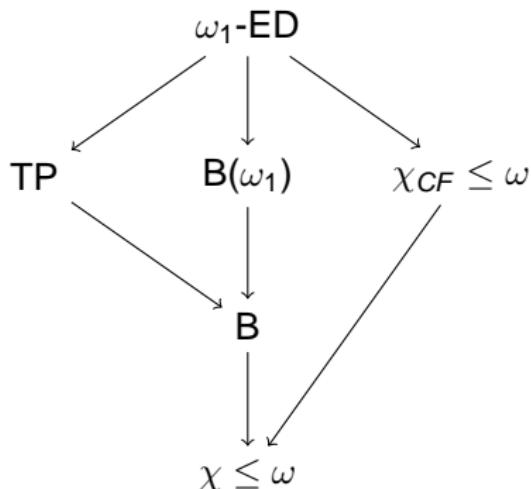
Stepping up: easy implications

\mathcal{A} is ω_1 -essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{\leq\omega}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint.

Definition

\mathcal{A} has property $B(\omega_1)$ iff $\exists X$ such that $0 < |X \cap A| < \omega_1$ for all $A \in \mathcal{A}$.

Consider an arbitrary family \mathcal{B} of uncountable sets.



How to prove positive results?

How to prove positive results?

- Every n -ad $\mathcal{A} \subset [\omega_1]^\omega$ is *ED*.

How to prove positive results?

- Every n -ad $\mathcal{A} \subset [\omega_1]^\omega$ is *ED*.
- Consider a continuous chain $\langle M_\alpha : \alpha < \omega_1 \rangle$ of elementary submodels ...

How to prove positive results?

- Every n -ad $\mathcal{A} \subset [\omega_1]^\omega$ is *ED*.
- Consider a continuous chain $\langle M_\alpha : \alpha < \omega_1 \rangle$ of elementary submodels ...
- **Key observation:**
If $\mathcal{A} \in M \prec \mathcal{H}(\theta)$, and $A \in \mathcal{A} \setminus M$, then $|A \cap M| < n$ ($|A \cap M| < \omega$).

How to prove positive results?

- Every n -ad $\mathcal{A} \subset [\omega_1]^\omega$ is *ED*.
- Consider a continuous chain $\langle M_\alpha : \alpha < \omega_1 \rangle$ of elementary submodels ...
- **Key observation:**
If $A \in M \prec \mathcal{H}(\theta)$, and $A \in \mathcal{A} \setminus M$, then $|A \cap M| < n$ ($|A \cap M| < \omega$).
- If $M \prec \mathcal{H}(\theta)$, X is a set, and $X \cap M$ is infinite, then for all $n \in \omega$ we have $M \cap [X]^n \neq \emptyset$.

How to prove positive results?

- Every n -ad $\mathcal{A} \subset [\omega_1]^\omega$ is *ED*.
- Consider a continuous chain $\langle M_\alpha : \alpha < \omega_1 \rangle$ of elementary submodels ...
- Key observation:
If $A \in M \prec \mathcal{H}(\theta)$, and $A \in \mathcal{A} \setminus M$, then $|A \cap M| < n$ ($|A \cap M| < \omega$).
- If $M \prec \mathcal{H}(\theta)$, X is a set, and $X \cap M$ is infinite, then for all $n \in \omega$ we have $M \cap [X]^n \neq \emptyset$.
- Want to prove: Every ω -ad $\mathcal{A} \subset [\kappa]^{\omega_1}$ is ω_1 -*ED*.

How to prove positive results?

- Every n -ad $\mathcal{A} \subset [\omega_1]^\omega$ is ED .
- Consider a continuous chain $\langle M_\alpha : \alpha < \omega_1 \rangle$ of elementary submodels ...
- **Key observation:**
If $A \in M \prec \mathcal{H}(\theta)$, and $A \in \mathcal{A} \setminus M$, then $|A \cap M| < n$ ($|A \cap M| < \omega$).
- If $M \prec \mathcal{H}(\theta)$, X is a set, and $X \cap M$ is infinite, then for all $n \in \omega$ we have $M \cap [X]^n \neq \emptyset$.
- **Want to prove:** Every ω -ad $\mathcal{A} \subset [\kappa]^{\omega_1}$ is ω_1 - ED .
- **Need:** there is a continuous chain $\langle M_\alpha : \alpha < \kappa \rangle$ of elementary submodels s.t. if X is a set, and $X \cap M_\alpha$ is uncountable, then $M_\alpha \cap [X]^\omega \neq \emptyset$.

How to prove positive results?

