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Definition
A poset 〈P,≤〉 has the weak Freese-Nation property

iff there is f : P →
[

P
]ω

such that for any p, q ∈ P
if p ≤ q then there is r ∈ f (p) ∩ f (q) s.t. p ≤ r ≤ q.
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A poset 〈P,≤〉 has the weak Freese-Nation property

iff there is f : P →
[

P
]ω

such that for any p, q ∈ P
if p ≤ q then there is r ∈ f (p) ∩ f (q) s.t. p ≤ r ≤ q.

Theorem
If V = L, then the poset

〈[

κ
]ω
,⊂

〉

has the wFN-property.
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A st |A′| = µ and |U ′| = ν.
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GCH + (ℵω+1,ℵω) ։ (ℵ1,ℵ0) is consistent modulo LC.
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GCH is not enough
A poset 〈P,≤〉 has the weak Freese-Nation property
iff there is f : P →

[

P
]ω

such that for any p, q ∈ P
if p ≤ q then there is r ∈ f (p) ∩ f (q) s.t. p ≤ r ≤ q.

Theorem (Fuchino, S, 1997)
GCH does not imply that

〈[

ℵω

]ω
,⊂

〉

has the wFN property.

Definition
(κ, λ) ։ (µ, ν) is the following assertion:
For any structure A = (A,U, . . .) of countable signature with |A| = κ,
and |U| = λ, there is an elementary substructure A′ = (A′,U ′, . . .) of
A st |A′| = µ and |U ′| = ν.

Theorem (Levinski, M. Magidor, S. Shelah, 1990)
GCH + (ℵω+1,ℵω) ։ (ℵ1,ℵ0) is consistent modulo LC.

Theorem (Fuchino, S)
If GCH +(ℵω+1,ℵω) ։ (ℵ1,ℵ0), then

〈[

ℵω

]ω
,⊂

〉

does not have the
wFN property.
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GCH + (ℵω+1,ℵω) ։ (ℵ1,ℵ0), and F :
[

ℵω

]

ω

→
[

[

ℵω

]

ω

]

ω
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• So tp(A′) = ω1.

• Let I = {ζ ∈ A′ : bζ ∈ F (U ′)} ∈
[

A′
]ω

, and pick α ∈ A′ \ sup I.

• A |= ∃β bβ ∩ bζ is finite for all ζ < α.

⋆ There is β ∈ A′ s.t. bβ ∩ bζ is finite for all ζ < α.

• bβ ⊂ U ′ so there is bζ ∈ F (bβ) ∩ F (U ′) such that bβ ⊂ bζ ⊂ U.

• Then ζ ∈ I, and so ζ < α. Thus bζ ∩ bβ is finite by (⋆).
Contradiction.
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wFN property of P(ω)

Theorem (Fuchino, Geschke,S, 2001)
(1) If P(ω) has the wFN property, then

• shr(meager) = ω1. So non(meager) = b∗ = ω1 and s = e = ω1

• a = ω1

• g = ω1

(2) If P(ω) has the wFN property, then

• cov(meager) = 2ω, and so r = u = i = 2ω

provided {κ : cf (
[

κ
]ω
,⊂) = κ} is cofinal in {κ < 2ω : cf (κ) > ω}
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wFN property of P(ω)

Theorem (Fuchino, S, 1997)
If V |= “GCH and �∗∗

µ holds for all µ > cf(µ) = ω, then

V Cohen(κ) |= P(ω) does has the wFN property

Theorem (Fuchino, Geschke, Shelah, S, 2001)
If V |= “GCH and (ℵω+1,ℵω) ։ (ℵ1,ℵ0)”, and H is the Hechler poset
in V adding a dominating real, then

VH∗Cohen(ℵω ) |= P(ω) does not have the wFN property
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Assume λ > cf(λ), G ⊂
[

λ
]<λ

, F ⊂ {〈B,A〉 : A ⊂ B ⊂ λ}.
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(a) A0 = ∅, ∪{Aζ : ζ < ω · cf(λ)} = λ,

(b) ∀ζ Aζ+1/Aζ ∈ F .
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Singular cardinal compactness theorem of Shelah

Assume λ > cf(λ), G ⊂
[

λ
]<λ

, F ⊂ {〈B,A〉 : A ⊂ B ⊂ λ}.
We say “B is free over A” and write (B/A ∈ F ]) if 〈B,A〉 ∈ F .
We say “C is free” if C ∈ G.
Then there is a continuous sequence 〈Aζ : ζ < ω · cf(λ)〉 ⊂

[

λ
]<λ

s.t.

(a) A0 = ∅, ∪{Aζ : ζ < ω · cf(λ)} = λ,

(b) ∀ζ Aζ+1/Aζ ∈ F .

