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@ X, Ysetsofordinals: X < Yiffa< pgforallaec X,3€ Y.
© F-family of sets, X aset: FIX={Y C X:YeF}

© ordto(X) = ordtp(Y), then fyx : X — Y - the unique order
preserving bijection.

Q X, X; sets of ordinals of the same order type: amalgamation
X1 Xo =Xy UXoif X1 N Xo < Xy \Xg < X2\X1.
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Definition (Velleman)
A (k,kT)-cardinal is a family u C p,(x™") such that:
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A (k,x1)-cardinal is a family 1 C p,(x™) such that:
@ . is well-founded with respect to inclusion,
Q uis locally smalli.e. |(u|X)| < « forall X € u,

© . is homogenousi.e., if X, Y € u, rank(X) = rank(Y), then X, Y
have the same order type and u|Y = {fyx[Z] : Z € u|X},
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©Q . is directedi.e., for every X, Y € u there exists Z € i such that
X,YCZ,

© . is locally almost directed, i.e.,
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© . is locally almost directed, i.e.,
(a) p|Xis directed or

(b) there are Xi, Xo € u of the same rank such that
X = Xix Xo and p|X = (uX1) U (1| X2) U {X1, X2}

Q pcoversktie,Ju=~xr".
@ .. is neat, that is for every element X of 1 of nonzero rank we have

X = JulX).
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Definition
3) u is homogenous i.e., if
e X, Y ey,
@ rank(X) = rank(Y)
then

@ X, Y have the same order
type and,

o ulY ={fx[Z]: Z € plX},
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then O
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Definition
5) w is locally almost directed, i.e.,

(@) p|Xis directed or

(b) there are Xi, Xo € p of the
same rank such that
X = Xj x Xo and ,LL‘X:
(1l X1) U (1] X2) U { X3, Xa}
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5) w is locally almost directed, i.e., fr— r .

(a) u|Xis directed or

(b) there are Xi, Xo € p of the
same rank such that
X=X %X andu|X:
(] X1) U (| X2) U { X3, X2}
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/_\
(a) u|Xis directed or
(b) there are Xj, X € pu of the
same rank such that
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Definition

5) w is locally almost directed, i.e.,

0] @)
(a) u|Xis directed or
(b) there are Xj, X € pu of the
same rank such that

X = Xi + Xp and p| X = A A
(ulX1) U (ulX2) U {Xs, Xo}
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Definition

5) w is locally almost directed, i.e.,

(a) u|Xis directed or

p O
(b) there are Xj, X € pu of the
same rank such that }:Cz ECZ
X = Xi * Xo and p|X = A A

(] X1) U (uX2) U { X1, Xa}
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Lemma (The coherence lemma)

Let k be a regular cardinal and i be a (x, x™)-cardinal. Let X, Y € j be
of the same rank and let o« € XN'Y, then

XNa=YnNa.
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By induction on the rank od Z € p such that X, Y € u|Z
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XNa=YnNa.
Proof.
By induction on the rank od Z € p such that X, Y € u|Z
Case 1. u|Z is directed. O
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Lemma (The density lemma)

Suppose that « is a regular cardinal and . is a (k, k™ )-cardinal. Then
the following conditions are satisfied:
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Lemma (The density lemma)

Suppose that « is a regular cardinal and . is a (k, k™ )-cardinal. Then
the following conditions are satisfied:

Q@ IfXecyu

{rank(Z) : Z € p, X C Z} = [rank(X), ht()).

@ I/fX C Y are two elements of i, then

{rank(Z):Z € p, X CZ C Y} = [rank(X), rank(Y)].
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Let  be a regular cardinal and u be (x, x™)-cardinal. Every element
a € k1 isin some X € u of any rank.
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Let o € kT. Define

pe(e) = XNa where a € X € u, rank(X) =¢&.
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Definition

Let o € kT. Define

pe(e) = XNa where a € X € u, rank(X) =¢&.
(e())e<nt(u) is called the u-sequence.
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If there is a (w1, wp)-cardinal then there is a w1 -Kurepa tree. I
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If there is a (w1, wp)-cardinal then there is a w1 -Kurepa tree.

