On properties of families of sets

Lajos Soukup

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences

http://www.renyi.hu/~soukup

7th Young Set Theory Workshop

Applications of elementary submodels

Introduction

Applications of elementary submodels Introduction

How to use elementary submodels to prove theorems in infinite combinatorics?

Applications of elementary submodels Introduction

How to use elementary submodels to prove theorems in infinite combinatorics?

- Basic concept
- Easy applications
- Simplified proofs
- Davies trees
- Stepping up in Davies trees

Applications of elementary submodels Introduction

How to use elementary submodels to prove theorems in infinite combinatorics?

- Basic concept
- Easy applications
- Simplified proofs
- Davies trees
- Stepping up in Davies trees

Stephen G. Simpson, *Model theoretic proof a partition theorem*, Abstracts of Contributed Papers, Notices of AMS, 17 (1970), no 6 p 964.

• A is a structure

- A is a structure
- Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$

- A is a structure
- Let M be a small elementary submodel of V which contains A,
 i.e. A ∈ M ≺ V but |M| < |A|
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.

- A is a structure
- Let M be a small elementary submodel of V which contains A,
 i.e. A ∈ M ≺ V but |M| < |A|
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...

- A is a structure
- Let M be a small elementary submodel of V which contains A,
 i.e. A ∈ M ≺ V but |M| < |A|
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- Fix a regular cardinal heta such that $|\mathcal{A}| \ll heta$

- A is a structure
- Let M be a small elementary submodel of V which contains A,
 i.e. A ∈ M ≺ V but |M| < |A|
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- Fix a regular cardinal heta such that $|\mathcal{A}| \ll heta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.

- A is a structure
- Let M be a small elementary submodel of V which contains A,
 i.e. A ∈ M ≺ V but |M| < |A|
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- Fix a regular cardinal heta such that $|\mathcal{A}| \ll heta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.
- $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

- A is a structure
- Let M be a small elementary submodel of V which contains A,
 i.e. A ∈ M ≺ V but |M| < |A|
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- Fix a regular cardinal heta such that $|\mathcal{A}| \ll heta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.
- $\mathcal{H}(\theta) = \langle \mathcal{H}(\theta), \in, \triangleleft, \ldots \rangle$
- Concerning A the model $\mathcal{H}(\theta)$ and V are similar

- A is a structure
- Let M be a small elementary submodel of V which contains A,
 i.e. A ∈ M ≺ V but |M| < |A|
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- Fix a regular cardinal θ such that $|\mathcal{A}| \ll \theta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.
- $\mathcal{H}(\theta) = \langle \mathcal{H}(\theta), \in, \triangleleft, \ldots \rangle$
- Concerning A the model $\mathcal{H}(\theta)$ and V are similar
- Let $M \prec \mathcal{H}(\theta)$ such that $A \in M$ but |M| < |A|.

- A is a structure
- Let M be a small elementary submodel of V which contains A,
 i.e. A ∈ M ≺ V but |M| < |A|
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- Fix a regular cardinal θ such that $|\mathcal{A}| \ll \theta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.
- $\mathcal{H}(\theta) = \langle \mathcal{H}(\theta), \in, \triangleleft, \ldots \rangle$
- Concerning A the model $\mathcal{H}(\theta)$ and V are similar
- Let $M \prec \mathcal{H}(\theta)$ such that $A \in M$ but |M| < |A|.
- Investigate M and A ↑ M to derive certain properties of A.

- A is a structure
- Let M be a small elementary submodel of V which contains A,
 i.e. A ∈ M ≺ V but |M| < |A|
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- Fix a regular cardinal heta such that $|\mathcal{A}| \ll heta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.
- $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$
- Concerning A the model $\mathcal{H}(\theta)$ and V are similar
- Let $M \prec \mathcal{H}(\theta)$ such that $A \in M$ but |M| < |A|.
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.

Easy applications: Δ -systems

$$H(\theta) = \{x : |TC(x)| < \theta\}.$$
 $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

$$H(\theta) = \{x : |TC(x)| < \theta\}.$$
 $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

$$H(\theta) = \{x : |TC(x)| < \theta\}.$$
 $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

$$H(\theta) = \{x : |TC(x)| < \theta\}.$$
 $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

Every uncountable $\mathcal{A} \subset \left[\omega_1\right]^{<\omega}$ contains an uncountable Δ -system.

• $\mathcal{A} \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$

$$H(\theta) = \{x : |TC(x)| < \theta\}.$$
 $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $\mathcal{A} \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.

$$H(\theta) = \{ \mathbf{x} : |TC(\mathbf{x})| < \theta \}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $\mathcal{A} \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}

$$H(\theta) = \{ \mathbf{x} : |TC(\mathbf{x})| < \theta \}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $A \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let B be the ⊲-minimal among the ⊂-maximal elements of B.

$$H(\theta) = \{ \mathbf{x} : |TC(\mathbf{x})| < \theta \}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $A \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let B be the ⊲-minimal among the ⊂-maximal elements of B.
- $A \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$

$$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $A \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let B be the ⊲-minimal among the ⊂-maximal elements of B.
- $A \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$
- If $|\mathcal{B}| = \omega_1$: fine.

$$H(\theta) = \{x : |TC(x)| < \theta\}.$$
 $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

Every uncountable $A \subset [\omega_1]^{<\omega}$ contains an uncountable Δ -system.

- $A \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let B be the ⊲-minimal among the ⊂-maximal elements of B.
- $A \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$
- If $|\mathcal{B}| = \omega_1$: fine.
- If $|\mathcal{B}| \leq \omega$ then $\mathcal{B} \subset M$. So $\mathcal{B} \subset M$ for all $\mathcal{B} \in \mathcal{B}$. Thus $\mathcal{A} \cap \mathcal{B} = \mathcal{D}$

$$H(\theta) = \{ \mathbf{x} : |TC(\mathbf{x})| < \theta \}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

Every uncountable $A \subset [\omega_1]^{<\omega}$ contains an uncountable Δ -system.

- $A \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let B be the ⊲-minimal among the ⊂-maximal elements of B.
- $A \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$
- If $|\mathcal{B}| = \omega_1$: fine.
- If $|\mathcal{B}| \leq \omega$ then $\mathcal{B} \subset M$. So $B \subset M$ for all $B \in \mathcal{B}$. Thus $A \cap B = D$
- $\mathcal{B} \cup \{A\} \supseteq \mathcal{B}$ is a Δ -system with kernel D. Contradiction.

$$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

Every uncountable $A \subset [\omega_1]^{<\omega}$ contains an uncountable Δ -system.

- $A \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let B be the ⊲-minimal among the ⊂-maximal elements of B.
- $A \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$
- If $|\mathcal{B}| = \omega_1$: fine.
- If $|\mathcal{B}| \leq \omega$ then $\mathcal{B} \subset M$. So $B \subset M$ for all $B \in \mathcal{B}$. Thus $A \cap B = D$
- $\mathcal{B} \cup \{A\} \supseteq \mathcal{B}$ is a Δ -system with kernel D. Contradiction. Skip Fodor

Theorem

Theorem

A regressive function $f: \omega_1 \to \omega_1$ is constant on a stationary set.

• Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$
- "C is unbounded", so M ⊨ "C is unbounded"

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$
- "C is unbounded", so M ⊨ "C is unbounded"
- for each $\nu < \eta = M \cap \omega_1 M \models \exists \mu \in C(\nu < \mu)$.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$
- "C is unbounded", so M ⊨ "C is unbounded"
- for each $\nu < \eta = M \cap \omega_1 M \models \exists \mu \in C(\nu < \mu)$.
- $\exists \mu \in \mathbf{C} \cap \mathbf{M} = \mathbf{C} \cap \eta \ (\nu < \mu).$

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$
- "C is unbounded", so M ⊨ "C is unbounded"
- for each $\nu < \eta = M \cap \omega_1 M \models \exists \mu \in C(\nu < \mu)$.
- $\exists \mu \in \mathbf{C} \cap \mathbf{M} = \mathbf{C} \cap \eta \ (\nu < \mu).$
- $C \cap \eta$ is unbounded in η .

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- S ∈ M ⇒ ∃C ∈ M ...
- "C is unbounded", so M ⊨ "C is unbounded"
- for each $\nu < \eta = M \cap \omega_1 M \models \exists \mu \in C(\nu < \mu)$.
- $\exists \mu \in \mathbf{C} \cap \mathbf{M} = \mathbf{C} \cap \eta \ (\nu < \mu).$
- $C \cap \eta$ is unbounded in η .
- C is closed $\Longrightarrow n \in C$.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$.
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- S ∈ M ⇒ ∃C ∈ M ...
- "C is unbounded", so $M \models$ "C is unbounded"
- for each $\nu < \eta = M \cap \omega_1 M \models \exists \mu \in C(\nu < \mu)$.
- $\exists \mu \in \mathbf{C} \cap \mathbf{M} = \mathbf{C} \cap \eta \ (\nu < \mu).$
- $C \cap \eta$ is unbounded in η .
- C is closed $\Longrightarrow \eta \in \mathbb{C}$. Contradiction because $\eta \in \mathbb{S}$

A cut of a graph $G = \langle V, E \rangle$ is $E \cap [A, V \setminus A]$ for some $\emptyset \neq A \subsetneq V$.

A cut of a graph $G = \langle V, E \rangle$ is $E \cap [A, V \setminus A]$ for some $\emptyset \neq A \subsetneq V$.

Theorem (Nash-Williams)

A cut of a graph $G = \langle V, E \rangle$ is $E \cap [A, V \setminus A]$ for some $\emptyset \neq A \subsetneq V$.

Theorem (Nash-Williams)

A graph G is decomposable into circles if and only if it has no odd cut.

Def: G is NW iff it does not have odd cuts.

A cut of a graph $G = \langle V, E \rangle$ is $E \cap [A, V \setminus A]$ for some $\emptyset \neq A \subsetneq V$.

Theorem (Nash-Williams)

- Def: G is NW iff it does not have odd cuts.
- If G is finite: trivial.

A cut of a graph $G = \langle V, E \rangle$ is $E \cap [A, V \setminus A]$ for some $\emptyset \neq A \subsetneq V$.

Theorem (Nash-Williams)

- Def: G is NW iff it does not have odd cuts.
- If G is finite: trivial.
- If G is countable: straightforward.

A cut of a graph $G = \langle V, E \rangle$ is $E \cap [A, V \setminus A]$ for some $\emptyset \neq A \subsetneq V$.

Theorem (Nash-Williams)

- Def: G is NW iff it does not have odd cuts.
- If G is finite: trivial.
- If G is countable: straightforward.
- If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and NW.

A cut of a graph $G = \langle V, E \rangle$ is $E \cap [A, V \setminus A]$ for some $\emptyset \neq A \subsetneq V$.

Theorem (Nash-Williams)

- Def: G is NW iff it does not have odd cuts.
- If G is finite: trivial.
- If G is countable: straightforward.
- If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and NW.
- $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.

