

Applications of generic two-cardinal combinatorics

Piotr Koszmider

IM PAN, Warsaw

P. Koszmider; On constructions with 2-cardinals. Math arxiv.

Notation:

Notation:

- ① X, Y sets of ordinals: $X < Y$ iff $\alpha < \beta$ for all $\alpha \in X, \beta \in Y$.

Notation:

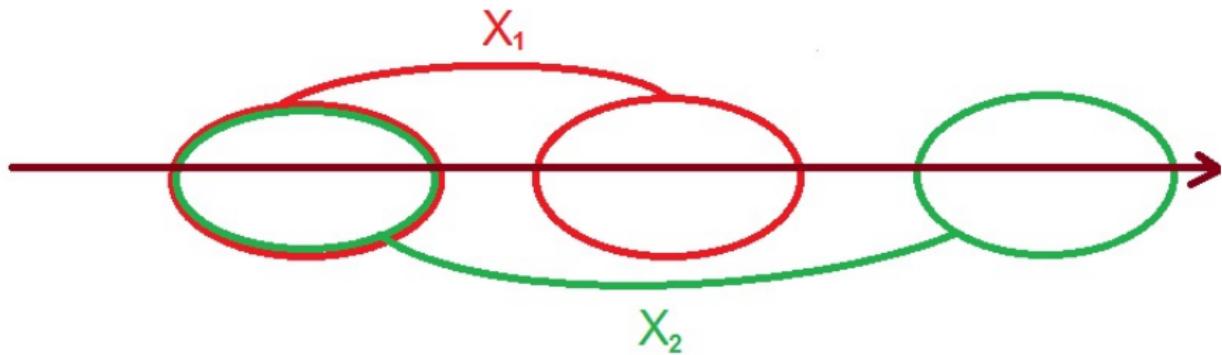
- 1 X, Y sets of ordinals: $X < Y$ iff $\alpha < \beta$ for all $\alpha \in X, \beta \in Y$.
- 2 \mathcal{F} -family of sets, X a set: $\mathcal{F}|X = \{Y \subset X : Y \in \mathcal{F}\}$

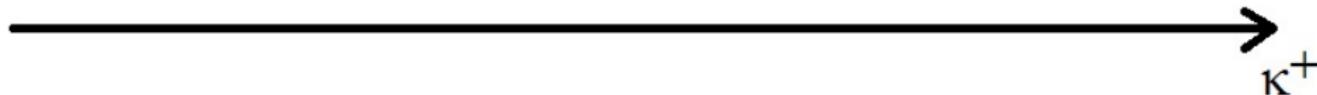
Notation:

- ① X, Y sets of ordinals: $X < Y$ iff $\alpha < \beta$ for all $\alpha \in X, \beta \in Y$.
- ② \mathcal{F} -family of sets, X a set: $\mathcal{F}|X = \{Y \subset X : Y \in \mathcal{F}\}$
- ③ $ordtp(X) = ordtp(Y)$, then $f_{YX} : X \rightarrow Y$ - the unique order preserving bijection.

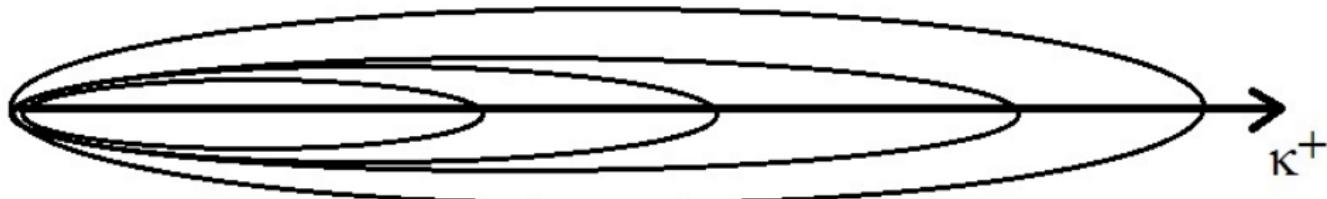
Notation:

- 1 X, Y sets of ordinals: $X < Y$ iff $\alpha < \beta$ for all $\alpha \in X, \beta \in Y$.
- 2 \mathcal{F} -family of sets, X a set: $\mathcal{F}|X = \{Y \subset X : Y \in \mathcal{F}\}$
- 3 $ordtp(X) = ordtp(Y)$, then $f_{YX} : X \rightarrow Y$ - the unique order preserving bijection.
- 4 X_1, X_2 sets of ordinals of the same order type: amalgamation
 $X_1 * X_2 = X_1 \cup X_2$ if $X_1 \cap X_2 < X_1 \setminus X_2 < X_2 \setminus X_1$.





$$\kappa^+ \subset P_{\kappa^+}(\kappa^+)$$



$$\kappa^+ \subset P_{\kappa^+}(\kappa^+)$$

$$\mu \subset P_\kappa(\kappa^+)$$

Definition (Velleman)

A (κ, κ^+) -cardinal is a family $\mu \subseteq \wp_\kappa(\kappa^+)$ such that:

Definition (Velleman)

A (κ, κ^+) -cardinal is a family $\mu \subseteq \wp_\kappa(\kappa^+)$ such that:

- ① μ is well-founded with respect to inclusion,

Definition (Velleman)

A (κ, κ^+) -cardinal is a family $\mu \subseteq \wp_\kappa(\kappa^+)$ such that:

- ① μ is well-founded with respect to inclusion,
- ② μ is *locally small* i.e. $|(\mu|X)| < \kappa$ for all $X \in \mu$,

Definition (Velleman)

A (κ, κ^+) -cardinal is a family $\mu \subseteq \wp_\kappa(\kappa^+)$ such that:

- 1 μ is well-founded with respect to inclusion,
- 2 μ is *locally small* i.e. $|(\mu|X)| < \kappa$ for all $X \in \mu$,
- 3 μ is *homogenous* i.e., if $X, Y \in \mu$, $\text{rank}(X) = \text{rank}(Y)$, then X, Y have the same order type and $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,

Definition (Velleman)

A (κ, κ^+) -cardinal is a family $\mu \subseteq \wp_\kappa(\kappa^+)$ such that:

- ① μ is well-founded with respect to inclusion,
- ② μ is *locally small* i.e. $|(\mu|X)| < \kappa$ for all $X \in \mu$,
- ③ μ is *homogenous* i.e., if $X, Y \in \mu$, $\text{rank}(X) = \text{rank}(Y)$, then X, Y have the same order type and $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,
- ④ μ is *directed* i.e., for every $X, Y \in \mu$ there exists $Z \in \mu$ such that $X, Y \subseteq Z$,

Definition (Velleman)

A (κ, κ^+) -cardinal is a family $\mu \subseteq \wp_\kappa(\kappa^+)$ such that:

- ① μ is well-founded with respect to inclusion,
- ② μ is *locally small* i.e. $|(\mu|X)| < \kappa$ for all $X \in \mu$,
- ③ μ is *homogenous* i.e., if $X, Y \in \mu$, $\text{rank}(X) = \text{rank}(Y)$, then X, Y have the same order type and $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,
- ④ μ is *directed* i.e., for every $X, Y \in \mu$ there exists $Z \in \mu$ such that $X, Y \subseteq Z$,
- ⑤ μ is *locally almost directed*, i.e.,

Definition (Velleman)

A (κ, κ^+) -cardinal is a family $\mu \subseteq \wp_\kappa(\kappa^+)$ such that:

- 1 μ is well-founded with respect to inclusion,
- 2 μ is *locally small* i.e. $|(\mu|X)| < \kappa$ for all $X \in \mu$,
- 3 μ is *homogenous* i.e., if $X, Y \in \mu$, $\text{rank}(X) = \text{rank}(Y)$, then X, Y have the same order type and $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,
- 4 μ is *directed* i.e., for every $X, Y \in \mu$ there exists $Z \in \mu$ such that $X, Y \subseteq Z$,
- 5 μ is *locally almost directed*, i.e.,
 - (a) $\mu|X$ is directed or

Definition (Velleman)

A (κ, κ^+) -cardinal is a family $\mu \subseteq \wp_\kappa(\kappa^+)$ such that:

- 1 μ is well-founded with respect to inclusion,
- 2 μ is *locally small* i.e. $|(\mu|X)| < \kappa$ for all $X \in \mu$,
- 3 μ is *homogenous* i.e., if $X, Y \in \mu$, $\text{rank}(X) = \text{rank}(Y)$, then X, Y have the same order type and $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,
- 4 μ is *directed* i.e., for every $X, Y \in \mu$ there exists $Z \in \mu$ such that $X, Y \subseteq Z$,
- 5 μ is *locally almost directed*, i.e.,
 - (a) $\mu|X$ is directed or
 - (b) there are $X_1, X_2 \in \mu$ of the same rank such that $X = X_1 * X_2$ and $\mu|X = (\mu|X_1) \cup (\mu|X_2) \cup \{X_1, X_2\}$

Definition (Velleman)

A (κ, κ^+) -cardinal is a family $\mu \subseteq \wp_\kappa(\kappa^+)$ such that:

- 1 μ is well-founded with respect to inclusion,
- 2 μ is *locally small* i.e. $|(\mu|X)| < \kappa$ for all $X \in \mu$,
- 3 μ is *homogenous* i.e., if $X, Y \in \mu$, $\text{rank}(X) = \text{rank}(Y)$, then X, Y have the same order type and $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,
- 4 μ is *directed* i.e., for every $X, Y \in \mu$ there exists $Z \in \mu$ such that $X, Y \subseteq Z$,
- 5 μ is *locally almost directed*, i.e.,
 - (a) $\mu|X$ is directed or
 - (b) there are $X_1, X_2 \in \mu$ of the same rank such that $X = X_1 * X_2$ and $\mu|X = (\mu|X_1) \cup (\mu|X_2) \cup \{X_1, X_2\}$
- 6 μ *covers* κ^+ i.e., $\bigcup \mu = \kappa^+$.

Definition (Velleman)

A (κ, κ^+) -cardinal is a family $\mu \subseteq \wp_\kappa(\kappa^+)$ such that:

- 1 μ is well-founded with respect to inclusion,
- 2 μ is *locally small* i.e. $|(\mu|X)| < \kappa$ for all $X \in \mu$,
- 3 μ is *homogenous* i.e., if $X, Y \in \mu$, $\text{rank}(X) = \text{rank}(Y)$, then X, Y have the same order type and $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,
- 4 μ is *directed* i.e., for every $X, Y \in \mu$ there exists $Z \in \mu$ such that $X, Y \subseteq Z$,
- 5 μ is *locally almost directed*, i.e.,
 - (a) $\mu|X$ is directed or
 - (b) there are $X_1, X_2 \in \mu$ of the same rank such that $X = X_1 * X_2$ and $\mu|X = (\mu|X_1) \cup (\mu|X_2) \cup \{X_1, X_2\}$
- 6 μ *covers* κ^+ i.e., $\bigcup \mu = \kappa^+$.
- 7 μ is *neat*, that is for every element X of μ of nonzero rank we have

$$X = \bigcup (\mu|X).$$

Definition

3) μ is *homogenous* i.e., if

- $X, Y \in \mu$,
- $\text{rank}(X) = \text{rank}(Y)$

then

- X, Y have the same order type and,
- $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,

Definition

3) μ is *homogenous* i.e., if

- $X, Y \in \mu$,
- $\text{rank}(X) = \text{rank}(Y)$

then

- X, Y have the same order type and,
- $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,

X

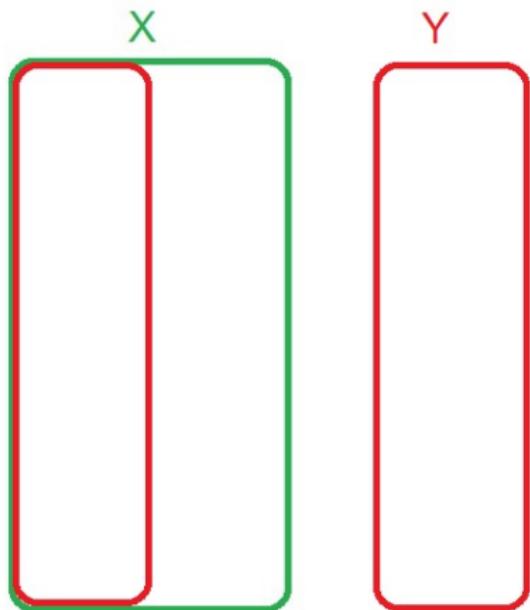
Definition

3) μ is *homogenous* i.e., if

- $X, Y \in \mu$,
- $\text{rank}(X) = \text{rank}(Y)$

then

- X, Y have the same order type and,
- $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,



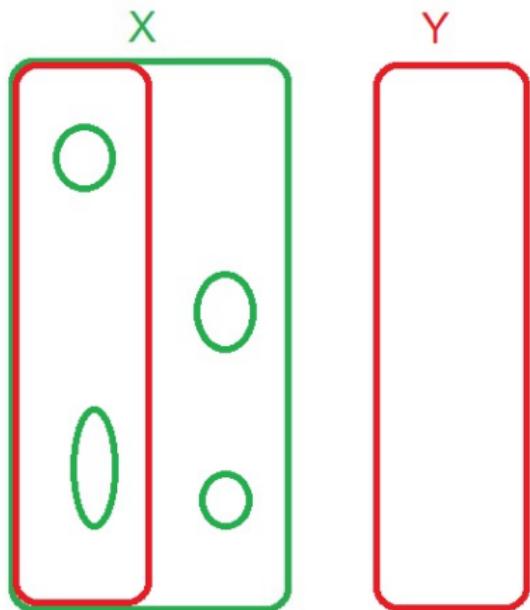
Definition

3) μ is *homogenous* i.e., if

- $X, Y \in \mu$,
- $\text{rank}(X) = \text{rank}(Y)$

then

- X, Y have the same order type and,
- $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,



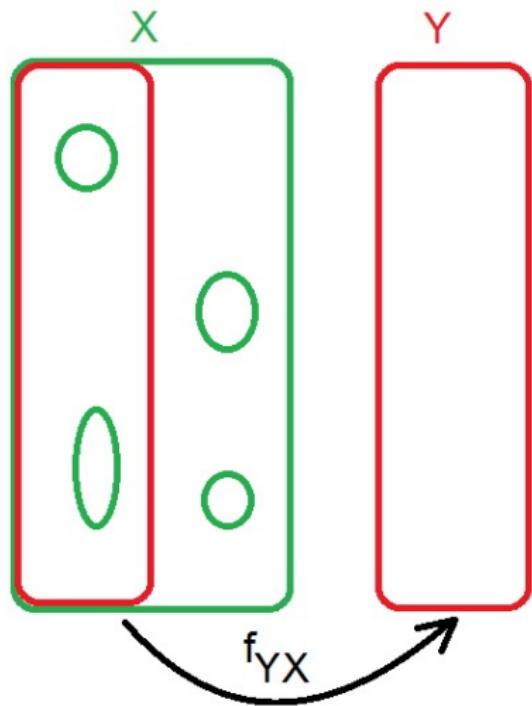
Definition

3) μ is *homogenous* i.e., if

- $X, Y \in \mu$,
- $\text{rank}(X) = \text{rank}(Y)$

then

- X, Y have the same order type and,
- $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,



