Applications of generic two-cardinal combinatorics

Piotr Koszmider

IM PAN, Warsaw

Let μ be a (κ, κ^+) -cardinal, then the following function $m_\mu = m \colon [\kappa^+]^2 \to \kappa$ is called a μ -coloring:

$$m(\alpha, \beta) = m(\{\alpha, \beta\}) = \min\{rank(X) : \alpha, \beta \in X \in \mu\}$$

Let μ be a (κ, κ^+) -cardinal, then the following function $m_\mu = m \colon [\kappa^+]^2 \to \kappa$ is called a μ -coloring:

$$m(\alpha, \beta) = m(\{\alpha, \beta\}) = \min\{rank(X) : \alpha, \beta \in X \in \mu\}$$

Theorem

Let $\alpha < \beta < \gamma < \kappa^+$, $\nu < \kappa$, $0 < \delta = \bigcup \delta < \epsilon < \kappa^+$, then the following conditions are satisfied:

- (a) $|\{\xi < \alpha : m(\xi, \alpha) \le \nu\}| < \kappa$
- (b) $m(\alpha, \gamma) \leq \max\{m(\alpha, \beta), m(\beta, \gamma)\}$
- (c) $m(\alpha, \beta) \leq \max\{m(\alpha, \gamma), m(\beta, \gamma)\}$
- (d) There is $\zeta < \delta$ such that $m(\xi, \epsilon) \ge m(\xi, \delta)$ for all $\zeta \le \xi < \delta$.

 $f: [\omega_2]^2 \to \omega_1$ is called unbounded if and only if for every family $\{a_{\xi}: \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 ,

 $f: [\omega_2]^2 \to \omega_1$ is called unbounded if and only if for every family $\{a_\xi: \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$

 $f: [\omega_2]^2 \to \omega_1$ is called unbounded if and only if for every family $\{a_\xi: \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$ there are $\xi < \xi' < \omega_1$ such that

 $f: [\omega_2]^2 \to \omega_1$ is called unbounded if and only if for every family $\{a_\xi: \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$ there are $\xi < \xi' < \omega_1$ such that

$$f(\alpha, \beta) > \delta$$

for all $\alpha \in a_{\xi}$ and all $\beta \in a_{\xi'}$.

 $f: [\omega_2]^2 \to \omega_1$ is called unbounded if and only if for every family $\{a_\xi: \xi < \omega_1\}$ of pairwise disjoint finite subsets of ω_2 , for every $\delta < \omega_1$ there are $\xi < \xi' < \omega_1$ such that

$$f(\alpha, \beta) > \delta$$

for all $\alpha \in a_{\xi}$ and all $\beta \in a_{\xi'}$.

Theorem

Let $m : [\omega_2]^2 \to \omega_1$ be the μ -coloring. m is an unbounded function.

A function $f: [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ has the property Δ

A function $f: [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ has the property Δ if and only if for every uncountable Δ -system \mathcal{A} of finite subsets of ω_2

A function $f: [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ has the property Δ if and only if for every uncountable Δ -system $\mathcal A$ of finite subsets of ω_2 there are two elements $a,b\in \mathcal A$ such that

A function $f: [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ has the property Δ if and only if for every uncountable Δ -system $\mathcal A$ of finite subsets of ω_2 there are two elements $a,b\in \mathcal A$ such that for each $\tau\in a\cap b$ and $\alpha\in a-b$ and $\beta\in b-a$ we have

A function $f: [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ has the property Δ if and only if for every uncountable Δ -system $\mathcal A$ of finite subsets of ω_2 there are two elements $a,b\in \mathcal A$ such that for each $\tau\in a\cap b$ and $\alpha\in a-b$ and $\beta\in b-a$ we have

A function $f:[\omega_2]^2 \to [\omega_2]^{\leq \omega}$ has the property Δ if and only if for every uncountable Δ -system $\mathcal A$ of finite subsets of ω_2 there are two elements $a,b\in \mathcal A$ such that for each $\tau\in a\cap b$ and $\alpha\in a-b$ and $\beta\in b-a$ we have

- $2 \tau < \alpha \Rightarrow f(\tau, \beta) \subseteq f(\alpha, \beta),$

A function $f:[\omega_2]^2 \to [\omega_2]^{\leq \omega}$ has the property Δ if and only if for every uncountable Δ -system $\mathcal A$ of finite subsets of ω_2 there are two elements $a,b\in \mathcal A$ such that for each $\tau\in a\cap b$ and $\alpha\in a-b$ and $\beta\in b-a$ we have

- $2 \tau < \alpha \Rightarrow f(\tau, \beta) \subseteq f(\alpha, \beta),$

A function $f:[\omega_2]^2 \to [\omega_2]^{\leq \omega}$ has the property Δ if and only if for every uncountable Δ -system $\mathcal A$ of finite subsets of ω_2 there are two elements $a,b\in \mathcal A$ such that for each $\tau\in a\cap b$ and $\alpha\in a-b$ and $\beta\in b-a$ we have

- $2 \tau < \alpha \Rightarrow f(\tau, \beta) \subseteq f(\alpha, \beta),$

Theorem

Let μ be (ω_1, ω_2) -cardinal, then $f : [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ defined by

$$f(\alpha, \beta) = X \cap \min(\alpha, \beta),$$

where X is of minimal rank in μ which contains α, β has Δ -property.