- Every n -ad $\mathcal{A} \subset [\omega_1]^\omega$ is *ED*.
- Consider a continuous chain $\langle M_\alpha : \alpha < \omega_1 \rangle$ of elementary submodels ...
- **Key observation:**
If $\mathcal{A} \in M \prec \mathcal{H}(\theta)$, and $A \in \mathcal{A} \setminus M$, then $|A \cap M| < n$ ($|A \cap M| < \omega$).
- If $M \prec \mathcal{H}(\theta)$, X is a set, and $X \cap M$ is infinite, then for all $n \in \omega$ we have $M \cap [X]^n \neq \emptyset$.
- **Want to prove:** Every ω -ad $\mathcal{A} \subset [\kappa]^{\omega_1}$ is ω_1 -*ED*.
- **Need:** there is a continuous chain $\langle M_\alpha : \alpha < \kappa \rangle$ of elementary submodels s.t. if X is a set, and $X \cap M_\alpha$ is uncountable, then $M_\alpha \cap [X]^\omega \neq \emptyset$.
- “ $\text{GCH} + \square_\lambda^{**}$ for all $\lambda > \text{cf}(\lambda) = \omega$ ” $\vdash \exists$ suitable chains.

How to prove positive results?

- Every n -ad $\mathcal{A} \subset [\omega_1]^\omega$ is *ED*.
- Consider a continuous chain $\langle M_\alpha : \alpha < \omega_1 \rangle$ of elementary submodels ...
- **Key observation:**
If $A \in M \prec \mathcal{H}(\theta)$, and $A \in \mathcal{A} \setminus M$, then $|A \cap M| < n$ ($|A \cap M| < \omega$).
- If $M \prec \mathcal{H}(\theta)$, X is a set, and $X \cap M$ is infinite, then for all $n \in \omega$ we have $M \cap [X]^n \neq \emptyset$.
- **Want to prove:** Every ω -ad $\mathcal{A} \subset [\kappa]^{\omega_1}$ is ω_1 -*ED*.
- Need: there is a continuous chain $\langle M_\alpha : \alpha < \kappa \rangle$ of elementary submodels s.t. if X is a set, and $X \cap M_\alpha$ is uncountable, then $M_\alpha \cap [X]^\omega \neq \emptyset$.
- “ $\text{GCH} + \square_\lambda^{**}$ for all $\lambda > \text{cf}(\lambda) = \omega$ ” $\vdash \exists$ suitable chains.
- GCH is not enough. If GCH holds, then for all κ there is a continuous chain $\langle M_\alpha : \alpha < \kappa \rangle$ of elementary submodels s.t. if X is a set, and $|X \cap M_\alpha| \geq \omega_2$, then $M_\alpha \cap [X]^\omega \neq \emptyset$.

Positive results concerning almost disjoint families

V=L: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_1$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

GCH: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_2$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

Positive results concerning almost disjoint families

V=L: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_1$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

GCH: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_2$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

1. (Komjáth, 1984)

If **V=L**, then every **AD** subfamily of $[\lambda]^{\omega_1}$ is ω_2 -**ED**

If **GCH** holds, then every **AD** subfamily of $[\lambda]^{\omega_2}$ is ω_1 -**ED**

Positive results concerning almost disjoint families

V=L: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_1$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

GCH: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_2$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

1. (Komjáth, 1984)

If **V=L**, then every **AD** subfamily of $[\lambda]^{\omega_1}$ is ω_2 -**ED**

If **GCH** holds, then every **AD** subfamily of $[\lambda]^{\omega_2}$ is ω_1 -**ED**

2. Corollary:

If **V=L**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$ for all **AD** $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_1 \leq \kappa \leq \lambda$

If **GCH**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_2$ for all **AD** $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_2 \leq \kappa \leq \lambda$

Positive results concerning almost disjoint families

V=L: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_1$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

GCH: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_2$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

1. (Komjáth, 1984)

If **V=L**, then every **AD** subfamily of $[\lambda]^{\omega_1}$ is ω_2 -**ED**

If **GCH** holds, then every **AD** subfamily of $[\lambda]^{\omega_2}$ is ω_1 -**ED**

2. Corollary:

If **V=L**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$ for all **AD** $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_1 \leq \kappa \leq \lambda$

If **GCH**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_2$ for all **AD** $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_2 \leq \kappa \leq \lambda$

(Erdős, Hajnal, 1961) If **GCH**, every **AD** subfamily of $[\lambda]^\kappa$ has property $B(\omega_2)$ for all $\omega_2 \leq \kappa \leq \lambda$.