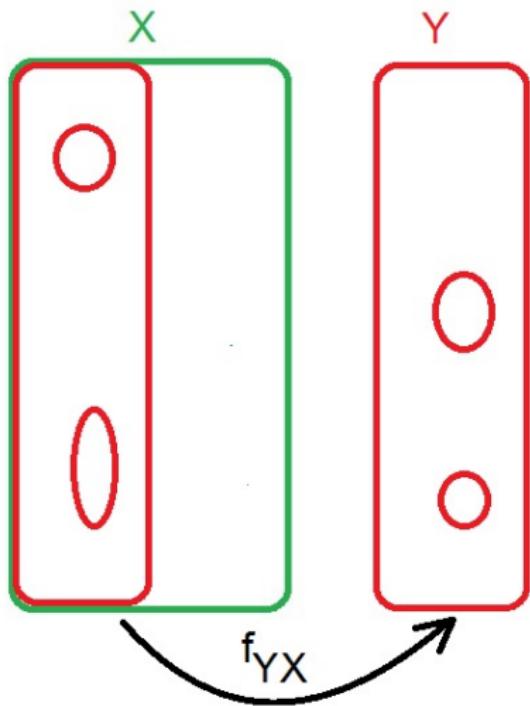
Definition

3) μ is *homogenous* i.e., if

- $X, Y \in \mu$,
- $\text{rank}(X) = \text{rank}(Y)$

then

- X, Y have the same order type and,
- $\mu|Y = \{f_{YX}[Z] : Z \in \mu|X\}$,



Definition

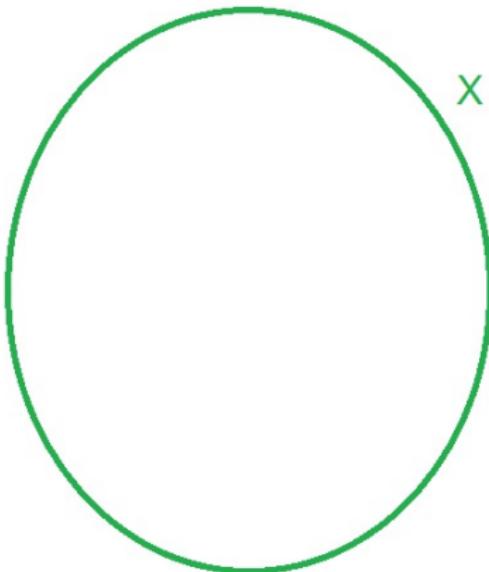
5) μ is *locally almost directed*, i.e.,

(a) $\mu|X$ is directed or

Definition

5) μ is *locally almost directed*, i.e.,

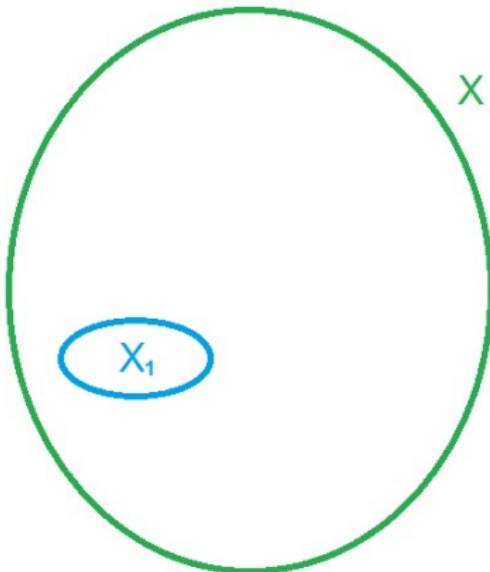
(a) $\mu|X$ is directed or



Definition

5) μ is *locally almost directed*, i.e.,

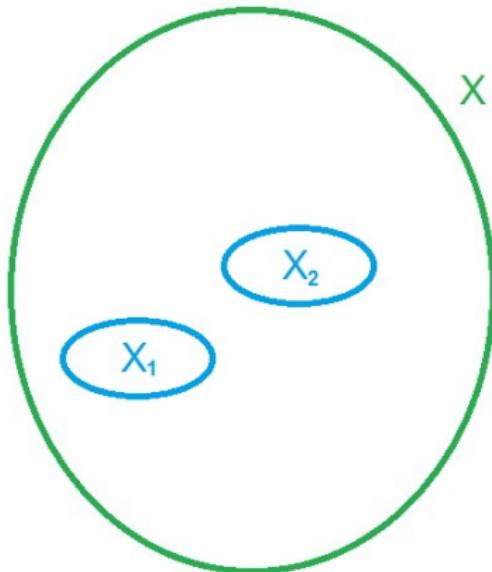
(a) $\mu|X$ is directed or



Definition

5) μ is *locally almost directed*, i.e.,

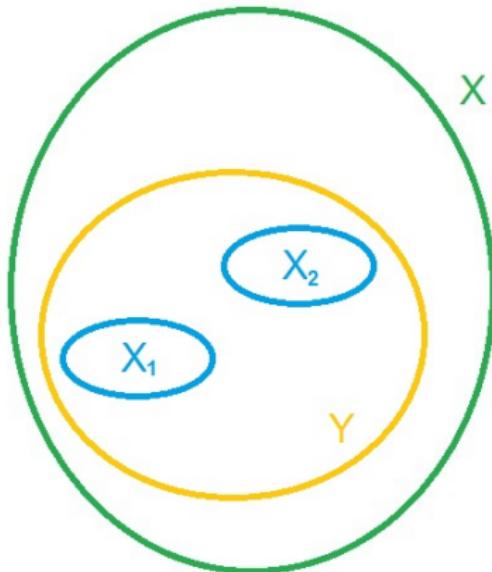
(a) $\mu|X$ is directed or



Definition

5) μ is *locally almost directed*, i.e.,

(a) $\mu|X$ is directed or



Definition

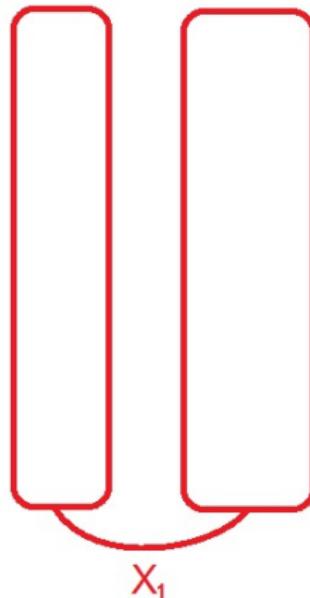
5) μ is *locally almost directed*, i.e.,

- (a) $\mu|X$ is directed or
- (b) there are $X_1, X_2 \in \mu$ of the same rank such that
$$X = X_1 * X_2 \text{ and } \mu|X = (\mu|X_1) \cup (\mu|X_2) \cup \{X_1, X_2\}$$

Definition

5) μ is *locally almost directed*, i.e.,

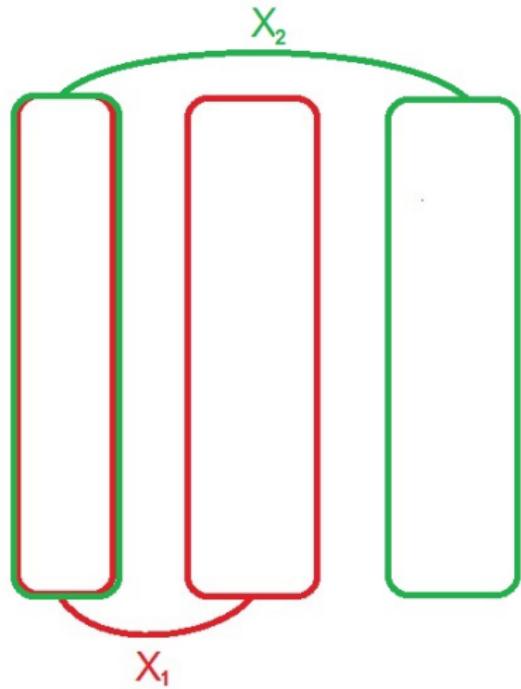
- (a) $\mu|X$ is directed or
- (b) there are $X_1, X_2 \in \mu$ of the same rank such that
 $X = X_1 * X_2$ and $\mu|X = (\mu|X_1) \cup (\mu|X_2) \cup \{X_1, X_2\}$



Definition

5) μ is *locally almost directed*, i.e.,

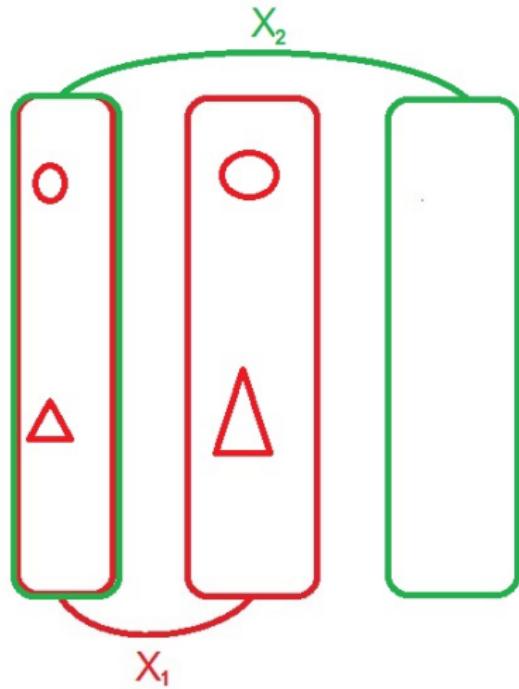
- (a) $\mu|X$ is directed or
- (b) there are $X_1, X_2 \in \mu$ of the same rank such that
 $X = X_1 * X_2$ and $\mu|X = (\mu|X_1) \cup (\mu|X_2) \cup \{X_1, X_2\}$



Definition

5) μ is *locally almost directed*, i.e.,

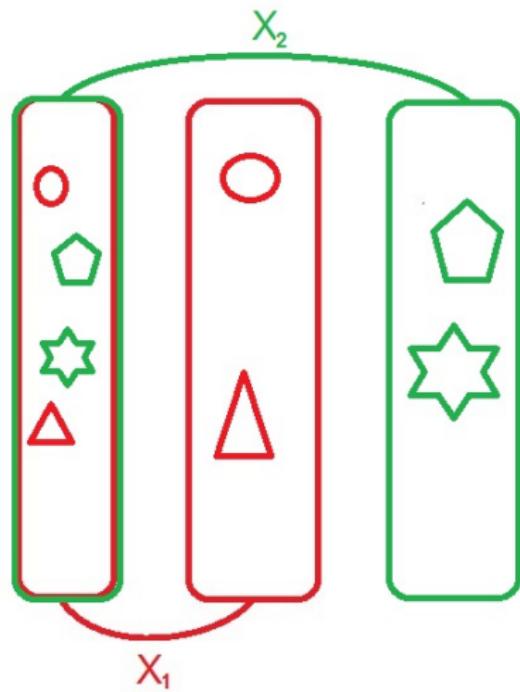
- (a) $\mu|X$ is directed or
- (b) there are $X_1, X_2 \in \mu$ of the same rank such that
 $X = X_1 * X_2$ and $\mu|X = (\mu|X_1) \cup (\mu|X_2) \cup \{X_1, X_2\}$



Definition

5) μ is *locally almost directed*, i.e.,

- (a) $\mu|X$ is directed or
- (b) there are $X_1, X_2 \in \mu$ of the same rank such that
 $X = X_1 * X_2$ and $\mu|X = (\mu|X_1) \cup (\mu|X_2) \cup \{X_1, X_2\}$



Lemma (The coherence lemma)

Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Lemma (The coherence lemma)

Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Lemma (The coherence lemma)

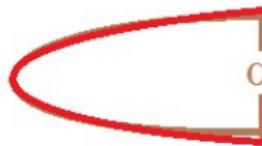
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Lemma (The coherence lemma)

Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$



Lemma (The coherence lemma)

Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Lemma (The coherence lemma)

Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Lemma (The coherence lemma)

Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 1. $\mu|Z$ is directed. □

Lemma (The coherence lemma)

Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$

□

Lemma (The coherence lemma)

Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$

Lemma (The coherence lemma)

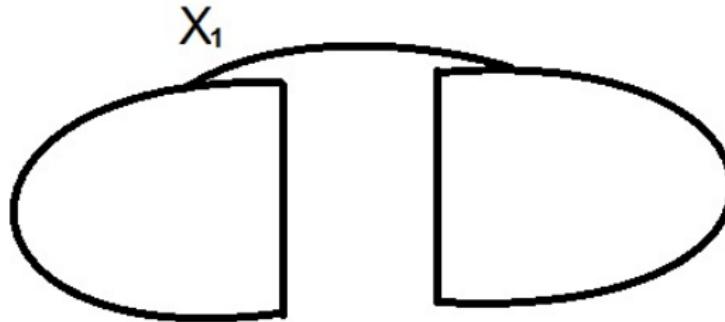
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$



Lemma (The coherence lemma)

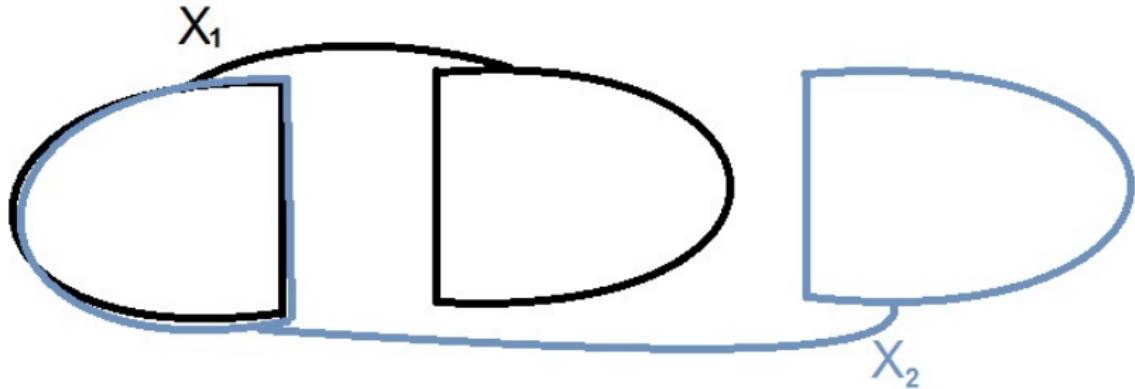
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$



Lemma (The coherence lemma)

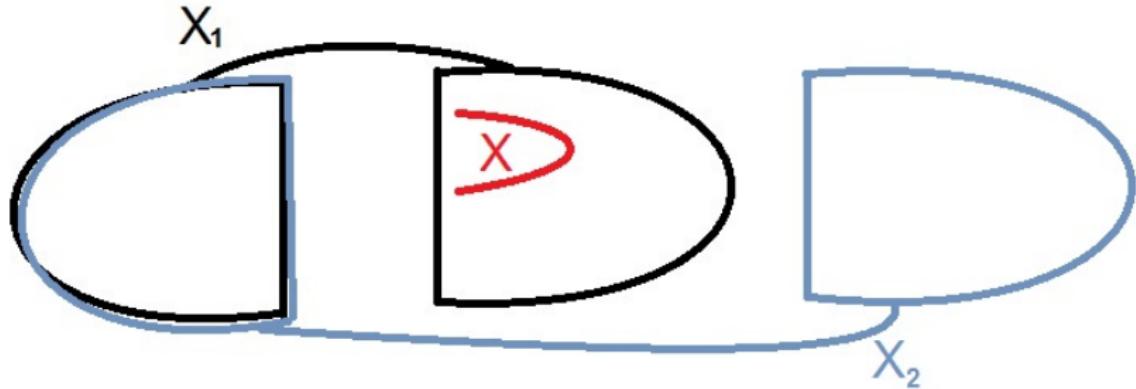
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$



Lemma (The coherence lemma)

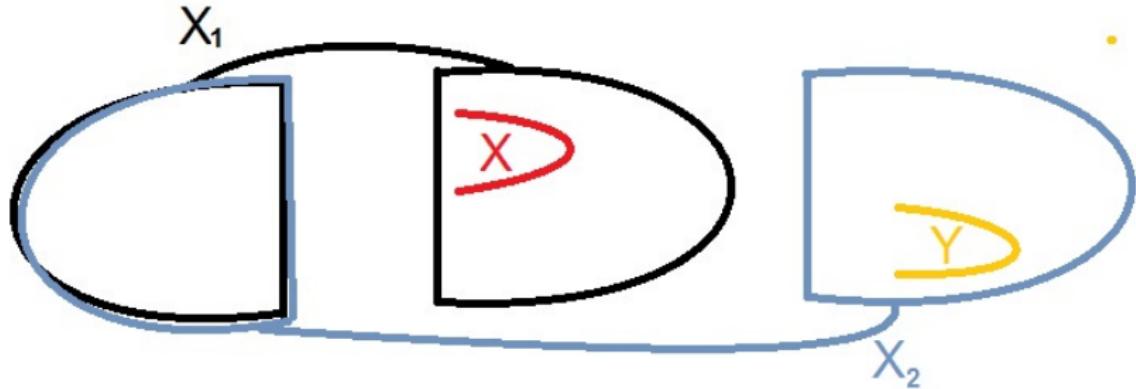
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$