A cut of a graph $G = \langle V, E \rangle$ is $E \cap [A, V \setminus A]$ for some $\emptyset \neq A \subsetneq V$.

Theorem (Nash-Williams)

- Def: G is NW iff it does not have odd cuts.
- If G is finite: trivial.
- If G is countable: straightforward.
- If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and NW.
- $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- chain of elementary submodels.

A cut of a graph $G = \langle V, E \rangle$ is $E \cap [A, V \setminus A]$ for some $\emptyset \neq A \subsetneq V$.

Theorem (Nash-Williams)

- Def: G is NW iff it does not have odd cuts.
- If G is finite: trivial.
- If G is countable: straightforward.
- If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and NW.
- $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- chain of elementary submodels.
- $G \upharpoonright M = \langle V \cap M, E \cap M \rangle$ is NW.

A cut of a graph $G = \langle V, E \rangle$ is $E \cap [A, V \setminus A]$ for some $\emptyset \neq A \subsetneq V$.

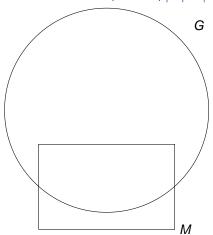
Theorem (Nash-Williams)

- Def: G is NW iff it does not have odd cuts.
- If G is finite: trivial.
- If G is countable: straightforward.
- If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and NW.
- $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- chain of elementary submodels.
- $G \upharpoonright M = \langle V \cap M, E \cap M \rangle$ is NW.
- $G \setminus M = \langle V, E \setminus M \rangle$ is NW.

Def: G is NW iff it does not have odd cuts.

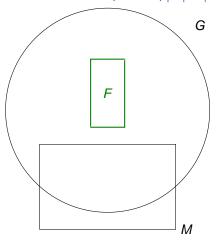
Def: G is NW iff it does not have odd cuts.

Def: G is NW iff it does not have odd cuts.



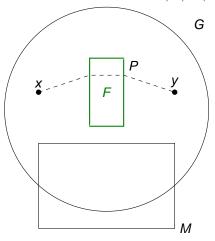
Def: G is NW iff it does not have odd cuts.

Thm: If G is NW, $G \in M$, |M| < |G|, $|M| \subset M$, then $G \setminus M$ is NW.



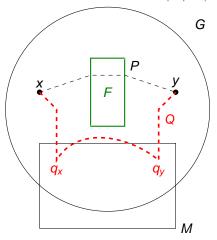
Let F be an odd cut in G \ M

Def: G is NW iff it does not have odd cuts.



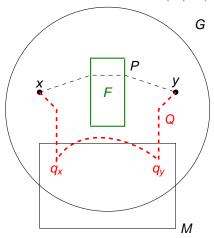
- Let F be an odd cut in G \ M
- F separates x and y in G \ M, but not in G.

Def: G is NW iff it does not have odd cuts.



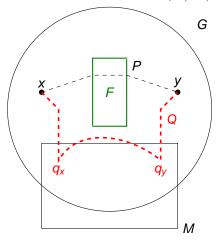
- Let F be an odd cut in G \ M
- F separates x and y in G \ M, but not in G.

Def: G is NW iff it does not have odd cuts.



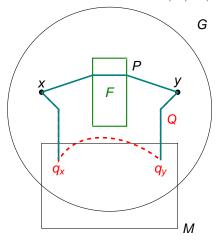
- Let F be an odd cut in G \ M
- F separates x and y in G \ M, but not in G.
- Let T be a maximal family of edge disjoint paths from q_x to q_y in G.

Def: G is NW iff it does not have odd cuts.



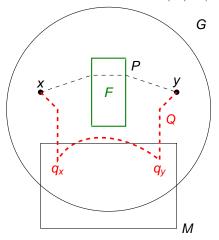
- Let F be an odd cut in G \ M
- F separates x and y in G \ M, but not in G.
- Let T be a maximal family of edge disjoint paths from q_x to q_y in G.
- If $|\mathcal{T}| \leq |M|$ then $\cup \mathcal{T} \subset M$

Def: G is NW iff it does not have odd cuts.



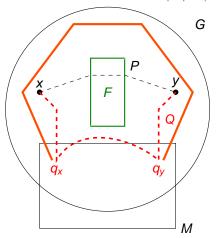
- Let F be an odd cut in G \ M
- F separates x and y in G \ M, but not in G.
- Let T be a maximal family of edge disjoint paths from q_x to q_y in G.
- If $|\mathcal{T}| \leq |M|$ then $\cup \mathcal{T} \subset M$
- Then T is not maximal: there is a path which does not intersect M

Def: G is NW iff it does not have odd cuts.



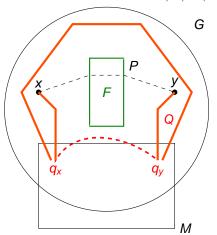
- Let F be an odd cut in G \ M
- F separates x and y in G \ M, but not in G.
- Let T be a maximal family of edge disjoint paths from q_x to q_y in G.
- If $|\mathcal{T}| \leq |M|$ then $\cup \mathcal{T} \subset M$
- Then T is not maximal: there is a path which does not intersect M

Def: G is NW iff it does not have odd cuts.



- Let F be an odd cut in G \ M
- F separates x and y in G \ M, but not in G.
- Let T be a maximal family of edge disjoint paths from q_x to q_y in G.
- If $|\mathcal{T}| \leq |M|$ then $\cup \mathcal{T} \subset M$
- Then T is not maximal: there is a path which does not intersect M
- $|\mathcal{T}| > |M|$, so $\exists R \in \mathcal{T}$ $R \cap (M \cup F) = \emptyset$

Def: G is NW iff it does not have odd cuts.



- Let F be an odd cut in G \ M
- F separates x and y in G \ M, but not in G.
- Let T be a maximal family of edge disjoint paths from q_x to q_y in G.
- If $|\mathcal{T}| \leq |M|$ then $\cup \mathcal{T} \subset M$
- Then T is not maximal: there is a path which does not intersect M
- $|\mathcal{T}| > |M|$, so $\exists R \in \mathcal{T}$ $R \cap (M \cup F) = \emptyset$
- There is a path from x to y in G \ M which misses F.

Def: G is NW iff it does not have odd cuts.

If $G \in M \prec \mathcal{H}(\theta)$ is NW, |M| < |G|, $|M| \subset M$, then both $G \upharpoonright M$ and $G \setminus M$ are NW.

Def: G is NW iff it does not have odd cuts.

If
$$G \in M \prec \mathcal{H}(\theta)$$
 is NW, $|M| < |G|$, $|M| \subset M$, then both $G \upharpoonright M$ and $G \setminus M$ are NW.

• $G = \langle \omega_1, E \rangle$ is NW

Def: G is NW iff it does not have odd cuts.

If $G \in M \prec \mathcal{H}(\theta)$ is NW, |M| < |G|, $|M| \subset M$, then both $G \upharpoonright M$ and $G \setminus M$ are NW.

- $G = \langle \omega_1, E \rangle$ is NW
- $G \in \mathcal{H}(\theta)$.

Def: G is NW iff it does not have odd cuts.

If $G \in M \prec \mathcal{H}(\theta)$ is NW, |M| < |G|, $|M| \subset M$, then both $G \upharpoonright M$ and $G \setminus M$ are NW.

- $G = \langle \omega_1, E \rangle$ is NW
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $G \in M_1$, $\alpha \subset M_{\alpha}$ and $\langle M_{\zeta}: \zeta \leq \alpha \rangle \in M_{\alpha+1}$. Let $M_0 = \emptyset$.

Def: G is NW iff it does not have odd cuts.

If $G \in M \prec \mathcal{H}(\theta)$ is NW, |M| < |G|, $|M| \subset M$, then both $G \upharpoonright M$ and $G \backslash M$ are NW.

- $G = \langle \omega_1, E \rangle$ is NW
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha} : 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $G \in M_1$, $\alpha \subset M_{\alpha}$ and $\langle M_{\zeta} : \zeta \leq \alpha \rangle \in M_{\alpha+1}$. Let $M_0 = \emptyset$.
- Let $G_{\alpha} = (G \setminus M_{\alpha}) \upharpoonright M_{\alpha+1} = \langle \omega_1 \cap M_{\alpha+1}, E \cap (M_{\alpha+1} \setminus M_{\alpha}) \rangle$.

Def: G is NW iff it does not have odd cuts.

If $G \in M \prec \mathcal{H}(\theta)$ is NW, |M| < |G|, $|M| \subset M$, then both $G \upharpoonright M$ and $G \backslash M$ are NW.

- $G = \langle \omega_1, E \rangle$ is NW
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha} : 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $G \in M_1$, $\alpha \subset M_{\alpha}$ and $\langle M_{\zeta} : \zeta \leq \alpha \rangle \in M_{\alpha+1}$. Let $M_0 = \emptyset$.
- Let $G_{\alpha} = (G \setminus M_{\alpha}) \upharpoonright M_{\alpha+1} = \langle \omega_1 \cap M_{\alpha+1}, E \cap (M_{\alpha+1} \setminus M_{\alpha}) \rangle$.
- G_{α} is NW.

Simplified proofs: Nash-Williams theorem

Def: G is NW iff it does not have odd cuts.

If $G \in M \prec \mathcal{H}(\theta)$ is NW, |M| < |G|, $|M| \subset M$, then both $G \upharpoonright M$ and $G \backslash M$ are NW.

- $G = \langle \omega_1, E \rangle$ is NW
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha} : 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $G \in M_1$, $\alpha \subset M_{\alpha}$ and $\langle M_{\zeta} : \zeta \leq \alpha \rangle \in M_{\alpha+1}$. Let $M_0 = \emptyset$.
- Let $G_{\alpha} = (G \setminus M_{\alpha}) \upharpoonright M_{\alpha+1} = \langle \omega_1 \cap M_{\alpha+1}, E \cap (M_{\alpha+1} \setminus M_{\alpha}) \rangle$.
- G_{α} is NW.
- G_α is decomposable into circles.

Simplified proofs: Nash-Williams theorem

Def: G is NW iff it does not have odd cuts.

If $G \in M \prec \mathcal{H}(\theta)$ is NW, |M| < |G|, $|M| \subset M$, then both $G \upharpoonright M$ and $G \setminus M$ are NW.

- $G = \langle \omega_1, E \rangle$ is NW
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha} : 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $G \in M_1$, $\alpha \subset M_{\alpha}$ and $\langle M_{\zeta} : \zeta \leq \alpha \rangle \in M_{\alpha+1}$. Let $M_0 = \emptyset$.
- Let $G_{\alpha} = (G \setminus M_{\alpha}) \upharpoonright M_{\alpha+1} = \langle \omega_1 \cap M_{\alpha+1}, E \cap (M_{\alpha+1} \setminus M_{\alpha}) \rangle$.
- G_α is NW.
- G_α is decomposable into circles.
- $E(G) = \cup^* \{ E(G_\alpha) : \alpha < \omega_1 \} \Longrightarrow G$ is decomposable into circles

Davies trees: the beginning Covering of the plain

Davies trees: the beginning Covering of the plain

Theorem (Davies, 1963)

 \mathbb{R}^2 is the union of countably many rotations of functions.