Positive results concerning almost disjoint families

V=L: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_1$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

GCH: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_2$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

1. (Komjáth, 1984)

If **V=L**, then every **AD** subfamily of $[\lambda]^{\omega_1}$ is ω_2 -**ED**

If **GCH** holds, then every **AD** subfamily of $[\lambda]^{\omega_2}$ is ω_1 -**ED**

2. Corollary:

If **V=L**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$ for all **AD** $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_1 \leq \kappa \leq \lambda$

If **GCH**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_2$ for all **AD** $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_2 \leq \kappa \leq \lambda$

(Erdős, Hajnal, 1961) If **GCH**, every **AD** subfamily of $[\lambda]^\kappa$ has property $B(\omega_2)$ for all $\omega_2 \leq \kappa \leq \lambda$.

If $\kappa \geq \omega_1$, $\mathcal{A} \subset [\lambda]^\kappa$ is **AD**, then $\exists X$ s.t $\{A \cap X : A \in \mathcal{A}\} \subset [X]^{\omega_1}$.

Positive results concerning almost disjoint families

V=L: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_1$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

GCH: $\exists \langle M_\alpha : \alpha < \kappa \rangle$ s.t. (if $|X \cap M_\alpha| \geq \omega_2$ then $M_\alpha \cap [X]^\omega \neq \emptyset$)

1. (Komjáth, 1984)

If **V=L**, then every **AD** subfamily of $[\lambda]^{\omega_1}$ is ω_2 -**ED**

If **GCH** holds, then every **AD** subfamily of $[\lambda]^{\omega_2}$ is ω_1 -**ED**

2. Corollary:

If **V=L**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$ for all **AD** $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_1 \leq \kappa \leq \lambda$

If **GCH**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_2$ for all **AD** $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_2 \leq \kappa \leq \lambda$

(Erdős, Hajnal, 1961) If **GCH**, every **AD** subfamily of $[\lambda]^\kappa$ has property $B(\omega_2)$ for all $\omega_2 \leq \kappa \leq \lambda$.

If $\kappa \geq \omega_1$, $\mathcal{A} \subset [\lambda]^\kappa$ is **AD**, then $\exists X$ s.t $\{A \cap X : A \in \mathcal{A}\} \subset [X]^{\omega_1}$.

If $\kappa \geq \omega_2$, $\mathcal{A} \subset [\lambda]^\kappa$ is **AD**, then $\exists X$ s.t $\{A \cap X : A \in \mathcal{A}\} \subset [X]^{\omega_2}$.

Negative results

If $V=L$, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$ for all AD $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_1 \leq \kappa \leq \lambda$

If GCH , then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_2$ for all AD $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_2 \leq \kappa \leq \lambda$

Negative results

If $V=L$, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$ for all AD $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_1 \leq \kappa \leq \lambda$

If GCH, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_2$ for all AD $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_2 \leq \kappa \leq \lambda$

1. (Hajnal, Juhász, Shelah (2000)) It is consistent (modulo a supercompact cardinal), that GCH holds and

Negative results

If $V=L$, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$ for all AD $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_1 \leq \kappa \leq \lambda$

If GCH, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_2$ for all AD $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_2 \leq \kappa \leq \lambda$

1. (Hajnal, Juhász, Shelah (2000)) It is consistent (modulo a supercompact cardinal), that GCH holds and

- there is an almost disjoint family $\mathcal{A} \subset [\aleph_{\omega+1}]^{\omega_1}$ with $\chi(\mathcal{A}) = (\chi_{\text{CF}}(\mathcal{A})) = \aleph_{\omega+1}$

Negative results

If $V=L$, then $\chi_{CF}(\mathcal{A}) \leq \omega_1$ for all AD $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_1 \leq \kappa \leq \lambda$

If GCH, then $\chi_{CF}(\mathcal{A}) \leq \omega_2$ for all AD $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_2 \leq \kappa \leq \lambda$

1. (Hajnal, Juhász, Shelah (2000)) It is **consistent** (modulo a supercompact cardinal), that **GCH** holds and
 - there is an almost disjoint family $\mathcal{A} \subset [\aleph_{\omega+1}]^{\omega_1}$ with $\chi(\mathcal{A}) = (\chi_{CF}(\mathcal{A})) = \aleph_{\omega+1}$
2. (Hajnal, Juhász, S, Szentmiklóssy, (2010) It is **consistent** (modulo a supercompact cardinal), that **GCH** holds and

Negative results

If $V=L$, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_1$ for all AD $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_1 \leq \kappa \leq \lambda$

If GCH, then $\chi_{\text{CF}}(\mathcal{A}) \leq \omega_2$ for all AD $\mathcal{A} \subset [\lambda]^\kappa$ for all $\omega_2 \leq \kappa \leq \lambda$

1. (Hajnal, Juhász, Shelah (2000)) It is **consistent** (modulo a supercompact cardinal), that GCH holds and
 - there is an almost disjoint family $\mathcal{A} \subset [\aleph_{\omega+1}]^{\omega_1}$ with $\chi(\mathcal{A}) = (\chi_{\text{CF}}(\mathcal{A})) = \aleph_{\omega+1}$
2. (Hajnal, Juhász, S, Szentmiklóssy, (2010) It is **consistent** (modulo a supercompact cardinal), that GCH holds and
 - there is an almost disjoint family $\mathcal{B} \subset [\aleph_{\omega+1}]^{\omega_2}$ with $\chi_{\text{CF}}(\mathcal{B}) = \omega_2$.