Lemma (The coherence lemma)

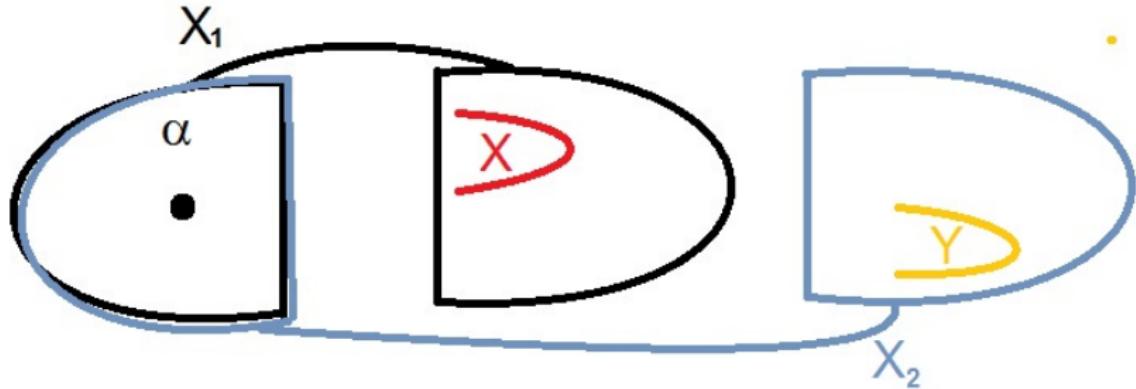
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$



Lemma (The coherence lemma)

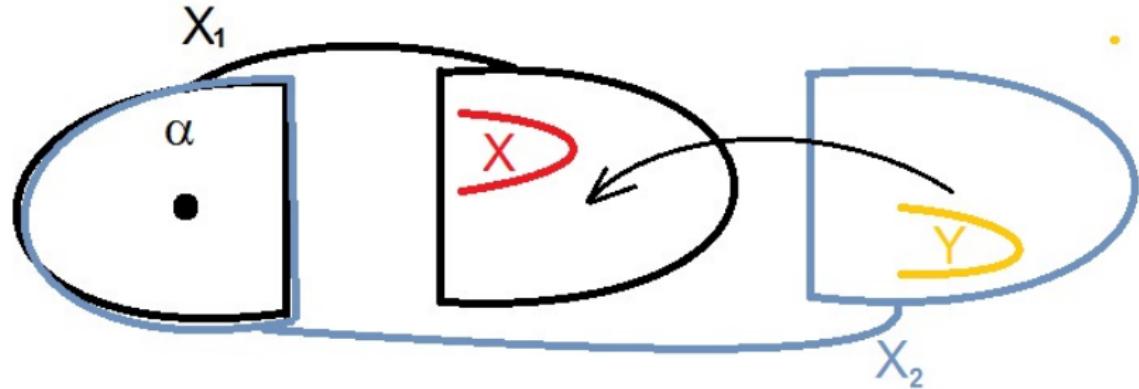
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$



Lemma (The coherence lemma)

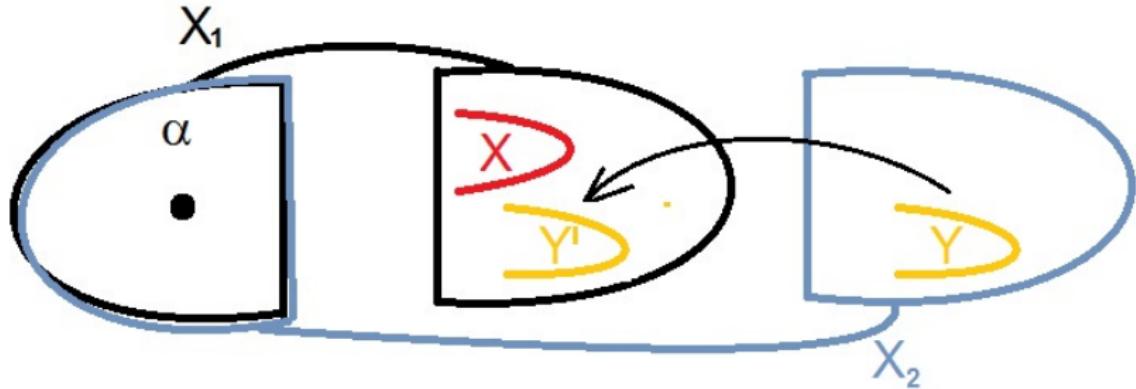
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$



Lemma (The coherence lemma)

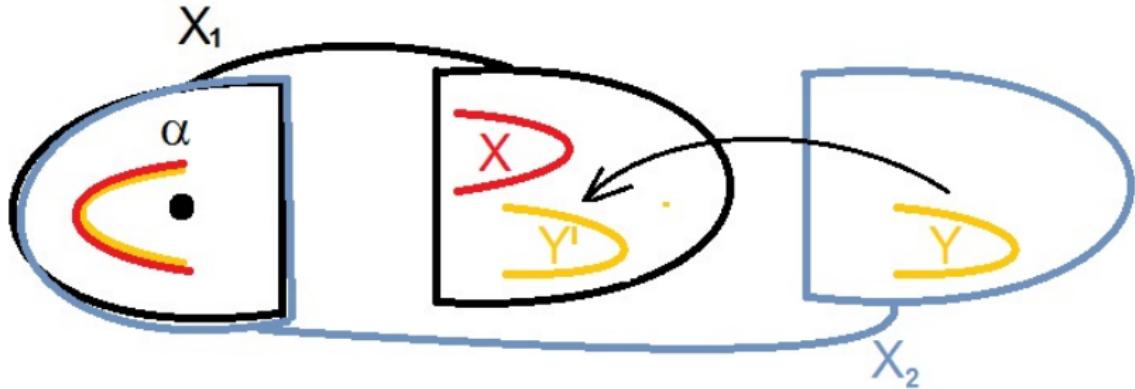
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$



Lemma (The coherence lemma)

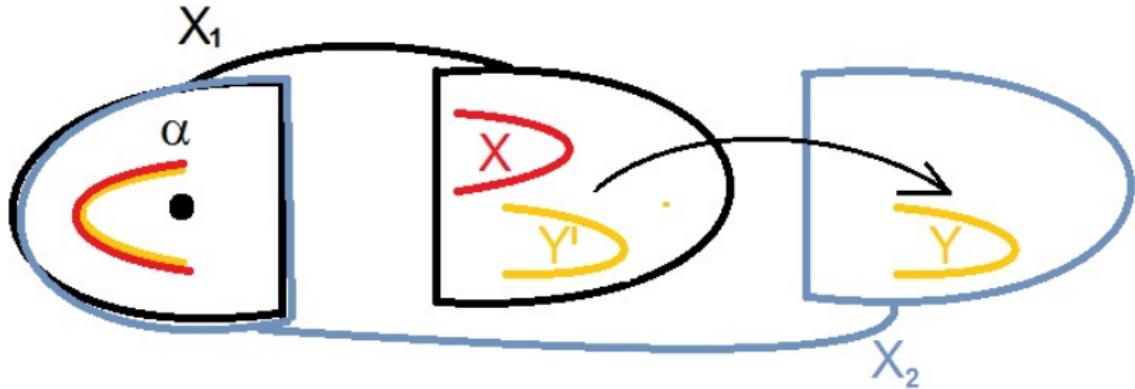
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$



Lemma (The coherence lemma)

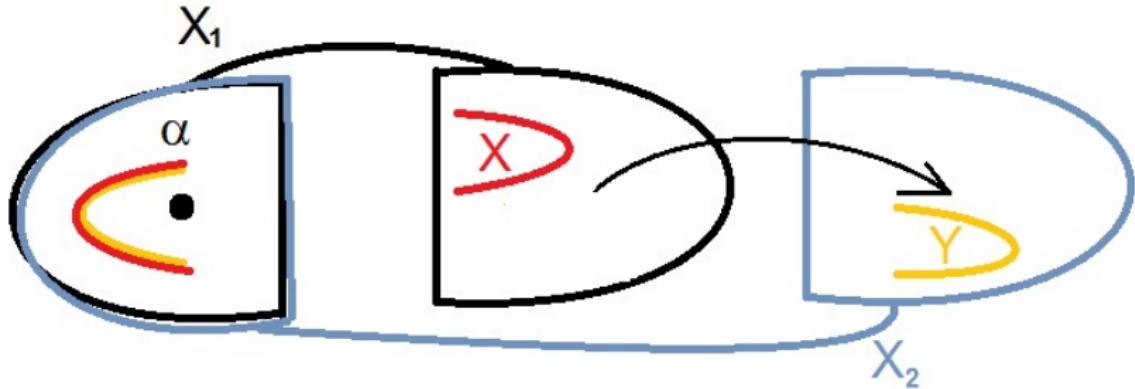
Let κ be a regular cardinal and μ be a (κ, κ^+) -cardinal. Let $X, Y \in \mu$ be of the same rank and let $\alpha \in X \cap Y$, then

$$X \cap \alpha = Y \cap \alpha.$$

Proof.

By induction on the rank of $Z \in \mu$ such that $X, Y \in \mu|Z$

Case 2. $\mu|Z = \mu|X_1 \cup \mu|X_2 \cup \{X_1, X_2\}$ and $Z = X_1 * X_2$



Lemma (The density lemma)

Suppose that κ is a regular cardinal and μ is a (κ, κ^+) -cardinal. Then the following conditions are satisfied:

Lemma (The density lemma)

Suppose that κ is a regular cardinal and μ is a (κ, κ^+) -cardinal. Then the following conditions are satisfied:

- 1 If $X \in \mu$

$$\{rank(Z) : Z \in \mu, X \subseteq Z\} = [rank(X), ht(\mu)).$$

Lemma (The density lemma)

Suppose that κ is a regular cardinal and μ is a (κ, κ^+) -cardinal. Then the following conditions are satisfied:

- 1 If $X \in \mu$

$$\{rank(Z) : Z \in \mu, X \subseteq Z\} = [rank(X), ht(\mu)).$$

- 2 If $X \subseteq Y$ are two elements of μ , then

$$\{rank(Z) : Z \in \mu, X \subseteq Z \subseteq Y\} = [rank(X), rank(Y)].$$

Lemma

Let κ be a regular cardinal and μ be (κ, κ^+) -cardinal. Every element $\alpha \in \kappa^+$ is in some $X \in \mu$ of any rank.

Definition

Let $\alpha \in \kappa^+$. Define

$$\mu_\xi(\alpha) = X \cap \alpha \text{ where } \alpha \in X \in \mu, \text{rank}(X) = \xi.$$

Definition

Let $\alpha \in \kappa^+$. Define

$$\mu_\xi(\alpha) = X \cap \alpha \text{ where } \alpha \in X \in \mu, \text{rank}(X) = \xi.$$

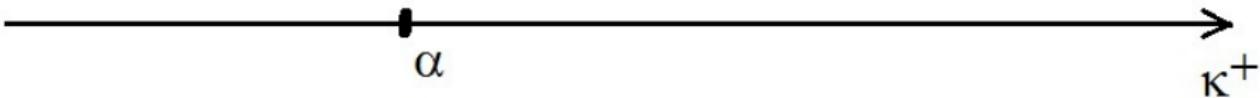
$(\mu_\xi(\alpha))_{\xi < ht(\mu)}$ is called the μ -sequence.

Definition

Let $\alpha \in \kappa^+$. Define

$$\mu_\xi(\alpha) = X \cap \alpha \text{ where } \alpha \in X \in \mu, \text{rank}(X) = \xi.$$

$(\mu_\xi(\alpha))_{\xi < ht(\mu)}$ is called the μ -sequence.

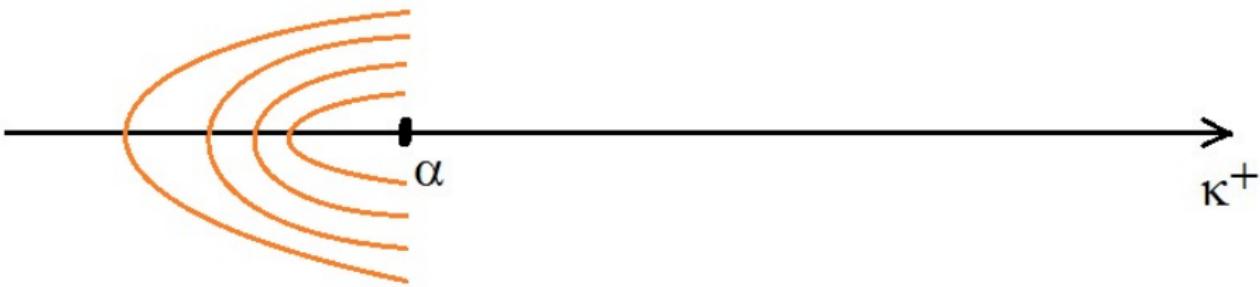


Definition

Let $\alpha \in \kappa^+$. Define

$$\mu_\xi(\alpha) = X \cap \alpha \text{ where } \alpha \in X \in \mu, \text{rank}(X) = \xi.$$

$(\mu_\xi(\alpha))_{\xi < ht(\mu)}$ is called the μ -sequence.

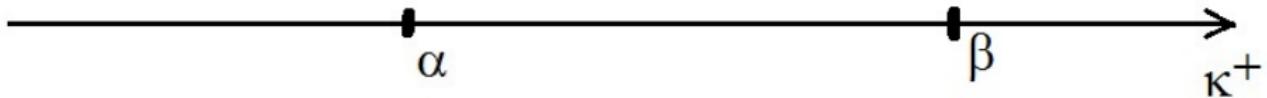


Definition

Let $\alpha \in \kappa^+$. Define

$$\mu_\xi(\alpha) = X \cap \alpha \text{ where } \alpha \in X \in \mu, \text{rank}(X) = \xi.$$

$(\mu_\xi(\alpha))_{\xi < ht(\mu)}$ is called the μ -sequence.



Definition

Let $\alpha \in \kappa^+$. Define

$$\mu_\xi(\alpha) = X \cap \alpha \text{ where } \alpha \in X \in \mu, \text{rank}(X) = \xi.$$

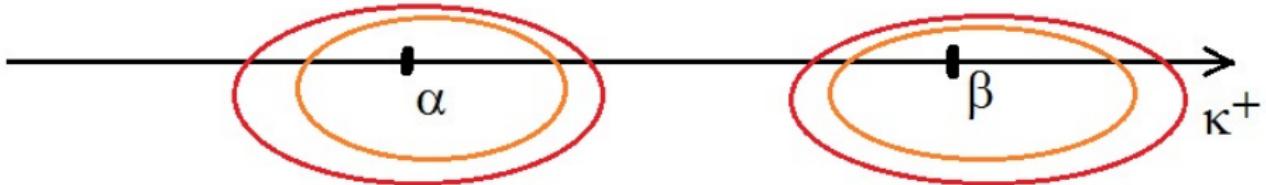
$(\mu_\xi(\alpha))_{\xi < ht(\mu)}$ is called the μ -sequence.

Definition

Let $\alpha \in \kappa^+$. Define

$$\mu_\xi(\alpha) = X \cap \alpha \text{ where } \alpha \in X \in \mu, \text{rank}(X) = \xi.$$

$(\mu_\xi(\alpha))_{\xi < ht(\mu)}$ is called the μ -sequence.