Define F C w{" as follows:
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If there is a (w1, wp)-cardinal then there is a w1 -Kurepa tree. '
Define F C wy" as follows: F = {f, : o < wy} where
fa(&) = ordtp(pe(ar)),




If there is a (w1, wp)-cardinal then there is a w1 -Kurepa tree. l
Define F C wy" as follows: F = {f, : o < wy} where
fo (&) = ordtp(pue(cr)), We need to prove that:
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Theorem
If there is a (w1, wp)-cardinal then there is a w1 -Kurepa tree.

Proof.

Define F C w:” as follows: F = {f, : a <ws} where
f (&) = ordip(ue (), We need to prove that:
1) {f.|¢ : @ < wa} is countable for each § < wy,
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Proof.

Define F C w:” as follows: F = {f, : a <ws} where
f (&) = ordip(ue (), We need to prove that:

1) {f.|¢ : @ < wa} is countable for each § < wy,

2) All s for a < wop are distinct.

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43




Theorem
If there is a (w1, wp)-cardinal then there is a w1-Kurepa tree.

Proof.

Define F C wy" as follows: F = {f, : o < w2} where
f (&) = ordip(pue (), We need to prove that:

1) {f,|€ : @ < wo} is countable for each £ < w1,

2) All fys for o < wo are distinct.

& >
0)2

Ol

v

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43



Theorem
If there is a (w1, wp)-cardinal then there is a w1-Kurepa tree.

Proof.

Define F C wy" as follows: F = {f, : o < w2} where
f (&) = ordip(pue (), We need to prove that:

1) {f,|€ : @ < wo} is countable for each £ < w1,

2) All f,s for o < wo are distinct.

—
-
0,

G

Ol

y

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43



Theorem
If there is a (w1, wp)-cardinal then there is a w1-Kurepa tree.

Proof.

Define F C wy" as follows: F = {f, : o < w2} where
f (&) = ordip(pue (), We need to prove that:

1) {f,|€ : @ < wo} is countable for each £ < w1,

2) All fys for o < wo are distinct.

rank(&)

—
-
0,

(-
\&a

Ol

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43




Theorem
If there is a (w1, wp)-cardinal then there is a w1-Kurepa tree.

Proof.

Define F C wy" as follows: F = {f, : o < w2} where
f. (&) = ordip(pe(a)), We need to prove that:

1) {f,|€ : @ < wo} is countable for each £ < w1,

2) All fys for o < wo are distinct.

rank(&)

rank(&)

Ol

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43

v



Theorem
If there is a (w1, wp)-cardinal then there is a w1-Kurepa tree.

Proof.

Define F C wy" as follows: F = {f, : o < w2} where
f. (&) = ordip(pe(a)), We need to prove that:

1) {fa]|€ : @ < wo} is countable for each ¢ < wy,

2) All fys for o < wo are distinct.

rank(&)

rank(z) rank(&)

7 o
(o "o,

Ol

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43

v



Theorem
If there is a (w1, wp)-cardinal then there is a w1-Kurepa tree.

Proof.

Define F C wy" as follows: F = {f, : o < w2} where
f. (&) = ordip(pe(a)), We need to prove that:

1) {fa]|€ : @ < wo} is countable for each ¢ < wy,

2) All fys for o < wo are distinct.

rank(&)

rank(z) rank(&)

/-I 1 >
\oc "ol o,

Ol

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43

v



Theorem
If there is a (w1, wp)-cardinal then there is a w1-Kurepa tree.

Proof.

Define F C wy" as follows: F = {f, : o < w2} where
f. (&) = ordip(pe(a)), We need to prove that:

1) {fa]|€ : @ < wo} is countable for each ¢ < wy,

2) All fys for o < wo are distinct.

rank(&)

rank(z) rank(&)

T A - e
NG %,

v

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43



Theorem
If there is a (w1, wp)-cardinal then there is a w1-Kurepa tree.

Proof.

Define F C wy" as follows: F = {f, : o < w2} where
f (&) = ordip(pue (), We need to prove that:

1) {f,|€ : @ < wo} is countable for each £ < w1,

2) All fys for o < wo are distinct.

—>
(0] o,

Ol

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43




Theorem
If there is a (w1, wp)-cardinal then there is a w1-Kurepa tree.

Proof.

Define F C wy" as follows: F = {f, : o < w2} where
f (&) = ordip(pue (), We need to prove that:

1) {f,|€ : @ < wo} is countable for each £ < w1,

2) All fys for o < wo are distinct.

a IB a/\'
(DZ

Ol

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43




Theorem
If there is a (w1, wp)-cardinal then there is a w1-Kurepa tree.