Inhomogeneous systems

- every n -ad subfamily of $[\lambda]^\omega$ is **ED**
- If $V=L$, then every almost disjoint subfamily of $[\lambda]^{\omega_1}$ is ω_1 -**ED**.
- If GCH holds, then every almost disjoint subfamily of $[\lambda]^{\omega_2}$ is ω_2 -**ED**.
- $\chi_{\text{CF}}(\mathcal{A}) \leq \omega$ for all n -almost disjoint family $\mathcal{A} \subset [\lambda]^{\geq \omega}$.

Inhomogeneous systems

- every n -ad subfamily of $[\lambda]^\omega$ is **ED**
- If $V=L$, then every almost disjoint subfamily of $[\lambda]^{\omega_1}$ is ω_1 -**ED**.
- If GCH holds, then every almost disjoint subfamily of $[\lambda]^{\omega_2}$ is ω_2 -**ED**.
- $\chi_{CF}(\mathcal{A}) \leq \omega$ for all n -almost disjoint family $\mathcal{A} \subset [\lambda]^{\geq\omega}$.

Expected results: If $V=L$, then $\chi_{CF}(\mathcal{A}) \leq \omega_1$ for all ω -almost disjoint family $\mathcal{A} \subset [\lambda]^{\geq\omega_1}$. If GCH, then $\chi_{CF}(\mathcal{A}) \leq \omega_2$ for all ω -almost disjoint family $\mathcal{A} \subset [\lambda]^{\geq\omega_2}$.

Inhomogeneous systems

- every n -ad subfamily of $[\lambda]^\omega$ is **ED**
- If $V=L$, then every almost disjoint subfamily of $[\lambda]^{\omega_1}$ is ω_1 -**ED**.
- If GCH holds, then every almost disjoint subfamily of $[\lambda]^{\omega_2}$ is ω_2 -**ED**.
- $\chi_{CF}(\mathcal{A}) \leq \omega$ for all n -almost disjoint family $\mathcal{A} \subset [\lambda]^{\geq \omega}$.

Expected results: If $V=L$, then $\chi_{CF}(\mathcal{A}) \leq \omega_1$ for all ω -almost disjoint family $\mathcal{A} \subset [\lambda]^{\geq \omega_1}$. If GCH, then $\chi_{CF}(\mathcal{A}) \leq \omega_2$ for all ω -almost disjoint family $\mathcal{A} \subset [\lambda]^{\geq \omega_2}$.

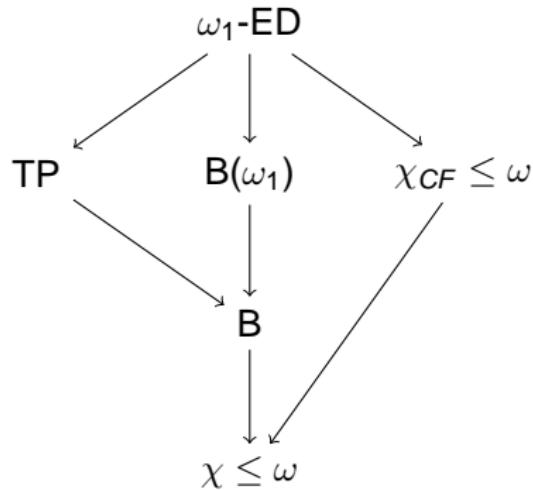
Theorem (S, 2012)

*If every μ -almost disjoint subfamily of $[\lambda]^\kappa$ is κ -**ED**, then $\chi_{CF}(\mathcal{A}) \leq \kappa$ for all μ -almost disjoint $\mathcal{A} \subset [\lambda]^{\geq \kappa}$.*

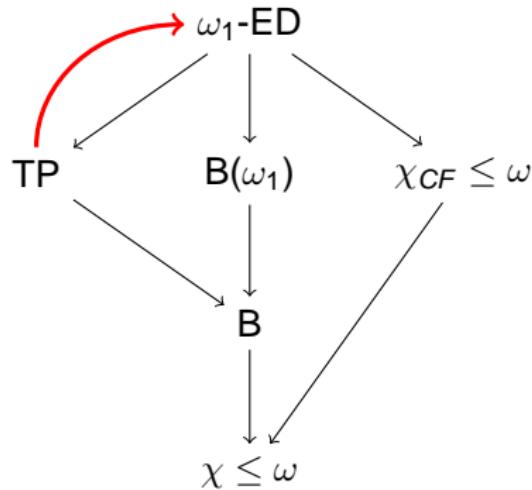
So the expected results hold.

