

On properties of families of sets

Lecture 4

Lajos Soukup

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences

<http://www.renyi.hu/~soukup>

7th Young Set Theory Workshop

Recapitulation

Recapitulation

Definition

A poset $\langle P, \leq \rangle$ has the *weak Freese-Nation property*
iff there is $f : P \rightarrow [P]^\omega$ such that for any $p, q \in P$
if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

Recapitulation

Definition

A poset $\langle P, \leq \rangle$ has the *weak Freese-Nation property*
iff there is $f : P \rightarrow [P]^\omega$ such that for any $p, q \in P$
if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

Theorem

If $V = L$, then the poset $\langle [\kappa]^\omega, \subset \rangle$ has the wFN-property.

GCH is not enough

A poset $\langle P, \leq \rangle$ has the **weak Freese-Nation property**
iff there is $f : P \rightarrow [P]^\omega$ such that for any $p, q \in P$
if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

GCH is not enough

A poset $\langle P, \leq \rangle$ has the **weak Freese-Nation property**
iff there is $f : P \rightarrow [P]^\omega$ such that for any $p, q \in P$
if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

Theorem (Fuchino, S, 1997)

GCH does not imply that $\langle [\aleph_\omega]^\omega, \subset \rangle$ has the wFN property.

GCH is not enough

A poset $\langle P, \leq \rangle$ has the **weak Freese-Nation property**
iff there is $f : P \rightarrow [P]^\omega$ such that for any $p, q \in P$
if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

Theorem (Fuchino, S, 1997)

GCH does not imply that $\langle [\aleph_\omega]^\omega, \subset \rangle$ has the wFN property.

Definition

$(\kappa, \lambda) \rightarrow (\mu, \nu)$ is the following assertion:

For any structure $\mathcal{A} = (A, U, \dots)$ of countable signature with $|A| = \kappa$,
and $|U| = \lambda$, there is an elementary substructure $\mathcal{A}' = (A', U', \dots)$ of
 \mathcal{A} st $|A'| = \mu$ and $|U'| = \nu$.

GCH is not enough

A poset $\langle P, \leq \rangle$ has the **weak Freese-Nation property**
 iff there is $f : P \rightarrow [P]^\omega$ such that for any $p, q \in P$
 if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

Theorem (Fuchino, S, 1997)

GCH does not imply that $\langle [\aleph_\omega]^\omega, \subset \rangle$ has the wFN property.

Definition

$(\kappa, \lambda) \rightarrow (\mu, \nu)$ is the following assertion:

For any structure $\mathcal{A} = (A, U, \dots)$ of countable signature with $|A| = \kappa$,
 and $|U| = \lambda$, there is an elementary substructure $\mathcal{A}' = (A', U', \dots)$ of
 \mathcal{A} st $|A'| = \mu$ and $|U'| = \nu$.

Theorem (Levinski, M. Magidor, S. Shelah, 1990)

$GCH + (\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$ is consistent modulo LC.

GCH is not enough

A poset $\langle P, \leq \rangle$ has the **weak Freese-Nation property**
 iff there is $f : P \rightarrow [P]^\omega$ such that for any $p, q \in P$
 if $p \leq q$ then there is $r \in f(p) \cap f(q)$ s.t. $p \leq r \leq q$.

Theorem (Fuchino, S, 1997)

GCH does not imply that $\langle [\aleph_\omega]^\omega, \subset \rangle$ has the wFN property.

Definition

$(\kappa, \lambda) \rightarrow (\mu, \nu)$ is the following assertion:

For any structure $\mathcal{A} = (A, U, \dots)$ of countable signature with $|A| = \kappa$,
 and $|U| = \lambda$, there is an elementary substructure $\mathcal{A}' = (A', U', \dots)$ of
 \mathcal{A} st $|A'| = \mu$ and $|U'| = \nu$.

Theorem (Levinski, M. Magidor, S. Shelah, 1990)

GCH + $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$ is consistent modulo LC.

Theorem (Fuchino, S)

If $GCH + (\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$, then $\langle [\aleph_\omega]^\omega, \subset \rangle$ does not have the wFN property.

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
(1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;
 - (3) $g(\alpha, \cdot) : \alpha \rightarrow \aleph_\omega$ is injective;

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;
 - (3) $g(\alpha, \cdot) : \alpha \rightarrow \aleph_\omega$ is injective;
 - (4) $h(\alpha, \beta) = |b_\alpha \cap b_\beta|$.

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;
 - (3) $g(\alpha, \cdot) : \alpha \rightarrow \aleph_\omega$ is injective;
 - (4) $h(\alpha, \beta) = |b_\alpha \cap b_\beta|$.
- Let $\mathcal{A}' = \langle A', U', \dots \rangle \prec \mathcal{A}$, $|A'| = \omega_1$, $|U'| = \omega$.

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;
 - (3) $g(\alpha, \cdot) : \alpha \rightarrow \aleph_\omega$ is injective;
 - (4) $h(\alpha, \beta) = |b_\alpha \cap b_\beta|$.
- Let $\mathcal{A}' = \langle A', U', \dots \rangle \prec \mathcal{A}$, $|A'| = \omega_1$, $|U'| = \omega$.
- $\mathcal{A}' \models "g(\alpha, \cdot) : A' \cap \alpha \rightarrow U' \text{ is injective.}"$

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;
 - (3) $g(\alpha, \cdot) : \alpha \rightarrow \aleph_\omega$ is injective;
 - (4) $h(\alpha, \beta) = |b_\alpha \cap b_\beta|$.
- Let $\mathcal{A}' = \langle A', U', \dots \rangle \prec \mathcal{A}$, $|A'| = \omega_1$, $|U'| = \omega$.
- $\mathcal{A}' \models "g(\alpha, \cdot) : A' \cap \alpha \rightarrow U' \text{ is injective.}"$
- So $tp(A') = \omega_1$.

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;
 - (3) $g(\alpha, \cdot) : \alpha \rightarrow \aleph_\omega$ is injective;
 - (4) $h(\alpha, \beta) = |b_\alpha \cap b_\beta|$.
- Let $\mathcal{A}' = \langle A', U', \dots \rangle \prec \mathcal{A}$, $|A'| = \omega_1$, $|U'| = \omega$.
- $\mathcal{A}' \models "g(\alpha, \cdot) : A' \cap \alpha \rightarrow U' \text{ is injective.}"$
- So $tp(A') = \omega_1$.
- Let $I = \{\zeta \in A' : b_\zeta \in F(U')\} \in [A']^\omega$, and pick $\alpha \in A' \setminus \sup I$.

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;
 - (3) $g(\alpha, \cdot) : \alpha \rightarrow \aleph_\omega$ is injective;
 - (4) $h(\alpha, \beta) = |b_\alpha \cap b_\beta|$.
- Let $\mathcal{A}' = \langle A', U', \dots \rangle \prec \mathcal{A}$, $|A'| = \omega_1$, $|U'| = \omega$.
- $\mathcal{A}' \models "g(\alpha, \cdot) : A' \cap \alpha \rightarrow U' \text{ is injective.}"$
- So $tp(A') = \omega_1$.
- Let $I = \{\zeta \in A' : b_\zeta \in F(U')\} \in [A']^\omega$, and pick $\alpha \in A' \setminus \sup I$.
- $\mathcal{A} \models \exists \beta \ b_\beta \cap b_\zeta \text{ is finite for all } \zeta < \alpha$.

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;
 - (3) $g(\alpha, \cdot) : \alpha \rightarrow \aleph_\omega$ is injective;
 - (4) $h(\alpha, \beta) = |b_\alpha \cap b_\beta|$.
- Let $\mathcal{A}' = \langle A', U', \dots \rangle \prec \mathcal{A}$, $|A'| = \omega_1$, $|U'| = \omega$.
- $\mathcal{A}' \models "g(\alpha, \cdot) : A' \cap \alpha \rightarrow U' \text{ is injective.}"$
- So $tp(A') = \omega_1$.
- Let $I = \{\zeta \in A' : b_\zeta \in F(U')\} \in [A']^\omega$, and pick $\alpha \in A' \setminus \sup I$.
- $\mathcal{A} \models \exists \beta \ b_\beta \cap b_\zeta \text{ is finite for all } \zeta < \alpha$.
- There is $\beta \in A'$ s.t. $b_\beta \cap b_\zeta$ is finite for all $\zeta < \alpha$.

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;
 - (3) $g(\alpha, \cdot) : \alpha \rightarrow \aleph_\omega$ is injective;
 - (4) $h(\alpha, \beta) = |b_\alpha \cap b_\beta|$.
- Let $\mathcal{A}' = \langle A', U', \dots \rangle \prec \mathcal{A}$, $|A'| = \omega_1$, $|U'| = \omega$.
- $\mathcal{A}' \models "g(\alpha, \cdot) : A' \cap \alpha \rightarrow U' \text{ is injective.}"$
- So $tp(A') = \omega_1$.
- Let $I = \{\zeta \in A' : b_\zeta \in F(U')\} \in [A']^\omega$, and pick $\alpha \in A' \setminus \sup I$.
- $\mathcal{A} \models \exists \beta \ b_\beta \cap b_\zeta \text{ is finite for all } \zeta < \alpha$.
- There is $\beta \in A'$ s.t. $b_\beta \cap b_\zeta$ is finite for all $\zeta < \alpha$.
- $b_\beta \subset U'$ so there is $b_\zeta \in F(b_\beta) \cap F(U')$ such that $b_\beta \subset b_\zeta \subset U'$.

$\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)$, and $F : [\aleph_\omega]^\omega \rightarrow \left[[\aleph_\omega]^\omega \right]^\omega$

- $\{b_\alpha : \alpha < \aleph_{\omega+1}\} = [\aleph_\omega]^\omega$.
- Let $\mathcal{A} = \langle \aleph_{\omega+1}, \aleph_\omega, \leq, E, f, g, h \rangle$, where
 - (1) $E = \{(\alpha, \beta) : \alpha \in \aleph_\omega, \beta \in \aleph_{\omega+1}, \alpha \in b_\beta\}$;
 - (2) $F(b_\alpha) = \{b_{f(\alpha, n)} : n \in \omega\}$;
 - (3) $g(\alpha, \cdot) : \alpha \rightarrow \aleph_\omega$ is injective;
 - (4) $h(\alpha, \beta) = |b_\alpha \cap b_\beta|$.
- Let $\mathcal{A}' = \langle A', U', \dots \rangle \prec \mathcal{A}$, $|A'| = \omega_1$, $|U'| = \omega$.
- $\mathcal{A}' \models "g(\alpha, \cdot) : A' \cap \alpha \rightarrow U' \text{ is injective.}"$
- So $tp(A') = \omega_1$.
- Let $I = \{\zeta \in A' : b_\zeta \in F(U')\} \in [A']^\omega$, and pick $\alpha \in A' \setminus \sup I$.
- $\mathcal{A} \models \exists \beta \ b_\beta \cap b_\zeta \text{ is finite for all } \zeta < \alpha$.
 - ★ There is $\beta \in A'$ s.t. $b_\beta \cap b_\zeta$ is finite for all $\zeta < \alpha$.
- $b_\beta \subset U'$ so there is $b_\zeta \in F(b_\beta) \cap F(U')$ such that $b_\beta \subset b_\zeta \subset U$.
- Then $\zeta \in I$, and so $\zeta < \alpha$. Thus $b_\zeta \cap b_\beta$ is finite by (★). Contradiction.

wFN property of $\mathcal{P}(\omega)$

wFN property of $\mathcal{P}(\omega)$

Theorem (Fuchino, Geschke, S, 2001)

(1) *If $\mathcal{P}(\omega)$ has the wFN property, then*

wFN property of $\mathcal{P}(\omega)$

Theorem (Fuchino, Geschke, S, 2001)

(1) If $\mathcal{P}(\omega)$ has the wFN property, then

- $\text{shr(meager)} = \omega_1$. So $\text{non(meager)} = \mathfrak{b}^* = \omega_1$ and $\mathfrak{s} = \mathfrak{e} = \omega_1$

wFN property of $\mathcal{P}(\omega)$

Theorem (Fuchino, Geschke, S, 2001)

(1) If $\mathcal{P}(\omega)$ has the wFN property, then

- $\text{shr(meager)} = \omega_1$. So $\text{non(meager)} = \mathfrak{b}^* = \omega_1$ and $\mathfrak{s} = \mathfrak{e} = \omega_1$
- $\mathfrak{a} = \omega_1$

wFN property of $\mathcal{P}(\omega)$

Theorem (Fuchino, Geschke, S, 2001)

(1) If $\mathcal{P}(\omega)$ has the wFN property, then

- $\text{shr(meager)} = \omega_1$. So $\text{non(meager)} = \mathfrak{b}^* = \omega_1$ and $\mathfrak{s} = \mathfrak{e} = \omega_1$
- $\mathfrak{a} = \omega_1$
- $\mathfrak{g} = \omega_1$

wFN property of $\mathcal{P}(\omega)$

Theorem (Fuchino, Geschke, S, 2001)