If $\alpha_0, \alpha_1, \ldots$ are pairwise different angles between 0 and π , then there are function $f_0, f_1 \ldots$ such that

$$\mathbb{R}^2 = \bigcup_{n \in \omega} R_{(\alpha_n)}[f_n],$$

where $R_{(\alpha)}: \mathbb{R}^2 \to \mathbb{R}^2$ is the rotation by α degree around the origin.

Definition

Let κ be an uncountable cardinal, and $\kappa \ll \theta = \mathrm{cf}(\theta)$. A Davies sequence for κ over x is a sequence $\langle M_\alpha : \alpha < \kappa \rangle$ of countable elementary submodels of $\mathcal{H}(\theta)$ such that

Definition

Let κ be an uncountable cardinal, and $\kappa \ll \theta = \mathsf{cf}(\theta)$. A Davies sequence for κ over x is a sequence $\langle M_\alpha : \alpha < \kappa \rangle$ of countable elementary submodels of $\mathcal{H}(\theta)$ such that

• $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and $\mathbf{x} \in M_{\alpha}$ for all $\alpha < \kappa$.

Definition

Let κ be an uncountable cardinal, and $\kappa \ll \theta = \mathsf{cf}(\theta)$. A Davies sequence for κ over x is a sequence $\langle M_\alpha : \alpha < \kappa \rangle$ of countable elementary submodels of $\mathcal{H}(\theta)$ such that

- $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and $\mathbf{x} \in M_{\alpha}$ for all $\alpha < \kappa$.
- For all $\alpha < \kappa$ there is a natural number $n(\alpha)$ s.t.

$$M_{<\alpha} = \bigcup_{i < n(\alpha)} N_i$$
, for some $N_i \prec \mathcal{H}(\theta)$,

where
$$M_{<\alpha} = \bigcup_{\zeta < \alpha} M_{\zeta}$$
.

Davies Theorem

Definition

A Davies sequence for κ over x is a sequence $\langle M_\alpha : \alpha < \kappa \rangle$ of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\kappa \subset \bigcup_{\alpha < \kappa} M_\alpha$, $x \in M_\alpha$ for all $\alpha < \kappa$, and

• $\forall \alpha < \kappa \ \exists n(\alpha) \in \omega \ \text{s.t.} \ M_{<\alpha} = \bigcup_{i < n(\alpha)} N_i, \ \text{for some } N_i \prec \mathcal{H}(\theta).$

Davies Theorem

Definition

A Davies sequence for κ over x is a sequence $\langle M_\alpha : \alpha < \kappa \rangle$ of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\kappa \subset \bigcup_{\alpha < \kappa} M_\alpha$, $x \in M_\alpha$ for all $\alpha < \kappa$, and

• $\forall \alpha < \kappa \ \exists n(\alpha) \in \omega \ \text{s.t.} \ M_{<\alpha} = \bigcup_{i < n(\alpha)} N_i, \text{ for some } N_i \prec \mathcal{H}(\theta).$

Theorem (Davies)

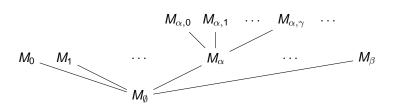
 $\forall \kappa > \omega \ \forall x \ there is a Davies sequence for \kappa \ over x.$

If $\kappa = \omega_n$, then we can assume that $n(\alpha) = n$ for all $\alpha < \omega_n$, i.e. $M_{<\alpha} = \bigcup_{i < n} N_i$, for some $N_i \prec \mathcal{H}(\theta)$.

•
$$\kappa \subset M_{\emptyset} \prec \mathcal{H}(\theta)$$
, $|M_{\emptyset}| = \kappa$. $\emptyset \in T$

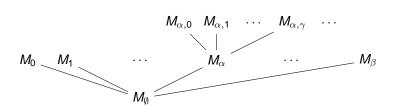
- $\kappa \subset M_{\emptyset} \prec \mathcal{H}(\theta), |M_{\emptyset}| = \kappa.$ $\emptyset \in T$
- $M_{\emptyset} = \bigcup_{\alpha < \kappa} M_{\alpha}$, continuous increasing, $|M_{\alpha}| < \kappa$ for $\alpha < \kappa$.

- $\kappa \subset M_{\emptyset} \prec \mathcal{H}(\theta), |M_{\emptyset}| = \kappa.$ $\emptyset \in T$
- $M_{\emptyset} = \bigcup_{\alpha < \kappa} M_{\alpha}$, continuous increasing, $|M_{\alpha}| < \kappa$ for $\alpha < \kappa$.
- If $|M_{\alpha}| > \omega$ then $M_{\alpha} = \bigcup_{\gamma < \kappa_{\alpha}} M_{\alpha,\gamma}$, $|M_{\alpha,\gamma}| < \kappa$ for $\gamma < \kappa_{\alpha}$.



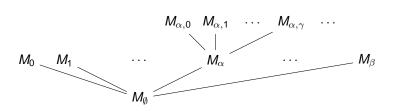
. .

- $\kappa \subset M_{\emptyset} \prec \mathcal{H}(\theta), |M_{\emptyset}| = \kappa.$ $\emptyset \in T$
- $M_{\emptyset} = \bigcup_{\alpha < \kappa} M_{\alpha}$, continuous increasing, $|M_{\alpha}| < \kappa$ for $\alpha < \kappa$.
- If $|M_{\alpha}| > \omega$ then $M_{\alpha} = \bigcup_{\gamma < \kappa_{\alpha}} M_{\alpha,\gamma}$, $|M_{\alpha,\gamma}| < \kappa$ for $\gamma < \kappa_{\alpha}$.
- If $|M_s| = \omega$, then M_s is a leaf in T. Otherwise we continue the construction: $M_s = \bigcup_{\zeta < \kappa_s} M_{s,\zeta}$ and $s \cap \zeta \in T$.

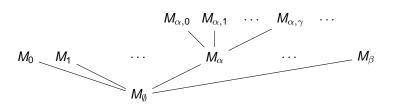


. . .

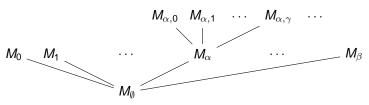
- $\kappa \subset M_{\emptyset} \prec \mathcal{H}(\theta), |M_{\emptyset}| = \kappa.$ $\emptyset \in T$
- $M_{\emptyset} = \bigcup_{\alpha < \kappa} M_{\alpha}$, continuous increasing, $|M_{\alpha}| < \kappa$ for $\alpha < \kappa$.
- If $|M_{\alpha}| > \omega$ then $M_{\alpha} = \bigcup_{\gamma < \kappa_{\alpha}} M_{\alpha,\gamma}$, $|M_{\alpha,\gamma}| < \kappa$ for $\gamma < \kappa_{\alpha}$.
- If $|M_s| = \omega$, then M_s is a leaf in T. Otherwise we continue the construction: $M_s = \bigcup_{\zeta \leq \kappa_s} M_{s,\zeta}$ and $s \subset \zeta \in T$.
- $\kappa \subset \bigcup_{t \text{ is a leaf}} M_t$.



- $\kappa \subset M_{\emptyset} \prec \mathcal{H}(\theta), |M_{\emptyset}| = \kappa.$ $\emptyset \in T$
- $M_{\emptyset} = \bigcup_{\alpha < \kappa} M_{\alpha}$, continuous increasing, $|M_{\alpha}| < \kappa$ for $\alpha < \kappa$.
- If $|M_{\alpha}| > \omega$ then $M_{\alpha} = \bigcup_{\gamma < \kappa_{\alpha}} M_{\alpha,\gamma}$, $|M_{\alpha,\gamma}| < \kappa$ for $\gamma < \kappa_{\alpha}$.
- If $|M_s| = \omega$, then M_s is a leaf in T. Otherwise we continue the construction: $M_s = \bigcup_{\zeta < \kappa_s} M_{s,\zeta}$ and $s \cap \zeta \in T$.
- $\kappa \subset \bigcup_{t \text{ is a leaf}} M_t$.
- Let \(\frac{t_\alpha}{c} : \alpha < \kappa\)\) be the lexicographically increasing enumeration of the leaves of T.



- $\kappa \subset M_{\emptyset} \prec \mathcal{H}(\theta), |M_{\emptyset}| = \kappa.$ $\emptyset \in T$
- $M_{\emptyset} = \bigcup_{\alpha < \kappa} M_{\alpha}$, continuous increasing, $|M_{\alpha}| < \kappa$ for $\alpha < \kappa$.
- If $|M_{\alpha}| > \omega$ then $M_{\alpha} = \bigcup_{\gamma < \kappa_{\alpha}} M_{\alpha,\gamma}$, $|M_{\alpha,\gamma}| < \kappa$ for $\gamma < \kappa_{\alpha}$.
- If $|M_s| = \omega$, then M_s is a leaf in T. Otherwise we continue the construction: $M_s = \bigcup_{\zeta < \kappa_s} M_{s,\zeta}$ and $s \cap \zeta \in T$.
- $\kappa \subset \bigcup_{t \text{ is a leaf}} M_t$.
- Let \(\langle t_\alpha : \alpha < \kappa \rangle\) be the lexicographically increasing enumeration of the leaves of T.
- Claim: $\langle M_{t_{\alpha}} : \alpha < \kappa \rangle$ is a Davies sequence for κ .



• We defined a tree T and for all $t \in T$ we defined $M_t \prec \mathcal{H}(\theta)$

- We defined a tree T and for all $t \in T$ we defined $M_t \prec \mathcal{H}(\theta)$
- If $s \subseteq t$ then $|M_s| > |M_t|$. $M_t = \bigcup_{i < \kappa_t} M_{t,i}$

- We defined a tree T and for all $t \in T$ we defined $M_t \prec \mathcal{H}(\theta)$
- If $s \subsetneq t$ then $|M_s| > |M_t|$. $M_t = \bigcup_{i < \kappa_t} M_{t,i}$
- $\star M_t = \bigcup_{t \subseteq t' \in leaf(T)} M_{t'}$

- We defined a tree T and for all $t \in T$ we defined $M_t \prec \mathcal{H}(\theta)$
- If $s \subsetneq t$ then $|M_s| > |M_t|$. $M_t = \bigcup_{i < \kappa_t} M_{t,i}$
- $\star M_t = \bigcup_{t \subseteq t' \in leaf(T)} M_{t'}$
- Write s < lex t iff s is lexicographically smaller than s.