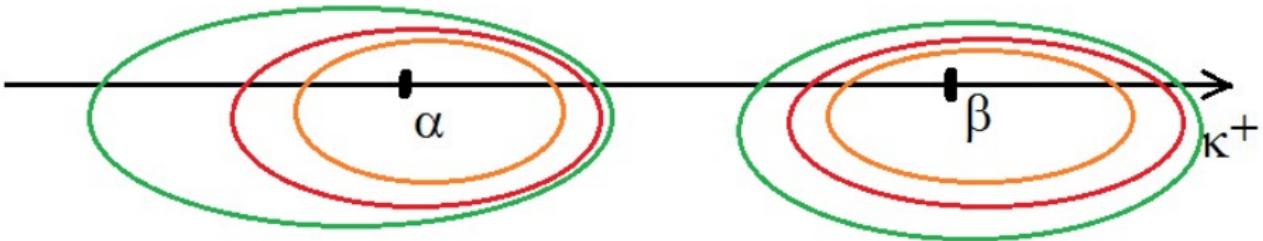


Definition

Let $\alpha \in \kappa^+$. Define

$$\mu_\xi(\alpha) = X \cap \alpha \text{ where } \alpha \in X \in \mu, \text{rank}(X) = \xi.$$

$(\mu_\xi(\alpha))_{\xi < ht(\mu)}$ is called the μ -sequence.



Theorem

If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Theorem

If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Theorem

If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows:

Theorem

If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where $f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$,

Theorem

If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where $f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

Theorem

If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

1) $\{f_\alpha | \xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,

Theorem

If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.

Theorem

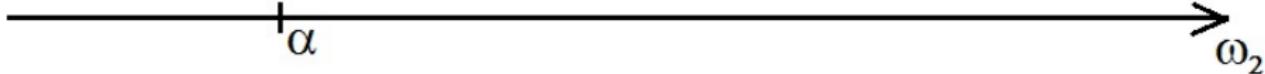
If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.



Theorem

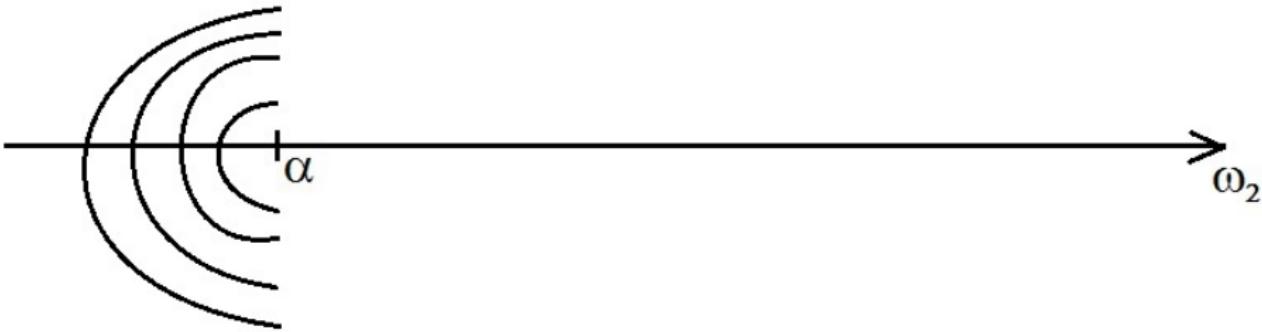
If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.



Theorem

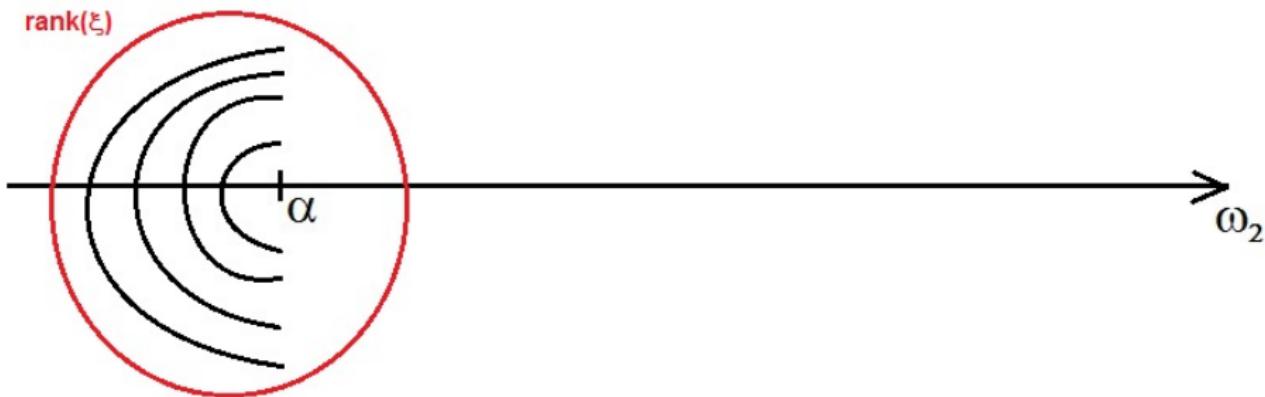
If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.



Theorem

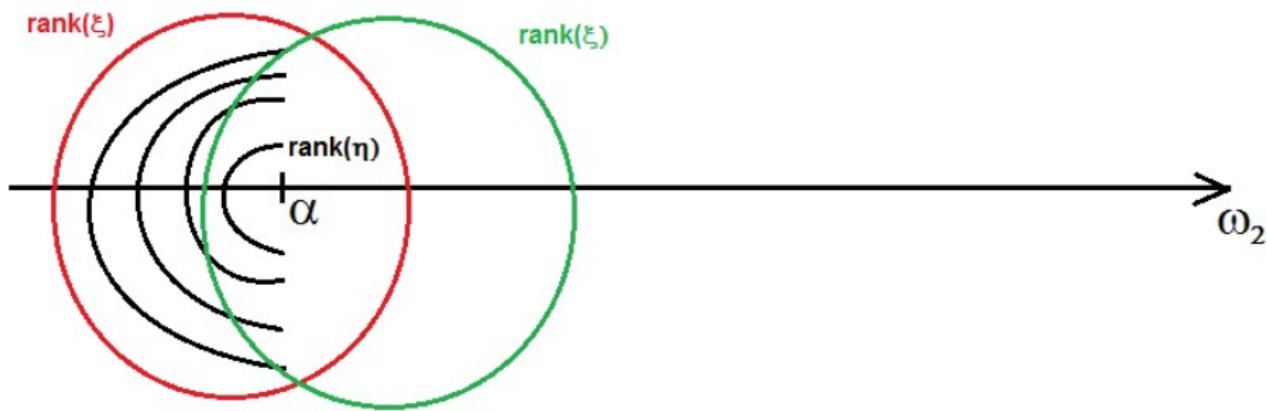
If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.



Theorem

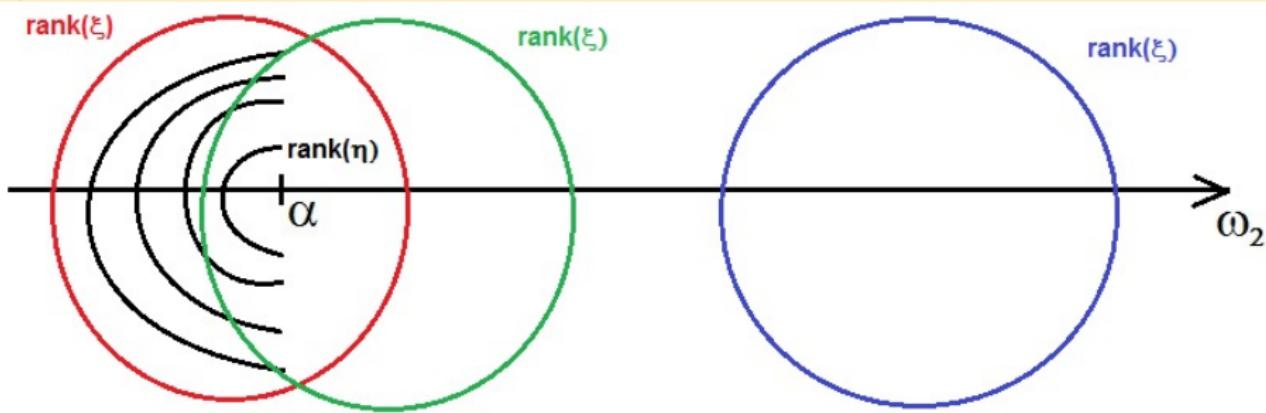
If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.



Theorem

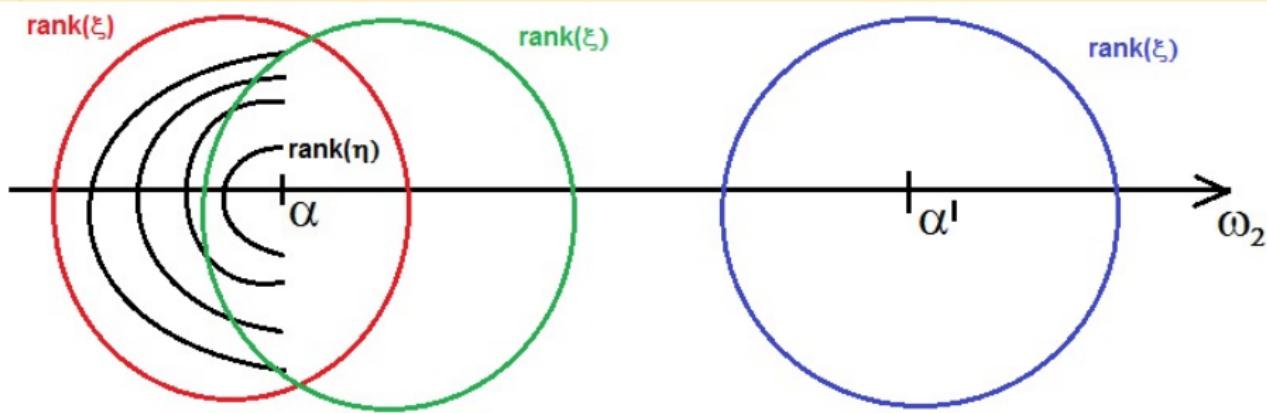
If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.



Theorem

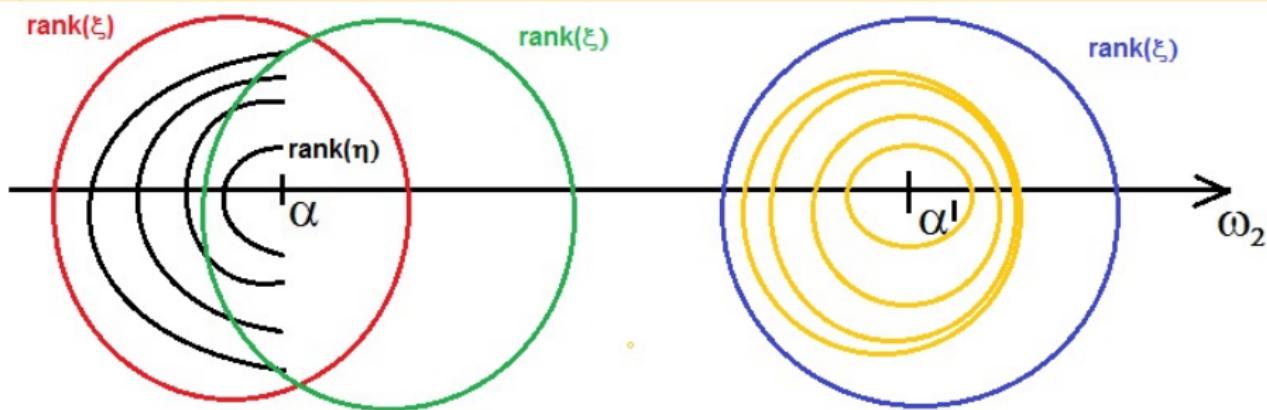
If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.



Theorem

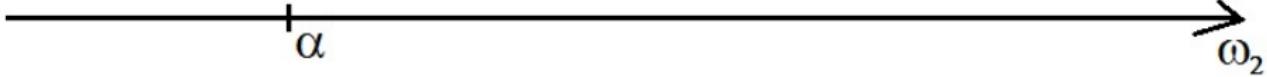
If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.



Theorem

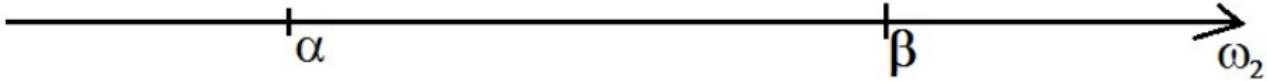
If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.



Theorem

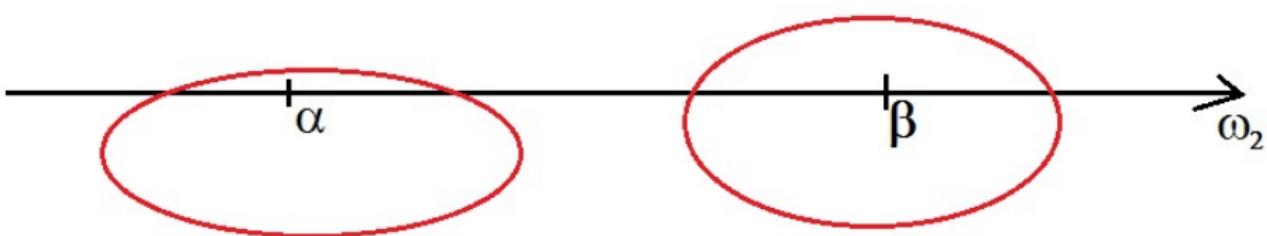
If there is a (ω_1, ω_2) -cardinal then there is a ω_1 -Kurepa tree.

Proof.

Define $F \subset \omega_1^{\omega_1}$ as follows: $F = \{f_\alpha : \alpha < \omega_2\}$ where

$f_\alpha(\xi) = \text{ordtp}(\mu_\xi(\alpha))$, We need to prove that:

- 1) $\{f_\alpha|\xi : \alpha < \omega_2\}$ is countable for each $\xi < \omega_1$,
- 2) All f_α s for $\alpha < \omega_2$ are distinct.



Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$,

Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$, then

$$f(X) = f_{XY}(\beta), \quad \text{rank}(X) = \text{rank}(Y), \quad \beta \in Y$$

Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$, then

$$f(X) = f_{XY}(\beta), \quad \text{rank}(X) = \text{rank}(Y), \quad \beta \in Y$$

Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$, then

$$f(X) = f_{XY}(\beta), \quad \text{rank}(X) = \text{rank}(Y), \quad \beta \in Y$$

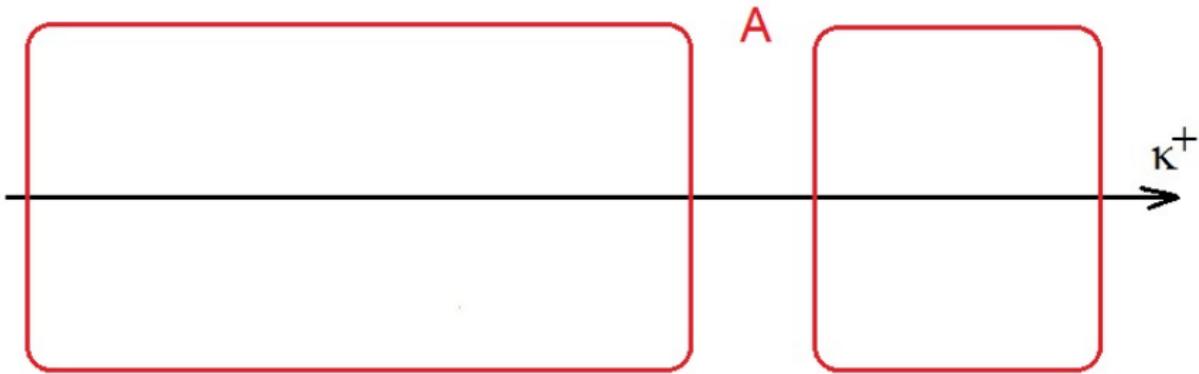
Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$, then

$$f(X) = f_{XY}(\beta), \quad \text{rank}(X) = \text{rank}(Y), \quad \beta \in Y$$



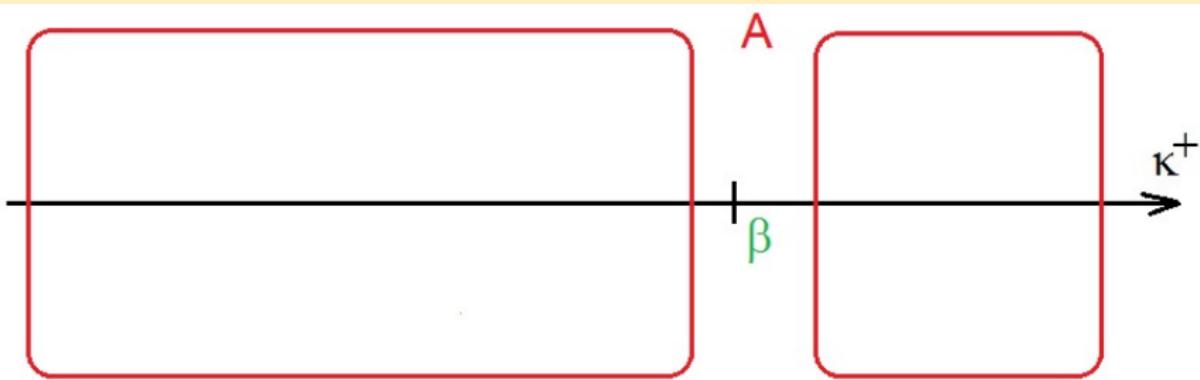
Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$, then

$$f(X) = f_{XY}(\beta), \quad \text{rank}(X) = \text{rank}(Y), \quad \beta \in Y$$



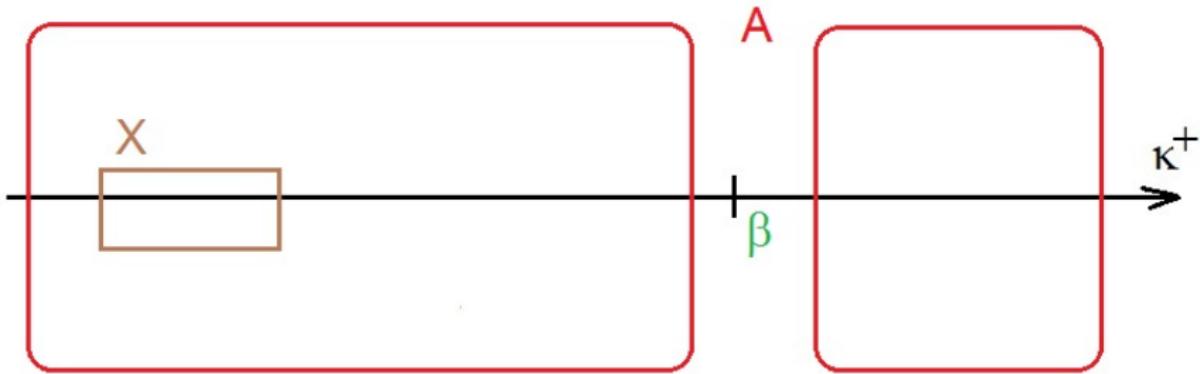
Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$, then

$$f(X) = f_{XY}(\beta), \quad \text{rank}(X) = \text{rank}(Y), \quad \beta \in Y$$



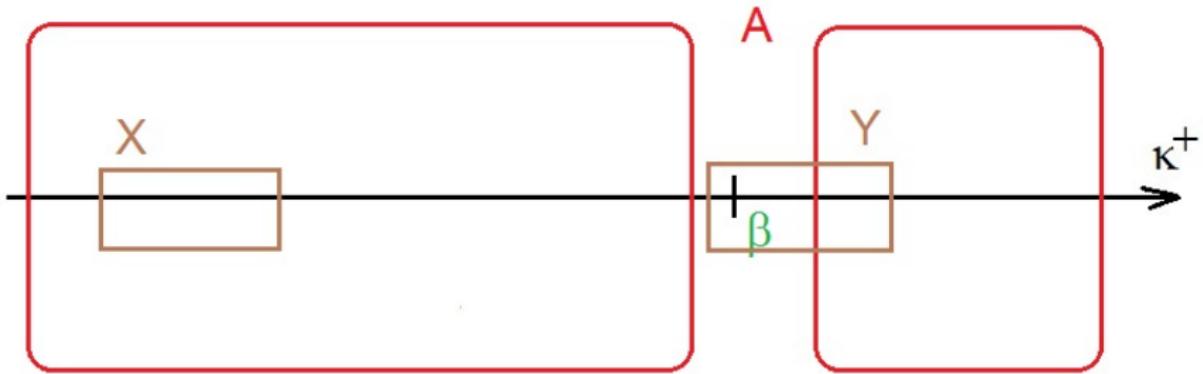
Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$, then

$$f(X) = f_{XY}(\beta), \quad \text{rank}(X) = \text{rank}(Y), \quad \beta \in Y$$



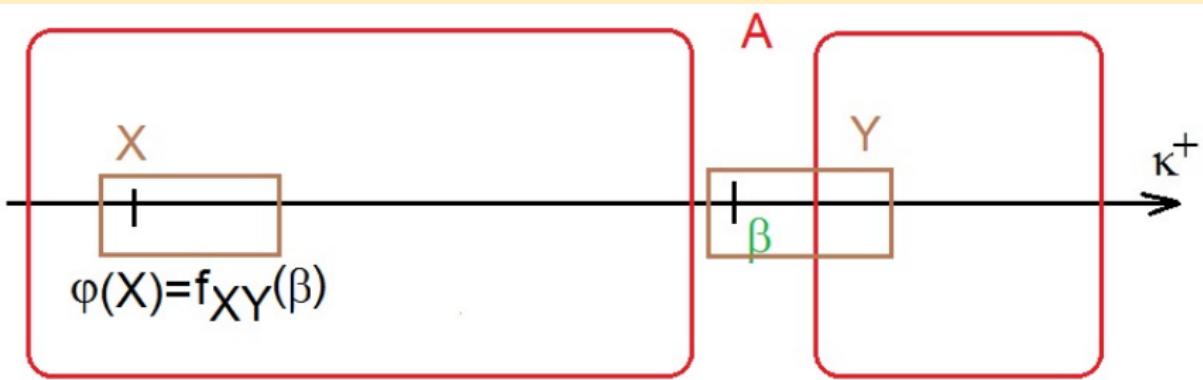
Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$, then

$$f(X) = f_{XY}(\beta), \quad \text{rank}(X) = \text{rank}(Y), \quad \beta \in Y$$



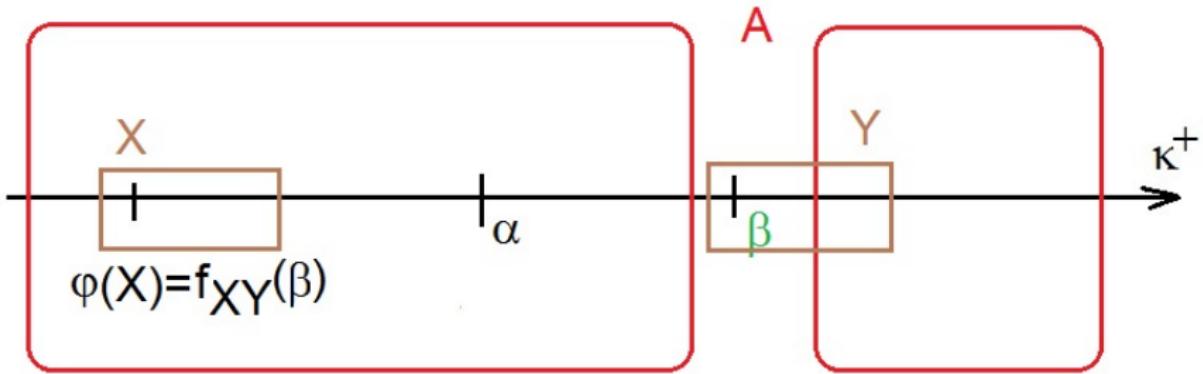
Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$, then

$$f(X) = f_{XY}(\beta), \quad \text{rank}(X) = \text{rank}(Y), \quad \beta \in Y$$



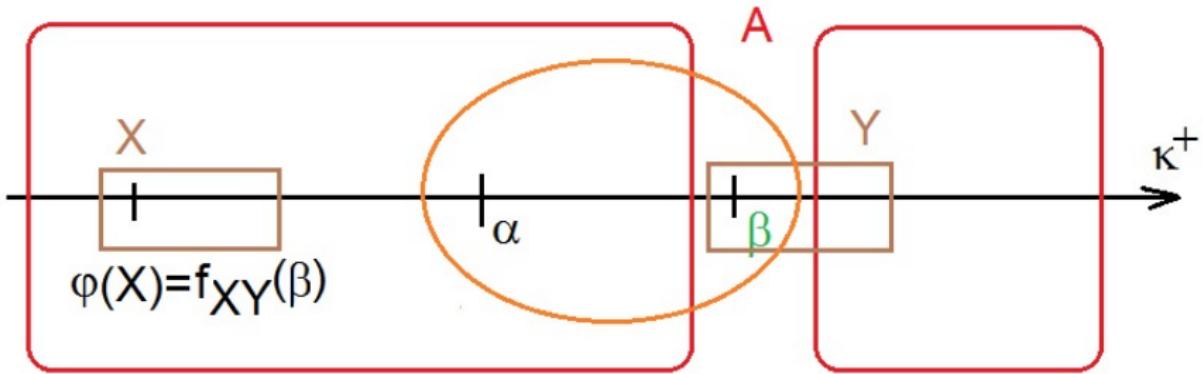
Theorem

Let μ be a (κ, κ^+) -cardinal, then for no proper subset $A \subset \kappa^+$ of size at least κ the set $\{X \in \mu : X \subset A\}$ is stationary in $\wp_\kappa(A)$.

Proof.

Fix $\beta \in \kappa^+$ such that $\beta \notin A$, then

$$f(X) = f_{XY}(\beta), \quad \text{rank}(X) = \text{rank}(Y), \quad \beta \in Y$$



Theorem

Suppose that μ is a (ω, ω_1) -cardinal. Then there are $(A_\alpha)_{\alpha < \omega_1}, (B_\alpha)_{\alpha < \omega_1} \subseteq \wp(\omega)$ such that

- ① $A_\alpha \cap B_\alpha = \emptyset$ for each $\alpha < \omega_1$,
- ② $A_\alpha \subseteq^* A_\beta, B_\alpha \subseteq^* B_\beta$ for each $\alpha < \beta < \omega_1$,
- ③ There is no $C \subseteq \omega$ such that $A_\alpha \subseteq^* C, B_\alpha \cap C =^* \emptyset$ for each $\alpha < \omega_1$.

Theorem

Suppose that μ is a (ω, ω_1) -cardinal. Then there are $(A_\alpha)_{\alpha < \omega_1}, (B_\alpha)_{\alpha < \omega_1} \subseteq \wp(\omega)$ such that

- ① $A_\alpha \cap B_\alpha = \emptyset$ for each $\alpha < \omega_1$,
- ② $A_\alpha \subseteq^* A_\beta, B_\alpha \subseteq^* B_\beta$ for each $\alpha < \beta < \omega_1$,
- ③ There is no $C \subseteq \omega$ such that $A_\alpha \subseteq^* C, B_\alpha \cap C =^* \emptyset$ for each $\alpha < \omega_1$.

Proof.

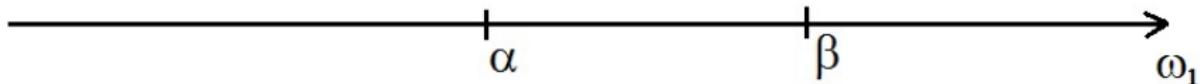
Define

$$A_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{rank}(X_i) = n, \text{ and } \alpha \in X_1 \setminus X_2\},$$

$$B_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{rank}(X_i) = n, \text{ and } \alpha \in X_2 \setminus X_1\}.$$

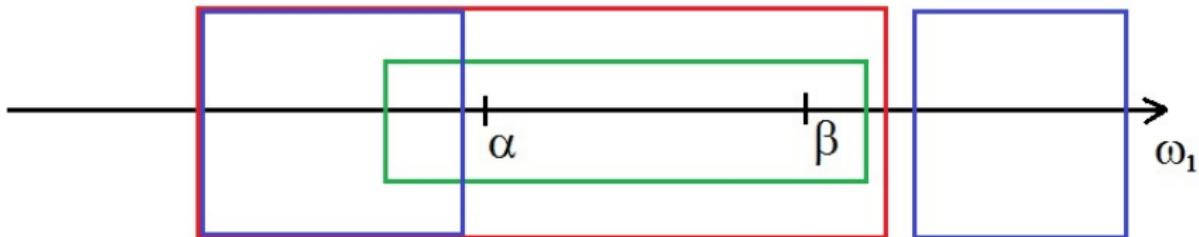
$$A_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{ rank}(X_i) = n, \text{ and } \alpha \in X_1 \setminus X_2\},$$
$$B_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{ rank}(X_i) = n, \text{ and } \alpha \in X_2 \setminus X_1\}.$$

$A_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{ rank}(X_i) = n, \text{ and } \alpha \in X_1 \setminus X_2\},$
 $B_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{ rank}(X_i) = n, \text{ and } \alpha \in X_2 \setminus X_1\}.$

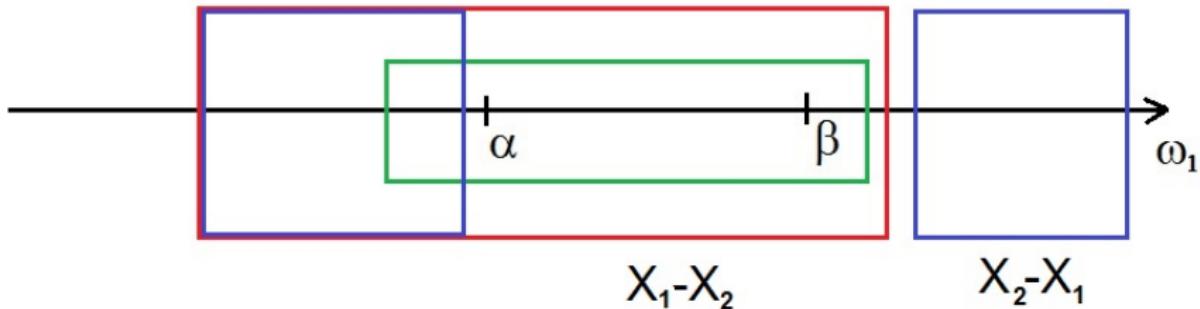


$A_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{ rank}(X_i) = n, \text{ and } \alpha \in X_1 \setminus X_2\},$
 $B_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{ rank}(X_i) = n, \text{ and } \alpha \in X_2 \setminus X_1\}.$