(1) If $\mathcal{P}(\omega)$ has the wFN property, then

- $\text{shr(meager)} = \omega_1$. So $\text{non(meager)} = \mathfrak{b}^* = \omega_1$ and $\mathfrak{s} = \mathfrak{e} = \omega_1$
- $\mathfrak{a} = \omega_1$
- $\mathfrak{g} = \omega_1$

(2) If $\mathcal{P}(\omega)$ has the wFN property, then

wFN property of $\mathcal{P}(\omega)$

Theorem (Fuchino, Geschke, S, 2001)

(1) If $\mathcal{P}(\omega)$ has the wFN property, then

- $\text{shr(meager)} = \omega_1$. So $\text{non(meager)} = \mathfrak{b}^* = \omega_1$ and $\mathfrak{s} = \mathfrak{e} = \omega_1$
- $\mathfrak{a} = \omega_1$
- $\mathfrak{g} = \omega_1$

(2) If $\mathcal{P}(\omega)$ has the wFN property, then

- $\text{cov(meager)} = 2^\omega$, and so $\mathfrak{r} = \mathfrak{u} = \mathfrak{i} = 2^\omega$

wFN property of $\mathcal{P}(\omega)$

Theorem (Fuchino, Geschke, S, 2001)

(1) If $\mathcal{P}(\omega)$ has the wFN property, then

- $\text{shr(meager)} = \omega_1$. So $\text{non(meager)} = \mathfrak{b}^* = \omega_1$ and $\mathfrak{s} = \mathfrak{e} = \omega_1$
- $\mathfrak{a} = \omega_1$
- $\mathfrak{g} = \omega_1$

(2) If $\mathcal{P}(\omega)$ has the wFN property, then

- $\text{cov(meager)} = 2^\omega$, and so $\mathfrak{r} = \mathfrak{u} = \mathfrak{i} = 2^\omega$

provided $\{\kappa : \text{cf}([\kappa]^\omega, \subset) = \kappa\}$ is cofinal in $\{\kappa < 2^\omega : \text{cf}(\kappa) > \omega\}$

wFN property of $\mathcal{P}(\omega)$

wFN property of $\mathcal{P}(\omega)$

Theorem (Fuchino, S, 1997)

If $V \models \text{"GCH and } \square_{\mu}^{**} \text{ holds for all } \mu > \text{cf}(\mu) = \omega,$ then

$V^{\text{Cohen}(\kappa)} \models \mathcal{P}(\omega) \text{ does has the wFN property}$

wFN property of $\mathcal{P}(\omega)$

Theorem (Fuchino, S, 1997)

If $V \models \text{"GCH and } \square_\mu^{**} \text{ holds for all } \mu > \text{cf}(\mu) = \omega,$ then

$V^{\text{Cohen}(\kappa)} \models \mathcal{P}(\omega) \text{ does has the wFN property}$

Theorem (Fuchino, Geschke, Shelah, S, 2001)

If $V \models \text{"GCH and } (\aleph_{\omega+1}, \aleph_\omega) \rightarrowtail (\aleph_1, \aleph_0)"$, and \mathbb{H} is the Hechler poset in V adding a dominating real, then

$V^{\mathbb{H} * \text{Cohen}(\aleph_\omega)} \models \mathcal{P}(\omega) \text{ does not have the wFN property}$

Singular cardinal compactness theorem of Shelah

Singular cardinal compactness theorem of Shelah

Assume $\lambda > \text{cf}(\lambda)$, $\mathbf{G} \subset [\lambda]^{<\lambda}$, $\mathcal{F} \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

Singular cardinal compactness theorem of Shelah

Assume $\lambda > \text{cf}(\lambda)$, $G \subset [\lambda]^{<\lambda}$, $F \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

We say “ B is free over A ” and write $(B/A \in F)$ if $\langle B, A \rangle \in F$.

Singular cardinal compactness theorem of Shelah

Assume $\lambda > \text{cf}(\lambda)$, $G \subset [\lambda]^{<\lambda}$, $F \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

We say “ B is free over A ” and write $(B/A \in F)$ if $\langle B, A \rangle \in F$.

We say “ C is free” if $C \in G$.

Singular cardinal compactness theorem of Shelah

Assume $\lambda > \text{cf}(\lambda)$, $G \subset [\lambda]^{<\lambda}$, $F \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

We say “ B is free over A ” and write $(B/A \in F)$ if $\langle B, A \rangle \in F$.

We say “ C is free” if $C \in G$.

Then there is a continuous sequence $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t.

- (a) $A_0 = \emptyset$, $\cup\{A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda)\} = \lambda$,
- (b) $\forall \zeta A_{\zeta+1}/A_\zeta \in F$.

PROVIDED

Singular cardinal compactness theorem of Shelah

Assume $\lambda > \text{cf}(\lambda)$, $\mathbf{G} \subset [\lambda]^{<\lambda}$, $\mathbf{F} \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

We say “ B is free over A ” and write $(B/A \in \mathbf{F})$ if $\langle B, A \rangle \in \mathbf{F}$.

We say “ C is free” if $C \in \mathbf{G}$.

Then there is a continuous sequence $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t.

- (a) $A_0 = \emptyset$, $\cup\{A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda)\} = \lambda$,
- (b) $\forall \zeta A_{\zeta+1}/A_\zeta \in \mathbf{F}$.

PROVIDED

- (H1) (a) $A, B \in \mathbf{G}$, $|A| = |B|$, $A \subset B \implies B/A \in \mathbf{F}$
- (b) $B \in \mathbf{G} \implies B/\emptyset \in \mathbf{F}$,

Singular cardinal compactness theorem of Shelah

Assume $\lambda > \text{cf}(\lambda)$, $\mathbf{G} \subset [\lambda]^{<\lambda}$, $\mathbf{F} \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

We say “ B is free over A ” and write $(B/A \in \mathbf{F})$ if $\langle B, A \rangle \in \mathbf{F}$.

We say “ C is free” if $C \in \mathbf{G}$.

Then there is a continuous sequence $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t.

- (a) $A_0 = \emptyset$, $\cup\{A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda)\} = \lambda$,
- (b) $\forall \zeta A_{\zeta+1}/A_\zeta \in \mathbf{F}$.

PROVIDED

(H1) (a) $A, B \in \mathbf{G}$, $|A| = |B|$, $A \subset B \implies B/A \in \mathbf{F}$
 (b) $B \in \mathbf{G} \implies B/\emptyset \in \mathbf{F}$,

(H2) $\exists \kappa < \lambda \forall \mu \in [\kappa, \lambda) \mathbf{G} \cap [\lambda]^\mu$ is unbounded in $[\lambda]^\mu$.

Singular cardinal compactness theorem of Shelah

Assume $\lambda > \text{cf}(\lambda)$, $G \subset [\lambda]^{<\lambda}$, $F \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

We say “ B is free over A ” and write $(B/A \in F)$ if $\langle B, A \rangle \in F$.

We say “ C is free” if $C \in G$.

Then there is a continuous sequence $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t.

- (a) $A_0 = \emptyset$, $\cup\{A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda)\} = \lambda$,
- (b) $\forall \zeta A_{\zeta+1}/A_\zeta \in F$.

PROVIDED

(H1) (a) $A, B \in G$, $|A| = |B|$, $A \subset B \implies B/A \in F$
 (b) $B \in G \implies B/\emptyset \in F$,

(H2) $\exists \kappa < \lambda \forall \mu \in [\kappa, \lambda) G \cap [\lambda]^\mu$ is unbounded in $[\lambda]^\mu$.

(H3) $\exists \kappa < \lambda \forall \kappa \leq \mu < \nu < \lambda$
 if $A \in (G \cap [\lambda]^\nu)$ or $A = \emptyset$ and $A \subset B \in G \cap [\lambda]^\nu$ then

Singular cardinal compactness theorem of Shelah

Assume $\lambda > \text{cf}(\lambda)$, $G \subset [\lambda]^{<\lambda}$, $F \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

We say " B is free over A " and write $(B/A \in F)$ if $\langle B, A \rangle \in F$.

We say " C is free" if $C \in G$.

Then there is a continuous sequence $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t.

- (a) $A_0 = \emptyset$, $\cup\{A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda)\} = \lambda$,
- (b) $\forall \zeta A_{\zeta+1}/A_\zeta \in F$.

PROVIDED

(H1) (a) $A, B \in G$, $|A| = |B|$, $A \subset B \implies B/A \in F$
 (b) $B \in G \implies B/\emptyset \in F$,

(H2) $\exists \kappa < \lambda \forall \mu \in [\kappa, \lambda) G \cap [\lambda]^\mu$ is unbounded in $[\lambda]^\mu$.

(H3) $\exists \kappa < \lambda \forall \kappa \leq \mu < \nu < \lambda$
 if $A \in (G \cap [\lambda]^\nu)$ or $A = \emptyset$ and $A \subset B \in G \cap [\lambda]^\nu$ then

$$\{C \in [\lambda]^\mu : B \cup C/A \cup C \in F\}$$

contains a countable-closed unbounded subset of $[\lambda]^\mu$.

Theorem

If $cf(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

Theorem

If $cf(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let

$B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$

Theorem

If $cf(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.

Theorem

If $cf(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $\mathcal{G} = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.
- $c_\zeta : A_{\zeta+1} \setminus A_\zeta \rightarrow A_{\zeta+1} \setminus A_\zeta$ transversal for $\{X_i : i \in A_{\zeta+1} \setminus A_\zeta\}$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.
- $c_\zeta : A_{\zeta+1} \setminus A_\zeta \rightarrow A_{\zeta+1} \setminus A_\zeta$ transversal for $\{X_i : i \in A_{\zeta+1} \setminus A_\zeta\}$.
- $c = \bigcup_{\zeta < \omega \cdot \text{cf}(\lambda)} c_\zeta$ is transversal for \mathcal{X} .

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H1) (a) $A, B \in G, |A| = |B|, A \subset B \implies B/A \in F$
 (b) $B \in G \implies B/\emptyset \in F$,

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let

$B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$

- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.

- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.

- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H2) $\forall \mu \in [\kappa, \lambda) G \cap [\lambda]^\mu$ is unbounded in $[\lambda]^\mu$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H2) $\forall \mu \in [\kappa, \lambda) G \cap [\lambda]^\mu$ is unbounded in $[\lambda]^\mu$.

- Pick $A \in [\lambda]^\mu$ s.t. $\forall B \in [\lambda]^\mu A \subset B \implies B \notin G$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H2) $\forall \mu \in [\kappa, \lambda) G \cap [\lambda]^\mu$ is unbounded in $[\lambda]^\mu$.

- Pick $A \in [\lambda]^\mu$ s.t. $\forall B \in [\lambda]^\mu A \subset B \implies B \notin G$.
- Choose cont. $\langle A_\zeta : \zeta < \mu^+ \rangle \subset [\lambda]^\mu$ closed $A_{\zeta+1}/A_\zeta \notin F$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H2) $\forall \mu \in [\kappa, \lambda) G \cap [\lambda]^\mu$ is unbounded in $[\lambda]^\mu$.

- Pick $A \in [\lambda]^\mu$ s.t. $\forall B \in [\lambda]^\mu A \subset B \implies B \notin G$.
- Choose cont. $\langle A_\zeta : \zeta < \mu^+ \rangle \subset [\lambda]^\mu$ closed $A_{\zeta+1}/A_\zeta \notin F$.
- Let $B = \bigcup_{\zeta < \mu^+} A_\zeta$. $|B| = \mu^+ < \lambda$ has a transversal $f : B \rightarrow B$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H2) $\forall \mu \in [\kappa, \lambda) G \cap [\lambda]^\mu$ is unbounded in $[\lambda]^\mu$.

- Pick $A \in [\lambda]^\mu$ s.t. $\forall B \in [\lambda]^\mu A \subset B \implies B \notin G$.
- Choose cont. $\langle A_\zeta : \zeta < \mu^+ \rangle \subset [\lambda]^\mu$ closed $A_{\zeta+1}/A_\zeta \notin F$.
- Let $B = \bigcup_{\zeta < \mu^+} A_\zeta$. $|B| = \mu^+ < \lambda$ has a transversal $f : B \rightarrow B$.
- $\exists \zeta < \mu^+$ s.t A_ζ is closed under f and f^{-1} .

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H2) $\forall \mu \in [\kappa, \lambda) G \cap [\lambda]^\mu$ is unbounded in $[\lambda]^\mu$.

- Pick $A \in [\lambda]^\mu$ s.t. $\forall B \in [\lambda]^\mu A \subset B \implies B \notin G$.
- Choose cont. $\langle A_\zeta : \zeta < \mu^+ \rangle \subset [\lambda]^\mu$ closed $A_{\zeta+1}/A_\zeta \notin F$.
- Let $B = \bigcup_{\zeta < \mu^+} A_\zeta$. $|B| = \mu^+ < \lambda$ has a transversal $f : B \rightarrow B$.
- $\exists \zeta < \mu^+$ s.t A_ζ is closed under f and f^{-1} .
- Contradiction: $f : A_{\zeta+1} \setminus A_\zeta \rightarrow A_{\zeta+1} \setminus A_\zeta$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let

$B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$

- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.

- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.

- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H3) If $\kappa \leq \mu < \nu < \lambda$ then $\forall B \in G \cap [\lambda]^\nu$ and $\forall A \in (G \cap [\lambda]^\nu) \cup \{\emptyset\}$ if $A \subset B$ then $\{C \in [\lambda]^\mu : B \cup C/A \cup C \in F\}$ contains a countable-closed unbounded subset of $[\lambda]^\mu$.

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H3) If $\kappa \leq \mu < \nu < \lambda$ then $\forall B \in G \cap [\lambda]^\nu$ and $\forall A \in (G \cap [\lambda]^\nu) \cup \{\emptyset\}$ if $A \subset B$ then $\{C \in [\lambda]^\mu : B \cup C/A \cup C \in F\}$ contains a countable-closed unbounded subset of $[\lambda]^\mu$.

- $f : B \setminus A \rightarrow B \setminus A$ witnesses $B/A \in F$

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H3) If $\kappa \leq \mu < \nu < \lambda$ then $\forall B \in G \cap [\lambda]^\nu$ and $\forall A \in (G \cap [\lambda]^\nu) \cup \{\emptyset\}$ if $A \subset B$ then $\{C \in [\lambda]^\mu : B \cup C/A \cup C \in F\}$ contains a countable-closed unbounded subset of $[\lambda]^\mu$.

- $f : B \setminus A \rightarrow B \setminus A$ witnesses $B/A \in F$
- $\mathcal{C} = \{C \in [\lambda]^\mu \text{ is closed under } f \text{ and } f^{-1}\}$

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let

$B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$

- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.

- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.

- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H3) If $\kappa \leq \mu < \nu < \lambda$ then $\forall B \in G \cap [\lambda]^\nu$ and $\forall A \in (G \cap [\lambda]^\nu) \cup \{\emptyset\}$ if $A \subset B$ then $\{C \in [\lambda]^\mu : B \cup C/A \cup C \in F\}$ contains a countable-closed unbounded subset of $[\lambda]^\mu$.

- $f : B \setminus A \rightarrow B \setminus A$ witnesses $B/A \in F$
- $\mathcal{C} = \{C \in [\lambda]^\mu \text{ is closed under } f \text{ and } f^{-1}\}$
- If $C \in \mathcal{C}$, then $(B \cup C) \setminus (A \cup C) = (B \setminus A) \setminus C$,

Theorem

If $\text{cf}(\lambda) \leq \kappa < \lambda$, $\mathcal{X} = \langle X_\alpha : \alpha < \lambda \rangle \subset [\lambda]^{<\kappa}$, and every $\mathcal{Z} \in [\mathcal{X}]^{<\lambda}$ has a transversal, THEN \mathcal{X} has a transversal.

- If $A \subset B \in [\lambda]^{<\lambda}$ let
 $B/A \in F$ iff $\exists f : (B \setminus A) \xrightarrow{1-1} (B \setminus A)$ s.t. $f(\gamma) \in X_\gamma$ for $\gamma \in B \setminus A$
- $A \in [\lambda]^{<\lambda}$ is closed iff $\gamma \in A \implies X_\gamma \subset A$.
- $G = \{A \in [\lambda]^{<\lambda} \text{ is clsd: } \forall B \in [\lambda]^{|A|} (A \subset B \text{ clsd} \Rightarrow B/A \in F)\}$.
- Enough: there is a continuous $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$ s.t $A_{\zeta+1}/A_\zeta \in F$.

(H3) If $\kappa \leq \mu < \nu < \lambda$ then $\forall B \in G \cap [\lambda]^\nu$ and $\forall A \in (G \cap [\lambda]^\nu) \cup \{\emptyset\}$ if $A \subset B$ then $\{C \in [\lambda]^\mu : B \cup C/A \cup C \in F\}$ contains a countable-closed unbounded subset of $[\lambda]^\mu$.

- $f : B \setminus A \rightarrow B \setminus A$ witnesses $B/A \in F$
- $\mathcal{C} = \{C \in [\lambda]^\mu \text{ is closed under } f \text{ and } f^{-1}\}$
- If $C \in \mathcal{C}$, then $(B \cup C) \setminus (A \cup C) = (B \setminus A) \setminus C$,
- and so $f : (B \setminus A) \setminus C \rightarrow (B \setminus A) \setminus C \vdash B \cup C/A \cup C \in F$.

Poor man's singular cardinal compactness

Assume $\lambda > \text{cf}(\lambda)$, $G \subset [\lambda]^{<\lambda}$, $F \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

Then there is a continuous sequence $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$
s.t. $A_0 = \emptyset$, $\cup\{A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda)\} = \lambda$, $\forall \zeta \langle A_{\zeta+1}, A_\zeta \rangle \in F$
PROVIDED (H1), (H2), (H3), ...

Poor man's singular cardinal compactness

Assume $\lambda > \text{cf}(\lambda)$, $G \subset [\lambda]^{<\lambda}$, $F \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

Then there is a continuous sequence $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$
 s.t. $A_0 = \emptyset$, $\cup\{A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda)\} = \lambda$, $\forall \zeta \langle A_{\zeta+1}, A_\zeta \rangle \in F$
 PROVIDED (H1), (H2), (H3), ...

Theorem

Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$

(\circ) the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$,

then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.

Poor man's singular cardinal compactness

Assume $\lambda > \text{cf}(\lambda)$, $G \subset [\lambda]^{<\lambda}$, $F \subset \{\langle B, A \rangle : A \subset B \subset \lambda\}$.

Then there is a continuous sequence $\langle A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda) \rangle \subset [\lambda]^{<\lambda}$
 s.t. $A_0 = \emptyset$, $\cup\{A_\zeta : \zeta < \omega \cdot \text{cf}(\lambda)\} = \lambda$, $\forall \zeta \langle A_{\zeta+1}, A_\zeta \rangle \in F$
 PROVIDED (H1), (H2), (H3), ...

Theorem

Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$

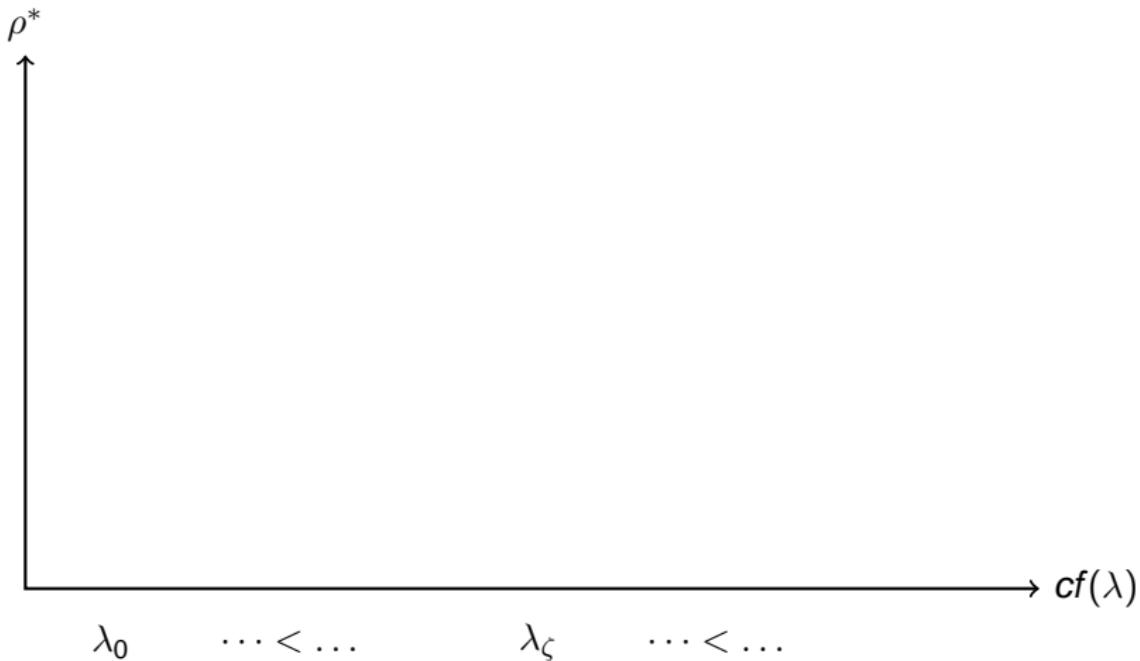
(\circ) the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$,

then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.

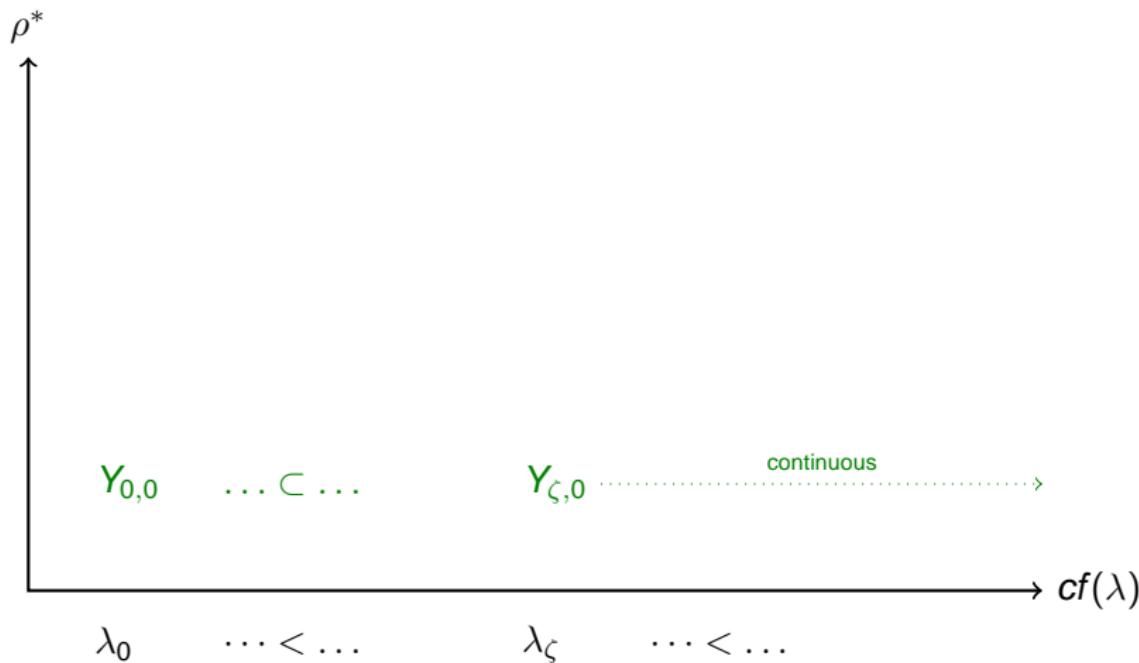
(A set system \mathcal{G} is ρ^* -chain closed iff $\bigcup_{\alpha < \rho^*} G_\alpha \in \mathcal{G}$ for any increasing sequence $\langle G_\alpha : \alpha < \rho^* \rangle \subset \mathcal{G}$.)

Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.

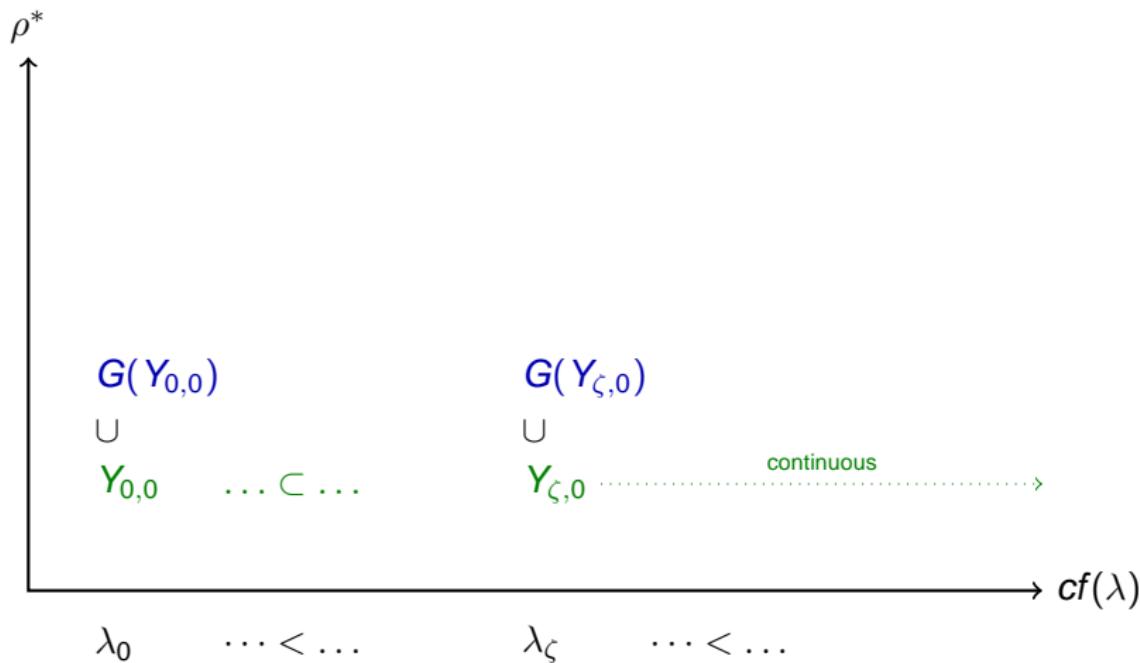
Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.