PROVIDED

(H1) (a) A,B ∈ G, |A| = |B|, A ⊂ B =⇒ B/A ∈ F
(b) B ∈ G =⇒ B/∅ ∈ F ,
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, and every Z ∈
[

X
]<λ

has a transversal, THEN X has a transversal.
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[

X
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has a transversal, THEN X has a transversal.

• If A ⊂ B ∈
[

λ
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let

B/A ∈ F iff ∃f : (B \ A) 1–1
−→ (B \ A) s.t. f (γ) ∈ Xγ for γ ∈ B \ A

• A ∈
[

λ
]<λ

is closed iff γ ∈ A =⇒ Xγ ⊂ A.

• G= {A ∈
[

λ
]<λ

is clsd: ∀B ∈
[

λ
]|A|

(A ⊂ B clsd ⇒ B/A ∈ F )}.
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λ
]µ

is closed under f and f−1}

• If C ∈ C, then (B ∪ C) \ (A ∪ C) = (B \ A) \ C,
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Poor man’s singular cardinal compactness

Assume λ > cf(λ), G ⊂
[

λ
]<λ

, F ⊂ {〈B,A〉 : A ⊂ B ⊂ λ}.

Then there is a continuous sequence 〈Aζ : ζ < ω · cf(λ)〉 ⊂
[

λ
]<λ

s.t.A0 = ∅, ∪{Aζ : ζ < ω · cf(λ)} = λ, ∀ζ 〈Aζ+1,Aζ〉 ∈ F
PROVIDED (H1), (H2), (H3), . . .
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Theorem
Assume that λ is a singular cardinal and G ⊂

[

λ
]<λ

. If for some
cardinals ρ∗ ≤ µ < λ

(◦) the set G ∩
[

λ
]ν

is ρ∗-chain closed and cofinal in
[

λ
]ν

for each
µ ≤ ν < λ,

then there is a continuous, increasing sequence 〈Gξ : ξ < cf(λ)〉 ⊂ G
such that

⋃

ξ<cf(λ) Gξ = λ.
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Assume that λ is a singular cardinal and G ⊂
[

λ
]<λ

. If for some cardi-
nals ρ∗ ≤ µ < λ the set G ∩

[

λ
]ν

is ρ∗-chain closed and cofinal in
[

λ
]ν

for each µ ≤ ν < λ, then there is a continuous, increasing sequence
〈Gξ : ξ < cf(λ)〉 ⊂ G such that

⋃

ξ<cf(λ) Gξ = λ.



GCH is not enough Singular cardinal compactness Separation theorems Combinatorial principles

Application of poor man’s SCC

Assume that λ is a singular cardinal and G ⊂
[

λ
]<λ

. If for some cardi-
nals ρ∗ ≤ µ < λ the set G ∩

[

λ
]ν

is ρ∗-chain closed and cofinal in
[

λ
]ν

for each µ ≤ ν < λ, then there is a continuous, increasing sequence
〈Gξ : ξ < cf(λ)〉 ⊂ G such that

⋃

ξ<cf(λ) Gξ = λ.

Theorem (S, 2009)
Let µ < iω ≤ λ.



GCH is not enough Singular cardinal compactness Separation theorems Combinatorial principles

Application of poor man’s SCC

Assume that λ is a singular cardinal and G ⊂
[

λ
]<λ

. If for some cardi-
nals ρ∗ ≤ µ < λ the set G ∩

[

λ
]ν

is ρ∗-chain closed and cofinal in
[

λ
]ν

for each µ ≤ ν < λ, then there is a continuous, increasing sequence
〈Gξ : ξ < cf(λ)〉 ⊂ G such that

⋃

ξ<cf(λ) Gξ = λ.

Theorem (S, 2009)
Let µ < iω ≤ λ.

• If A ⊂
[

λ
]iω is a µ-almost disjoint family, then A is

iω-essentially disjoint,



GCH is not enough Singular cardinal compactness Separation theorems Combinatorial principles

Application of poor man’s SCC

Assume that λ is a singular cardinal and G ⊂
[

λ
]<λ

. If for some cardi-
nals ρ∗ ≤ µ < λ the set G ∩

[

λ
]ν

is ρ∗-chain closed and cofinal in
[

λ
]ν

for each µ ≤ ν < λ, then there is a continuous, increasing sequence
〈Gξ : ξ < cf(λ)〉 ⊂ G such that

⋃

ξ<cf(λ) Gξ = λ.

Theorem (S, 2009)
Let µ < iω ≤ λ.