An unexpected result

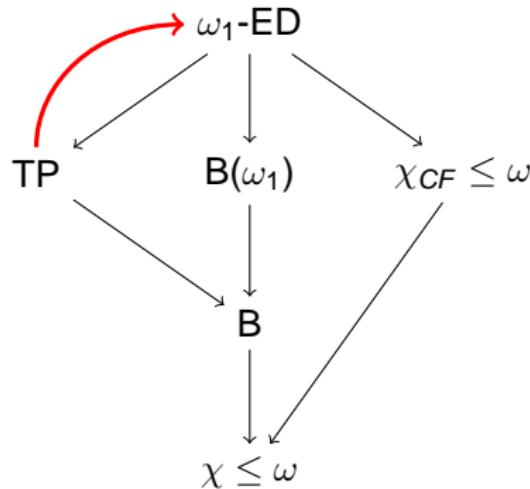
An unexpected result



An unexpected result



An unexpected result



Theorem (Komjáth, 1984)

If every ω -almost disjoint subfamily of $[\lambda]^{\omega_1}$ has the *transversal property*

then every ω -almost disjoint subfamily of $[\lambda]^{\omega_1}$ is ω -essentially disjoint.

Properties of μ -almost disjoint families for $\mu > \omega$

Properties of μ -almost disjoint families for $\mu > \omega$

Theorem (S, 2010)

Let $\mu < \beth_\omega \leq \lambda$.

Properties of μ -almost disjoint families for $\mu > \omega$

Theorem (S, 2010)

Let $\mu < \beth_\omega \leq \lambda$.

- If $\mathcal{A} \subset [\lambda]^{\beth_\omega}$ is a μ -almost disjoint family, then \mathcal{A} is \beth_ω -essentially disjoint.

Properties of μ -almost disjoint families for $\mu > \omega$

Theorem (S, 2010)

Let $\mu < \beth_\omega \leq \lambda$.

- If $\mathcal{A} \subset [\lambda]^{\beth_\omega}$ is a μ -almost disjoint family, then \mathcal{A} is \beth_ω -essentially disjoint.
- If $\mathcal{A} \subset [\lambda]^{\geq \beth_\omega}$ is μ -almost disjoint, then $\chi_{\text{CF}}(\mathcal{A}) \leq \beth_\omega$.

Properties of μ -almost disjoint families for $\mu > \omega$

Theorem (S, 2010)

Let $\mu < \beth_\omega \leq \lambda$.

- If $\mathcal{A} \subset [\lambda]^{\beth_\omega}$ is a μ -almost disjoint family, then \mathcal{A} is \beth_ω -essentially disjoint.
- If $\mathcal{A} \subset [\lambda]^{\geq \beth_\omega}$ is μ -almost disjoint, then $\chi_{\text{CF}}(\mathcal{A}) \leq \beth_\omega$.

Definition

$\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^\nu$ there is $\mathcal{P} \in [\mathcal{B}]^{< \nu}$ such that $u = \bigcup \mathcal{P}$.

Properties of μ -almost disjoint families for $\mu > \omega$

Theorem (S, 2010)

Let $\mu < \beth_\omega \leq \lambda$.

- If $\mathcal{A} \subset [\lambda]^{\beth_\omega}$ is a μ -almost disjoint family, then \mathcal{A} is \beth_ω -essentially disjoint.
- If $\mathcal{A} \subset [\lambda]^{\geq \beth_\omega}$ is μ -almost disjoint, then $\chi_{\text{CF}}(\mathcal{A}) \leq \beth_\omega$.

Definition

$\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^\nu$ there is $\mathcal{P} \in [\mathcal{B}]^{< \nu}$ such that $u = \bigcup \mathcal{P}$.

Theorem (Shelah, Revised GCH)

If $\rho \geq \beth_\omega$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_\omega$.

The questions

The questions

If every ω -almost disjoint subfamily of $[\lambda]^{\omega_1}$ has the transversal property

then every ω -almost disjoint subfamily of $[\lambda]^{\omega_1}$ is ω -essentially disjoint.

If every μ -almost disjoint subfamily of $[\lambda]^\kappa$ is κ -**ED**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \kappa$ for all μ -almost disjoint $\mathcal{A} \subset [\lambda]^{\geq \kappa}$.

The questions

If every ω -almost disjoint subfamily of $[\lambda]^{\omega_1}$ has the transversal property

then every ω -almost disjoint subfamily of $[\lambda]^{\omega_1}$ is ω -essentially disjoint.