Proof.

Define F C wy" as follows: F = {f, : o < w2} where
f. (&) = ordip(pe(a)), We need to prove that:

1) {f,|€ : @ < wo} is countable for each £ < w1,

2) All fys for o < wo are distinct.

v

Piotr Koszmider (IM PAN, Warsaw) 2-cardinals YST, Bedlewo, 11-05-2014 29/43



Let 11 be a (k, xk™)-cardinal, then for no proper subset A C k™ of size at
least r the set {X € u: X C A} is stationary in . (A).
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Theorem

Let 1 be a (r, k™)-cardinal, then for no proper subset A C xk* of size at
least k the set {X € . X C A} is stationary in p.(A).

Proof.
Fix 8 € k™ such that 3 ¢ A, then

f(X) = fxy(B), rank(X)=rank(Y), fe€Y
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Theorem

Suppose that 1 is a an (w,wy)-cardinal. Then there are
(Aa)a<wr (Ba)a<w, € p(w) such that

Q@ A.NB, =0 foreacha < wy,

Q@ A, C* Ag, B, C* Bgforeacha < 8 < wy,

© Thereisno C C w such that A, C* C, B, N C =* () for each
a < wq.
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Q@ A.NB, =0 foreacha < wy,
Q@ A, C* Ag, B, C* Bgforeacha < 8 < wy,

© Thereisno C C w such that A, C* C, B, N C =* () for each
a < wq.

Proof.
Define

Ay ={necw:3(Xy*Xz) € u, rank(X;) = n, and o € X1 \ Xo},

B, ={necw:3(X1*Xz) € u, rank(X;) =n, and a € Xo \ Xi}.
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Av={necw:3(X1xXz2) € u, rank(X;) = n, and a € Xi \ X2},
B, ={necw:3(X1xXz) € u, rank(Xj) = n, and o € Xo \ X1}.
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Aa:UXeM{nEW:rank(X):n+1,X:X1 x Xoand a € X7\ Xo}
Ba:UXe,u{nGW:rank(X):n+1,X:X1 x Xpand o € Xo \ Xi}.
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If kh € w and S C wy are uncountable such that

(Au\ ko) CCforae S

(Bu\k)NnC=0foraeS

Then f,(§) < ko for a,{ € S

So to prove the nonexistence of C as in (3) it is enough to prove that
f,s are finite-to-one.
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Definition
Let 1 be a (k, kT)-cardinal, then the following function
m,, = m: [*]? — k is called a u-coloring:

m(a, 8) = m({a, }) = min{rank(X) : a,5 € X € u}
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Definition
Let 1 be a (k, kT)-cardinal, then the following function
m,, = m: [*]? — k is called a u-coloring:

m(a, 8) = m({a, }) = min{rank(X) : a,5 € X € u}

Theorem

Leta< f<y<kT,v<k 0<d§=Jd<e<kT, then the following

conditions are satisfied:

@ [{§<a: m(§a)<vi <k

(o) m(c,v) < max{m(a, B), m(B3,v)}

(€) m(a, B) < max{m(a,v), m(B,7)}

(d) Thereis ( < ¢ such that m(&,e) > m(§,0) forall ¢ < & < 6.
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Leta < B <y <k,

(@) m(a,~) < max{m(e, 5), m(53,7)}
(0) m(e, B) < max{m(a,~), m(5,7)}
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Theorem

Leta< B<vy<kT,

(@) m(a,v) < max{m(a, ), m(8,v)}
(b) m(a, B) < max{m(a,~), m(B,7)}
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Theorem

Leta < B <y <k,

(@) m(a,v) < max{m(a, 3), m(B3,7)}
(o) m(a, B) < max{m(e,~), m(B3,7)}
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Definition
f: [wa]® — wy is called unbounded if and only if for every family
{ac : £ < wy} of pairwise disjoint finite subsets of wo,
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Definition

f: [wa]® — wy is called unbounded if and only if for every family

{ac : £ < wy} of pairwise disjoint finite subsets of wy, for every § < wy
there are £ < ¢’ < wq such that

fa,8) > 6

foralla € ac and all B € aer.
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Definition

f: [wa]® — wy is called unbounded if and only if for every family

{a¢ : € < wq} of pairwise disjoint finite subsets of wy, for every ¢ < w4
there are £ < ¢’ < wq such that
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foralla € ac and all B € aer.
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Definition

f: [wa]® — wy is called unbounded if and only if for every family

{ac : £ < wy} of pairwise disjoint finite subsets of wy, for every § < wy
there are £ < ¢’ < wq such that

fla, ) >0

foralla € ac and all B € aer.
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Let m: [wz]? — wy be the u-coloring. m is an unbounded function. I
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Let m: [wz]? — wy be the u-coloring. m is an unbounded function.
as = {ag(1), ..., ag(k)} pairwise disjoint finite sets.