• If A ⊂
[

λ
]iω is a µ-almost disjoint family, then A is

iω-essentially disjoint,

{A \ F (A) : A ∈ A} are pairwise disjoint for some F (A) ∈
[

A
]<iω



GCH is not enough Singular cardinal compactness Separation theorems Combinatorial principles
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Assume that λ is a singular cardinal and G ⊂
[
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nals ρ∗ ≤ µ < λ the set G ∩

[
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[
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⋃
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• If A ⊂
[

λ
]iω is a µ-almost disjoint family, then A is

iω-essentially disjoint,

{A \ F (A) : A ∈ A} are pairwise disjoint for some F (A) ∈
[

A
]<iω

Lemma
If µ < iω < λ, and {Aα : α < λ} ⊂

[

λ
]iω is a µ-almost disjoint family,

then there is an increasing, continuous sequence
{Gζ : ζ < cf(λ)} ⊂

[

λ
]<λ

such that

∀ζ < cf(λ) ∀α ∈ Gζ+1 \ Gζ ( |Aα ∩ Gζ | < iω and Aα ⊂ Gζ+1 ).
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Application of poor man’s SCC
Definition
ρ[ν] = ρ iff there is a family B ⊂

[

ρ
]≤ν

of size ρ such that for all

u ∈
[

ρ
]ν

there is P ∈
[

B
]<ν

such that u = ∪P .
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there is P ∈
[

B
]<ν

such that u = ∪P .

Theorem (Shelah, Revised GCH)
If ρ ≥ iω, then ρ[ν] = ρ for each large enough regular ν < iω.
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Fix µ < iω. Then for each ρ ≥ iω there is a regular ν(ρ) < iω such

that if A ⊂
[

ρ
]ν(ρ)

is µ-almost disjoint, then |A| ≤ ρ.
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• Let µ < ν < iω be regular such that ρ[ν] = ρ witnessed by a
family B ⊂

[

ρ
]ν

. We show that ν(ρ) = ν works.
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because A is µ-almost disjoint.
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Application of poor man’s SCC.
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If µ < iω < λ, {Aα : α < λ} ⊂
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]iω is µ-ad, then there is an

increasing, continuous {Gζ : ζ < cf(λ)} ⊂
[

λ
]<λ

s.t.

∀α ∈ Gζ+1 \ Gζ ( |Aα ∩ Gζ | < iω and Aα ⊂ Gζ+1 ).
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Lemma
If µ < iω < λ, {Aα : α < λ} ⊂

[

λ
]iω is µ-ad, then there is an

increasing, continuous {Gζ : ζ < cf(λ)} ⊂
[

λ
]<λ

s.t.

∀α ∈ Gζ+1 \ Gζ ( |Aα ∩ Gζ | < iω and Aα ⊂ Gζ+1 ).

Thm: If G ⊂
[

λ
]<λ

and ∃ρ∗ ≤ µ < λ s.t. G ∩
[

λ
]ρ

is ρ∗-chain closed
and cofinal in

[

λ
]ρ

for each µ ≤ ρ < λ, then there is a continuous,
increasing sequence 〈Gζ : ζ < cf(λ)〉 ⊂ G such that

⋃

ζ<cf(λ) Gζ = λ.

G= {G ∈
[

λ
]<λ

: (∀α ∈ G) Aα ⊂ G ∧ (∀α ∈ λ \ G) |Aα ∩ G| < ν(|G|)}.

• ρ∗ = ω; µ = iω .
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“Separation” theorems

A= { ladder systems on some stationary subset of ω1}
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• Juhász: Con (MA(countable) + ♣ + 2ω is as large as you wish )

• Let Pκ= {p | ∃I ∈
[

κ
]ω

∃n < ω p : I × n → 2}. Let Pκ= 〈Pκ,⊇〉.

ω

κ

n

I

p
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[

κ
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• ♣: you can amalgamate certain infinite families of conditions.

ω

κ

n p0 p1 p2 pn . . .. . .
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Juhász’s forcing

• Juhász: Con (MA(countable) + ♣ + 2ω is as large as you wish )

• Let Pκ= {p | ∃I ∈
[

κ
]ω

∃n < ω p : I × n → 2}. Let Pκ= 〈Pκ,⊇〉.

• ♣: you can amalgamate certain infinite families of conditions.

• MA(countable): Pκ ≈ Pκ ∗ Cohen.

• Forcing with Pκ collapses 2ω to ω.
ω

κ

n

{α} × ω
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The pseudoproduct of Fuchino, Shelah and S.

• Prove Con (MA(countable) + ♣ + 2ω is as large as you wish)
without collapsing cardinals.

• Let κ be a cardinal. Let Q be a poset.

• Typical example: Q = Fn(ω, 2).

• Let
∏∗

κ Q= Fn(κ,Q;ω1).

• Let p ≤ q iff dom p ⊇ dom q, ∀α p(α) ≤Q q(α),

|{α ∈ dom q : p(α) �Q q(α)}| < ω.