- We defined a tree T and for all $t \in T$ we defined $M_t \prec \mathcal{H}(\theta)$
- If $s \subseteq t$ then $|M_s| > |M_t|$. $M_t = \bigcup_{i < \kappa_t} M_{t,i}$
- $\star M_t = \bigcup_{t \subseteq t' \in leaf(T)} M_{t'}$
- Write s < lex t iff s is lexicographically smaller than s.
- $M_{\leq_{lex}t_{\alpha}} \stackrel{\text{def}}{=} \bigcup \{M_{s} : s \in leaf(T), s <_{lex} t_{\alpha}\} = \bigcup_{i < |t_{\alpha}|} \bigcup \{M_{s} : t \upharpoonright i \subseteq s \in leaf(T) \land s(i) < t(i)\}$

- We defined a tree T and for all $t \in T$ we defined $M_t \prec \mathcal{H}(\theta)$
- If $s \subseteq t$ then $|M_s| > |M_t|$. $M_t = \bigcup_{i < \kappa_t} M_{t,i}$
- $\star M_t = \bigcup_{t \subset t' \in leaf(T)} M_{t'}$
- Write $s <_{lex} t$ iff s is lexicographically smaller than s.
- $M_{\leq_{lex}t_{\alpha}} \stackrel{\text{def}}{=} \bigcup \{M_{s} : s \in leaf(T), s <_{lex} t_{\alpha}\} = \bigcup_{i < |t_{\alpha}|} \bigcup \{M_{s} : t \upharpoonright i \subseteq s \in leaf(T) \land s(i) < t(i)\}$
- $\bigcup \{M_s : t \upharpoonright i \subseteq s \in leaf(T) \land s(i) < t(i)\} = \bigcup_{\zeta < t(i)} \left(\bigcup \{M_s : t \upharpoonright i \cap \langle \zeta \rangle \subseteq s \in leaf(T)\} \right) = \bigcup_{\zeta < t(i)} \left(M_{t \upharpoonright i \cap \langle \zeta \rangle} \right) = M_{t \upharpoonright i \cap \langle sup\ t(i) \rangle}$

- We defined a tree T and for all $t \in T$ we defined $M_t \prec \mathcal{H}(\theta)$
- If $s \subseteq t$ then $|M_s| > |M_t|$. $M_t = \bigcup_{i < \kappa_t} M_{t,i}$
- $\star M_t = \bigcup_{t \subseteq t' \in leaf(T)} M_{t'}$
- Write s < lex t iff s is lexicographically smaller than s.
- $M_{\leq_{\text{lex}}} t_{\alpha} \stackrel{\text{def}}{=} \bigcup \{ M_{s} : s \in \text{leaf}(T), s <_{\text{lex}} t_{\alpha} \} = \bigcup_{i < |t_{\alpha}|} \bigcup \{ M_{s} : t \upharpoonright i \subseteq s \in \text{leaf}(T) \land s(i) < t(i) \}$
- $\bigcup \{M_s : t \upharpoonright i \subseteq s \in leaf(T) \land s(i) < t(i)\} = \bigcup_{\zeta < t(i)} \left(\bigcup \{M_s : t \upharpoonright i \cap \langle \zeta \rangle \subseteq s \in leaf(T)\} \right) = \bigcup_{\zeta < t(i)} \left(M_{t \upharpoonright i \cap \langle \zeta \rangle} \right) = M_{t \upharpoonright i \cap \langle sup\ t(i) \rangle}$
- $M_{\leq_{lex}t_{\alpha}}$ is the union of $|t_{\alpha}|$ -many elementary submodels.

- We defined a tree T and for all $t \in T$ we defined $M_t \prec \mathcal{H}(\theta)$
- If $s \subseteq t$ then $|M_s| > |M_t|$. $M_t = \bigcup_{i < \kappa_t} M_{t,i}$
- $\star M_t = \bigcup_{t \subseteq t' \in leaf(T)} M_{t'}$
- Write s < lex t iff s is lexicographically smaller than s.
- $M_{\leq_{\text{lex}}} t_{\alpha} \stackrel{\text{def}}{=} \bigcup \{ M_s : s \in \text{leaf}(T), s <_{\text{lex}} t_{\alpha} \} = \bigcup_{i < |t_{\alpha}|} \bigcup \{ M_s : t \upharpoonright i \subseteq s \in \text{leaf}(T) \land s(i) < t(i) \}$
- $\bigcup \{M_s : t \upharpoonright i \subseteq s \in leaf(T) \land s(i) < t(i)\} = \bigcup_{\zeta < t(i)} \left(\bigcup \{M_s : t \upharpoonright i \cap \langle \zeta \rangle \subseteq s \in leaf(T)\} \right) = \bigcup_{\zeta < t(i)} \left(M_{t \upharpoonright i \cap \langle \zeta \rangle} \right) = M_{t \upharpoonright i \cap \langle sup\ t(i) \rangle}$
- $M_{\leq_{lex}t_{\alpha}}$ is the union of $|t_{\alpha}|$ -many elementary submodels.
- if $\kappa = \omega_n$, then $|t_{\alpha}| \leq n$

If $A \subset [\kappa]^{\geq \omega}$ is *n*-a.d, then $\chi_{CF}(A) \leq \omega$.

If
$$A \subset [\kappa]^{\geq \omega}$$
 is *n*-a.d, then $\chi_{CF}(A) \leq \omega$.

• Do we really need ω colors?

If
$$A \subset [\kappa]^{\geq \omega}$$
 is *n*-a.d, then $\chi_{CF}(A) \leq \omega$.

- Do we really need ω colors?
- Special case:

If
$$A \subset [\kappa]^{\geq \omega}$$
 is *n*-a.d, then $\chi_{CF}(A) \leq \omega$.

- Do we really need ω colors?
- Special case: Let \mathcal{E}_2 be the family of lines of the plane \mathbb{R}^2 .

If
$$A \subset [\kappa]^{\geq \omega}$$
 is *n*-a.d, then $\chi_{CF}(A) \leq \omega$.

- Do we really need ω colors?
- Special case: Let E₂ be the family of lines of the plane
 ℝ². E₂ is 2-almost disjoint.

If
$$A \subset [\kappa]^{\geq \omega}$$
 is *n*-a.d, then $\chi_{CF}(A) \leq \omega$.

- Do we really need ω colors?
- Special case: Let \mathcal{E}_2 be the family of lines of the plane \mathbb{R}^2 . \mathcal{E}_2 is 2-almost disjoint. $\chi_{\rm CF}(\mathcal{E}_2) < \omega$

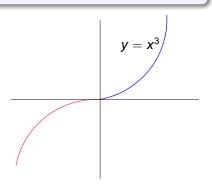
$$\chi_{\mathsf{CF}}(\mathcal{E}_2) \leq \omega$$

If
$$A \subset [\kappa]^{\geq \omega}$$
 is *n*-a.d, then $\chi_{CF}(A) \leq \omega$.

- Do we really need ω colors?
- Special case: Let \mathcal{E}_2 be the family of lines of the plane \mathbb{R}^2 . \mathcal{E}_2 is 2-almost disjoint. $\chi_{\mathsf{CF}}(\mathcal{E}_2) \leq \omega$

$$\chi_{\mathsf{CF}}(\mathcal{E}_2) \leq \omega$$

 Every line contains exactly one blue point or exactly one red point

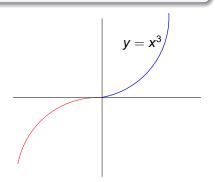


If
$$A \subset [\kappa]^{\geq \omega}$$
 is *n*-a.d, then $\chi_{CF}(A) \leq \omega$.

- Do we really need ω colors?
- Special case: Let \mathcal{E}_2 be the family of lines of the plane \mathbb{R}^2 . \mathcal{E}_2 is 2-almost disjoint.

$$\chi_{\mathsf{CF}}(\mathcal{E}_2) \leq \omega$$

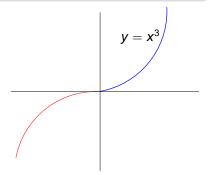
- Every line contains exactly one blue point or exactly one red point
- $\chi_{\mathsf{CF}}(\mathcal{E}_2) \leq 3$



If
$$A \subset [\kappa]^{\geq \omega}$$
 is *n*-a.d, then $\chi_{CF}(A) \leq \omega$.

- Do we really need ω colors?
- Special case: Let \mathcal{E}_2 be the family of lines of the plane \mathbb{R}^2 . \mathcal{E}_2 is 2-almost disjoint. $\chi_{\mathsf{CF}}(\mathcal{E}_2) \leq \omega$

• $\chi_{\mathsf{CF}}(\mathcal{E}_2) \leq 3$ $\chi_{\mathsf{CF}}(\mathcal{E}_2) = 3$



If
$$A \subset [\kappa]^{\geq \omega}$$
 is *n*-a.d, then $\chi_{CF}(A) \leq \omega$.

- Do we really need ω colors?
- Special case: Let \mathcal{E}_2 be the family of lines of the plane \mathbb{R}^2 . \mathcal{E}_2 is 2-almost disjoint. $\chi_{\rm CF}(\mathcal{E}_2) < \omega$

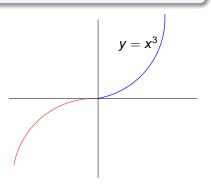
$$\chi_{\mathsf{CF}}(\mathcal{E}_2) \leq \omega$$

 Every line contains exactly one blue point or exactly one red point

•
$$\chi_{\mathsf{CF}}(\mathcal{E}_2) \leq 3$$
 $\chi_{\mathsf{CF}}(\mathcal{E}_2) = 3$

Let \mathcal{E}_3 be the family of lines in \mathbb{R}^3 .

 $\chi_{CF}(\mathcal{E}_3) = 3$, but no constructive solution is known



Definition

 $\chi_{\mathrm{CF}}(\left[\lambda\right]^{\kappa}, d\text{-a.d.}) = \sup\{\chi_{\mathrm{CF}}(\mathcal{A}): \mathcal{A} \subset \left[\lambda\right]^{\kappa} \text{ is } d\text{-almost disjoin}\}.$

Definition

$$\chi_{\mathrm{CF}}(\left[\lambda\right]^{\kappa}, \textit{d-a.d.}) = \sup\{\chi_{\mathrm{CF}}(\mathcal{A}): \mathcal{A} \subset \left[\lambda\right]^{\kappa} \textit{ is d-almost disjoin}\}.$$

Theorem (Hajnal, Juhász,S, Szentmiklóssy, 2010) *If m, d are natural numbers, then*

$$\chi_{\mathrm{CF}}(\left[\omega_{m}\right]^{\omega}, d\text{-}a.d.) \leq \left|\frac{(m+1)(d-1)+1}{2}\right| + 2.$$

Definition

$$\chi_{\mathrm{CF}}(\left[\lambda\right]^{\kappa}, \textit{d-a.d.}) = \sup\{\chi_{\mathrm{CF}}(\mathcal{A}): \mathcal{A} \subset \left[\lambda\right]^{\kappa} \textit{ is d-almost disjoin}\}.$$

Theorem (Hajnal, Juhász,S, Szentmiklóssy, 2010) *If m, d are natural numbers, then*

$$\chi_{\mathrm{CF}}(\left[\omega_{m}\right]^{\omega}, d\text{-a.d.}) \leq \left|\frac{(m+1)(d-1)+1}{2}\right| + 2.$$

If GCH holds, and if d = 2 or d is odd then

$$\left\lfloor \frac{(m+1)(d-1)+1}{2} \right
floor + 1 \leq \chi_{\mathrm{CF}}(\left[\omega_m\right]^{\omega}, d$$
-a.d.)