If every μ -almost disjoint subfamily of $[\lambda]^\kappa$ is κ -**ED**, then $\chi_{\text{CF}}(\mathcal{A}) \leq \kappa$ for all μ -almost disjoint $\mathcal{A} \subset [\lambda]^{\geq \kappa}$.

What are the right questions?

What are the right questions?

What are the right questions?

- Let **weak** and **strong** be properties of families of sets.

$$\forall \mathcal{A} (\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})).$$

What are the right questions?

- Let **weak** and **strong** be properties of families of sets.

$$\forall \mathcal{A} (\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})).$$

- You can not expect: $\forall \mathcal{A} (\text{weak}(\mathcal{A}) \implies \text{strong}(\mathcal{A})).$

What are the right questions?

- Let **weak** and **strong** be properties of families of sets.

$$\forall \mathcal{A} (\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})).$$

- You can not expect: $\forall \mathcal{A} (\text{weak}(\mathcal{A}) \implies \text{strong}(\mathcal{A})).$
- The right question/a better question:

Let \mathbb{A} be a **reasonable** collection of families of sets.

Prove/disprove

$$\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

What are the right questions?

- Let **weak** and **strong** be properties of families of sets.

$$\forall \mathcal{A} (\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})).$$

- You can not expect: $\forall \mathcal{A} (\text{weak}(\mathcal{A}) \implies \text{strong}(\mathcal{A}))$.

- The right question/a better question:

Let \mathbb{A} be a **reasonable** collection of families of sets.

Prove/disprove

$$\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

- Cheap* solution: $ZFC \vdash \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$, or

What are the right questions?

- Let **weak** and **strong** be properties of families of sets.

$$\forall \mathcal{A} (\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})).$$

- You can not expect: $\forall \mathcal{A} (\text{weak}(\mathcal{A}) \implies \text{strong}(\mathcal{A}))$.

- The right question/a better question:

Let \mathbb{A} be a **reasonable** collection of families of sets.

Prove/disprove

$$\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

- Cheap* solution: $ZFC \vdash \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$, or

$$ZFC \vdash \exists \mathcal{A} \in \mathbb{A} \neg \text{weak}(\mathcal{A})$$

What are the right questions?

- Let **weak** and **strong** be properties of families of sets.

$$\forall \mathcal{A} (\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})).$$

- You can not expect: $\forall \mathcal{A} (\text{weak}(\mathcal{A}) \implies \text{strong}(\mathcal{A}))$.

- The right question/a better question:

Let \mathbb{A} be a **reasonable** collection of families of sets.

Prove/disprove

$$\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

- Cheap* solution: $ZFC \vdash \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$, or

$$ZFC \vdash \exists \mathcal{A} \in \mathbb{A} \neg \text{weak}(\mathcal{A})$$

- Need methods to investigate: $M \models \stackrel{?}{\forall} \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A})$

What are the right questions?

- Let **weak** and **strong** be properties of families of sets.

$$\forall \mathcal{A} (\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})).$$

- You can not expect: $\forall \mathcal{A} (\text{weak}(\mathcal{A}) \implies \text{strong}(\mathcal{A}))$.

- The right question/a better question:

Let \mathbb{A} be a **reasonable** collection of families of sets.

Prove/disprove

$$\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

- Cheap* solution: $ZFC \vdash \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$, or

$$ZFC \vdash \exists \mathcal{A} \in \mathbb{A} \neg \text{weak}(\mathcal{A})$$

- Need methods to investigate: $M \stackrel{?}{\models} \forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A})$

$$M \stackrel{?}{\models} \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

What does “reasonable” mean?

- Let weak and strong be properties of families of sets,
 $\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})$.
- Let \mathbb{A} be a **reasonable** collection of families of sets.
Prove/disprove

$$\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

What does “reasonable” mean?

- Let weak and strong be properties of families of sets, $\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})$.
- Let \mathbb{A} be a **reasonable** collection of families of sets.
Prove/disprove

$$\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

- $\mathbb{A}_1 = \{ \text{ } \mu\text{-almost disjoint subfamilies of } [\lambda]^\kappa \}$.

What does “reasonable” mean?

- Let weak and strong be properties of families of sets, $\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})$.
- Let \mathbb{A} be a **reasonable** collection of families of sets.
Prove/disprove

$$\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

- $\mathbb{A}_1 = \{ \text{ } \mu\text{-almost disjoint subfamilies of } [\lambda]^\kappa \}$.
- $\mathbb{A}_2 = \{ \text{ ladder systems } \}$.

What does “reasonable” mean?

- Let weak and strong be properties of families of sets, $\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})$.
- Let \mathbb{A} be a **reasonable** collection of families of sets.
Prove/disprove

$$\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

- $\mathbb{A}_1 = \{ \text{ } \mu\text{-almost disjoint subfamilies of } [\lambda]^\kappa \}$.
- $\mathbb{A}_2 = \{ \text{ ladder systems } \}$.