��
α κ

ω

dom pdom qdom q

q(α)
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Dzamonja and Shelah: Similar, but not the same

• ♣w holds iff ∃A ∈ A ∀X ∈
[

ω1
]ω1 ∃A ∈ A A ⊂∗ X .

Theorem (Dzamonja, Shelah, 1999)
Con( ¬♣ + ♣w )

• The proof uses an iterated version of pseudoproduct

A. Primavesi: a combinatorial translation

♣[max tp] holds iff there is a sequence {Aα : α ∈ Lim} s.t.

• tp Aα = α

• for each X ∈
[

ω1
]ω1 ∃α Aα ⊂ A.

Theorem (Primavesi, 2009)
Con( ♣+ ¬♣[max tp])
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Iterated pseudoproduct

Let Q be a well-met poset.

A sequence
〈

Pα, Q̇β : α ≤ κ, β < κ
〉

is iterated pseudoproduct in Q
iff:

(1) Pα is a poset and 1Pβ

 “Q̇β is a ∧-closed subordering of Q”

(2) Pα =
{

f ∈ Fn(α,H(ω1);ω1) :

∀β ∈ dom(f )
(

f ↾ β ∈ Pβ ∧ 1 
Pβ
f (β) ∈ Q̇β .

)}

.

(3) f ≤ g iff (a) dom(f ) ⊃ dom(g), (b) 1Pβ

 f (β) ≤Q g(β),

(c) |{β : f (β) 6= g(β)}| < ω.

Lemma (S)
If CH holds, |Q| = ω1 and Q has property K, then forcing with Pκ

preserves all the cardinals.
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Application of iterated pseudoproduct

Primavesi: Con( ♣+ ¬♣[max tp])

♣[ζ] holds iff there is a sequence {Aα : α ∈ S} s.t.

• Aα is cofinal in α and tp Aα = ζ

• for each X ∈
[

ω1
]ω1 ∃α Aα ⊂ A.

Theorem (S)
Con( (∀n < ω ♣[ωn] + ¬♣[ωω] )

Theorem (S)
It is consistent that

• ∀A ∈ A ∀n ∈ ω ω1 6→ [A]1n (i.e. ∃c : ω1 → n ∀A ∈ A c[A] = n)

• ∃A ∈ A ω1 → [A]1ω,<ω (i.e. ∀c : ω1 → ω ∃A ∈ A |c[A]| < ω.)
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Properties of ladder systems on ω1

ω1 6→ [A]1n : ∃f : ω1 → n ∀A ∈ A f [S] = n

ω1 6→ [A]1ω,<ω: ∃f : ω1 → ω ∀A ∈ A |f [S]| = ω

∀A ∈ A(∀n) ω1 6→ [A]1n ∀A ∈ A ω1 6→ [A]1ω,<ω

Property B ¬♣w

¬♣
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A topological problem

A topological space ℵ1-metrizable if every subspace of size ≤ ℵ1 is
metrizable.
Arhangelskii asked if every locally compact ℵ1-metrizable space is
metrizable.

Theorem (Z. Balogh,2002)
Assume Axiom R. Then every locally compact ℵ1-metrizable space is
metrizable.
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Definition: For any uncountable regular cardinal κ, for any stationary
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κ

α
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there is ξ∗ < κ s.t. f−1{ξ∗} is stationary in sup(I).
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Fodor’s Type Reflection Principle (FPR)

Definition: For any uncountable regular cardinal κ, for any stationary
S ⊆ Eκ

ω and mapping g : S → [κ]≤ℵ0 there is I ∈ [κ]ℵ1 such that

• cf(I) = ω1;

• g(α) ⊆ I for all α ∈ I ∩ S;

• for any regressive f : S ∩ I → κ s.t. f (α) ∈ g(α) for all α ∈ S ∩ I,
there is ξ∗ < κ s.t. f−1{ξ∗} is stationary in sup(I).

Fact: Axiom R implies FRP.
FRP does not imply Axiom R.

Theorem (Fuchino, Juhász, S., Szentmiklóssy, Usuba, 2010)
Assume FRP. Then every locally compact ℵ1-metrizable space is
metrizable.
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Fodor’s Type Reflection Principle

Axiom R =⇒ FRP =⇒ every loc cpt ℵ1-metrizable space is metrizable.

Theorem (Fuchino, Sakai, S., Usuba, 2012)
The following are equivalent:

• FPR

• every locally compact ℵ1-metrizable space is metrizable.

• If A is a ladder system on a subset of Eλ
ω for some a regular

cardinal λ s.t.

• A ↾ δ essentially disjoint for each δ < λ,

then A is essentially disjoint.

• For any graph G,

• if all subgraphs of cardinality ≤ ω1 have countable coloring
number

then G itself has also countable coloring number.
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Thank you!

http://www.renyi.hu/∼soukup
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