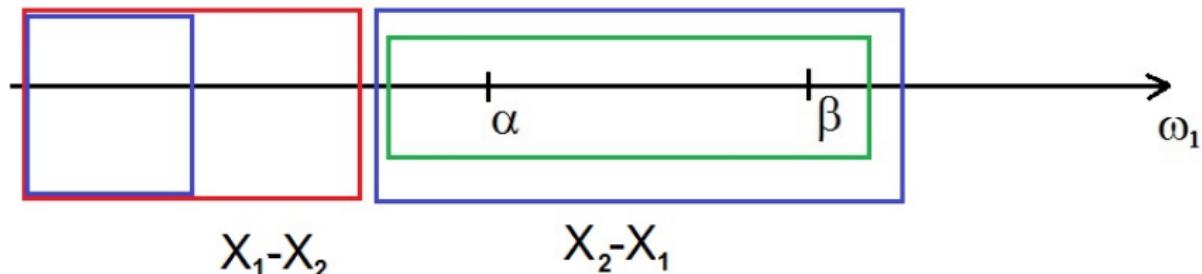
$A_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{rank}(X_i) = n, \text{ and } \alpha \in X_1 \setminus X_2\},$
 $B_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{rank}(X_i) = n, \text{ and } \alpha \in X_2 \setminus X_1\}.$



$A_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{rank}(X_i) = n, \text{ and } \alpha \in X_1 \setminus X_2\},$
 $B_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{rank}(X_i) = n, \text{ and } \alpha \in X_2 \setminus X_1\}.$



$A_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{rank}(X_i) = n, \text{ and } \alpha \in X_1 \setminus X_2\},$
 $B_\alpha = \{n \in \omega : \exists (X_1 * X_2) \in \mu, \text{rank}(X_i) = n, \text{ and } \alpha \in X_2 \setminus X_1\}.$



$$A_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n + 1, X = X_1 * X_2 \text{ and } \alpha \in X_1 \setminus X_2\}$$
$$B_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n + 1, X = X_1 * X_2 \text{ and } \alpha \in X_2 \setminus X_1\}.$$

$$A_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n + 1, X = X_1 * X_2 \text{ and } \alpha \in X_1 \setminus X_2\}$$
$$B_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n + 1, X = X_1 * X_2 \text{ and } \alpha \in X_2 \setminus X_1\}.$$
$$f_\alpha(\xi) = \max\{\max(A_\alpha \cap B_\xi), \max(B_\alpha \cap A_\xi)\}, \xi < \alpha, \text{i.e., } f_\alpha : \alpha \rightarrow \omega$$

$$A_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n+1, X = X_1 * X_2 \text{ and } \alpha \in X_1 \setminus X_2\}$$
$$B_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n+1, X = X_1 * X_2 \text{ and } \alpha \in X_2 \setminus X_1\}.$$
$$f_\alpha(\xi) = \max\{\max(A_\alpha \cap B_\xi), \max(B_\alpha \cap A_\xi)\}, \xi < \alpha, \text{ i.e., } f_\alpha : \alpha \rightarrow \omega$$

If $k_0 \in \omega$ and $S \subseteq \omega_1$ are uncountable such that

$$(A_\alpha \setminus k_0) \subseteq C \text{ for } \alpha \in S$$
$$(B_\alpha \setminus k_0) \cap C = \emptyset \text{ for } \alpha \in S$$

Then $f_\alpha(\xi) \leq k_0$ for $\alpha, \xi \in S$

So to prove the nonexistence of C as in (3) it is enough to prove that f_α s are finite-to-one.

$$A_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n+1, X = X_1 * X_2 \text{ and } \alpha \in X_1 \setminus X_2\}$$

$$B_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n+1, X = X_1 * X_2 \text{ and } \alpha \in X_2 \setminus X_1\}.$$

$$f_\alpha(\xi) = \max\{\max(A_\alpha \cap B_\xi), \max(B_\alpha \cap A_\xi)\}, \xi < \alpha, \text{i.e., } f_\alpha : \alpha \rightarrow \omega$$

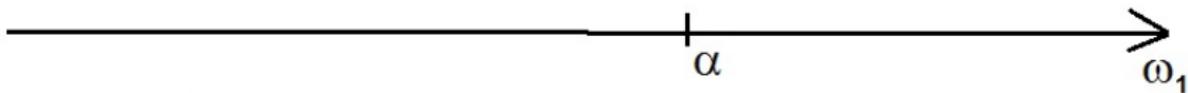
If $k_0 \in \omega$ and $S \subseteq \omega_1$ are uncountable such that

$$(A_\alpha \setminus k_0) \subseteq C \text{ for } \alpha \in S$$

$$(B_\alpha \setminus k_0) \cap C = \emptyset \text{ for } \alpha \in S$$

Then $f_\alpha(\xi) \leq k_0$ for $\alpha, \xi \in S$

So to prove the nonexistence of C as in (3) it is enough to prove that f_α s are finite-to-one.



$$A_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n+1, X = X_1 * X_2 \text{ and } \alpha \in X_1 \setminus X_2\}$$

$$B_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n+1, X = X_1 * X_2 \text{ and } \alpha \in X_2 \setminus X_1\}.$$

$$f_\alpha(\xi) = \max\{\max(A_\alpha \cap B_\xi), \max(B_\alpha \cap A_\xi)\}, \xi < \alpha, \text{ i.e., } f_\alpha : \alpha \rightarrow \omega$$

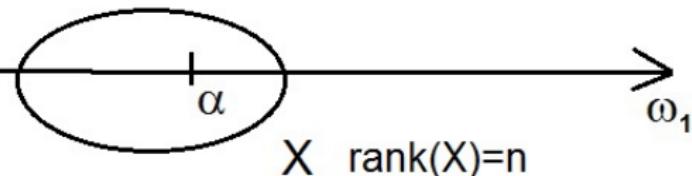
If $k_0 \in \omega$ and $S \subseteq \omega_1$ are uncountable such that

$$(A_\alpha \setminus k_0) \subseteq C \text{ for } \alpha \in S$$

$$(B_\alpha \setminus k_0) \cap C = \emptyset \text{ for } \alpha \in S$$

Then $f_\alpha(\xi) \leq k_0$ for $\alpha, \xi \in S$

So to prove the nonexistence of C as in (3) it is enough to prove that f_α s are finite-to-one.



$$A_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n+1, X = X_1 * X_2 \text{ and } \alpha \in X_1 \setminus X_2\}$$

$$B_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n+1, X = X_1 * X_2 \text{ and } \alpha \in X_2 \setminus X_1\}.$$

$$f_\alpha(\xi) = \max\{\max(A_\alpha \cap B_\xi), \max(B_\alpha \cap A_\xi)\}, \xi < \alpha, \text{i.e., } f_\alpha : \alpha \rightarrow \omega$$

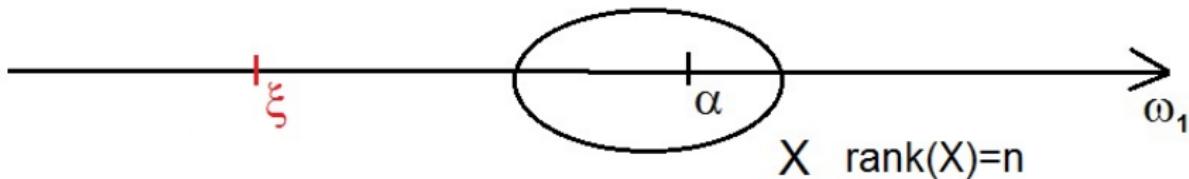
If $k_0 \in \omega$ and $S \subseteq \omega_1$ are uncountable such that

$$(A_\alpha \setminus k_0) \subseteq C \text{ for } \alpha \in S$$

$$(B_\alpha \setminus k_0) \cap C = \emptyset \text{ for } \alpha \in S$$

Then $f_\alpha(\xi) \leq k_0$ for $\alpha, \xi \in S$

So to prove the nonexistence of C as in (3) it is enough to prove that f_α s are finite-to-one.



$$A_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n+1, X = X_1 * X_2 \text{ and } \alpha \in X_1 \setminus X_2\}$$

$$B_\alpha = \bigcup_{X \in \mu} \{n \in \omega : \text{rank}(X) = n+1, X = X_1 * X_2 \text{ and } \alpha \in X_2 \setminus X_1\}.$$

$$f_\alpha(\xi) = \max\{\max(A_\alpha \cap B_\xi), \max(B_\alpha \cap A_\xi)\}, \xi < \alpha, \text{i.e., } f_\alpha : \alpha \rightarrow \omega$$

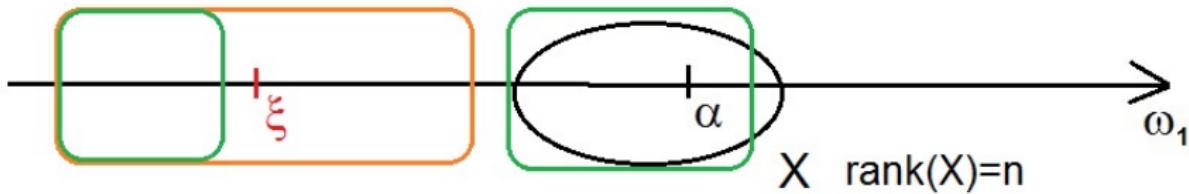
If $k_0 \in \omega$ and $S \subseteq \omega_1$ are uncountable such that

$$(A_\alpha \setminus k_0) \subseteq C \text{ for } \alpha \in S$$

$$(B_\alpha \setminus k_0) \cap C = \emptyset \text{ for } \alpha \in S$$

Then $f_\alpha(\xi) \leq k_0$ for $\alpha, \xi \in S$

So to prove the nonexistence of C as in (3) it is enough to prove that f_α s are finite-to-one.



Definition

Let μ be a (κ, κ^+) -cardinal, then the following function $m_\mu = m: [\kappa^+]^2 \rightarrow \kappa$ is called a μ -coloring:

$$m(\alpha, \beta) = m(\{\alpha, \beta\}) = \min\{rank(X) : \alpha, \beta \in X \in \mu\}$$

Definition

Let μ be a (κ, κ^+) -cardinal, then the following function $m_\mu = m: [\kappa^+]^2 \rightarrow \kappa$ is called a μ -coloring:

$$m(\alpha, \beta) = m(\{\alpha, \beta\}) = \min\{rank(X) : \alpha, \beta \in X \in \mu\}$$

Theorem

Let $\alpha < \beta < \gamma < \kappa^+$, $\nu < \kappa$, $0 < \delta = \bigcup \delta < \epsilon < \kappa^+$, then the following conditions are satisfied:

- (a) $|\{\xi < \alpha : m(\xi, \alpha) \leq \nu\}| < \kappa$
- (b) $m(\alpha, \gamma) \leq \max\{m(\alpha, \beta), m(\beta, \gamma)\}$
- (c) $m(\alpha, \beta) \leq \max\{m(\alpha, \gamma), m(\beta, \gamma)\}$
- (d) There is $\zeta < \delta$ such that $m(\xi, \epsilon) \geq m(\xi, \delta)$ for all $\zeta \leq \xi < \delta$.

Theorem

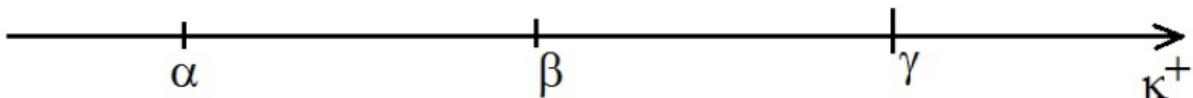
Let $\alpha < \beta < \gamma < \kappa^+$,

- (a) $m(\alpha, \gamma) \leq \max\{m(\alpha, \beta), m(\beta, \gamma)\}$
- (b) $m(\alpha, \beta) \leq \max\{m(\alpha, \gamma), m(\beta, \gamma)\}$

Theorem

Let $\alpha < \beta < \gamma < \kappa^+$,

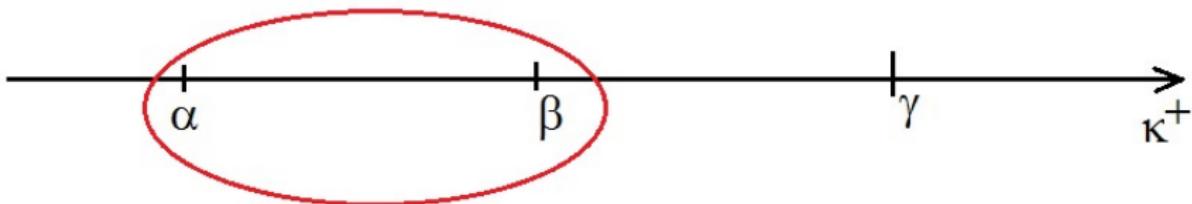
- (a) $m(\alpha, \gamma) \leq \max\{m(\alpha, \beta), m(\beta, \gamma)\}$
- (b) $m(\alpha, \beta) \leq \max\{m(\alpha, \gamma), m(\beta, \gamma)\}$



Theorem

Let $\alpha < \beta < \gamma < \kappa^+$,

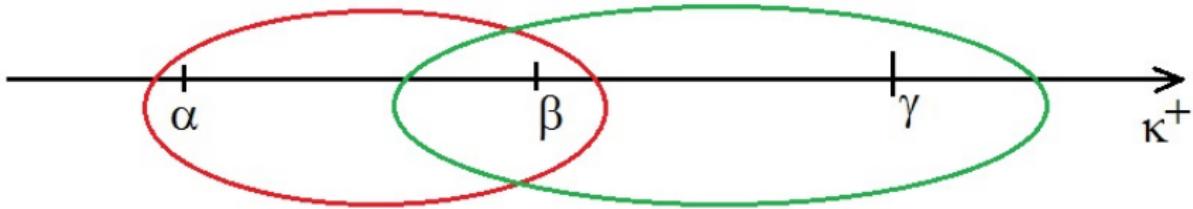
- (a) $m(\alpha, \gamma) \leq \max\{m(\alpha, \beta), m(\beta, \gamma)\}$
- (b) $m(\alpha, \beta) \leq \max\{m(\alpha, \gamma), m(\beta, \gamma)\}$



Theorem

Let $\alpha < \beta < \gamma < \kappa^+$,

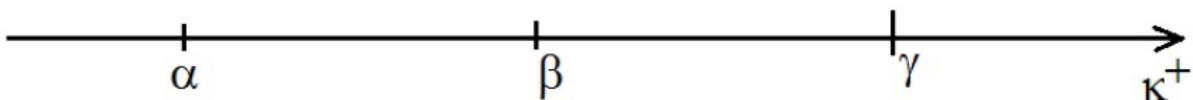
- (a) $m(\alpha, \gamma) \leq \max\{m(\alpha, \beta), m(\beta, \gamma)\}$
- (b) $m(\alpha, \beta) \leq \max\{m(\alpha, \gamma), m(\beta, \gamma)\}$



Theorem

Let $\alpha < \beta < \gamma < \kappa^+$,

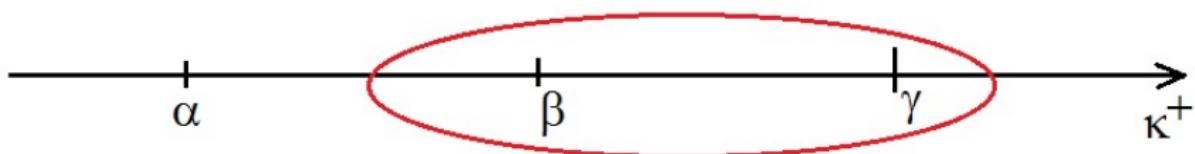
- (a) $m(\alpha, \gamma) \leq \max\{m(\alpha, \beta), m(\beta, \gamma)\}$
- (b) $m(\alpha, \beta) \leq \max\{m(\alpha, \gamma), m(\beta, \gamma)\}$



Theorem

Let $\alpha < \beta < \gamma < \kappa^+$,

- (a) $m(\alpha, \gamma) \leq \max\{m(\alpha, \beta), m(\beta, \gamma)\}$
- (b) $m(\alpha, \beta) \leq \max\{m(\alpha, \gamma), m(\beta, \gamma)\}$

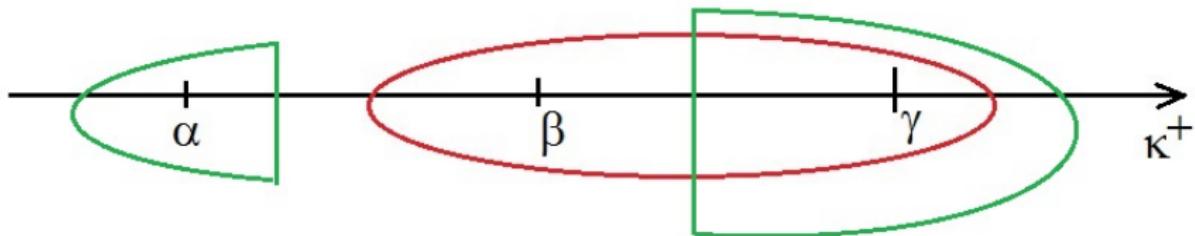


Theorem

Let $\alpha < \beta < \gamma < \kappa^+$,

(a) $m(\alpha, \gamma) \leq \max\{m(\alpha, \beta), m(\beta, \gamma)\}$

(b) $m(\alpha, \beta) \leq \max\{m(\alpha, \gamma), m(\beta, \gamma)\}$



Definition

$f : [\omega_2]^2 \rightarrow \omega_1$ is called unbounded if and only if for every family $\{a_\xi : \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 ,

Definition

$f : [\omega_2]^2 \rightarrow \omega_1$ is called unbounded if and only if for every family $\{a_\xi : \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$

Definition

$f : [\omega_2]^2 \rightarrow \omega_1$ is called unbounded if and only if for every family $\{a_\xi : \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$ there are $\xi < \xi' < \omega_1$ such that

Definition

$f : [\omega_2]^2 \rightarrow \omega_1$ is called unbounded if and only if for every family $\{a_\xi : \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$ there are $\xi < \xi' < \omega_1$ such that

$$f(\alpha, \beta) > \delta$$

for all $\alpha \in a_\xi$ and all $\beta \in a_{\xi'}$.