Definition. Let $S \subset \kappa$.

A family $\mathcal{A} = \{A_\alpha : \alpha \in S\}$ is a **ladder system on S** iff
 A_α is a **cofinal** subset of α (with order type $cf(\alpha)$).

What does “reasonable” mean?

- Let weak and strong be properties of families of sets, $\text{strong}(\mathcal{A}) \implies \text{weak}(\mathcal{A})$.
- Let \mathbb{A} be a **reasonable** collection of families of sets.
Prove/disprove

$$\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$$

- $\mathbb{A}_1 = \{ \text{ } \mu\text{-almost disjoint subfamilies of } [\lambda]^\kappa \}$.
- $\mathbb{A}_2 = \{ \text{ ladder systems } \}$.

Definition. Let $S \subset \kappa$.

A family $\mathcal{A} = \{A_\alpha : \alpha \in S\}$ is a **ladder system on S** iff
 A_α is a **cofinal** subset of α (with order type $cf(\alpha)$).

A **ladder system** is a ladder system on some S .

Degustation

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.
 - Forcing: not hopeless up to continuum. But . . .

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.
 - Forcing: not hopeless up to continuum. But . . .
 - Forcing: more complicated above \mathfrak{c} . No nice iterations.

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.
 - Forcing: not hopeless up to continuum. But . . .
 - Forcing: more complicated above \mathfrak{c} . No nice iterations.
 - Preservation theorems.

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.
 - Forcing: not hopeless up to continuum. But ...
 - Forcing: more complicated above \mathfrak{c} . No nice iterations.
 - Preservation theorems.

Given a model M , decide $M \models \overset{?}{\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A})}$

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.
 - Forcing: not hopeless up to continuum. But ...
 - Forcing: more complicated above \mathfrak{c} . No nice iterations.
 - Preservation theorems.

Given a model M , decide $M \models \forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A})$?

Compactness argument:

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.
 - Forcing: not hopeless up to continuum. But ...
 - Forcing: more complicated above \mathfrak{c} . No nice iterations.
 - Preservation theorems.

Given a model M , decide $M \models \text{weak}(\mathcal{A})$?

Compactness argument:

- At singulars: Shelah's Singular Compactness Theorem.

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.
 - Forcing: not hopeless up to continuum. But ...
 - Forcing: more complicated above \mathfrak{c} . No nice iterations.
 - Preservation theorems.

Given a model M , decide $M \models \forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A})$?

Compactness argument:

- At singulars: Shelah's Singular Compactness Theorem.
- At regulars:

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.
 - Forcing: not hopeless up to continuum. But ...
 - Forcing: more complicated above \mathfrak{c} . No nice iterations.
 - Preservation theorems.

Given a model M , decide $M \models \forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A})$?

Compactness argument:

- At singulars: Shelah's Singular Compactness Theorem.
- At regulars:
 - Independence result: large cardinals vs boxes

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.
 - Forcing: not hopeless up to continuum. But ...
 - Forcing: more complicated above \mathfrak{c} . No nice iterations.
 - Preservation theorems.

Given a model M , decide $M \models \forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A})$?

Compactness argument:

- At singulars: Shelah's Singular Compactness Theorem.
- At regulars:
 - Independence result: large cardinals vs boxes
 - Shelah's Revised GCH

Degustation

Prove/disprove: $\forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A}) \implies \forall \mathcal{A} \in \mathbb{A} \text{ strong}(\mathcal{A})$

- Prove *implication* theorems. Are there any?
- Prove *separation* theorems.
 - Forcing: not hopeless up to continuum. But ...
 - Forcing: more complicated above \mathfrak{c} . No nice iterations.
 - Preservation theorems.

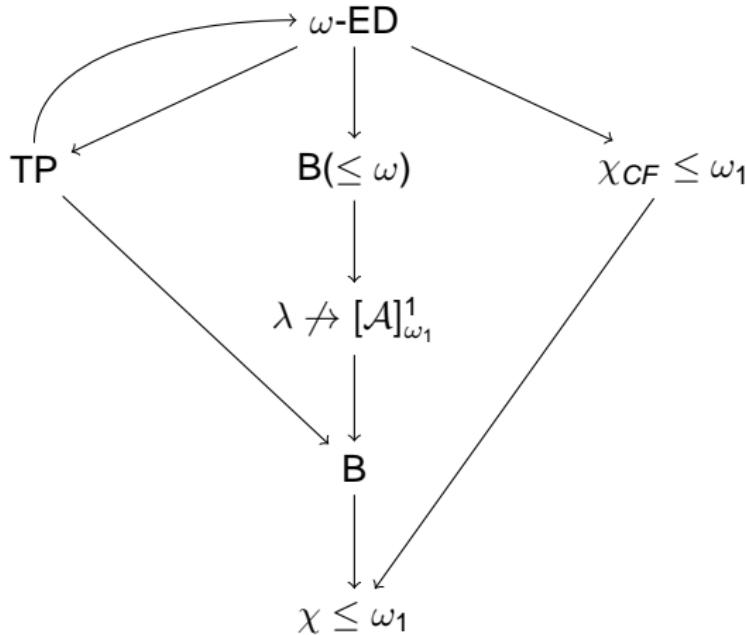
Given a model M , decide $M \models \forall \mathcal{A} \in \mathbb{A} \text{ weak}(\mathcal{A})$?

