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Definition
A poset (P, <) has the weak Freese-Nation property
iff there is f : P — [P]” such that for any p, g € P

if p<qthenthereisr ef(p)nf(g)st. p<r<q.
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Recapitulation

Definition
A poset (P, <) has the weak Freese-Nation property
iff there is f : P — [P]” such that for any p, g € P
if p <qgthenthereisr e f(p)Nf(q)st p<r<q.

Theorem
If V = L, then the poset ([x]“, C) has the wFN-property.
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GCH is not enough

A poset (P, <) has the weak Freese-Nation property
iff there is f : P — [P]” such that for any p, g € P
if p < qthenthereisr e f(p)Nf(gq)st. p<r<q.

Theorem (Fuchino, S, 1997)
GCH does not imply that ([X,,]“, C) has the wFN property.

Definition

(ky A) = (p,v) is the following assertion:

For any structure A = (A, U, ...) of countable signature with |A| = &,
and |U| = A, there is an elementary substructure A’ = (A’,U’,...) of
Ast|A|=pand |U'| =v.

Theorem (Levinski, M. Magidor, S. Shelah, 1990)
GCH + (N1, N,) = (N1, Xp) is consistent modulo LC.

Theorem (Fuchino, S)
If GCH +(R,,11,R.) — (Rg, No), then ([R,]“, c) does not have the
WFN property.



GCH is not enough Singular cardinal compactness Separation theorems Combinatorial principles

GCH + (Ry11, X,) = (R, Rg), and F : [R,]“ — [[Nw]‘”]w



GCH is not enough Singular cardinal compactness Separation theorems Combinatorial principles

GCH + (Ry11, X,) = (R, Rg), and F : [R,]“ — [[Nw}“]w

o {by:a <Ny} =[N]“.



GCH is not enough Singular cardinal compactness Separation theorems Combinatorial principles

GCH + (Ry11, X,) = (R, Rg), and F : [R,]“ — [[Nw]“]w

o {by:a <Ny} =[N]“.
o Let A= (N,1,N,,< E,f g,h), where



GCH is not enough Singular cardinal compactness Separation theorems Combinatorial principles

GCH + (Ry11, X,) = (R, Rg), and F : [R,]“ — [[Nw]“]w

o {by:a <Ny} =[N]“.
o Let A= (N,1,N,,< E,f g,h), where
(1) E={(a,8): e, B €N 11,0 € bg};



GCH is not enough Singular cardinal compactness Separation theorems Combinatorial principles

GCH + (Ry11, X,) = (R, Rg), and F : [R,]“ — [[Nw]“’]w
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GCH + (Ry11, X,) = (R, Rg), and F : [R,]“ — [[Nw]“]w

o {by:a <Ny} =[N]“.
o Let A= (N,1,N,,< E,f g,h), where
(1) E={(a,8): e, B €N 11,0 € bg};
(2) F(ba) = {bi(an : N € w};
(3) 9(e, ) : a = R, is injective;
(4) h(a, B) = |ba N bg|.
o Let A = (A U ,..) <A |N|=uwy, |U|=w.
e A E“g(a,): ANa— U isinjective.”
e Sotp(A') = ws.
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o {by:a <Ny} =[N]“.
o Let A= (N,1,N,,< E,f g,h), where

(1) E={(a,8): e, B €N 11,0 € bg};
(2) F(ba) = {bi(an : N € w};

(3) 9(e, ) : a = R, is injective;

(4) h(e, B) = [ba Nbg].

Let A/ = (AU, .. ) < A, |A| = wy, U] = w.

A E“g(a,-) : A Na— U'is injective.”

S0 tp(A) = wi.

Letl = {¢ € A : b, € F(U)} € [A']”, and pick o € A"\ supl.
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o {by:a <Ny} =[N]“.
o Let A= (N,1,N,,< E,f g,h), where
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(2) F(ba) = {bi(an : N € w};
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o {by:a <Ny} =[N]“.
o Let A= (N,1,N,,< E,f g,h), where

(1) E={(a,8): e, B €N 11,0 € bg};
(2) F(ba) = {bi(an : N € w};
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*
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o {by:a <Ny} =[N]“.
o Let A= (N,1,N,,< E,f g,h), where

(1) E={(a,8): e, B €N 11,0 € bg};
(2) F(ba) = {bi(an : N € w};

(3) 9(e, ) : a = R, is injective;

(4) h(e, B) = [ba Nbg].