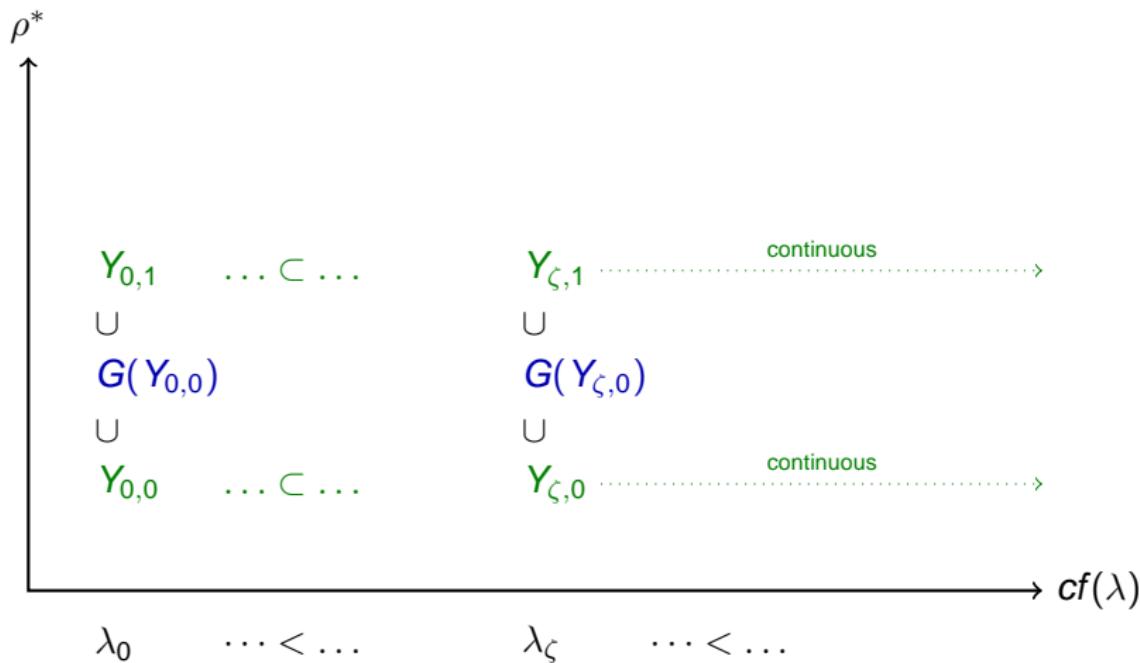
Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.



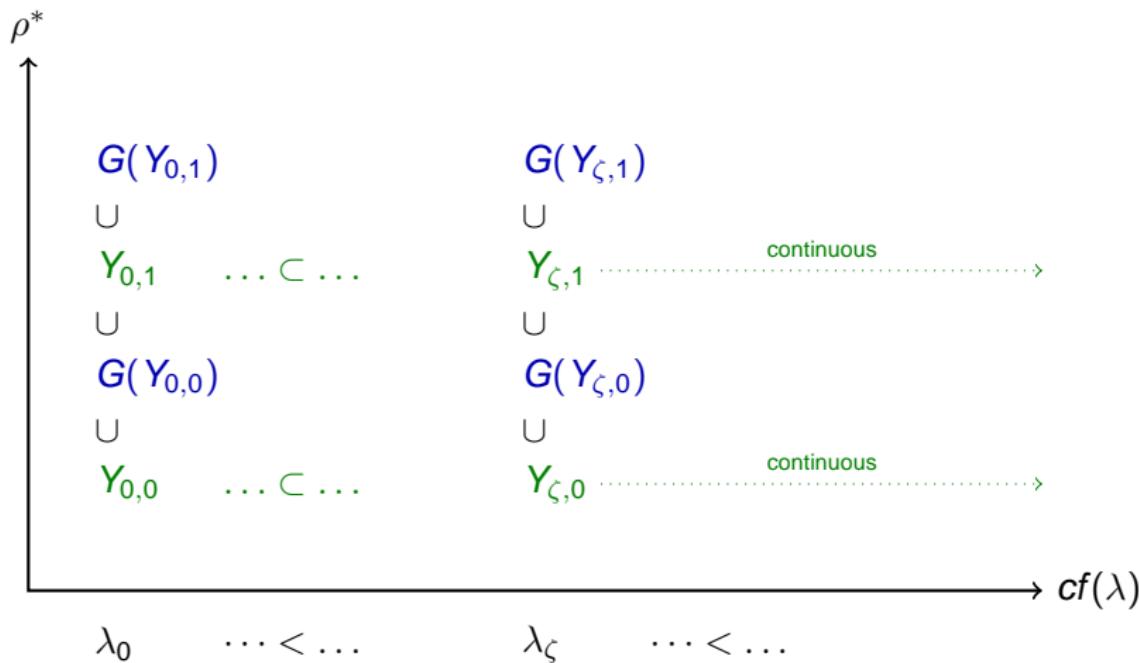
Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.



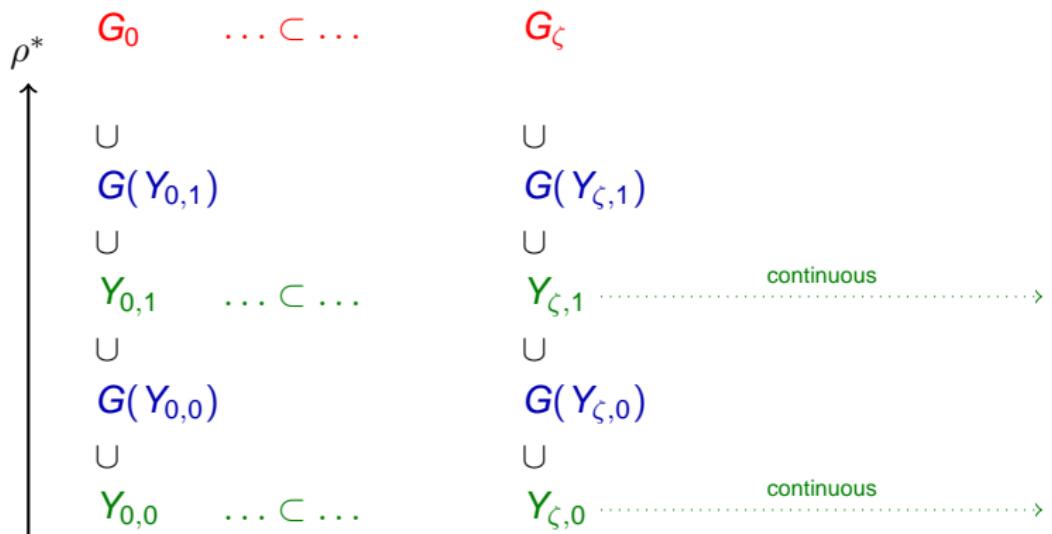
Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.



Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.



Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.

 λ_0 $\dots < \dots$ λ_ζ $\dots < \dots$ $\text{cf}(\lambda)$

Application of poor man's SCC

Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.

Application of poor man's SCC

Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.

Theorem (S, 2009)

Let $\mu < \beth_\omega \leq \lambda$.

Application of poor man's SCC

Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.

Theorem (S, 2009)

Let $\mu < \beth_\omega \leq \lambda$.

- If $\mathcal{A} \subset [\lambda]^{\beth_\omega}$ is a μ -almost disjoint family, then \mathcal{A} is \beth_ω -essentially disjoint,

Application of poor man's SCC

Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.

Theorem (S, 2009)

Let $\mu < \beth_\omega \leq \lambda$.

- If $\mathcal{A} \subset [\lambda]^{\beth_\omega}$ is a μ -almost disjoint family, then \mathcal{A} is \beth_ω -essentially disjoint,
 $\{A \setminus F(A) : A \in \mathcal{A}\}$ are pairwise disjoint for some $F(A) \in [A]^{<\beth_\omega}$

Application of poor man's SCC

Assume that λ is a singular cardinal and $\mathcal{G} \subset [\lambda]^{<\lambda}$. If for some cardinals $\rho^* \leq \mu < \lambda$ the set $\mathcal{G} \cap [\lambda]^\nu$ is ρ^* -chain closed and cofinal in $[\lambda]^\nu$ for each $\mu \leq \nu < \lambda$, then there is a continuous, increasing sequence $\langle G_\xi : \xi < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\xi < \text{cf}(\lambda)} G_\xi = \lambda$.

Theorem (S, 2009)

Let $\mu < \beth_\omega \leq \lambda$.

- If $\mathcal{A} \subset [\lambda]^{\beth_\omega}$ is a μ -almost disjoint family, then \mathcal{A} is \beth_ω -essentially disjoint,
 $\{A \setminus F(A) : A \in \mathcal{A}\}$ are pairwise disjoint for some $F(A) \in [A]^{<\beth_\omega}$

Lemma

If $\mu < \beth_\omega < \lambda$, and $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\beth_\omega}$ is a μ -almost disjoint family, then there is an increasing, continuous sequence $\{G_\zeta : \zeta < \text{cf}(\lambda)\} \subset [\lambda]^{<\lambda}$ such that

$\forall \zeta < \text{cf}(\lambda) \forall \alpha \in G_{\zeta+1} \setminus G_\zeta (|A_\alpha \cap G_\zeta| < \beth_\omega \text{ and } A_\alpha \subset G_{\zeta+1}).$

Application of poor man's SCC

Application of poor man's SCC

Definition

$\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^{\nu}$ there is $\mathcal{P} \in [\mathcal{B}]^{<\nu}$ such that $u = \bigcup \mathcal{P}$.

Application of poor man's SCC

Definition

$\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^\nu$ there is $\mathcal{P} \in [\mathcal{B}]^{<\nu}$ such that $u = \cup \mathcal{P}$.

Theorem (Shelah, Revised GCH)

If $\rho \geq \beth_\omega$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_\omega$.

Application of poor man's SCC

Definition

$\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^\nu$ there is $\mathcal{P} \in [\mathcal{B}]^{< \nu}$ such that $u = \cup \mathcal{P}$.

Theorem (Shelah, Revised GCH)

If $\rho \geq \beth_\omega$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_\omega$.

Lemma

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Application of poor man's SCC

Definition

$\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^\nu$ there is $\mathcal{P} \in [\mathcal{B}]^{< \nu}$ such that $u = \cup \mathcal{P}$.

Theorem (Shelah, Revised GCH)

If $\rho \geq \beth_\omega$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_\omega$.

Lemma

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

- Let $\mu < \nu < \beth_\omega$ be regular such that $\rho^{[\nu]} = \rho$ witnessed by a family $\mathcal{B} \subset [\rho]^\nu$. We show that $\nu(\rho) = \nu$ works.

Application of poor man's SCC

Definition

$\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^\nu$ there is $\mathcal{P} \in [\mathcal{B}]^{< \nu}$ such that $u = \cup \mathcal{P}$.

Theorem (Shelah, Revised GCH)

If $\rho \geq \beth_\omega$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_\omega$.

Lemma

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

- Let $\mu < \nu < \beth_\omega$ be regular such that $\rho^{[\nu]} = \rho$ witnessed by a family $\mathcal{B} \subset [\rho]^\nu$. We show that $\nu(\rho) = \nu$ works.
- If $A \in \mathcal{A}$, then there is $B \in \mathcal{B}$ such that $A \cap B = \nu$.

Application of poor man's SCC

Definition

$\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^\nu$ there is $\mathcal{P} \in [\mathcal{B}]^{< \nu}$ such that $u = \bigcup \mathcal{P}$.

Theorem (Shelah, Revised GCH)

If $\rho \geq \beth_\omega$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_\omega$.

Lemma

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

- Let $\mu < \nu < \beth_\omega$ be regular such that $\rho^{[\nu]} = \rho$ witnessed by a family $\mathcal{B} \subset [\rho]^\nu$. We show that $\nu(\rho) = \nu$ works.
- If $A \in \mathcal{A}$, then there is $B \in \mathcal{B}$ such that $A \cap B = \nu$.
- If $A_0 \neq A_1 \in \mathcal{A}$, and $|A_0 \cap B| = |A_1 \cap B| = \nu$ then $A_0 \cap B \neq A_1 \cap B$ because \mathcal{A} is μ -almost disjoint.