Definition

$f : [\omega_2]^2 \rightarrow \omega_1$ is called unbounded if and only if for every family $\{a_\xi : \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$ there are $\xi < \xi' < \omega_1$ such that

$$f(\alpha, \beta) > \delta$$

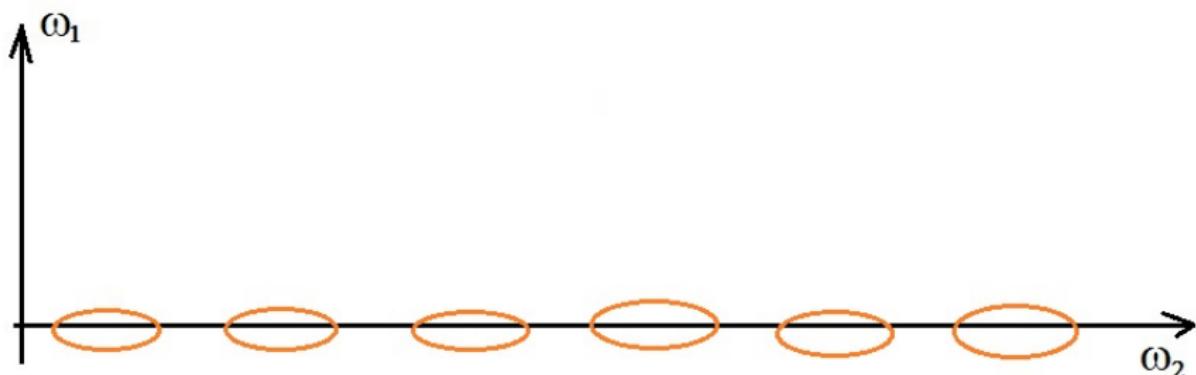
for all $\alpha \in a_\xi$ and all $\beta \in a_{\xi'}$.

Definition

$f : [\omega_2]^2 \rightarrow \omega_1$ is called unbounded if and only if for every family $\{a_\xi : \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$ there are $\xi < \xi' < \omega_1$ such that

$$f(\alpha, \beta) > \delta$$

for all $\alpha \in a_\xi$ and all $\beta \in a_{\xi'}$.

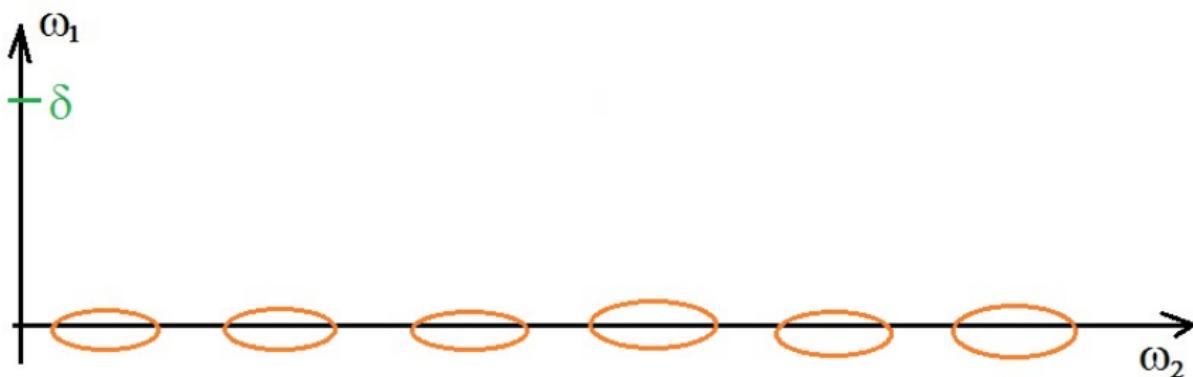


Definition

$f : [\omega_2]^2 \rightarrow \omega_1$ is called unbounded if and only if for every family $\{a_\xi : \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$ there are $\xi < \xi' < \omega_1$ such that

$$f(\alpha, \beta) > \delta$$

for all $\alpha \in a_\xi$ and all $\beta \in a_{\xi'}$.

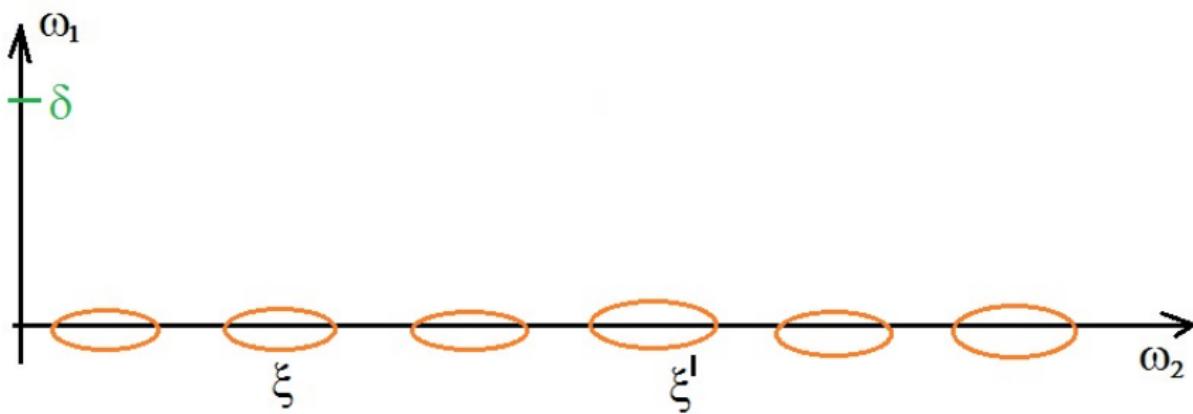


Definition

$f : [\omega_2]^2 \rightarrow \omega_1$ is called unbounded if and only if for every family $\{a_\xi : \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$ there are $\xi < \xi' < \omega_1$ such that

$$f(\alpha, \beta) > \delta$$

for all $\alpha \in a_\xi$ and all $\beta \in a_{\xi'}$.

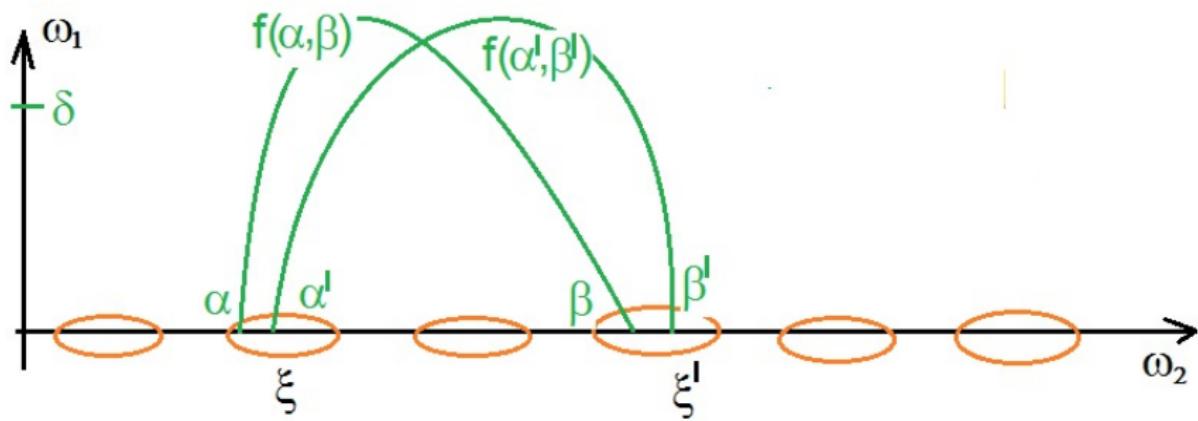


Definition

$f : [\omega_2]^2 \rightarrow \omega_1$ is called unbounded if and only if for every family $\{a_\xi : \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$ there are $\xi < \xi' < \omega_1$ such that

$$f(\alpha, \beta) > \delta$$

for all $\alpha \in a_\xi$ and all $\beta \in a_{\xi'}$.



Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

$a_\xi = \{\alpha_\xi(1), \dots, \alpha_\xi(k)\}$ pairwise disjoint finite sets.

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

$a_\xi = \{\alpha_\xi(1), \dots, \alpha_\xi(k)\}$ pairwise disjoint finite sets.

Suppose $\delta < \omega_1$ is such that for all distinct $\xi, \xi' \in \omega_1$ we have

$m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta$ for some $1 \leq i, j \leq k$

u - a uniform ultrafilter on ω_1 .

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

$a_\xi = \{\alpha_\xi(1), \dots, \alpha_\xi(k)\}$ pairwise disjoint finite sets.

Suppose $\delta < \omega_1$ is such that for all distinct $\xi, \xi' \in \omega_1$ we have

$m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta$ for some $1 \leq i, j \leq k$

u - a uniform ultrafilter on ω_1 . $\omega_1 \setminus \{\xi\} = A_\xi^1 \cup \dots \cup A_\xi^k$

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

$a_\xi = \{\alpha_\xi(1), \dots, \alpha_\xi(k)\}$ pairwise disjoint finite sets.

Suppose $\delta < \omega_1$ is such that for all distinct $\xi, \xi' \in \omega_1$ we have

$m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta$ for some $1 \leq i, j \leq k$

u - a uniform ultrafilter on ω_1 . $\omega_1 \setminus \{\xi\} = A_\xi^1 \cup \dots \cup A_\xi^k$

$A_\xi^i = \{\xi' \in \omega_1 \setminus \{\xi\} : \exists j \leq k \ m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta\}$

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

$a_\xi = \{\alpha_\xi(1), \dots, \alpha_\xi(k)\}$ pairwise disjoint finite sets.

Suppose $\delta < \omega_1$ is such that for all distinct $\xi, \xi' \in \omega_1$ we have

$m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta$ for some $1 \leq i, j \leq k$

u - a uniform ultrafilter on ω_1 . $\omega_1 \setminus \{\xi\} = A_\xi^1 \cup \dots \cup A_\xi^k$

$A_\xi^i = \{\xi' \in \omega_1 \setminus \{\xi\} : \exists j \leq k \ m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta\}$

For each $\xi \in \omega_1$ there is $i \leq k$ such that $A_\xi^i \in u$.

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

$a_\xi = \{\alpha_\xi(1), \dots, \alpha_\xi(k)\}$ pairwise disjoint finite sets.

Suppose $\delta < \omega_1$ is such that for all distinct $\xi, \xi' \in \omega_1$ we have

$m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta$ for some $1 \leq i, j \leq k$

u - a uniform ultrafilter on ω_1 . $\omega_1 \setminus \{\xi\} = A_\xi^1 \cup \dots \cup A_\xi^k$

$A_\xi^i = \{\xi' \in \omega_1 \setminus \{\xi\} : \exists j \leq k \ m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta\}$

For each $\xi \in \omega_1$ there is $i \leq k$ such that $A_\xi^i \in u$. There is $S \in u$ and i_0 such that $A_\xi^{i_0} \in u$ for all $\xi \in S$.

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

$a_\xi = \{\alpha_\xi(1), \dots, \alpha_\xi(k)\}$ pairwise disjoint finite sets.

Suppose $\delta < \omega_1$ is such that for all distinct $\xi, \xi' \in \omega_1$ we have

$m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta$ for some $1 \leq i, j \leq k$

u - a uniform ultrafilter on ω_1 . $\omega_1 \setminus \{\xi\} = A_\xi^1 \cup \dots \cup A_\xi^k$

$A_\xi^i = \{\xi' \in \omega_1 \setminus \{\xi\} : \exists j \leq k \ m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta\}$

For each $\xi \in \omega_1$ there is $i \leq k$ such that $A_\xi^i \in u$. There is $S \in u$ and i_0 such that $A_\xi^{i_0} \in u$ for all $\xi \in S$.

There is $T \in u$ and $i_0, j_0 \leq k$ such that for all $\xi \in T$.

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

$a_\xi = \{\alpha_\xi(1), \dots, \alpha_\xi(k)\}$ pairwise disjoint finite sets.

Suppose $\delta < \omega_1$ is such that for all distinct $\xi, \xi' \in \omega_1$ we have

$m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta$ for some $1 \leq i, j \leq k$

u - a uniform ultrafilter on ω_1 . $\omega_1 \setminus \{\xi\} = A_\xi^1 \cup \dots \cup A_\xi^k$

$A_\xi^i = \{\xi' \in \omega_1 \setminus \{\xi\} : \exists j \leq k \ m(\alpha_\xi(i), \alpha_{\xi'}(j)) < \delta\}$

For each $\xi \in \omega_1$ there is $i \leq k$ such that $A_\xi^i \in u$. There is $S \in u$ and i_0 such that $A_{\xi'}^{i_0} \in u$ for all $\xi \in S$.

There is $T \in u$ and $i_0, j_0 \leq k$ such that for all $\xi \in T$.

$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta\} \in u$

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

There is $T \in u$ and $i_0, j_0 \leq k$ such that for all $\xi \in T$.

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta\} \in u$$

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

There is $T \in u$ and $i_0, j_0 \leq k$ such that for all $\xi \in T$.

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta\} \in u$$

Case 1: There is $\xi \in \omega_1$ such that

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta \text{ & } \alpha_{\xi'}(j_0) < \alpha_\xi(i_0)\} \in u$$

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

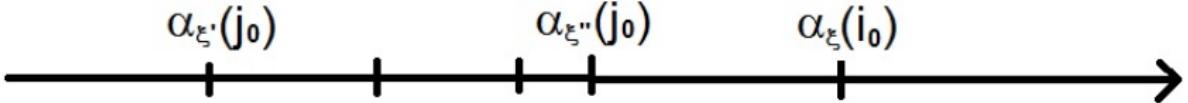
Proof.

There is $T \in u$ and $i_0, j_0 \leq k$ such that for all $\xi \in T$.