Let A/ = (A, U',..) < A, |N] =wi, U] = w.

A E“g(a,-) : A Na— U'is injective.”

So tp(A’) = wy.

Letl = {¢ € A : b, € F(U)} € [A']”, and pick o € A"\ supl.
A =38 bg N b is finite for all ¢ < .

* Thereis g € A’ s.t. bg N b is finite for all ¢ < o

e by Cc U’ sothereis be € F(bg) N F(U’) such that b C b, C U.
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GCH + (Ruy1,Ru) = (Ro, o), and F  [,]“ = [ R.]]

o {by:a <Ny} =[N]“.
o Let A= (N,1,N,,< E,f g,h), where

(1) E={(a,8): e, B €N 11,0 € bg};
(2) F(ba) = {bi(an : N € w};

(3) 9(e, ) : a = R, is injective;

(4) h(e, B) = [ba Nbg].

o Let A= (A, U',..) <A |A] =wi, U] =w.

e A E“g(a,): ANa— U isinjective.”

e Sotp(A’) = w;.

o Letl ={Ce A b, e F(U)} € [A]”, and pick o € A"\ sup|.
e A =38 bgNbeis finite for all ¢ < a.

* Thereis g € A’ s.t. bg N b is finite for all { < .

e by Cc U’ sothereis be € F(bg) N F(U’) such that b C b, C U.

e Then ¢ €1, and so ¢ < a. Thus by Nbg is finite by (x).
Contradiction.
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WFN property of P(w)

Theorem (Fuchino, Geschke,S, 2001)
(1) If P(w) has the wFN property, then

e shr(meager) = wi. So non(meager) =b* =w;i ands = ¢ =w;
o a=w;
[ ] g = W1

(2) If P(w) has the wFN property, then



GCH is not enough Singular cardinal compactness Separation theorems Combinatorial principles

WFN property of P(w)

Theorem (Fuchino, Geschke,S, 2001)
(1) If P(w) has the wFN property, then

e shr(meager) = wi. So non(meager) =b* =w;i ands = ¢ =w;
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®g=w
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e cov(meager) =2¥, andsot=u=i=2%
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WFN property of P(w)

Theorem (Fuchino, Geschke,S, 2001)
(1) If P(w) has the wFN property, then

e shr(meager) = wi. So non(meager) =b* =w;i ands = ¢ =w;
° a1=w;
®g=w
(2) If P(w) has the wFN property, then
e cov(meager) =2¥, andsot=u=i=2%

provided {r : cf([x]“, C) = x} is cofinal in {x < 2% : cf (k) > w}
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Theorem (Fuchino, S, 1997)
If V = “GCH and [J;* holds for all 1 > cf(1) = w, then

v cohen(=) L p(4;) does has the wFN property
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WFN property of P(w)

Theorem (Fuchino, S, 1997)
If V = “GCH and [J};* holds for all 1 > cf(1) = w, then

v €onen(x) 1= p(w) does has the wFN property

Theorem (Fuchino, Geschke, Shelah, S, 2001)

IfV E“GCH and (R,.1,N,) — (X1,R0)”, and H is the Hechler poset
in V adding a dominating real, then

v HxCohen(R.) L p(,) does not have the wFN property
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Singular cardinal compactness theorem of Shelah

Assume A > cf(\), G C [\|“* F C {(B,A): ACB C A}.
We say “B is free over A” and write (B/A € F]) if (B,A) € F.
We say “C is free” if C € G.

Then there is a continuous sequence (A¢ : ¢ < w - cf(\)) C [A] Ngt
(@) Ao =0, U{A; : ¢ <w-cf(A\)} = A,

(b) V¢ Aci1/Ac €F.

PROVIDED

(H1) (@) AB€G,|A =|B,ACB=B/AcF
(b) BEG=—B/fcF,
(H2) 3k < AVp € [8,A) G [A]" is unbounded in [A]".
(H3) Ik < AVE<pu<v<A
fAe(Gn[A]")orA=0andAcCBeGn[A” then
{Ce[N":BUC/AUC€F}
contains a countable-closed unbounded subset of [A]".
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has a transversal, THEN X has a transversal.