Application of poor man's SCC

Definition

$\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^\nu$ there is $\mathcal{P} \in [\mathcal{B}]^{< \nu}$ such that $u = \cup \mathcal{P}$.

Theorem (Shelah, Revised GCH)

If $\rho \geq \beth_\omega$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_\omega$.

Lemma

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

- Let $\mu < \nu < \beth_\omega$ be regular such that $\rho^{[\nu]} = \rho$ witnessed by a family $\mathcal{B} \subset [\rho]^\nu$. We show that $\nu(\rho) = \nu$ works.
- If $A \in \mathcal{A}$, then there is $B \in \mathcal{B}$ such that $A \cap B = \nu$.
- If $A_0 \neq A_1 \in \mathcal{A}$, and $|A_0 \cap B| = |A_1 \cap B| = \nu$ then $A_0 \cap B \neq A_1 \cap B$ because \mathcal{A} is μ -almost disjoint.
- So $|\{A \in \mathcal{A} : |A \cap B| = \nu\}| \leq 2^{|B|} \leq 2^\nu < \beth_\omega$.

Application of poor man's SCC

Definition

$\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^\nu$ there is $\mathcal{P} \in [\mathcal{B}]^{< \nu}$ such that $u = \cup \mathcal{P}$.

Theorem (Shelah, Revised GCH)

If $\rho \geq \beth_\omega$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_\omega$.

Lemma

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

- Let $\mu < \nu < \beth_\omega$ be regular such that $\rho^{[\nu]} = \rho$ witnessed by a family $\mathcal{B} \subset [\rho]^\nu$. We show that $\nu(\rho) = \nu$ works.
- If $A \in \mathcal{A}$, then there is $B \in \mathcal{B}$ such that $A \cap B = \nu$.
- If $A_0 \neq A_1 \in \mathcal{A}$, and $|A_0 \cap B| = |A_1 \cap B| = \nu$ then $A_0 \cap B \neq A_1 \cap B$ because \mathcal{A} is μ -almost disjoint.
- So $|\{A \in \mathcal{A} : |A \cap B| = \nu\}| \leq 2^{|B|} \leq 2^\nu < \beth_\omega$.
- Thus $|\mathcal{A}| \leq \beth_\omega \cdot |\mathcal{B}| = \rho$.

Application of poor man's SCC.

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Application of poor man's SCC.

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Lemma

If $\mu < \beth_\omega < \lambda$, $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\beth_\omega}$ is μ -ad, then there is an increasing, continuous $\{G_\zeta : \zeta < \text{cf}(\lambda)\} \subset [\lambda]^{<\lambda}$ s.t.

$\forall \alpha \in G_{\zeta+1} \setminus G_\zeta \quad (|A_\alpha \cap G_\zeta| < \beth_\omega \text{ and } A_\alpha \subset G_{\zeta+1}).$

Application of poor man's SCC.

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Lemma

If $\mu < \beth_\omega < \lambda$, $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\beth_\omega}$ is μ -ad, then there is an increasing, continuous $\{G_\zeta : \zeta < \text{cf}(\lambda)\} \subset [\lambda]^{<\lambda}$ s.t.

$$\forall \alpha \in G_{\zeta+1} \setminus G_\zeta \quad (|A_\alpha \cap G_\zeta| < \beth_\omega \text{ and } A_\alpha \subset G_{\zeta+1}).$$

Thm: If $\mathcal{G} \subset [\lambda]^{<\lambda}$ and $\exists \rho^* \leq \mu < \lambda$ s.t. $\mathcal{G} \cap [\lambda]^\rho$ is ρ^* -chain closed and cofinal in $[\lambda]^\rho$ for each $\mu \leq \rho < \lambda$, then there is a continuous, increasing sequence $\langle G_\zeta : \zeta < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\zeta < \text{cf}(\lambda)} G_\zeta = \lambda$.

Application of poor man's SCC.

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Lemma

If $\mu < \beth_\omega < \lambda$, $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\beth_\omega}$ is μ -ad, then there is an increasing, continuous $\{G_\zeta : \zeta < \text{cf}(\lambda)\} \subset [\lambda]^{<\lambda}$ s.t.

$$\forall \alpha \in G_{\zeta+1} \setminus G_\zeta \quad (|A_\alpha \cap G_\zeta| < \beth_\omega \text{ and } A_\alpha \subset G_{\zeta+1}).$$

Thm: If $\mathcal{G} \subset [\lambda]^{<\lambda}$ and $\exists \rho^* \leq \mu < \lambda$ s.t. $\mathcal{G} \cap [\lambda]^\rho$ is ρ^* -chain closed and cofinal in $[\lambda]^\rho$ for each $\mu \leq \rho < \lambda$, then there is a continuous, increasing sequence $\langle G_\zeta : \zeta < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\zeta < \text{cf}(\lambda)} G_\zeta = \lambda$.

$$\mathcal{G} = \{G \in [\lambda]^{<\lambda} : (\forall \alpha \in G) A_\alpha \subset G \wedge (\forall \alpha \in \lambda \setminus G) |A_\alpha \cap G| < \nu(|G|)\}.$$

Application of poor man's SCC.

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Lemma

If $\mu < \beth_\omega < \lambda$, $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\beth_\omega}$ is μ -ad, then there is an increasing, continuous $\{G_\zeta : \zeta < \text{cf}(\lambda)\} \subset [\lambda]^{<\lambda}$ s.t.

$$\forall \alpha \in G_{\zeta+1} \setminus G_\zeta \quad (|A_\alpha \cap G_\zeta| < \beth_\omega \text{ and } A_\alpha \subset G_{\zeta+1}).$$

Thm: If $\mathcal{G} \subset [\lambda]^{<\lambda}$ and $\exists \rho^* \leq \mu < \lambda$ s.t. $\mathcal{G} \cap [\lambda]^\rho$ is ρ^* -chain closed and cofinal in $[\lambda]^\rho$ for each $\mu \leq \rho < \lambda$, then there is a continuous, increasing sequence $\langle G_\zeta : \zeta < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\zeta < \text{cf}(\lambda)} G_\zeta = \lambda$.

$$\mathcal{G} = \{G \in [\lambda]^{<\lambda} : (\forall \alpha \in G) A_\alpha \subset G \wedge (\forall \alpha \in \lambda \setminus G) |A_\alpha \cap G| < \nu(|G|)\}.$$

- $\rho^* = \omega$; $\mu = \beth_\omega$.

Application of poor man's SCC.

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Lemma

If $\mu < \beth_\omega < \lambda$, $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\beth_\omega}$ is μ -ad, then there is an increasing, continuous $\{G_\zeta : \zeta < \text{cf}(\lambda)\} \subset [\lambda]^{<\lambda}$ s.t.

$$\forall \alpha \in G_{\zeta+1} \setminus G_\zeta \quad (|A_\alpha \cap G_\zeta| < \beth_\omega \text{ and } A_\alpha \subset G_{\zeta+1}).$$

Thm: If $\mathcal{G} \subset [\lambda]^{<\lambda}$ and $\exists \rho^* \leq \mu < \lambda$ s.t. $\mathcal{G} \cap [\lambda]^\rho$ is ρ^* -chain closed and cofinal in $[\lambda]^\rho$ for each $\mu \leq \rho < \lambda$, then there is a continuous, increasing sequence $\langle G_\zeta : \zeta < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\zeta < \text{cf}(\lambda)} G_\zeta = \lambda$.

$$\mathcal{G} = \{G \in [\lambda]^{<\lambda} : (\forall \alpha \in G) A_\alpha \subset G \wedge (\forall \alpha \in \lambda \setminus G) |A_\alpha \cap G| < \nu(|G|)\}.$$

- $\rho^* = \omega$; $\mu = \beth_\omega$. $\nu(\rho)$ is regular, so $\mathcal{G} \cap [\lambda]^\rho$ is ω -chain-closed

Application of poor man's SCC.

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Lemma

If $\mu < \beth_\omega < \lambda$, $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\beth_\omega}$ is μ -ad, then there is an increasing, continuous $\{G_\zeta : \zeta < \text{cf}(\lambda)\} \subset [\lambda]^{<\lambda}$ s.t.

$$\forall \alpha \in G_{\zeta+1} \setminus G_\zeta \quad (|A_\alpha \cap G_\zeta| < \beth_\omega \text{ and } A_\alpha \subset G_{\zeta+1}).$$

Thm: If $\mathcal{G} \subset [\lambda]^{<\lambda}$ and $\exists \rho^* \leq \mu < \lambda$ s.t. $\mathcal{G} \cap [\lambda]^\rho$ is ρ^* -chain closed and cofinal in $[\lambda]^\rho$ for each $\mu \leq \rho < \lambda$, then there is a continuous, increasing sequence $\langle G_\zeta : \zeta < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\zeta < \text{cf}(\lambda)} G_\zeta = \lambda$.

$$\mathcal{G} = \{G \in [\lambda]^{<\lambda} : (\forall \alpha \in G) A_\alpha \subset G \wedge (\forall \alpha \in \lambda \setminus G) |A_\alpha \cap G| < \nu(|G|)\}.$$

- $\rho^* = \omega$; $\mu = \beth_\omega$. $\nu(\rho)$ is regular, so $\mathcal{G} \cap [\lambda]^\rho$ is ω -chain-closed
- $Y_0 \in [\lambda]^\rho$

Application of poor man's SCC.

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Lemma

If $\mu < \beth_\omega < \lambda$, $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\beth_\omega}$ is μ -ad, then there is an increasing, continuous $\{G_\zeta : \zeta < \text{cf}(\lambda)\} \subset [\lambda]^{<\lambda}$ s.t.

$$\forall \alpha \in G_{\zeta+1} \setminus G_\zeta \quad (|A_\alpha \cap G_\zeta| < \beth_\omega \text{ and } A_\alpha \subset G_{\zeta+1}).$$

Thm: If $\mathcal{G} \subset [\lambda]^{<\lambda}$ and $\exists \rho^* \leq \mu < \lambda$ s.t. $\mathcal{G} \cap [\lambda]^\rho$ is ρ^* -chain closed and cofinal in $[\lambda]^\rho$ for each $\mu \leq \rho < \lambda$, then there is a continuous, increasing sequence $\langle G_\zeta : \zeta < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\zeta < \text{cf}(\lambda)} G_\zeta = \lambda$.

$$\mathcal{G} = \{G \in [\lambda]^{<\lambda} : (\forall \alpha \in G) A_\alpha \subset G \wedge (\forall \alpha \in \lambda \setminus G) |A_\alpha \cap G| < \nu(|G|)\}.$$

- $\rho^* = \omega$; $\mu = \beth_\omega$. $\nu(\rho)$ is regular, so $\mathcal{G} \cap [\lambda]^\rho$ is ω -chain-closed
- $Y_0 \in [\lambda]^\rho$
- $Y_{n+1} = Y_n \cup \{A_\alpha : \alpha \in Y_n\} \cup \{\alpha : |Y_n \cap A_\alpha| \geq \nu(\rho)\}$.

Application of poor man's SCC.

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Lemma

If $\mu < \beth_\omega < \lambda$, $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\beth_\omega}$ is μ -ad, then there is an increasing, continuous $\{G_\zeta : \zeta < \text{cf}(\lambda)\} \subset [\lambda]^{<\lambda}$ s.t.

$$\forall \alpha \in G_{\zeta+1} \setminus G_\zeta \quad (|A_\alpha \cap G_\zeta| < \beth_\omega \text{ and } A_\alpha \subset G_{\zeta+1}).$$

Thm: If $\mathcal{G} \subset [\lambda]^{<\lambda}$ and $\exists \rho^* \leq \mu < \lambda$ s.t. $\mathcal{G} \cap [\lambda]^\rho$ is ρ^* -chain closed and cofinal in $[\lambda]^\rho$ for each $\mu \leq \rho < \lambda$, then there is a continuous, increasing sequence $\langle G_\zeta : \zeta < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\zeta < \text{cf}(\lambda)} G_\zeta = \lambda$.

$$\mathcal{G} = \{G \in [\lambda]^{<\lambda} : (\forall \alpha \in G) A_\alpha \subset G \wedge (\forall \alpha \in \lambda \setminus G) |A_\alpha \cap G| < \nu(|G|)\}.$$

- $\rho^* = \omega$; $\mu = \beth_\omega$. $\nu(\rho)$ is regular, so $\mathcal{G} \cap [\lambda]^\rho$ is ω -chain-closed
- $Y_0 \in [\lambda]^\rho$
- $Y_{n+1} = Y_n \cup \{A_\alpha : \alpha \in Y_n\} \cup \{\alpha : |Y_n \cap A_\alpha| \geq \nu(\rho)\}$.
- $Y = \bigcup_{n \in \omega} Y_n \in \mathcal{G} \cap [\lambda]^\rho$.

Application of poor man's SCC.