Definition

$$\chi_{\mathrm{CF}}(\left[\lambda\right]^{\kappa}, d\text{-a.d.}) = \sup\{\chi_{\mathrm{CF}}(\mathcal{A}): \mathcal{A} \subset \left[\lambda\right]^{\kappa} \text{ is } d\text{-almost disjoin}\}.$$

Theorem (Hajnal, Juhász,S, Szentmiklóssy, 2010) *If m, d are natural numbers, then*

$$\chi_{\mathrm{CF}}(\left[\omega_{m}\right]^{\omega}, d\text{-a.d.}) \leq \left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor + 2.$$

If GCH holds, and if d = 2 or d is odd then

$$\left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor + 1 \leq \chi_{\mathrm{CF}}(\left[\omega_m\right]^{\omega}, d\text{-a.d.})$$

• Do we really need ω colors?

Definition

$$\chi_{\mathrm{CF}}(\left[\lambda\right]^{\kappa}, d\text{-a.d.}) = \sup\{\chi_{\mathrm{CF}}(\mathcal{A}): \mathcal{A} \subset \left[\lambda\right]^{\kappa} \text{ is } d\text{-almost disjoin}\}.$$

Theorem (Hajnal, Juhász,S, Szentmiklóssy, 2010) *If m, d are natural numbers, then*

$$\chi_{\mathrm{CF}}(\left[\omega_{m}\right]^{\omega}, d\text{-a.d.}) \leq \left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor + 2.$$

If GCH holds, and if d = 2 or d is odd then

$$\left| \frac{(m+1)(d-1)+1}{2} \right| + 1 \leq \chi_{\mathrm{CF}}(\left[\omega_m\right]^{\omega}, d\text{-a.d.})$$

• Do we really need ω colors?

Theorem (Hajnal, Juhász,S, Szentmiklóssy, 2010) Yes, we need: $\chi_{\rm CF}(\left[\beth_{\omega}\right]^{\omega}, 2\text{-a.d.}) = \omega$.

Conflict free coloring

Conflict free coloring

Theorem

$$\chi_{\mathrm{CF}}(\left[\omega_{m}\right]^{\omega}, d\text{-}a.d.) \leq \left|\frac{(m+1)(d-1)+1}{2}\right| + 2.$$

Conflict free coloring

Theorem

If m, d are natural numbers, then

$$\chi_{\mathrm{CF}}(\left[\omega_{m}\right]^{\omega}, d\text{-a.d.}) \leq \left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor + 2.$$

• Let $\mathcal{A} \subset [\omega_m]^{\omega}$, d-ad.

Conflict free coloring

Theorem

$$\chi_{\mathrm{CF}}(\left[\omega_{m}\right]^{\omega}, d\text{-a.d.}) \leq \left|\frac{(m+1)(d-1)+1}{2}\right| + 2.$$

- Let $A \subset [\omega_m]^{\omega}$, d-ad.
- Let $\langle M_{\alpha} : \alpha < \omega_m \rangle$ be a Davies tree for ω_m over \mathcal{A} .

Conflict free coloring

Theorem

$$\chi_{\mathrm{CF}}(\left[\omega_{m}\right]^{\omega}, d\text{-a.d.}) \leq \left|\frac{(m+1)(d-1)+1}{2}\right| + 2.$$

- Let $A \subset [\omega_m]^{\omega}$, d-ad.
- Let $\langle M_{\alpha} : \alpha < \omega_m \rangle$ be a Davies tree for ω_m over \mathcal{A} .
- $M_{<\alpha} = \bigcup_{i < m} N_i$.

Conflict free coloring

Theorem

$$\chi_{\mathrm{CF}}(\left[\omega_{m}\right]^{\omega}, d\text{-a.d.}) \leq \left|\frac{(m+1)(d-1)+1}{2}\right| + 2.$$

- Let $A \subset [\omega_m]^{\omega}$, d-ad.
- Let $\langle M_{\alpha} : \alpha < \omega_m \rangle$ be a Davies tree for ω_m over A.
- $M_{<\alpha} = \bigcup_{i < m} N_i$.

•
$$K = \left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor + 2.$$
 $K = (K-1) \cup \{K-1\}$

Conflict free coloring

Theorem

If m, d are natural numbers, then

$$\chi_{\mathrm{CF}}(\left[\omega_{m}\right]^{\omega}, d\text{-}a.d.) \leq \left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor + 2.$$

- Let $\mathcal{A} \subset [\omega_m]^{\omega}$, d-ad.
- Let $\langle M_{\alpha} : \alpha < \omega_m \rangle$ be a Davies tree for ω_m over \mathcal{A} .
- $M_{<\alpha} = \bigcup_{i < m} N_i$.

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

• Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.

- Let $\mathcal{A} \subset [\omega_m]^{\omega}$, d-ad.
- Let $\langle M_{\alpha} : \alpha < \omega_m \rangle$ be a Davies tree for ω_m , $M_{<\alpha} = \bigcup_{i < m} N_i$.

•
$$K = \left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor + 2.$$
 $K = (K-1) \cup \{K-1\}$

• Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.

- Let $\mathcal{A} \subset [\omega_m]^{\omega}$, d-ad.
- Let $\langle M_{\alpha} : \alpha < \omega_m \rangle$ be a Davies tree for ω_m , $M_{<\alpha} = \bigcup_{i < m} N_i$.
- $K = \left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor + 2.$ $K = (K-1) \cup \{K-1\}$
- Define $\mathbf{e}_{\alpha}:\omega_{\mathit{m}}\cap (\mathit{M}_{\alpha}\setminus \mathit{M}_{<\alpha})\to \mathit{K}$ s.t. $\mathbf{e}=\bigcup_{\alpha<\omega_{\mathit{m}}}\mathbf{e}_{\alpha}$ works for $\mathcal{A}.$
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$, then $|A \cap M_{<\alpha}| \leq m(d-1)$.

- Let $\mathcal{A} \subset [\omega_m]^{\omega}$, *d*-ad.
- Let $\langle \mathit{M}_{\alpha} : \alpha < \omega_{\mathit{m}} \rangle$ be a Davies tree for ω_{m} , $\mathit{M}_{<\alpha} = \bigcup_{i < \mathit{m}} \mathit{N}_{i}$.
- $K = \left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor + 2$. $K = (K-1) \cup \{K-1\}$
- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$, then $|A \cap M_{<\alpha}| \leq m(d-1)$.
- $M_{<\alpha} = \bigcup_{i < m} N_i$

- Let $\mathcal{A} \subset [\omega_m]^{\omega}$, d-ad.
- Let $\langle M_{\alpha} : \alpha < \omega_m \rangle$ be a Davies tree for ω_m , $M_{<\alpha} = \bigcup_{i < m} N_i$.
- $K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$. $K = (K-1) \cup \{K-1\}$
- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$, then $|A \cap M_{<\alpha}| \leq m(d-1)$.
- $M_{\leq \alpha} = \bigcup_{i \leq m} N_i$
- Since $A \in N_i \prec \mathcal{H}(\theta)$, and A is *d*-almost disjoint, so $|A \cap N_i| \geq d$ would imply $A \in N_i$.

- Let $A \subset [\omega_m]^{\omega}$, d-ad.
- Let $\langle M_{\alpha} : \alpha < \omega_m \rangle$ be a Davies tree for ω_m , $M_{<\alpha} = \bigcup_{i < m} N_i$.
- $K = \left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor + 2.$ $K = (K-1) \cup \{K-1\}$
- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$, then $|A \cap M_{<\alpha}| \leq m(d-1)$.
- $M_{\leq \alpha} = \bigcup_{i \leq m} N_i$
- Since $A \in N_i \prec \mathcal{H}(\theta)$, and A is d-almost disjoint, so $|A \cap N_i| \geq d$ would imply $A \in N_i$.
- So $|A \cap N_i| \le d-1$ for all i < m.

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$, then $|A \cap M_{<\alpha}| \leq m(d-1)$.

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$, then $|A \cap M_{<\alpha}| \leq m(d-1)$.
- $\{A_n : n \in \omega\} = A \cap (M_\alpha \setminus M_{<\alpha})$

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{\leq \alpha})$, then $|A \cap M_{\leq \alpha}| \leq m(d-1)$.
- $\{A_n : n \in \omega\} = A \cap (M_\alpha \setminus M_{<\alpha})$
- Pick $x_n \in A_n \setminus \{\bigcup_{i < n} A_i \cup \bigcup \{A_k : |A_k \cap \{x_i : i < n\}| \ge d\}\}$.

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{\leq \alpha})$, then $|A \cap M_{\leq \alpha}| \leq m(d-1)$.
- $\{A_n : n \in \omega\} = A \cap (M_\alpha \setminus M_{<\alpha})$

• $X = \{x_n : n \in \omega\}.$

- Pick $x_n \in A_n \setminus \{\bigcup_{i < n} A_i \cup \bigcup \{A_k : |A_k \cap \{x_i : i < n\}| \ge d\}\}$.

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{\leq \alpha})$, then $|A \cap M_{\leq \alpha}| \leq m(d-1)$.
- $\{A_n : n \in \omega\} = A \cap (M_\alpha \setminus M_{<\alpha})$
- Pick $x_n \in A_n \setminus (\bigcup_{i < n} A_i \cup \bigcup \{A_k : |A_k \cap \{x_i : i < n\}| \ge d\})$.
- $X = \{x_n : n \in \omega\}.$
- $1 \le |X \cap A_n| \le d + 1$ and $x_n \in X \cap A_n \subset \{x_0 \dots, x_n\}$.

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$, then $|A \cap M_{<\alpha}| \leq m(d-1)$.
- $\{A_n : n \in \omega\} = A \cap (M_\alpha \setminus M_{\leq \alpha})$
- Pick $x_n \in A_n \setminus (\bigcup_{i < n} A_i \cup \bigcup \{A_k : |A_k \cap \{x_i : i < n\}| \ge d\})$.
- $X = \{x_n : n \in \omega\}.$
- $1 \le |X \cap A_n| \le d + 1$ and $x_n \in X \cap A_n \subset \{x_0 \dots, x_n\}$.
- Let $e_{\alpha}(\zeta) = K 1$ for $\zeta \in (M_{\alpha} \setminus M_{<\alpha}) \setminus X$.