]<A
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Theorem
fcf(A\) <k <A\ X =(Xo:a<X)C [\ " andevery Z € [X
has a transversal, THEN X has a transversal.

o IfACB e[\ let

B/AcF iff 3f : (B\A) =5 (B\ A)st. f(y) e X, fory e B\ A
e Ac [/\}<
e G={Ac [/\}<A is clsd: VB € [)]

]<A

* is closed iff ye A= X, CA.

Al (AcBclsd=B/AcF)}.
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B/AcF iff 3f : (B\A) =5 (B\ A)st. f(y) e X, fory e B\ A

]<A

o Ac [\ Misclosediffye A= X, C A,
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e Enough: there is a continuous (A; : ¢ < w - cf(\)) C [A]Q s.t
A<+1/AC eF.
® Cc i Acr1 \Ac = Acqa \ A¢ transversal for {X; i € Aciq \ Act.

® € = Uccwcrn Cc¢ Is transversal for X
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PROVIDED (H1), (H2), (H3), ...
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Then there is a continuous sequence (A;: ¢ <w-cf(A)) C [A]
StA =0, U{Ac 1 ( <w-cf(N)} =\, V¢ (Acs1,Ac) €F
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<A
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Assume that X is a singular cardinal and G C [)] <*.If for some
cardinals p* < p < A

(o) thesetGn [A]”is p*-chain closed and cofinal in [A]” for each
uw v <A,

then there is a continuous, increasing sequence (G¢ : { < cf(\)) C G
such that [J; _jn) Ge = A.
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a<p- Ga € G forany increasing
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Assume that ) is a singular cardinal and G C [)\] <*_If for some cardi-
nals p* < p < Athe set G N [A]” is p*-chain closed and cofinal in [A]”
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(G : £ <cf(N)) C G suchthat e, Ge = A
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Singular cardinal compactness

Separation theorems

Assume that ) is a singular cardinal and G C [)\] <*_If for some cardi-
nals p* < p < Athe set G N [A]” is p*-chain closed and cofinal in [A]”
for each ;1 < v < A, then there is a continuous, increasing sequence
(G : £ <cf(N)) C G suchthat e, Ge = A

P Go .C... Ge
Y U
G(YO,l) G(Yc,l)
Y U
Yo, .C. o continuous >
Y U
G(Yo,0) G(Yeo)
Y U
Yo,0 .C. Yeo continuous >
cf(\)
Ao S A¢ <

Combinatorial principles
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Application of poor man’s SCC
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{A\F(A) : A € A} are pairwise disjoint for some F(A) € [A]
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Application of poor man’s SCC

Assume that ) is a singular cardinal and G C [)\] <X If for some cardi-
nals p* < pu < Athe set G n [A]” is p*-chain closed and cofinal in [A]”
for each 4 < v < ), then there is a continuous, increasing sequence
(G : £ <cf(N)) C G suchthat [, _») Ge = A

Theorem (S, 2009)
Letu <3, <A\

o If AC [} = is a u-almost disjoint family, then A is
J,-essentially disjoint,
{A\F(A) : A € A} are pairwise disjoint for some F(A) € [A] <
Lemma S
If o <3 < A and {Ay : e < A} C [A]7 is a p-almost disjoint family,
then there is an increasing, continuous sequence
{G¢: ¢ <cf(N)} C [A}d such that

V(¢ < cf(A) Voo € Geya \ Ge (AL NGe| < dyand A, C Geyn ).
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pl"l = p iff there is a family B  [p] =" of size p such that for all
ue [p]” thereis P € [B]~" such that u = UP.
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If p > 3., then pl*] = p for each large enough regular v < 3.
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Lemma
Fix © < 3,,. Then for each p > 3, there is a regular v(p) < 3, such

that if A C [p] “1) is ;-almost disjoint, then |.A| < p.

Let u < v < 3, be regular such that pl*! = p witnessed by a
family B  [p]”. We show that v(p) = v works.

If Ae A, thenthereis B € Bsuchthat ANB = v.

If Ag £A; € A, and |[AgNB| = |A;NB|=vthen AgNB #A; NB
because A is p-almost disjoint.