Fix $\mu < \beth_\omega$. Then for each $\rho \geq \beth_\omega$ there is a regular $\nu(\rho) < \beth_\omega$ such that if $\mathcal{A} \subset [\rho]^{\nu(\rho)}$ is μ -almost disjoint, then $|\mathcal{A}| \leq \rho$.

Lemma

If $\mu < \beth_\omega < \lambda$, $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\beth_\omega}$ is μ -ad, then there is an increasing, continuous $\{G_\zeta : \zeta < \text{cf}(\lambda)\} \subset [\lambda]^{<\lambda}$ s.t.

$$\forall \alpha \in G_{\zeta+1} \setminus G_\zeta \quad (|A_\alpha \cap G_\zeta| < \beth_\omega \text{ and } A_\alpha \subset G_{\zeta+1}).$$

Thm: If $\mathcal{G} \subset [\lambda]^{<\lambda}$ and $\exists \rho^* \leq \mu < \lambda$ s.t. $\mathcal{G} \cap [\lambda]^\rho$ is ρ^* -chain closed and cofinal in $[\lambda]^\rho$ for each $\mu \leq \rho < \lambda$, then there is a continuous, increasing sequence $\langle G_\zeta : \zeta < \text{cf}(\lambda) \rangle \subset \mathcal{G}$ such that $\bigcup_{\zeta < \text{cf}(\lambda)} G_\zeta = \lambda$.

$$\mathcal{G} = \{G \in [\lambda]^{<\lambda} : (\forall \alpha \in G) A_\alpha \subset G \wedge (\forall \alpha \in \lambda \setminus G) |A_\alpha \cap G| < \nu(|G|)\}.$$

- $\rho^* = \omega$; $\mu = \beth_\omega$. $\nu(\rho)$ is regular, so $\mathcal{G} \cap [\lambda]^\rho$ is ω -chain-closed
- $Y_0 \in [\lambda]^\rho$
- $Y_{n+1} = Y_n \cup \{A_\alpha : \alpha \in Y_n\} \cup \{\alpha : |Y_n \cap A_\alpha| \geq \nu(\rho)\}$.
- $Y = \bigcup_{n \in \omega} Y_n \in \mathcal{G} \cap [\lambda]^\rho$.

“Separation” theorems

“Separation” theorems

$\mathbb{A} = \{ \text{ ladder systems on some stationary subset of } \omega_1 \}$

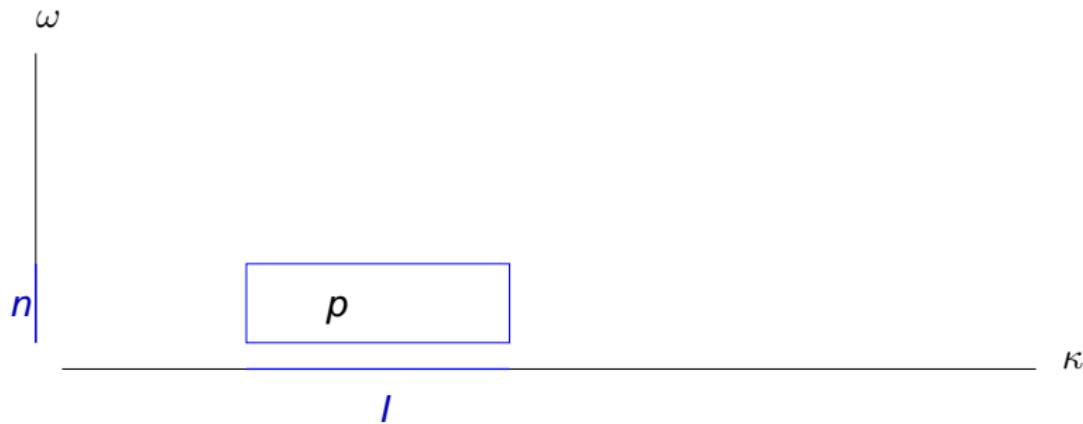
Juhász's forcing

Juhász's forcing

- Juhász: Con (MA(countable) + ♣ + 2^ω is as large as you wish)

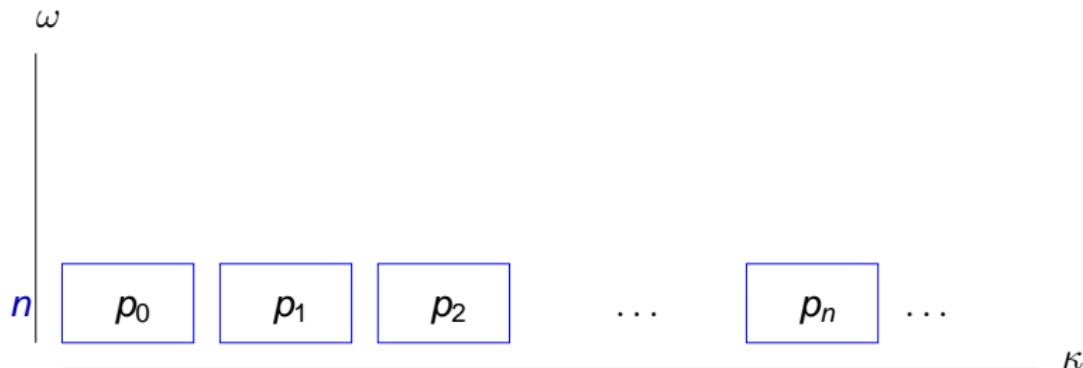
Juhász's forcing

- Juhász: Con (MA(countable) + ♣ + 2^ω is as large as you wish)
- Let $P_\kappa = \{p \mid \exists I \in [\kappa]^\omega \exists n < \omega p : I \times n \rightarrow 2\}$. Let $\mathcal{P}_\kappa = \langle P_\kappa, \supseteq \rangle$.



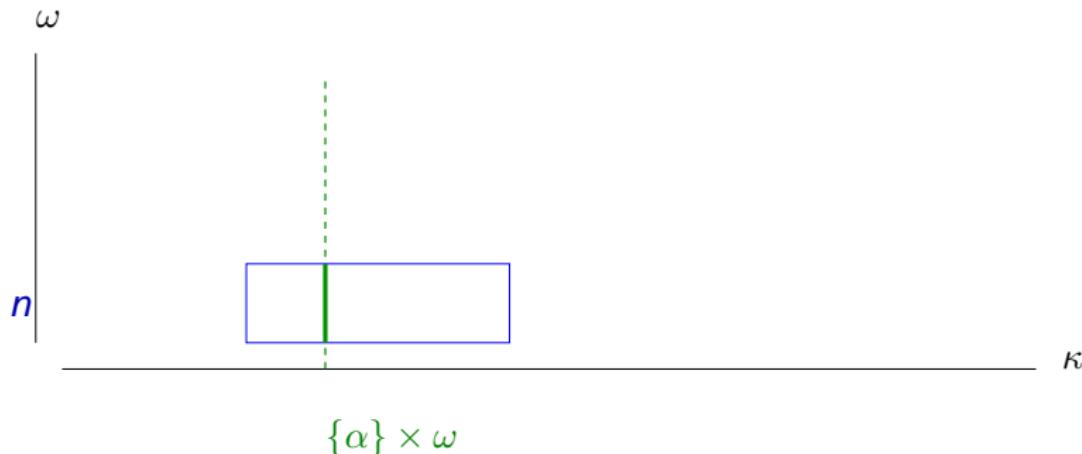
Juhász's forcing

- Juhász: Con (MA(countable) + ♣ + 2^ω is as large as you wish)
- Let $P_\kappa = \{p \mid \exists I \in [\kappa]^\omega \exists n < \omega p : I \times n \rightarrow 2\}$. Let $\mathcal{P}_\kappa = \langle P_\kappa, \supseteq \rangle$.
- ♣: you can amalgamate certain infinite families of conditions.



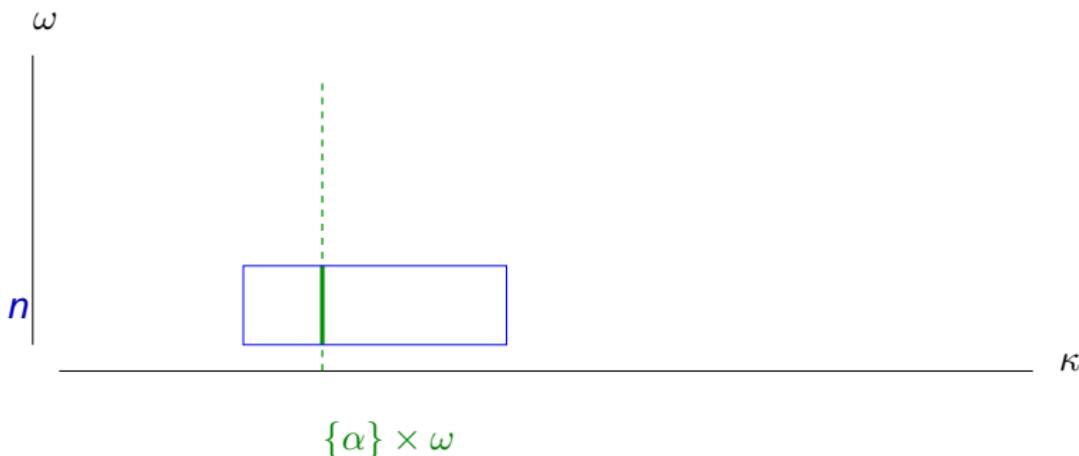
Juhász's forcing

- Juhász: Con (MA(countable) + ♣ + 2^ω is as large as you wish)
- Let $P_\kappa = \{p \mid \exists I \in [\kappa]^\omega \exists n < \omega p : I \times n \rightarrow 2\}$. Let $\mathcal{P}_\kappa = \langle P_\kappa, \supseteq \rangle$.
- ♣: you can amalgamate certain infinite families of conditions.
- MA(countable): $\mathcal{P}_\kappa \approx \mathcal{P}_\kappa * Cohen$.



Juhász's forcing

- Juhász: Con (MA(countable) + ♣ + 2^ω is as large as you wish)
- Let $P_\kappa = \{p \mid \exists I \in [\kappa]^\omega \exists n < \omega p : I \times n \rightarrow 2\}$. Let $\mathcal{P}_\kappa = \langle P_\kappa, \supseteq \rangle$.
- ♣: you can amalgamate certain infinite families of conditions.
- MA(countable): $\mathcal{P}_\kappa \approx \mathcal{P}_\kappa * Cohen$.
- Forcing with \mathcal{P}_κ collapses 2^ω to ω .



The pseudoproduct of Fuchino, Shelah and S.

The pseudoproduct of Fuchino, Shelah and S.

- Prove $\text{Con}(\text{MA(countable)} + \clubsuit + 2^\omega \text{ is as large as you wish})$ without collapsing cardinals.

The pseudoproduct of Fuchino, Shelah and S.

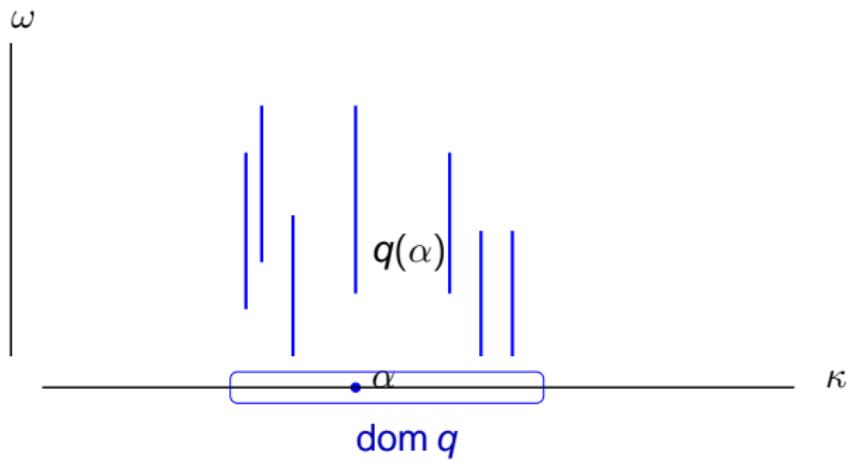
- Prove $\text{Con}(\text{MA(countable)} + \clubsuit + 2^\omega \text{ is as large as you wish})$ without collapsing cardinals.
- Let κ be a cardinal. Let Q be a poset.

The pseudoproduct of Fuchino, Shelah and S.

- Prove $\text{Con}(\text{MA(countable)} + \clubsuit + 2^\omega \text{ is as large as you wish})$ without collapsing cardinals.
- Let κ be a cardinal. Let Q be a poset.
- Typical example: $Q = Fn(\omega, 2)$.