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$, then $|A \cap M_{<\alpha}| \leq m(d-1)$.
- $\{A_n : n \in \omega\} = A \cap (M_\alpha \setminus M_{<\alpha})$
- Pick $x_n \in A_n \setminus (\bigcup_{i < n} A_i \cup \bigcup \{A_k : |A_k \cap \{x_i : i < n\}| \ge d\})$.
- $X = \{x_n : n \in \omega\}.$
- $1 \le |X \cap A_n| \le d+1$ and $x_n \in X \cap A_n \subset \{x_0 \dots, x_n\}$.
- Let $e_{\alpha}(\zeta) = K 1$ for $\zeta \in (M_{\alpha} \setminus M_{<\alpha}) \setminus X$.
- Define $\mathbf{e}_{\alpha}(\mathbf{x}_0), \mathbf{e}_{\alpha}(\mathbf{x}_1), \dots$

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{\leq \alpha})$, then $|A \cap M_{\leq \alpha}| \leq m(d-1)$.
- $\{A_n : n \in \omega\} = A \cap (M_\alpha \setminus M_{<\alpha})$
- Pick $\mathbf{x}_n \in A_n \setminus (\bigcup_{i < n} A_i \cup \bigcup \{A_k : |A_k \cap \{x_i : i < n\}| \ge d\})$.
- $X = \{x_n : n \in \omega\}.$
- $1 \le |X \cap A_n| \le d + 1$ and $x_n \in X \cap A_n \subset \{x_0 \dots, x_n\}$.
- Let $e_{\alpha}(\zeta) = K 1$ for $\zeta \in (M_{\alpha} \setminus M_{\leq \alpha}) \setminus X$.
- Let $\Theta_{\alpha}(\zeta) = K 1$ for $\zeta \in (M_{\alpha} \setminus M_{\leq \alpha}) \setminus X$
- Define $e_{\alpha}(x_0), e_{\alpha}(x_1), \dots$
- $Good_n = \{i < K 1 : |e^{-1}\{i\} \cap (A_n \cap (M_{<\alpha} \cup X_{< n}))| = 1\}$

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$, then $|A \cap M_{<\alpha}| \leq m(d-1)$.
- $\{A_n : n \in \omega\} = \mathcal{A} \cap (M_\alpha \setminus M_{<\alpha})$ • Pick $\mathbf{x}_n \in A_n \setminus \{\bigcup_{i < n} A_i \cup \bigcup_{i < n} A_k : |A_k \cap \{\mathbf{x}_i : i < n\}| \ge d\}\}$.
- $X = \{x_n : n \in \omega\}.$
- $1 \le |X \cap A_n| \le d + 1$ and $x_n \in X \cap A_n \subset \{x_0, \dots, x_n\}$.
- Let $e_{\alpha}(\zeta) = K 1$ for $\zeta \in (M_{\alpha} \setminus M_{\leq \alpha}) \setminus X$.
- Let $e_{\alpha}(\zeta) = K 1$ for $\zeta \in (M_{\alpha} \setminus M_{<\alpha}) \setminus X$
- Define $e_{\alpha}(x_0), e_{\alpha}(x_1), \dots$
- $Good_n = \{i < K 1 : |e^{-1}\{i\} \cap (A_n \cap (M_{<\alpha} \cup X_{< n}))| = 1\}$
- If $Good_n \neq \emptyset$, let $e(x_n) = \{K-1\}$.

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

- Define $e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$ s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A.
- Claim: If $A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$, then $|A \cap M_{<\alpha}| \leq m(d-1)$.
- $\{A_n : n \in \omega\} = A \cap (M_\alpha \setminus M_{<\alpha})$
- Pick $x_n \in A_n \setminus (\bigcup_{i < n} A_i \cup \bigcup \{A_k : |A_k \cap \{x_i : i < n\}| \ge d\})$.
- $\mathbf{X} = \{\mathbf{x}_n : \mathbf{n} \in \omega\}.$
- $1 \le |X \cap A_n| \le d + 1$ and $x_n \in X \cap A_n \subset \{x_0 \dots, x_n\}$.
- Let $e_{\alpha}(\zeta) = K 1$ for $\zeta \in (M_{\alpha} \setminus M_{<\alpha}) \setminus X$.
- Define $e_{\alpha}(x_0), e_{\alpha}(x_1), \ldots$
- $Good_n = \{i < K 1 : |e^{-1}\{i\} \cap (A_n \cap (M_{<\alpha} \cup X_{< n}))| = 1\}$
- If $Good_n \neq \emptyset$, let $e(x_n) = \{K-1\}$.
- If $Good_n = \emptyset$, let $Bad_n = \{i < K - 1 : |e^{-1}\{i\} \cap (A_n \cap (M_{<\alpha} \cup X_{< n})| > 2\}$

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

• Define
$$e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$$
 s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A .

• Claim: If
$$A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$$
, then $|A \cap M_{<\alpha}| \leq m(d-1)$.

•
$$\{A_n : n \in \omega\} = A \cap (M_\alpha \setminus M_{<\alpha})$$

• Pick
$$x_n \in A_n \setminus (\bigcup_{i \le n} A_i \cup \bigcup \{A_k : |A_k \cap \{x_i : i < n\}| \ge d\})$$
.

•
$$\mathbf{X} = \{\mathbf{x}_n : \mathbf{n} \in \omega\}.$$

•
$$1 \le |X \cap A_n| \le d + 1$$
 and $x_n \in X \cap A_n \subset \{x_0 \dots, x_n\}$.

• Let
$$e_{\alpha}(\zeta) = K - 1$$
 for $\zeta \in (M_{\alpha} \setminus M_{<\alpha}) \setminus X$.

• Define
$$e_{\alpha}(x_0), e_{\alpha}(x_1), \ldots$$

•
$$Good_n = \{i < K - 1 : |e^{-1}\{i\} \cap (A_n \cap (M_{<\alpha} \cup X_{< n}))| = 1\}$$

• If
$$Good_n \neq \emptyset$$
, let $e(x_n) = \{K-1\}$.

• If
$$Good_n = \emptyset$$
, let
 $Bad_n = \{i < K - 1 : |e^{-1}\{i\} \cap (A_n \cap (M_{\leq \alpha} \cup X_{\leq n})| > 2\}$

•
$$|Bad_n| \le \left| \frac{m(d-1)+d}{2} \right| = \left| \frac{(m+1)(d-1)+1}{2} \right| = K-2$$

•
$$K = \left| \frac{(m+1)(d-1)+1}{2} \right| + 2$$
. $K = (K-1) \cup \{K-1\}$

• Define
$$e_{\alpha}: \omega_m \cap (M_{\alpha} \setminus M_{<\alpha}) \to K$$
 s.t. $e = \bigcup_{\alpha < \omega_m} e_{\alpha}$ works for A .

• Claim: If
$$A \in \mathcal{A} \cap (M_{\alpha} \setminus M_{<\alpha})$$
, then $|A \cap M_{<\alpha}| \leq m(d-1)$.

•
$$\{A_n : n \in \omega\} = \mathcal{A} \cap (M_\alpha \setminus M_{<\alpha})$$

• Pick $\mathbf{x}_n \in A_n \setminus \{\bigcup_{i < n} A_i \cup \bigcup_{i < n} A_k : |A_k \cap \{\mathbf{x}_i : i < n\}| \ge d\}\}$.

•
$$X = \{x_n : n \in \omega\}.$$

•
$$1 \le |X \cap A_n| \le d + 1$$
 and $x_n \in X \cap A_n \subset \{x_0, \dots, x_n\}$.

• Let
$$e_{\alpha}(\zeta) = K - 1$$
 for $\zeta \in (M_{\alpha} \setminus M_{<\alpha}) \setminus X$.

• Define
$$e_{\alpha}(x_0)$$
, $e_{\alpha}(x_1)$,...

•
$$Good_n = \{i < K - 1 : |e^{-1}\{i\} \cap (A_n \cap (M_{<\alpha} \cup X_{< n}))| = 1\}$$

• If
$$Good_n \neq \emptyset$$
, let $e(x_n) = \{K-1\}$.

If
$$GOOd_n \neq \emptyset$$
, let $G(X_n) = \{X = 1\}$

• If
$$Good_n = \emptyset$$
, let ${\color{red} Bad_n = \{i < K-1 : |e^{-1}\{i\} \cap (A_n \cap (M_{<\alpha} \cup X_{< n})| \geq 2\}}$

•
$$|Bad_n| \le \left\lfloor \frac{m(d-1)+d}{2} \right\rfloor = \left\lfloor \frac{(m+1)(d-1)+1}{2} \right\rfloor = K-2$$

• Let $e_{\alpha}(\mathbf{x}_n) \in (K-1) \setminus Bad_n \neq \emptyset$.

Definition

Let κ be an uncountable cardinal. A σ -Davies tree for κ over x is a sequence $\langle M_\alpha : \alpha < \kappa \rangle$ of elementary submodels of $\mathcal{H}(\theta)$ for some large enough regular θ such that

Definition

Let κ be an uncountable cardinal. A σ -Davies tree for κ over x is a sequence $\langle M_\alpha : \alpha < \kappa \rangle$ of elementary submodels of $\mathcal{H}(\theta)$ for some large enough regular θ such that

• $[M_{\alpha}]^{\omega} \subset M_{\alpha}$, $|M_{\alpha}| = \omega_1$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,

Definition

Let κ be an uncountable cardinal. A σ -Davies tree for κ over x is a sequence $\langle M_\alpha : \alpha < \kappa \rangle$ of elementary submodels of $\mathcal{H}(\theta)$ for some large enough regular θ such that

- $[M_{\alpha}]^{\omega} \subset M_{\alpha}$, $|M_{\alpha}| = \omega_1$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,
- $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$

Definition

Let κ be an uncountable cardinal. A σ -Davies tree for κ over x is a sequence $\langle M_\alpha : \alpha < \kappa \rangle$ of elementary submodels of $\mathcal{H}(\theta)$ for some large enough regular θ such that

- $[M_{\alpha}]^{\omega} \subset M_{\alpha}$, $|M_{\alpha}| = \omega_1$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,
- $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$
- For all $\alpha < \kappa$ we have

$$M_{<\alpha}=igcup_{i<\omega}N_i,$$
 for some $N_i\prec\mathcal{H}(heta)$ with $igl[N_iigr]^\omega\subset N_i$,, where $M_{<\alpha}=igcup_{\ell<\alpha}M_{\zeta}.$

σ -Davies trees

Definition

Let κ be an uncountable cardinal. A σ -Davies tree for κ over x is a sequence $\langle M_\alpha : \alpha < \kappa \rangle$ of elementary submodels of $\mathcal{H}(\theta)$ for some large enough regular θ such that

- $\left[M_{\alpha}\right]^{\omega}\subset M_{\alpha}$, $\left|M_{\alpha}\right|=\omega_{1}$ and $\mathbf{x}\in M_{\alpha}$ for all $\alpha<\kappa$,
- $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$
- For all $\alpha < \kappa$ we have

$$M_{<\alpha} = \bigcup_{i<\omega} N_i,$$
 for some $N_i \prec \mathcal{H}(\theta)$ with $\left[N_i\right]^\omega \subset N_i$,, where $M_{<\alpha} = \bigcup_{\zeta<\alpha} M_{\zeta}.$

Theorem (S, 2014)

If GCH holds and \Box_{μ}^{**} is true for all $\mu > \operatorname{cf}(\mu) = \omega$, then for all cardinal κ and set x there is a σ -Davies tree for κ over x.