So|{Ac A:|ANB|=v}| <2Bl <2v <1,
Thus |A| <3, - |B| = p.
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If o <3 < A {Aq :a < A} C [A]7 is p-ad, then there is an
increasing, continuous {G¢ : ¢ < cf(A)} C [A] st

Vo€ Ger1 \Ge (JAaNG¢| <3, and A, C Gega ).

Thm: If G C [)\]<A and 3p* < p < Asit. Gn [A]”is p*-chain closed

and cofinal in [)\]” for each © < p < A, then there is a continuous,
increasing sequence (G¢ : ¢ < cf()) € G such that |J. ¢,y Gc = A

G={G e [\ : (Va € G) A, CG A (Va € A\ G) |A, NG| < v(|G|)}.
o p*=w;p=27,.
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“Separation” theorems

A= { ladder systems on some stationary subset of w; }
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MA(countable): P, ~ P, = Cohen.

{a} xw
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Juhasz’s forcing

Juhasz: Con (MA(countable) + & + 2% is as large as you wish )

e LetP,={p|3le[s]”"N<wp:lxn—2} Let P.= (P, D).
e &: you can amalgamate certain infinite families of conditions.
e MA(countable): P, ~ P, x Cohen.
e Forcing with P, collapses 2“ to w.
w
n

{a} xw
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The pseudoproduct of Fuchino, Shelah and S.
e Prove Con (MA(countable) + & + 2% is as large as you wish)
without collapsing cardinals.
e Let k be a cardinal. Let Q be a poset.
e Typical example: Q = Fn(w, 2).
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The pseudoproduct of Fuchino, Shelah and S.

Prove Con (MA(countable) + & + 2 is as large as you wish)
without collapsing cardinals.

Let x be a cardinal. Let Q be a poset.

Typical example: Q = Fn(w, 2).
Let [T. Q= Fn(x, Q;w1).

q(a) ‘ ‘

(04 Al K
)

domq
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The pseudoproduct of Fuchino, Shelah and S.

e Prove Con (MA(countable) + & + 2% is as large as you wish)
without collapsing cardinals.

e Let k be a cardinal. Let Q be a poset.

e Typical example: Q = Fn(w, 2).

e Let[[L Q=Fn(x,Q;w1).

e Letp < qgiffdomp D domgq, Vo p(a) <q q(a),
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The pseudoproduct of Fuchino, Shelah and S.

e Prove Con (MA(countable) + & + 2% is as large as you wish)
without collapsing cardinals.

e Let k be a cardinal. Let Q be a poset.

e Typical example: Q = Fn(w, 2).

e Let[[L Q=Fn(x,Q;w1).

e Letp < qgiffdomp D domgq, Vo p(a) <q q(a),

[{a € domq : p(a) q a(a)}] < w.
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Dzamonja and Shelah: Similar, but not the same

o &, holdsiff 34 € AVX € [w1]** A€ AA C* X.
Theorem (Dzamonja, Shelah, 1999)
Con( — + *w)

e The proof uses an iterated version of pseudoproduct

A. Primavesi: a combinatorial translation
&M<l holds iff there is a sequence {A,, : a € Lim} s.t.
e IpA, =«

e foreach X € [w1]* 3a A, C A.
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Dzamonja and Shelah: Similar, but not the same

o &, holdsiff 34 € AVX € [w1]** A€ AA C* X.
Theorem (Dzamonja, Shelah, 1999)
Con( — + *w)

e The proof uses an iterated version of pseudoproduct

A. Primavesi: a combinatorial translation

&M<l holds iff there is a sequence {A,, : a € Lim} s.t.
e tpA, =0
e foreach X € [w1]* 3a A, C A.

Theorem (Primavesi, 2009)
Con( & 4 _|*[max tp])
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Iterated pseudoproduct

Let Q be a well-met poset.
A sequence (P, Qs:a<kfB< k) is iterated pseudoproduct in Q
iff:
(1) P, isaposetand 1p, I "Q/a is a A-closed subordering of Q”
2) P, = {f € Fn(a,H(wy); w1) :

v3 edom(f)(f | BePsAllrp, f(8) € Qs.)}.
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Iterated pseudoproduct

Let Q be a well-met poset.
A sequence (P, Qs:a<kfB< k) is iterated pseudoproduct in Q
iff:
(1) P, isaposetand 1p, I "Q/a is a A-closed subordering of Q”
2) P, = {f € Fn(a,H(wy); w1) :

v3 edom(f)(f | BePsAllrp, f(8) € Qs.)}.