[m]

=

nax
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Theorem

Let m: [wz]? — wy be the u-coloring. m is an unbounded function.

Proof.

as = {ag(1), ..., ag(k)} pairwise disjoint finite sets.

Suppose ¢ < wy is such that for all distinct £, ¢’ € wy we have
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Suppose ¢ < wy is such that for all distinct £, ¢’ € wy we have
m(ce(i), ae(f)) < 6 forsome 1 <i,j < k

u - a uniform ultrafilter on wy. wy \ {€} = AL U ... U Af

AL = (€ € wn \ {&} : 3 < k m(ag(i), ag (j)) < 5}
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as = {ag(1), ..., ag(k)} pairwise disjoint finite sets.

Suppose ¢ < wy is such that for all distinct £, ¢’ € wy we have
m(ce(i), ae(f)) < 6 forsome 1 <i,j < k

u - a uniform ultrafilter on wy. wy \ {€} = AL U ... U Af

Ar ={& e wi \ {&} : I < k m(ae(i), ag (j)) < 6}

For each £ € wq there is i < k such that Ag € u.Thereis S € uand iy

such that A® ¢ u for all EeS.
Thereis T € uand fy, jo < ksuch thatforall ¢ € T.

{€ € wi\ {&} : m(ae(io), ae (o)) <} € u
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Let m: [wz]? — wy be the u-coloring. m is an unbounded function.
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Theorem

Let m: [wz]? — wy be the u-coloring. m is an unbounded function.

Proof.
Thereis T € uand iy, jo < ksuchthatforall £ € T.

{€ € w1\ {€} : m(ag(io), ¢ (o)) < 0} € u

Case 1: There is £ € wy such that
{&" € w1 \ {&} : m(ae(ho), ag(io)) < 0 & ag(fo) < aelp)} € u
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A function f : [wa]® — [w2]“ has the property A




Definition
A function f : [ws]? — [w2]“ has the property A if and only if for every
uncountable A-system A of finite subsets of w»
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A function f : [ws]? — [w2]“ has the property A if and only if for every
uncountable A-system A of finite subsets of w» there are two elements
a,be Asuchthatforeachreanbandaca—band e b—awe
have

Q <o = 7efla,p),
Q 7 <a = f(r,B) C f(a, B),
Q 7 <8 =f(r,a) C fla,B).

Theorem
Let i be (w1, ws)-cardinal, then f : [ws]? — wq defined by
f(a, B) = X N min(a, B),

where X is of minimal rank in p. which contains «, 8 has A-property.
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uncountable A-system A of finite subsets of w» there are two elements
a,be Asuchthatforeachreanbandaca—band e b—awe
have

Q <o = 7efla,p),

Q 7 <a = f(r,B) C f(a, B),

Q 7 <8 =f(r,a) C fla,B).

Theorem
Let i be (w1, ws)-cardinal, then f : [ws]? — wq defined by

f(a, B) = X Nnmin(«, 5),

where X is of minimal rank in p. which contains «, 8 has A-property.
Alternatively f(a, f) = {£ < min(a, B) : m(&, «) < m(a, B)} for a < B.
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Definition
w is stationary coding set iff . is stationary subset of [w2]“ and that

there is a one-to-one function ¢ : 1 — w» such that
VX, Yeu XCVY =cX)eY.
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Suppose that an (wq,w»)-cardinal, 1 C [wo]“! is a stationary coding set
andp e M < Hws), M| =w, MNws € pand X € p.
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there is a one-to-one function ¢ : 1 — w» such that
VX, Yeu XCVY =cX)eY.

Lemma

Suppose that an (wq,w»)-cardinal, 1 C [wo]“! is a stationary coding set
andp e M < Hws), M| =w, MNws € pand X € p.
Then either XN M = MnN 8 forsome 5 € wo or XN M € M.

Proof.

Case 1. rank(X) = rank(M N wy).
Coherence lemma gives XN M = MnN .
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