Definition (Foreman and Magidor, 1997)

For a cardinal μ , the very weak square principle for μ holds if there is a sequence $(C_{\alpha})_{\alpha<\mu^+}$ and a club $D\subseteq\mu^+$ such that for every $\alpha\in D$

- (v1) $C_{\alpha} \subseteq \alpha$, C_{α} is unbounded in α ;
- (v2) for all bounded $\mathbf{x} \in [\mathbf{C}_{\alpha}]^{\omega}$, there is $\beta < \alpha$ such that $\mathbf{x} = \mathbf{C}_{\beta}$.

Definition (Foreman and Magidor, 1997)

For a cardinal μ , the very weak square principle for μ holds if there is a sequence $(C_{\alpha})_{\alpha<\mu^+}$ and a club $D\subseteq\mu^+$ such that for every $\alpha\in D$

- (v1) $C_{\alpha} \subseteq \alpha$, C_{α} is unbounded in α ;
- (v2) for all bounded $\mathbf{x} \in [\mathbf{C}_{\alpha}]^{\omega}$, there is $\beta < \alpha$ such that $\mathbf{x} = \mathbf{C}_{\beta}$.

Write \square_{μ}^{**} *iff the very weak square principle for* μ *holds.*

Definition (Foreman and Magidor, 1997)

For a cardinal μ , the very weak square principle for μ holds if there is a sequence $(C_{\alpha})_{\alpha<\mu^+}$ and a club $D\subseteq\mu^+$ such that for every $\alpha\in D$

- (v1) $C_{\alpha} \subseteq \alpha$, C_{α} is unbounded in α ;
- (v2) for all bounded $\mathbf{x} \in [\mathbf{C}_{\alpha}]^{\omega}$, there is $\beta < \alpha$ such that $\mathbf{x} = \mathbf{C}_{\beta}$.

Write \square_{μ}^{**} *iff the very weak square principle for* μ *holds.*

$$\Box_{\mu} \Rightarrow \Box_{\mu}^* \Rightarrow \Box_{\mu}^{**}$$

Definition (Foreman and Magidor, 1997)

For a cardinal μ , the very weak square principle for μ holds if there is a sequence $(C_{\alpha})_{\alpha<\mu^+}$ and a club $D\subseteq\mu^+$ such that for every $\alpha\in D$

- (v1) $C_{\alpha} \subseteq \alpha$, C_{α} is unbounded in α ;
- (v2) for all bounded $\mathbf{x} \in [\mathbf{C}_{\alpha}]^{\omega}$, there is $\beta < \alpha$ such that $\mathbf{x} = \mathbf{C}_{\beta}$.

Write \square_{μ}^{**} *iff the very weak square principle for* μ *holds.*

$$\Box_{\mu} \Rightarrow \Box_{\mu}^* \Rightarrow \Box_{\mu}^{**}$$

$$\square_{\mu} \not = \square_{\mu}^* \not = \square_{\mu}^{**}$$

Dominating matrices

 \square_{μ}^{**} : there is sequence $(C_{\alpha})_{\alpha<\mu^{+}}$ and a club $D\subseteq\mu^{+}$ s. t. $\forall \alpha\in D$

(v1) $C_{\alpha} \subseteq \alpha$, C_{α} is unbounded in α ;

(v2) for all bounded $x \in [C_{\alpha}]^{\omega}$, there is $\beta < \alpha$ such that $x = C_{\beta}$.

Dominating matrices

 \square_{μ}^{**} : there is sequence $(C_{\alpha})_{\alpha<\mu^{+}}$ and a club $D\subseteq\mu^{+}$ s. t. $\forall \alpha\in D$

- (v1) $C_{\alpha} \subseteq \alpha$, C_{α} is unbounded in α ;
- (v2) for all bounded $x \in [C_{\alpha}]^{\omega}$, there is $\beta < \alpha$ such that $x = C_{\beta}$.

Definition

Let $\mu > \operatorname{cf}(\mu) = \omega$. Let $\theta = \operatorname{cf}(\theta) \gg \mu$, $x \in \mathcal{H}(\theta)$. A matrix $\langle M_{\alpha,n} : \alpha < \mu^+, n < \omega \rangle$ of elementary submodels of $\mathcal{H}(\theta)$ is a strong μ -dominating matrix over x iff

- (j1) $\mathbf{x} \in M_{\alpha,n}$, and $|M_{\alpha,n}| < \mu$ for all $\alpha < \mu^+$ and $n < \omega$;
- (j2) $\langle \textit{M}_{\alpha,\textit{n}}:\textit{n}<\omega \rangle$ is an increasing for each $\alpha<\mu^+$;
- (j3) $\forall \alpha < \mu^+ \quad \forall^{\infty} \mathbf{n} \quad [M_{\alpha,n}]^{\omega} \subset M_{\alpha,n}$,

For
$$\alpha < \mu^+$$
, let $M_{\alpha} = \bigcup_{n < \omega} M_{\alpha,n} \prec \mathcal{H}(\theta)$.

(j4) $\langle M_{\alpha} : \alpha < \mu^{+} \rangle$ is continuously increasing and $\mu^{+} \subseteq \bigcup_{\alpha < \mu^{+}} M_{\alpha}$.

Very weak squares and dominating matrices

 \square_{μ}^{**} : there is sequence $(C_{\alpha})_{\alpha<\mu^{+}}$ and a club $D\subseteq\mu^{+}$ s. t. $\forall \alpha\in D$

- (v1) $C_{\alpha} \subseteq \alpha$, C_{α} is unbounded in α ;
- (v2) for all bounded $x \in [C_{\alpha}]^{\omega}$, there is $\beta < \alpha$ such that $x = C_{\beta}$.

 $\langle \textit{M}_{\alpha,\textit{n}}: \alpha < \mu^+,\textit{n} < \omega \rangle$ is a strong μ -dominating matrix over \emph{x} iff

- (j1) $\mathbf{x} \in M_{\alpha,n}$, and $|M_{\alpha,n}| < \mu$ for all $\alpha < \mu^+$ and $n < \omega$;
- (j2) $\langle M_{\alpha,n} : n < \omega \rangle$ is an increasing for each $\alpha < \mu^+$;
- (j3) $\forall \alpha < \mu^+ \ \forall^{\infty} \mathbf{n} \ [M_{\alpha,n}]^{\omega} \subset M_{\alpha,n}$
- (j4) $\left\langle M_{\alpha} \stackrel{\text{def}}{=} \bigcup_{n < \omega} M_{\alpha,n} : \alpha < \mu^+ \right\rangle$ is cont. incr. and covers μ^+ .

Theorem (Fuchino, S, 1997)

If GCH + and \Box_{μ}^{**} holds, then for any $\theta \gg \mu$ and $\mathbf{x} \in \mathcal{H}(\theta)$, there is a strong μ -dominating matrix over \mathbf{x} .

σ -Davies Trees

A σ -Davies tree for κ over x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ of elementary submodels of $\mathcal{H}(\theta)$ for some large enough regular θ such that

- $[M_{\alpha}]^{\omega} \subset M_{\alpha}$, $|M_{\alpha}| = \omega_1$ and $x \in M_{\alpha}$ for all $\alpha < \kappa$,
- $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$
- For all $\alpha < \kappa$ we have

$$M_{<\alpha} = \bigcup_{i<\omega} N_i$$

for some $N_i \prec \mathcal{H}(\theta)$, with $[N_i]^{\omega} \subset N_i$,, where $M_{<\alpha} = \bigcup_{\zeta < \alpha} M_{\zeta}$.

Theorem (S, 2014)

If GCH holds and \Box_{μ}^{**} is true for all $\mu > \operatorname{cf}(\mu) = \omega$, then for all cardinal κ and set x there is a σ -Davies tree for κ over x.

Definition (Freese and Nation; Heindorf, Shapiro)

A poset $\langle P, \leq \rangle$ has the weak Freese-Nation property iff there is $f: P \to [P]^{\omega}$ such that for any $p, q \in P$ if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

Definition (Freese and Nation; Heindorf, Shapiro)

A poset $\langle P, \leq \rangle$ has the weak Freese-Nation property iff there is $f: P \to [P]^{\omega}$ such that for any $p, q \in P$ if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

• $|P| = \omega_1 \Rightarrow P$ has the wFN property: write $P = \{p_\zeta : \zeta < \omega_1\}$ and let $f(p_\zeta) = \{p_\eta : \eta \le \zeta\}$.

Definition (Freese and Nation; Heindorf, Shapiro)

A poset $\langle P, \leq \rangle$ has the weak Freese-Nation property iff there is $f: P \to [P]^{\omega}$ such that for any $p, q \in P$ if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

• $|P| = \omega_1 \Rightarrow P$ has the wFN property: write $P = \{p_\zeta : \zeta < \omega_1\}$ and let $f(p_\zeta) = \{p_\eta : \eta \le \zeta\}$.

Theorem (Fuchino, S)

If V=L, then the poset $\langle \left[\kappa\right]^{\omega},\subset \rangle$ has the wFN-property.

Definition (Freese and Nation; Heindorf, Shapiro)

A poset $\langle P, \leq \rangle$ has the weak Freese-Nation property iff there is $f: P \to [P]^{\omega}$ such that for any $p, q \in P$ if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

• $|P| = \omega_1 \Rightarrow P$ has the wFN property: write $P = \{p_\zeta : \zeta < \omega_1\}$ and let $f(p_\zeta) = \{p_\eta : \eta \le \zeta\}$.

Theorem (Fuchino, S)

If V = L, then the poset $\langle \lceil \kappa \rceil^{\omega}, \subset \rangle$ has the wFN-property.