(3) f < g iff (@) dom(f) > dom(g), (b) 1p, IF f(B) <o 9(B).
© {B:1(8) #9(B)} <w.
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Iterated pseudoproduct

Let Q be a well-met poset.
A sequence (P, Qs:a<kfB< k) is iterated pseudoproduct in Q
iff:
(1) P, isaposetand 1p, I "Q,@ is a A-closed subordering of Q”
(2) Py = {f € Fn(a,H(w1);w1) : -

v3 edom(f)(f | BePsAllrp, f(8) € Qs.)}.
(3) f < g iff (a) dom(f) > dom(g), (b) 1, I- f(3) <o 9(A),

© {B:1(8) #9(8)} <w.

Lemma (S)

If CH holds, |Q| = w; and Q has property K, then forcing with P,
preserves all the cardinals.
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Application of iterated pseudoproduct

Primavesi: Con( & + —é&[Mma ®1) J

&¢I holds iff there is a sequence {A, : a € S} sit.
e A, iscofinalinaandtpA, =¢

o foreach X € [w]** Ja A, C A.
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Application of iterated pseudoproduct

Primavesi: Con( & + —[M¥ ) J

&¢I holds iff there is a sequence {A, : a € S} sit.
e A, iscofinalinaandtpA, =¢
o foreach X € [w]** Ja A, C A.

Theorem (S)
Ccon((Vn < w &l + &l T)
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Application of iterated pseudoproduct

Primavesi: Con( & + —[M¥ ) J

&¢I holds iff there is a sequence {A, : a € S} sit.
e A, iscofinalinaandtpA, =¢
o foreach X € [w]** Ja A, C A.
Theorem (S)
Con( (Vn < w %l + ~&lT)
Theorem (S)
It is consistent that
e VA AVn eww; /4 [A]L (ile. 3¢ i wp — nVA € Ac[A] =n)
e JAcAw — [AL ., (ile. Ve :wy »w3IA € A[C[A]| <w.)
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Properties of ladder systems on w;

wr A AR 3f :wy - nVA€ Af[S] =n

w1 A AL i i s w VA€ Af[S]=w

VAc AVn) wi A [A]} —4 VAEA w4 AL,

| |

Property B —doyy

|

e
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A topological problem

A topological space X;-metrizable if every subspace of size < X; is
metrizable.
Arhangelskii asked if every locally compact X;-metrizable space is

metrizable.
Theorem (Z. Balogh,2002)

Assume Axiom R. Then every locally compact X;-metrizable space is
metrizable.
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e g(a) Clforallaclns;
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Fodor’s Type Reflection Principle (FPR)

Definition: For any uncountable regular cardinal «, for any stationary
S C Ef and mapping g : S — [k]=% there is | € [x]™ such that

° Cf(|) = W1,

e gla)Clforallaelns;

o for any regressivef : SNl — ks.t. f(a) € g(«o) forall « € SN,
there is ¢* < k s.t. f~1{¢*} is stationary in sup(l).

Fact: Axiom R implies FRP.
FRP does not imply Axiom R.
Theorem (Fuchino, Juhasz, S., Szentmikldssy, Usuba, 2010)

Assume FRP. Then every locally compact R;-metrizable space is
metrizable.
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Fodor’s Type Reflection Principle

Axiom R = FRP = every loc cpt N;-metrizable space is metrizable.J
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Fodor’s Type Reflection Principle

Axiom R = FRP = every loc cpt N;-metrizable space is metrizable.J

Theorem (Fuchino, Sakai, S., Usuba, 2012)
The following are equivalent:

e FPR
e every locally compact N;-metrizable space is metrizable.

e If Ais aladder system on a subset of E/) for some a regular
cardinal \ s.t.

o A | 4 essentially disjoint for each § < A,
then A is essentially disjoint.
e For any graph G,

e if all subgraphs of cardinality < w; have countable coloring
number

then G itself has also countable coloring number.
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The Zoo of the properties of families of sets

transversal
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Thank you!

http://www.renyi.hu/~soukup
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