Compactness argument:

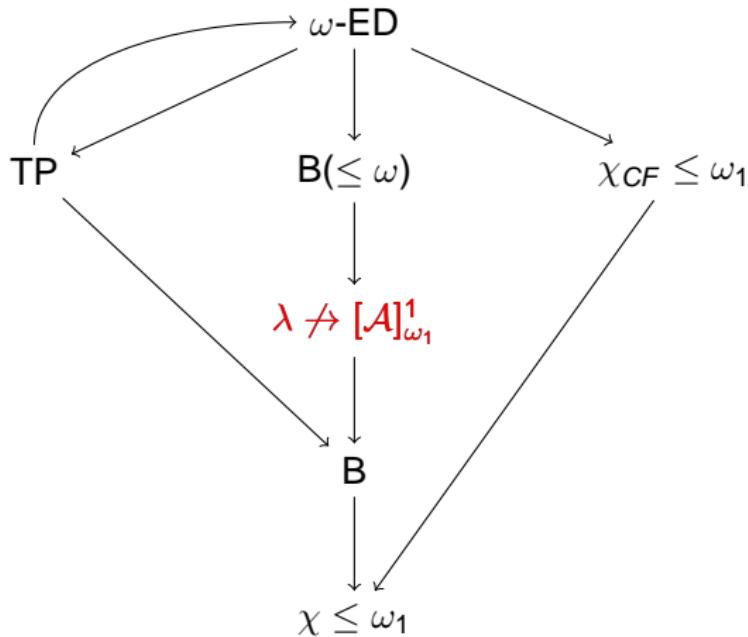
- At singulars: Shelah's Singular Compactness Theorem.
- At regulars:
 - Independence result: large cardinals vs boxes
 - Shelah's Revised GCH
 - Combinatorial principles

Problems around ω -almost disjoint families $\mathcal{A} \subset [\lambda]^{\omega_1}$

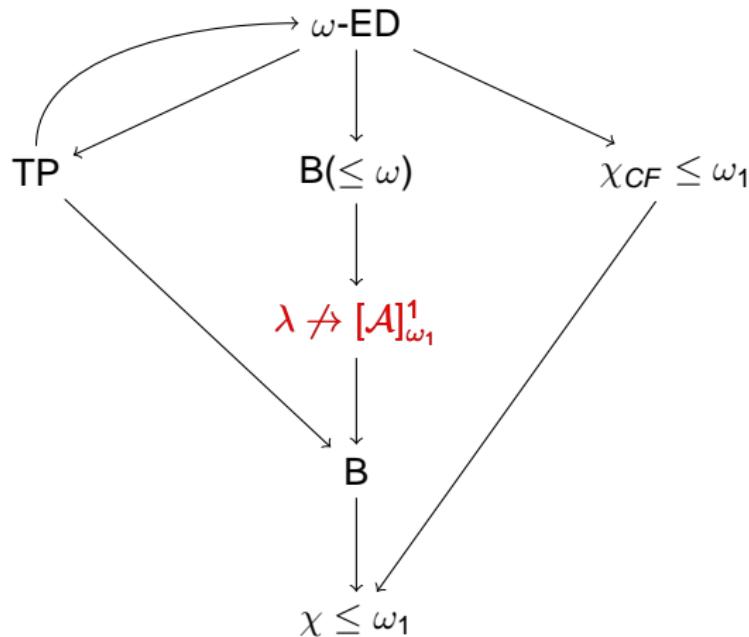
Problems around ω -almost disjoint families $\mathcal{A} \subset [\lambda]^{\omega_1}$



Problems around ω -almost disjoint families $\mathcal{A} \subset [\lambda]^{\omega_1}$



Problems around ω -almost disjoint families $\mathcal{A} \subset [\lambda]^{\omega_1}$



$\lambda \not\rightarrow [A]_{\omega_1}^1$ iff there is $f : \lambda \rightarrow \omega_1$ s.t. $f[A] = \omega_1$ for all $A \in \mathcal{A}$.

To be continued . . .