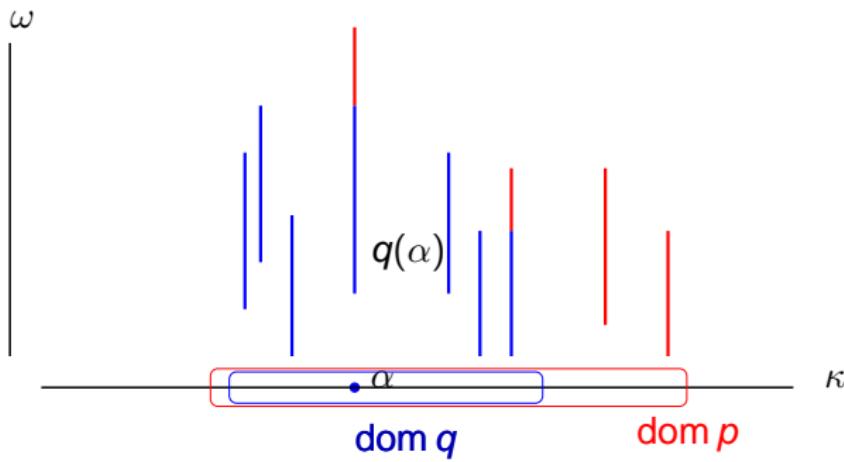
The pseudoproduct of Fuchino, Shelah and S.

- Prove $\text{Con}(\text{MA(countable)} + \clubsuit + 2^\omega \text{ is as large as you wish})$ without collapsing cardinals.
- Let κ be a cardinal. Let Q be a poset.
- Typical example: $Q = Fn(\omega, 2)$.
- Let $\prod_{\kappa}^* Q = Fn(\kappa, Q; \omega_1)$.



The pseudoproduct of Fuchino, Shelah and S.

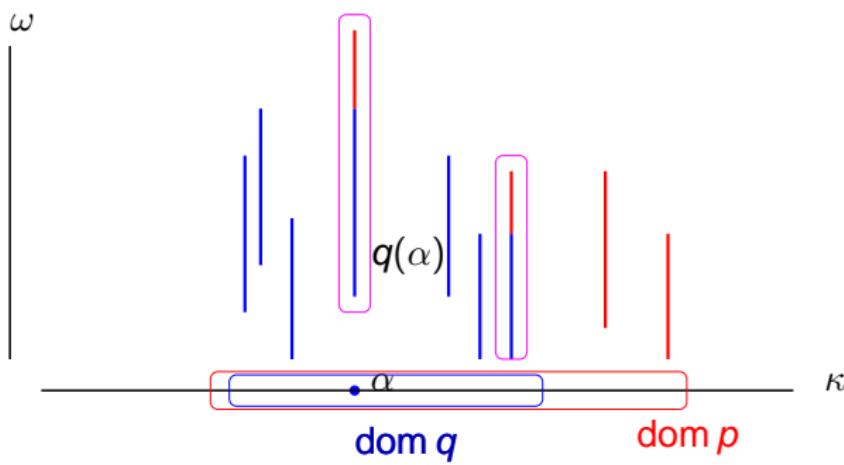
- Prove $\text{Con}(\text{MA(countable)} + \clubsuit + 2^\omega \text{ is as large as you wish})$ without collapsing cardinals.
- Let κ be a cardinal. Let Q be a poset.
- Typical example: $Q = Fn(\omega, 2)$.
- Let $\prod_{\kappa}^* Q = Fn(\kappa, Q; \omega_1)$.
- Let $p \leq q$ iff $\text{dom } p \supseteq \text{dom } q$, $\forall \alpha \ p(\alpha) \leq_Q q(\alpha)$,



The pseudoproduct of Fuchino, Shelah and S.

- Prove $\text{Con}(\text{MA(countable)} + \clubsuit + 2^\omega \text{ is as large as you wish})$ without collapsing cardinals.
- Let κ be a cardinal. Let Q be a poset.
- Typical example: $Q = Fn(\omega, 2)$.
- Let $\prod_{\kappa}^* Q = Fn(\kappa, Q; \omega_1)$.
- Let $p \leq q$ iff $\text{dom } p \supseteq \text{dom } q$, $\forall \alpha \ p(\alpha) \leq_Q q(\alpha)$,

$$|\{\alpha \in \text{dom } q : p(\alpha) \not\leq_Q q(\alpha)\}| < \omega.$$



Dzamonja and Shelah: Similar, but not the same

Dzamonja and Shelah: Similar, but not the same

- \clubsuit_w holds iff $\exists \mathcal{A} \in \mathbb{A} \forall X \in [\omega_1]^{\omega_1} \exists A \in \mathcal{A} A \subset^* X$.

Dzamonja and Shelah: Similar, but not the same

- \clubsuit_w holds iff $\exists \mathcal{A} \in \mathbb{A} \forall X \in [\omega_1]^{\omega_1} \exists A \in \mathcal{A} \text{ } \textcolor{green}{A} \subset^* X$.

Theorem (Dzamonja, Shelah, 1999)

$Con(\neg \clubsuit + \clubsuit_w)$

Dzamonja and Shelah: Similar, but not the same

- \clubsuit_w holds iff $\exists \mathcal{A} \in \mathbb{A} \forall X \in [\omega_1]^{\omega_1} \exists A \in \mathcal{A} \text{ } \textcolor{green}{A} \subset^* X$.

Theorem (Dzamonja, Shelah, 1999)

$\text{Con}(\neg \clubsuit + \clubsuit_w)$

- The proof uses an iterated version of pseudoproduct

Dzamonja and Shelah: Similar, but not the same

- \clubsuit_w holds iff $\exists \mathcal{A} \in \mathbb{A} \forall X \in [\omega_1]^{\omega_1} \exists A \in \mathcal{A} \text{ } \textcolor{green}{A} \subset^* X$.

Theorem (Dzamonja, Shelah, 1999)

$\text{Con}(\neg \clubsuit + \clubsuit_w)$

- The proof uses an iterated version of pseudoproduct

A. Primavesi: a combinatorial translation

Dzamonja and Shelah: Similar, but not the same

- \clubsuit_w holds iff $\exists \mathcal{A} \in \mathbb{A} \forall X \in [\omega_1]^{\omega_1} \exists A \in \mathcal{A} \text{ } \textcolor{green}{A} \subset^* X$.

Theorem (Dzamonja, Shelah, 1999)

$Con(\neg \clubsuit + \clubsuit_w)$

- The proof uses an iterated version of pseudoproduct

A. Primavesi: a combinatorial translation

$\clubsuit^{[\max tp]}$ holds iff there is a sequence $\{A_\alpha : \alpha \in \text{Lim}\}$ s.t.

- $\text{tp } A_\alpha = \alpha$
- for each $X \in [\omega_1]^{\omega_1} \exists \alpha A_\alpha \subset A$.

Dzamonja and Shelah: Similar, but not the same

- \clubsuit_w holds iff $\exists \mathcal{A} \in \mathbb{A} \forall X \in [\omega_1]^{\omega_1} \exists A \in \mathcal{A} \text{ } \textcolor{green}{A} \subset^* X$.

Theorem (Dzamonja, Shelah, 1999)

$Con(\neg \clubsuit + \clubsuit_w)$

- The proof uses an iterated version of pseudoproduct

A. Primavesi: a combinatorial translation

$\clubsuit^{[\max \text{ tp}]}$ holds iff there is a sequence $\{A_\alpha : \alpha \in \text{Lim}\}$ s.t.

- $\text{tp } A_\alpha = \alpha$
- for each $X \in [\omega_1]^{\omega_1} \exists \alpha A_\alpha \subset A$.

Theorem (Primavesi, 2009)

$Con(\clubsuit + \neg \clubsuit^{[\max \text{ tp}]})$

Iterated pseudoprod

Iterated pseudoprod

Let Q be a well-met poset.

Iterated pseudoproduct

Let Q be a well-met poset.

A sequence $\langle P_\alpha, \dot{Q}_\beta : \alpha \leq \kappa, \beta < \kappa \rangle$ is **iterated pseudoproduct in Q** iff:

Iterated pseudoproduct

Let Q be a well-met poset.

A sequence $\langle P_\alpha, \dot{Q}_\beta : \alpha \leq \kappa, \beta < \kappa \rangle$ is **iterated pseudoproduct in Q** iff:

- (1) P_α is a poset and $1_{P_\beta} \Vdash \text{``}\dot{Q}_\beta \text{ is a } \wedge\text{-closed subordering of } Q\text{''}$

Iterated pseudoproduct

Let Q be a well-met poset.

A sequence $\langle P_\alpha, \dot{Q}_\beta : \alpha \leq \kappa, \beta < \kappa \rangle$ is **iterated pseudoproduct in Q** iff:

- (1) P_α is a poset and $1_{P_\beta} \Vdash \text{``}\dot{Q}_\beta \text{ is a } \wedge\text{-closed subordering of } Q\text{''}$
- (2) $P_\alpha = \{f \in Fn(\alpha, H(\omega_1); \omega_1) : \forall \beta \in \text{dom}(f) (f \upharpoonright \beta \in P_\beta \wedge 1 \Vdash_{P_\beta} f(\beta) \in \dot{Q}_\beta)\}.$

Iterated pseudoproduct

Let Q be a well-met poset.

A sequence $\langle P_\alpha, \dot{Q}_\beta : \alpha \leq \kappa, \beta < \kappa \rangle$ is **iterated pseudoproduct in Q** iff:

- (1) P_α is a poset and $1_{P_\beta} \Vdash \text{``}\dot{Q}_\beta \text{ is a } \wedge\text{-closed subordering of } Q\text{''}$
- (2) $P_\alpha = \{f \in Fn(\alpha, H(\omega_1); \omega_1) : \forall \beta \in \text{dom}(f) (f \upharpoonright \beta \in P_\beta \wedge 1 \Vdash_{P_\beta} f(\beta) \in \dot{Q}_\beta)\}$.
- (3) $f \leq g$ iff (a) $\text{dom}(f) \supset \text{dom}(g)$, (b) $1_{P_\beta} \Vdash f(\beta) \leq_Q g(\beta)$,
(c) $|\{\beta : f(\beta) \neq g(\beta)\}| < \omega$.

Iterated pseudoproduct

Let Q be a well-met poset.

A sequence $\langle P_\alpha, \dot{Q}_\beta : \alpha \leq \kappa, \beta < \kappa \rangle$ is **iterated pseudoproduct in Q** iff:

- (1) P_α is a poset and $1_{P_\beta} \Vdash \text{``}\dot{Q}_\beta \text{ is a } \wedge\text{-closed subordering of } Q\text{''}$
- (2) $P_\alpha = \{f \in Fn(\alpha, H(\omega_1); \omega_1) : \forall \beta \in \text{dom}(f) (f \upharpoonright \beta \in P_\beta \wedge 1 \Vdash_{P_\beta} f(\beta) \in \dot{Q}_\beta)\}$.
- (3) $f \leq g$ iff (a) $\text{dom}(f) \supset \text{dom}(g)$, (b) $1_{P_\beta} \Vdash f(\beta) \leq_Q g(\beta)$,
(c) $|\{\beta : f(\beta) \neq g(\beta)\}| < \omega$.

Lemma (S)

If CH holds, $|Q| = \omega_1$ and Q has property K, then forcing with P_κ preserves all the cardinals.

Application of iterated pseudoproduct

Primavesi: $\text{Con}(\clubsuit + \neg\clubsuit^{[\max tp]})$

Application of iterated pseudoproduct

Primavesi: $\text{Con}(\clubsuit + \neg\clubsuit^{[\max \text{tp}]})$

$\clubsuit^{[\zeta]}$ holds iff there is a sequence $\{A_\alpha : \alpha \in S\}$ s.t.

- A_α is cofinal in α and $\text{tp } A_\alpha = \zeta$
- for each $X \in [\omega_1]^{\omega_1}$ $\exists \alpha A_\alpha \subset A$.

Application of iterated pseudoproduct

Primavesi: $\text{Con}(\clubsuit + \neg\clubsuit^{[\max \text{tp}]})$

$\clubsuit^{[\zeta]}$ holds iff there is a sequence $\{A_\alpha : \alpha \in S\}$ s.t.

- A_α is cofinal in α and $\text{tp } A_\alpha = \zeta$
- for each $X \in [\omega_1]^{\omega_1}$ $\exists \alpha A_\alpha \subset X$.

Theorem (S)

$\text{Con}(\forall n < \omega \clubsuit^{[\omega^n]} + \neg\clubsuit^{[\omega^\omega]})$

Application of iterated pseudoproduct

Primavesi: $\text{Con}(\clubsuit + \neg\clubsuit^{[\max \text{tp}]})$

$\clubsuit^{[\zeta]}$ holds iff there is a sequence $\{A_\alpha : \alpha \in S\}$ s.t.

- A_α is cofinal in α and $\text{tp } A_\alpha = \zeta$
- for each $X \in [\omega_1]^{\omega_1}$ $\exists \alpha A_\alpha \subset X$.