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta\} \in u$$

Case 1: There is $\xi \in \omega_1$ such that

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta \text{ & } \alpha_{\xi'}(j_0) < \alpha_\xi(i_0)\} \in u$$



Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

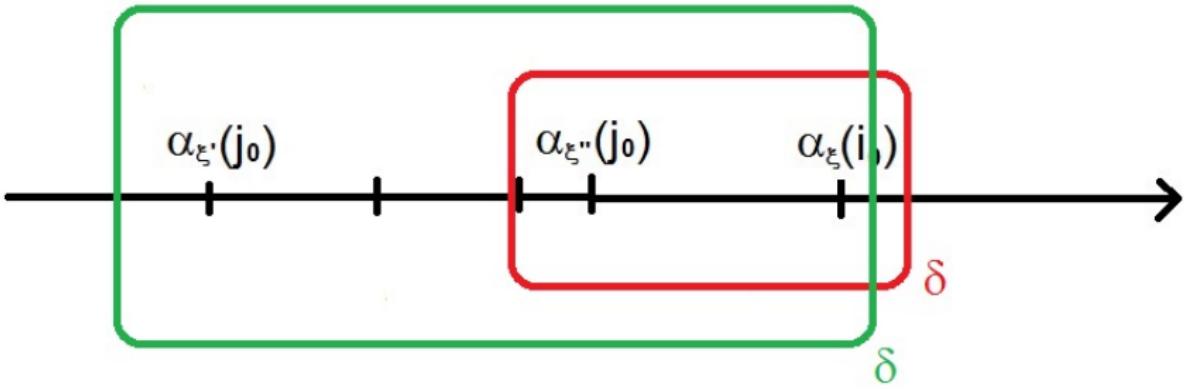
Proof.

There is $T \in u$ and $i_0, j_0 \leq k$ such that for all $\xi \in T$.

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta\} \in u$$

Case 1: There is $\xi \in \omega_1$ such that

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta \text{ & } \alpha_{\xi'}(j_0) < \alpha_\xi(i_0)\} \in u$$



Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

There is $T \in u$ and $i_0, j_0 \leq k$ such that for all $\xi \in T$.

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta\} \in u$$

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

Proof.

There is $T \in u$ and $i_0, j_0 \leq k$ such that for all $\xi \in T$.

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta\} \in u$$

Case 2: For all $\xi \in \omega_1$ we have

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta \text{ & } \alpha_{\xi'}(j_0) > \alpha_\xi(i_0)\} \in u$$

Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

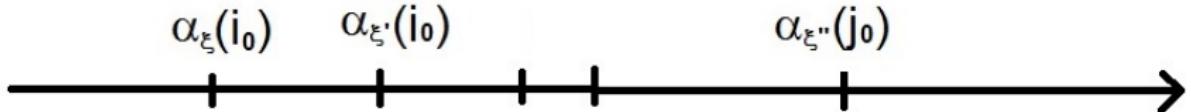
Proof.

There is $T \in u$ and $i_0, j_0 \leq k$ such that for all $\xi \in T$.

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta\} \in u$$

Case 2: For all $\xi \in \omega_1$ we have

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta \text{ & } \alpha_{\xi'}(j_0) > \alpha_\xi(i_0)\} \in u$$



Theorem

Let $m : [\omega_2]^2 \rightarrow \omega_1$ be the μ -coloring. m is an unbounded function.

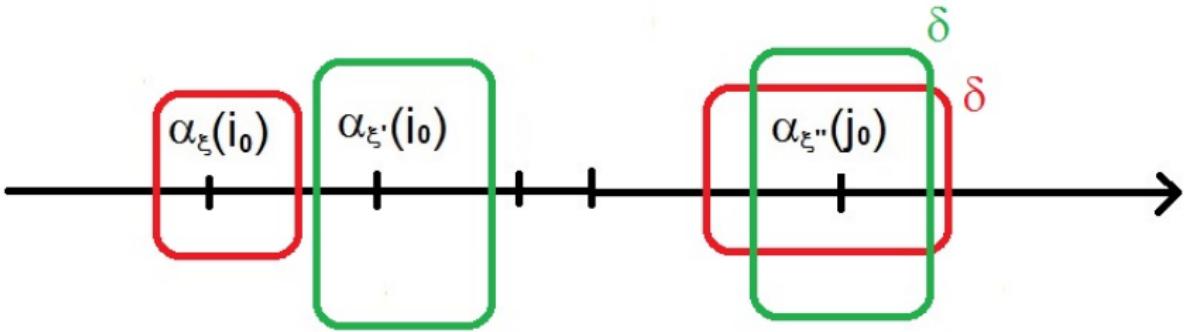
Proof.

There is $T \in u$ and $i_0, j_0 \leq k$ such that for all $\xi \in T$.

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta\} \in u$$

Case 2: For all $\xi \in \omega_1$ we have

$$\{\xi' \in \omega_1 \setminus \{\xi\} : m(\alpha_\xi(i_0), \alpha_{\xi'}(j_0)) < \delta \text{ & } \alpha_{\xi'}(j_0) > \alpha_\xi(i_0)\} \in u$$



Definition

A function $f : [\omega_2]^2 \rightarrow [\omega_2]^\omega$ has the property Δ

Definition

A function $f : [\omega_2]^2 \rightarrow [\omega_2]^\omega$ has the property Δ if and only if for every uncountable Δ -system \mathcal{A} of finite subsets of ω_2

Definition

A function $f : [\omega_2]^2 \rightarrow [\omega_2]^\omega$ has the property Δ if and only if for every uncountable Δ -system \mathcal{A} of finite subsets of ω_2 there are two elements $a, b \in \mathcal{A}$ such that

Definition

A function $f : [\omega_2]^2 \rightarrow [\omega_2]^\omega$ has the property Δ if and only if for every uncountable Δ -system \mathcal{A} of finite subsets of ω_2 there are two elements $a, b \in \mathcal{A}$ such that for each $\tau \in a \cap b$ and $\alpha \in a - b$ and $\beta \in b - a$ we have

Definition

A function $f : [\omega_2]^2 \rightarrow [\omega_2]^\omega$ has the property Δ if and only if for every uncountable Δ -system \mathcal{A} of finite subsets of ω_2 there are two elements $a, b \in \mathcal{A}$ such that for each $\tau \in a \cap b$ and $\alpha \in a - b$ and $\beta \in b - a$ we have

① $\tau < \alpha, \beta \Rightarrow \tau \in f(\alpha, \beta),$

Definition

A function $f : [\omega_2]^2 \rightarrow [\omega_2]^\omega$ has the property Δ if and only if for every uncountable Δ -system \mathcal{A} of finite subsets of ω_2 there are two elements $a, b \in \mathcal{A}$ such that for each $\tau \in a \cap b$ and $\alpha \in a - b$ and $\beta \in b - a$ we have

- ① $\tau < \alpha, \beta \Rightarrow \tau \in f(\alpha, \beta),$
- ② $\tau < \alpha \Rightarrow f(\tau, \beta) \subseteq f(\alpha, \beta),$

Definition

A function $f : [\omega_2]^2 \rightarrow [\omega_2]^\omega$ has the property Δ if and only if for every uncountable Δ -system \mathcal{A} of finite subsets of ω_2 there are two elements $a, b \in \mathcal{A}$ such that for each $\tau \in a \cap b$ and $\alpha \in a - b$ and $\beta \in b - a$ we have

- 1 $\tau < \alpha, \beta \Rightarrow \tau \in f(\alpha, \beta),$
- 2 $\tau < \alpha \Rightarrow f(\tau, \beta) \subseteq f(\alpha, \beta),$
- 3 $\tau < \beta \Rightarrow f(\tau, \alpha) \subseteq f(\alpha, \beta).$

Definition

A function $f : [\omega_2]^2 \rightarrow [\omega_2]^\omega$ has the property Δ if and only if for every uncountable Δ -system \mathcal{A} of finite subsets of ω_2 there are two elements $a, b \in \mathcal{A}$ such that for each $\tau \in a \cap b$ and $\alpha \in a - b$ and $\beta \in b - a$ we have

- 1 $\tau < \alpha, \beta \Rightarrow \tau \in f(\alpha, \beta),$
- 2 $\tau < \alpha \Rightarrow f(\tau, \beta) \subseteq f(\alpha, \beta),$
- 3 $\tau < \beta \Rightarrow f(\tau, \alpha) \subseteq f(\alpha, \beta).$

Theorem

Let μ be (ω_1, ω_2) -cardinal, then $f : [\omega_2]^2 \rightarrow \omega_1$ defined by

$$f(\alpha, \beta) = X \cap \min(\alpha, \beta),$$

where X is of minimal rank in μ which contains α, β has Δ -property.

Definition

A function $f : [\omega_2]^2 \rightarrow [\omega_2]^\omega$ has the property Δ if and only if for every uncountable Δ -system \mathcal{A} of finite subsets of ω_2 there are two elements $a, b \in \mathcal{A}$ such that for each $\tau \in a \cap b$ and $\alpha \in a - b$ and $\beta \in b - a$ we have

- 1 $\tau < \alpha, \beta \Rightarrow \tau \in f(\alpha, \beta),$
- 2 $\tau < \alpha \Rightarrow f(\tau, \beta) \subseteq f(\alpha, \beta),$
- 3 $\tau < \beta \Rightarrow f(\tau, \alpha) \subseteq f(\alpha, \beta).$

Theorem

Let μ be (ω_1, ω_2) -cardinal, then $f : [\omega_2]^2 \rightarrow \omega_1$ defined by

$$f(\alpha, \beta) = X \cap \min(\alpha, \beta),$$

where X is of minimal rank in μ which contains α, β has Δ -property.
Alternatively $f(\alpha, \beta) = \{\xi < \min(\alpha, \beta) : m(\xi, \alpha) \leq m(\alpha, \beta)\}$ for $\alpha < \beta$.

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in \mu$.

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in \mu$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in \mu$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in \mu$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 1. $\text{rank}(X) = \text{rank}(M \cap \omega_2)$.

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in \mu$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 1. $\text{rank}(X) = \text{rank}(M \cap \omega_2)$.

Coherence lemma gives $X \cap M = M \cap \beta$.

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) > \text{rank}(M \cap \omega_2)$.

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) > \text{rank}(M \cap \omega_2)$.

Let $X' \in \mu$, $\text{rank}(X') = \text{rank}(X)$, $M \cap \omega_2 \subseteq X'$.

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) > \text{rank}(M \cap \omega_2)$.

Let $X' \in \mu$, $\text{rank}(X') = \text{rank}(X)$, $M \cap \omega_2 \subseteq X'$.

$X \cap M =$

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) > \text{rank}(M \cap \omega_2)$.

Let $X' \in \mu$, $\text{rank}(X') = \text{rank}(X)$, $M \cap \omega_2 \subseteq X'$.

$X \cap M = X \cap (M \cap \omega_2) =$

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) > \text{rank}(M \cap \omega_2)$.

Let $X' \in \mu$, $\text{rank}(X') = \text{rank}(X)$, $M \cap \omega_2 \subseteq X'$.

$$X \cap M = X \cap (M \cap \omega_2) = X \cap X' \cap (M \cap \omega_2) =$$

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) > \text{rank}(M \cap \omega_2)$.

Let $X' \in \mu$, $\text{rank}(X') = \text{rank}(X)$, $M \cap \omega_2 \subseteq X'$.

$$X \cap M = X \cap (M \cap \omega_2) = X \cap X' \cap (M \cap \omega_2) = (X' \cap \beta) \cap (M \cap \omega_2) =$$

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) > \text{rank}(M \cap \omega_2)$.

Let $X' \in \mu$, $\text{rank}(X') = \text{rank}(X)$, $M \cap \omega_2 \subseteq X'$.

$$X \cap M = X \cap (M \cap \omega_2) = X \cap X' \cap (M \cap \omega_2) = (X' \cap \beta) \cap (M \cap \omega_2) = M \cap \beta.$$

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) < \text{rank}(M \cap \omega_2)$.

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) < \text{rank}(M \cap \omega_2)$.

ω_2

Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

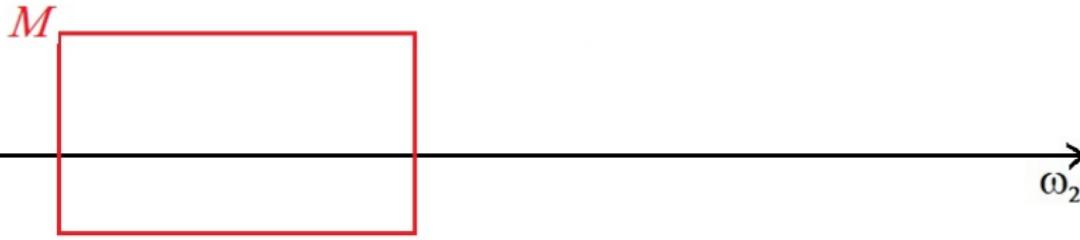
Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) < \text{rank}(M \cap \omega_2)$.



Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

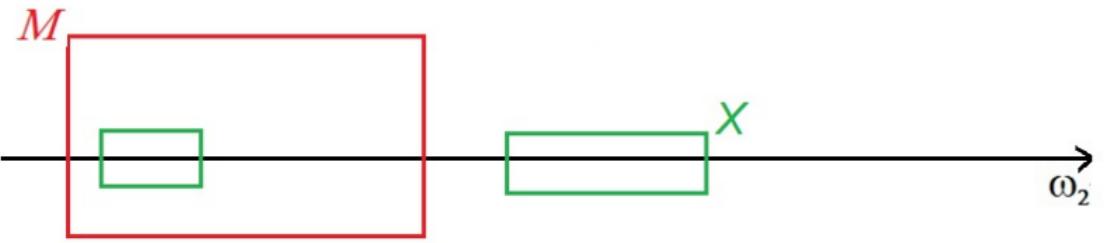
Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^\omega_1$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) < \text{rank}(M \cap \omega_2)$.



Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

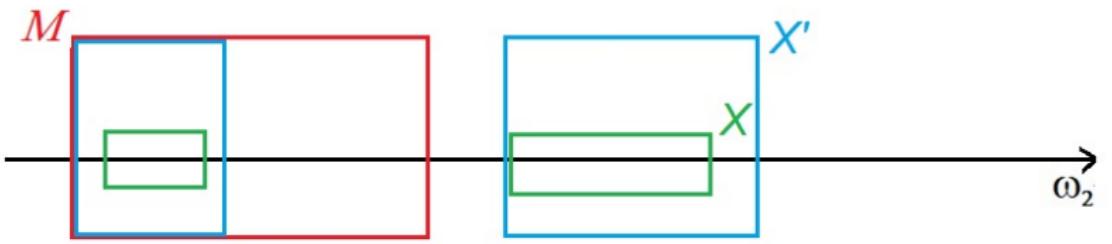
Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^\omega_1$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) < \text{rank}(M \cap \omega_2)$.



Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

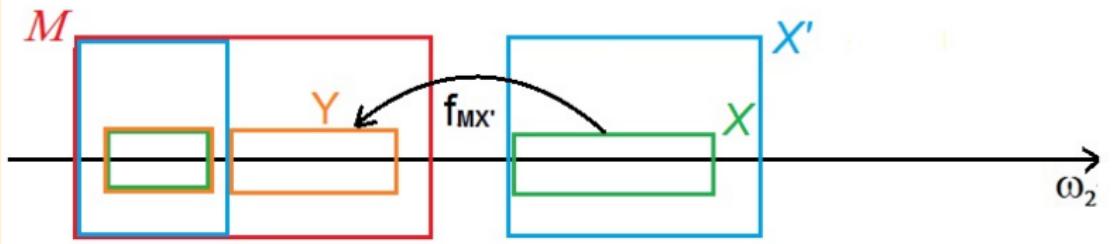
Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) < \text{rank}(M \cap \omega_2)$.



Definition

μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^\omega$ and that there is a one-to-one function $c : \mu \rightarrow \omega_2$ such that

$$\forall X, Y \in \mu \quad X \subset Y \Rightarrow c(X) \in Y.$$

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^\omega_1$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$.

Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $\text{rank}(X) < \text{rank}(M \cap \omega_2)$.