Theorem (S, 2014)

If $\kappa^{\omega}=\kappa$ and there is a σ -Davies tree for κ over $\left[\kappa\right]^{\omega}$, then the poset $\left\langle \left[\kappa\right]^{\omega},\subset\right\rangle$ has the wFN-property.

if $X \subset Y \in [\kappa]^{\omega}$ then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

if $X \subset Y \in [\kappa]^{\omega}$ then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

• $M_{<\alpha} = \bigcup_{i<\omega} N_i^{\alpha}$ s.t. $\left[N_i^{\alpha}\right]^{\omega} \subset N_i^{\alpha}$

if
$$X \subset Y \in [\kappa]^{\omega}$$
 then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

- $M_{<\alpha} = \bigcup_{i<\omega} N_i^{\alpha}$ s.t. $\left[N_i^{\alpha}\right]^{\omega} \subset N_i^{\alpha}$
- Let $\{A_{\zeta}^{\alpha}: \zeta < \omega_1\}$ be an enumeration of $(M_{\alpha} \setminus M_{<\alpha}) \cap [\kappa]^{\omega}$.

if
$$X \subset Y \in [\kappa]^{\omega}$$
 then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

- $M_{<\alpha} = \bigcup_{i<\omega} N_i^{\alpha}$ s.t. $\left[N_i^{\alpha}\right]^{\omega} \subset N_i^{\alpha}$
- Let $\{A_{\zeta}^{\alpha}: \zeta < \omega_1\}$ be an enumeration of $(M_{\alpha} \setminus M_{<\alpha}) \cap [\kappa]^{\omega}$.
- Let

$$f(A_{\zeta}^{\alpha}) = \{A_{\eta}^{\alpha} : \eta \leq \zeta\} \cup \bigcup \{f(A_{\zeta}^{\alpha} \cap N_{i}^{\alpha}) : i < \omega\}.$$

if
$$X \subset Y \in [\kappa]^{\omega}$$
 then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

- $M_{<\alpha} = \bigcup_{i<\omega} N_i^{\alpha}$ s.t. $\left[N_i^{\alpha}\right]^{\omega} \subset N_i^{\alpha}$
- Let $\{A_{\zeta}^{\alpha}: \zeta < \omega_1\}$ be an enumeration of $(M_{\alpha} \setminus M_{<\alpha}) \cap [\kappa]^{\omega}$.
- Let

$$f(A_{\zeta}^{\alpha}) = \{A_{\eta}^{\alpha} : \eta \leq \zeta\} \cup \bigcup \{f(A_{\zeta}^{\alpha} \cap N_{i}^{\alpha}) : i < \omega\}.$$

• Assume that $A_{\eta}^{\beta} \subset A_{\zeta}^{\alpha}$.

if
$$X \subset Y \in [\kappa]^{\omega}$$
 then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

- $M_{<\alpha} = \bigcup_{i<\omega} N_i^{\alpha}$ s.t. $\left[N_i^{\alpha}\right]^{\omega} \subset N_i^{\alpha}$
- Let $\{A_{\zeta}^{\alpha}: \zeta < \omega_1\}$ be an enumeration of $(M_{\alpha} \setminus M_{<\alpha}) \cap [\kappa]^{\omega}$.
- Let

$$f(A_{\zeta}^{\alpha}) = \{A_{\eta}^{\alpha} : \eta \leq \zeta\} \cup \bigcup \{f(A_{\zeta}^{\alpha} \cap N_{i}^{\alpha}) : i < \omega\}.$$

- Assume that $A_{\eta}^{\beta} \subset A_{\zeta}^{\alpha}$.
- Since $\left[A_{\zeta}^{\alpha}\right]^{\omega}\subset M_{\alpha}$, so $\beta\leq\alpha$.

if
$$X \subset Y \in [\kappa]^{\omega}$$
 then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

- $M_{<\alpha} = \bigcup_{i<\omega} N_i^{\alpha}$ s.t. $\left[N_i^{\alpha}\right]^{\omega} \subset N_i^{\alpha}$
- Let $\{A_{\zeta}^{\alpha}: \zeta < \omega_1\}$ be an enumeration of $(M_{\alpha} \setminus M_{<\alpha}) \cap \lceil \kappa \rceil^{\omega}$.
- Let

$$f(A_{\zeta}^{\alpha}) = \{A_{\eta}^{\alpha} : \eta \leq \zeta\} \cup \bigcup \{f(A_{\zeta}^{\alpha} \cap N_{i}^{\alpha}) : i < \omega\}.$$

- Assume that $A_{\eta}^{\beta} \subset A_{\zeta}^{\alpha}$.
- Since $[A_{\zeta}^{\alpha}]^{\omega} \subset M_{\alpha}$, so $\beta \leq \alpha$.
- If $\beta = \alpha$, then $A_{\min(\eta,\zeta)}^{\alpha} \in f(A_{\eta}^{\alpha}) \cap f(A_{\zeta}^{\alpha})$.

if
$$X \subset Y \in [\kappa]^{\omega}$$
 then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

- $M_{<\alpha} = \bigcup_{i<\omega} N_i^{\alpha}$ s.t. $\left[N_i^{\alpha}\right]^{\omega} \subset N_i^{\alpha}$
- Let $\{A_{\zeta}^{\alpha}: \zeta < \omega_1\}$ be an enumeration of $(M_{\alpha} \setminus M_{<\alpha}) \cap [\kappa]^{\omega}$.
- Let

$$f(A_{\zeta}^{\alpha}) = \{A_{\eta}^{\alpha} : \eta \leq \zeta\} \cup \bigcup \{f(A_{\zeta}^{\alpha} \cap N_{i}^{\alpha}) : i < \omega\}.$$

- Assume that $A_{\eta}^{\beta} \subset A_{\zeta}^{\alpha}$.
- Since $[A_{\zeta}^{\alpha}]^{\omega} \subset M_{\alpha}$, so $\beta \leq \alpha$.
- If $\beta = \alpha$, then $A_{\min(\eta,\zeta)}^{\alpha} \in f(A_{\eta}^{\alpha}) \cap f(A_{\zeta}^{\alpha})$.
- If $\beta < \alpha$, then $A_n^{\beta} \in N_i^{\alpha}$ for some $i < \omega$.

if
$$X \subset Y \in [\kappa]^{\omega}$$
 then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

- $M_{<\alpha} = \bigcup_{i<\omega} N_i^{\alpha}$ s.t. $[N_i^{\alpha}]^{\omega} \subset N_i^{\alpha}$
- Let $\{A_{\zeta}^{\alpha}: \zeta < \omega_1\}$ be an enumeration of $(M_{\alpha} \setminus M_{<\alpha}) \cap [\kappa]^{\omega}$.
- Let

$$f(A_{\zeta}^{\alpha}) = \{A_{\eta}^{\alpha} : \eta \leq \zeta\} \cup \bigcup \{f(A_{\zeta}^{\alpha} \cap N_{i}^{\alpha}) : i < \omega\}.$$

- Assume that $A^{\beta}_{\eta} \subset A^{\alpha}_{\zeta}$.
- Since $[A_{\zeta}^{\alpha}]^{\omega} \subset M_{\alpha}$, so $\beta \leq \alpha$.
- If $\beta = \alpha$, then $A_{\min(\eta,\zeta)}^{\alpha} \in f(A_{\eta}^{\alpha}) \cap f(A_{\zeta}^{\alpha})$.
- If $\beta < \alpha$, then $A_n^{\beta} \in N_i^{\alpha}$ for some $i < \omega$.
- $A_{\eta}^{\beta} \subset N_{i}^{\alpha} \cap A_{\zeta}^{\alpha} \in [N_{i}^{\alpha}]^{\omega} \subset N_{i}^{\alpha} \subset M_{<\alpha}$.

if
$$X \subset Y \in [\kappa]^{\omega}$$
 then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

- $M_{<\alpha} = \bigcup_{i<\omega} N_i^{\alpha}$ s.t. $[N_i^{\alpha}]^{\omega} \subset N_i^{\alpha}$
- Let $\{A_{\zeta}^{\alpha}: \zeta < \omega_1\}$ be an enumeration of $(M_{\alpha} \setminus M_{<\alpha}) \cap [\kappa]^{\omega}$.
- Let

$$f(A_{\zeta}^{\alpha}) = \{A_{\eta}^{\alpha} : \eta \leq \zeta\} \cup \bigcup \{f(A_{\zeta}^{\alpha} \cap N_{i}^{\alpha}) : i < \omega\}.$$

- Assume that $A_n^{\beta} \subset A_{\zeta}^{\alpha}$.
- Since $[A_{\zeta}^{\alpha}]^{\omega} \subset M_{\alpha}$, so $\beta \leq \alpha$.
- If $\beta = \alpha$, then $A_{\min(\eta,\zeta)}^{\alpha} \in f(A_{\eta}^{\alpha}) \cap f(A_{\zeta}^{\alpha})$.
- If $\beta < \alpha$, then $A_n^{\beta} \in N_i^{\alpha}$ for some $i < \omega$.
- $A_n^{\beta} \subset N_i^{\alpha} \cap A_{c}^{\alpha} \in [N_i^{\alpha}]^{\omega} \subset N_i^{\alpha} \subset M_{<\alpha}$.
- So there is $Z \in f(A_{\eta}^{\beta}) \cap f(A_{\zeta}^{\alpha} \cap N_{i}^{\alpha})$ with $A_{\eta}^{\beta} \subseteq Z \subseteq A_{\zeta}^{\alpha} \cap N_{i}^{\alpha}$.

if
$$X \subset Y \in [\kappa]^{\omega}$$
 then there is $Z \in f(X) \cap f(Y)$ with $X \subseteq Z \subseteq Y$.

- $M_{\leq \alpha} = \bigcup_{i \leq \omega} N_i^{\alpha} \text{ s.t. } [N_i^{\alpha}]^{\omega} \subset N_i^{\alpha}$
- Let $\{A_{\zeta}^{\alpha}: \zeta < \omega_1\}$ be an enumeration of $(M_{\alpha} \setminus M_{<\alpha}) \cap [\kappa]^{\omega}$.
- Let

$$f(A_{\mathcal{E}}^{\alpha}) = \{A_{n}^{\alpha} : \eta \leq \zeta\} \cup \bigcup \{f(A_{\mathcal{E}}^{\alpha} \cap N_{i}^{\alpha}) : i < \omega\}.$$

- Assume that $A_n^{\beta} \subset A_{\mathcal{L}}^{\alpha}$.
- Since $[A^{\alpha}_{\mathcal{L}}]^{\omega} \subset M_{\alpha}$, so $\beta \leq \alpha$.
- If $\beta = \alpha$, then $A_{\min(\eta,\zeta)}^{\alpha} \in f(A_{\eta}^{\alpha}) \cap f(A_{\zeta}^{\alpha})$.
- If $\beta < \alpha$, then $A_n^{\beta} \in N_i^{\alpha}$ for some $i < \omega$.
- $A_n^{\beta} \subset N_i^{\alpha} \cap A_{\mathcal{L}}^{\alpha} \in [N_i^{\alpha}]^{\omega} \subset N_i^{\alpha} \subset M_{<\alpha}$.
- So there is $Z \in f(A_n^{\beta}) \cap f(A_{\mathcal{L}}^{\alpha} \cap N_i^{\alpha})$ with $A_n^{\beta} \subseteq Z \subseteq A_{\mathcal{L}}^{\alpha} \cap N_i^{\alpha}$.
- Then $Z \in f(A_c^{\alpha})$.

To be continued ...