Theorem (S)

$\text{Con}(\forall n < \omega \clubsuit^{[\omega^n]} + \neg\clubsuit^{[\omega^\omega]})$

Theorem (S)

It is consistent that

- $\forall \mathcal{A} \in \mathbb{A} \forall n \in \omega \omega_1 \not\rightarrow [\mathcal{A}]_n^1$ (i.e. $\exists c : \omega_1 \rightarrow n \forall A \in \mathcal{A} c[A] = n$)
- $\exists \mathcal{A} \in \mathbb{A} \omega_1 \rightarrow [\mathcal{A}]_{\omega, < \omega}^1$ (i.e. $\forall c : \omega_1 \rightarrow \omega \exists A \in \mathcal{A} |c[A]| < \omega$.)

Properties of ladder systems on ω_1

$\omega_1 \not\rightarrow [A]_n^1 : \exists f : \omega_1 \rightarrow n \ \forall A \in \mathcal{A} \ f[S] = n$

$\omega_1 \not\rightarrow [A]_{\omega, <\omega}^1 : \exists f : \omega_1 \rightarrow \omega \ \forall A \in \mathcal{A} \ |f[S]| = \omega$

$\forall \mathcal{A} \in \mathbb{A} (\forall n \ \omega_1 \not\rightarrow [A]_n^1 \ \cancel{\rightarrow} \ \forall \mathcal{A} \in \mathbb{A} \ \omega_1 \not\rightarrow [A]_{\omega, <\omega}^1)$

Property B

$\neg \clubsuit_w$

$\neg \clubsuit$

A topological problem

A topological problem

A topological space \aleph_1 -metrizable if every subspace of size $\leq \aleph_1$ is metrizable.

A topological problem

A topological space \aleph_1 -metrizable if every subspace of size $\leq \aleph_1$ is metrizable.

Arhangelskii asked if every locally compact \aleph_1 -metrizable space is metrizable.

A topological problem

A topological space \aleph_1 -metrizable if every subspace of size $\leq \aleph_1$ is metrizable.

Arhangelskii asked if every locally compact \aleph_1 -metrizable space is metrizable.

Theorem (Z. Balogh,2002)

Assume Axiom R. Then every locally compact \aleph_1 -metrizable space is metrizable.

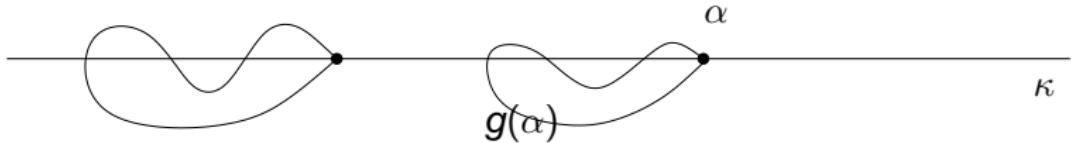
Fodor's Type Reflection Principle (FPR)

Fodor's Type Reflection Principle (FPR)

Definition: For any uncountable regular cardinal κ , for any stationary $S \subseteq E_\omega^\kappa$ and mapping $g : S \rightarrow [\kappa]^{\leq \aleph_0}$

Fodor's Type Reflection Principle (FPR)

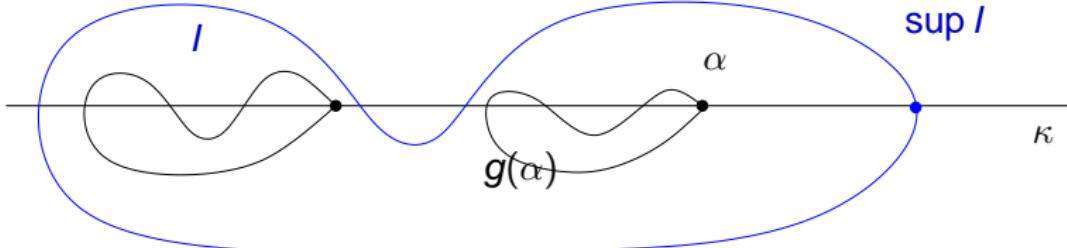
Definition: For any uncountable regular cardinal κ , for any stationary $S \subseteq E_\omega^\kappa$ and mapping $g : S \rightarrow [\kappa]^{\leq \aleph_0}$



Fodor's Type Reflection Principle (FPR)

Definition: For any uncountable regular cardinal κ , for any stationary $S \subseteq E_\omega^\kappa$ and mapping $g : S \rightarrow [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that

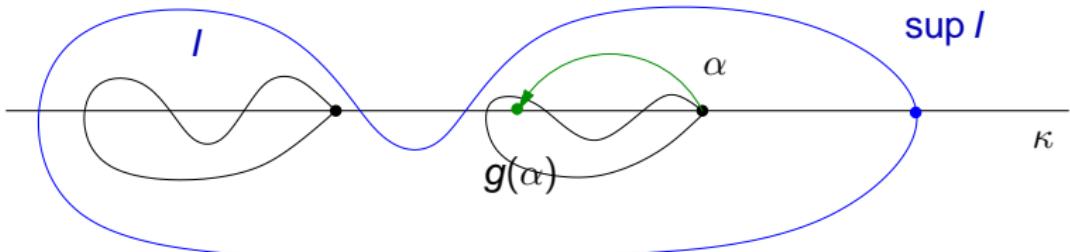
- $\text{cf}(I) = \omega_1$;
- $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;



Fodor's Type Reflection Principle (FPR)

Definition: For any uncountable regular cardinal κ , for any stationary $S \subseteq E_\omega^\kappa$ and mapping $g : S \rightarrow [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that

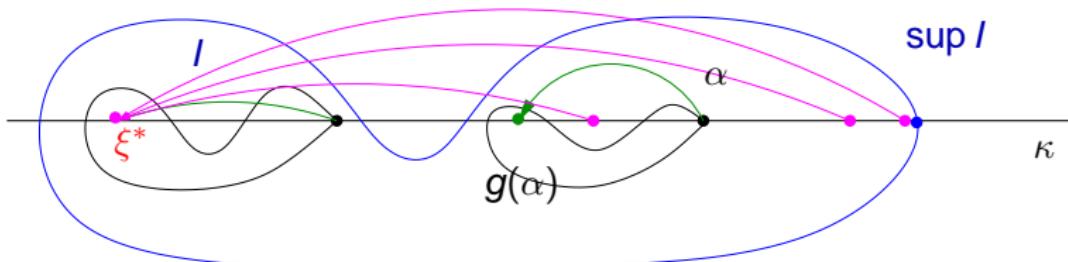
- $\text{cf}(I) = \omega_1$;
- $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
- for any regressive $f : S \cap I \rightarrow \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$,



Fodor's Type Reflection Principle (FPR)

Definition: For any uncountable regular cardinal κ , for any stationary $S \subseteq E_\omega^\kappa$ and mapping $g : S \rightarrow [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that

- $\text{cf}(I) = \omega_1$;
- $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
- for any regressive $f : S \cap I \rightarrow \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1}\{\xi^*\}$ is stationary in $\sup(I)$.



Fodor's Type Reflection Principle (FPR)

Definition: For any uncountable regular cardinal κ , for any stationary $S \subseteq E_\omega^\kappa$ and mapping $g : S \rightarrow [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that

- $\text{cf}(I) = \omega_1$;
- $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
- for any regressive $f : S \cap I \rightarrow \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1}\{\xi^*\}$ is stationary in $\text{sup}(I)$.

Fodor's Type Reflection Principle (FPR)

Definition: For any uncountable regular cardinal κ , for any stationary $S \subseteq E_\omega^\kappa$ and mapping $g : S \rightarrow [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that

- $\text{cf}(I) = \omega_1$;
- $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
- for any regressive $f : S \cap I \rightarrow \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1}\{\xi^*\}$ is stationary in $\text{sup}(I)$.

Fact: Axiom R implies FPR.

FPR does not imply Axiom R.

Fodor's Type Reflection Principle (FPR)

Definition: For any uncountable regular cardinal κ , for any stationary $S \subseteq E_\omega^\kappa$ and mapping $g : S \rightarrow [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that

- $\text{cf}(I) = \omega_1$;
- $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
- for any regressive $f : S \cap I \rightarrow \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1}\{\xi^*\}$ is stationary in $\text{sup}(I)$.

Fact: Axiom R implies FRP.

FRP does not imply Axiom R.

Theorem (Fuchino, Juhász, S., Szentmiklóssy, Usuba, 2010)

Assume FRP. Then every locally compact \aleph_1 -metrizable space is metrizable.

Fodor's Type Reflection Principle

Axiom R \implies FRP \implies every loc cpt \aleph_1 -metrizable space is metrizable.

Fodor's Type Reflection Principle

Axiom R \implies FRP \implies every loc cpt \aleph_1 -metrizable space is metrizable.

Theorem (Fuchino, Sakai, S., Usuba, 2012)

The following are equivalent:

Fodor's Type Reflection Principle

Axiom R \implies FRP \implies every loc cpt \aleph_1 -metrizable space is metrizable.

Theorem (Fuchino, Sakai, S., Usuba, 2012)

The following are equivalent:

- FPR

Fodor's Type Reflection Principle

Axiom R \implies FRP \implies every loc cpt \aleph_1 -metrizable space is metrizable.

Theorem (Fuchino, Sakai, S., Usuba, 2012)

The following are equivalent:

- FPR
- *every locally compact \aleph_1 -metrizable space is metrizable.*

Fodor's Type Reflection Principle

Axiom R \implies FRP \implies every loc cpt \aleph_1 -metrizable space is metrizable.

Theorem (Fuchino, Sakai, S., Usuba, 2012)

The following are equivalent:

- *FPR*
- *every locally compact \aleph_1 -metrizable space is metrizable.*
- *If \mathcal{A} is a ladder system on a subset of E_ω^λ for some a regular cardinal λ s.t.*
 - *$\mathcal{A} \upharpoonright \delta$ essentially disjoint for each $\delta < \lambda$,*
then \mathcal{A} is essentially disjoint.

Fodor's Type Reflection Principle

Axiom R \implies FRP \implies every loc cpt \aleph_1 -metrizable space is metrizable.

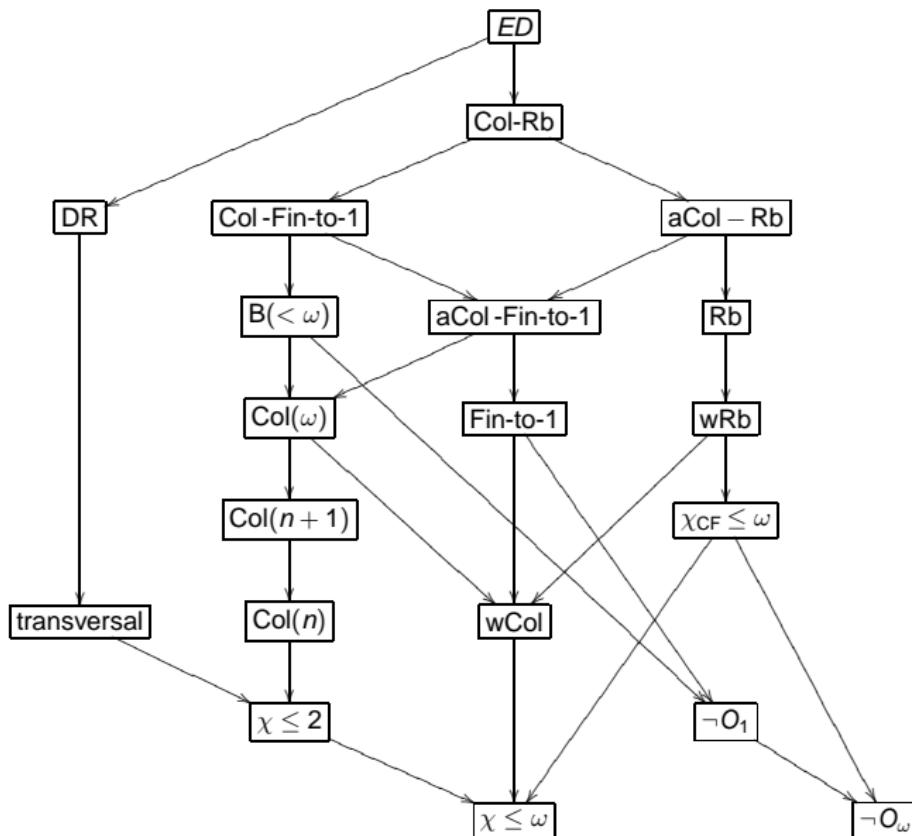
Theorem (Fuchino, Sakai, S., Usuba, 2012)

The following are equivalent:

- *FPR*
- *every locally compact \aleph_1 -metrizable space is metrizable.*
- *If \mathcal{A} is a ladder system on a subset of E_ω^λ for some a regular cardinal λ s.t.*
 - *$\mathcal{A} \upharpoonright \delta$ essentially disjoint for each $\delta < \lambda$,*
then \mathcal{A} is essentially disjoint.
- *For any graph G ,*
 - *if all subgraphs of cardinality $\leq \omega_1$ have countable coloring number*
then G itself has also countable coloring number.

The Zoo of the properties of families of sets

The Zoo of the properties of families of sets



Thank you!

<http://www.renyi.hu/~soukup>