A function $f:[\omega_2]^2 \to [\omega_2]^{\leq \omega}$ has the property Δ if and only if for every uncountable Δ -system $\mathcal A$ of finite subsets of ω_2 there are two elements $a,b\in \mathcal A$ such that for each $\tau\in a\cap b$ and $\alpha\in a-b$ and $\beta\in b-a$ we have

- $2 \tau < \alpha \Rightarrow f(\tau, \beta) \subseteq f(\alpha, \beta),$

Theorem

Let μ be (ω_1, ω_2) -cardinal, then $f : [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ defined by

$$f(\alpha, \beta) = X \cap \min(\alpha, \beta),$$

where *X* is of minimal rank in μ which contains α, β has Δ -property. Alternatively $f(\alpha, \beta) = \{\xi < \min(\alpha, \beta) : m(\xi, \alpha) \le m(\alpha, \beta)\}$ for $\alpha < \beta$.

 $(\mathit{M}_{\alpha,\beta})_{\alpha,\beta\in\omega_1}$ is called a universal matrix iff $\mathit{M}_{\alpha,\beta}\in\omega_1$ for each $\alpha,\beta\in\omega_2$ and

 $(M_{\alpha,\beta})_{\alpha,\beta\in\omega_1}$ is called a universal matrix iff $M_{\alpha,\beta}\in\omega_1$ for each $\alpha,\beta\in\omega_2$ and

1 given any $k \in \mathbb{N}$

 $(M_{\alpha,\beta})_{\alpha,\beta\in\omega_1}$ is called a universal matrix iff $M_{\alpha,\beta}\in\omega_1$ for each $\alpha,\beta\in\omega_2$ and

- **1** given any $k \in \mathbb{N}$
- ② given any $k \times k$ matrix $(a_{i,j})_{i,j \le k}$ with values in ω_1

 $(M_{\alpha,\beta})_{\alpha,\beta\in\omega_1}$ is called a universal matrix iff $M_{\alpha,\beta}\in\omega_1$ for each $\alpha,\beta\in\omega_2$ and

- **1** given any $k \in \mathbb{N}$
- ② given any $k \times k$ matrix $(a_{i,j})_{i,j \le k}$ with values in ω_1
- **3** given any collection $\{\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}: \xi < \omega_1\}$ of pairwise disjoint k-tuples of elements of ω_2

 $(M_{\alpha,\beta})_{\alpha,\beta\in\omega_1}$ is called a universal matrix iff $M_{\alpha,\beta}\in\omega_1$ for each $\alpha,\beta\in\omega_2$ and

- **1** given any $k \in \mathbb{N}$
- ② given any $k \times k$ matrix $(a_{i,j})_{i,j \le k}$ with values in ω_1
- **3** given any collection $\{\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}: \xi < \omega_1\}$ of pairwise disjoint k-tuples of elements of ω_2

 $(M_{\alpha,\beta})_{\alpha,\beta\in\omega_1}$ is called a universal matrix iff $M_{\alpha,\beta}\in\omega_1$ for each $\alpha,\beta\in\omega_2$ and

- **1** given any $k \in \mathbb{N}$
- ② given any $k \times k$ matrix $(a_{i,j})_{i,j \le k}$ with values in ω_1
- **3** given any collection $\{\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}: \xi < \omega_1\}$ of pairwise disjoint k-tuples of elements of ω_2

There are $\xi < \xi'$ such that $M_{\alpha_{\xi}(i),\alpha_{\xi'}(j)} = a_{i,j}$ for all $i,j \leq k$.

Fix an unbounded function $m: [\omega_2]^2 \to \omega_1$. Let $\mathbb{P} \ni p = (a_p, M_p)$

 $\mathbf{0} \ \mathbf{a}^{\mathbf{p}} \in [\omega_2]^{<\omega},$

- **2** $M^p : [a_p]^2 \to \omega_1$

- \bullet $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$

- \bullet $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$

- \bullet $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$
- - $p \le q$ iff $a^p \supseteq a^q$ and $M^p \supseteq M^q$

- \bullet $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$
- - $p \le q$ iff $a^p \supseteq a^q$ and $M^p \supseteq M^q$

Fix an unbounded function $m: [\omega_2]^2 \to \omega_1$. Let $\mathbb{P} \ni p = (a_p, M_p)$

- **2** $M^p : [a_p]^2 \to \omega_1$
- - $p \le q$ iff $a^p \supseteq a^q$ and $M^p \supseteq M^q$

Theorem

 \mathbb{P} is c.c.c. and forces that $\bigcup \{M^p : p \in G\}$ is universal.

- $\mathbf{0}$ $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$
- $M_{\alpha,\beta}^{p} < m(\alpha,\beta) \text{ for all }$ $\{\alpha,\beta\} \in [a_{p}]^{2}$

- $\mathbf{0}$ $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$
- $M_{\alpha,\beta}^{p} < m(\alpha,\beta) \text{ for all }$ $\{\alpha,\beta\} \in [a_{p}]^{2}$

- $\mathbf{0} \ \mathbf{a}^{\mathbf{p}} \in [\omega_2]^{<\omega},$
- **2** $M^p : [a_p]^2 \to \omega_1$
- $M_{\alpha,\beta}^{p} < m(\alpha,\beta) \text{ for all }$ $\{\alpha,\beta\} \in [a_{p}]^{2}$
 - Find $q \in \mathbb{P}$ deciding $k \in \mathbb{N}$ and $k \times k$ matrix $(a_{i,j})_{i,j \le k}$ with values in ω_1 .

- \bullet $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$
- $M_{\alpha,\beta}^{p} < m(\alpha,\beta) \text{ for all }$ $\{\alpha,\beta\} \in [a_{p}]^{2}$
 - Find $q \in \mathbb{P}$ deciding $k \in \mathbb{N}$ and $k \times k$ matrix $(a_{i,j})_{i,j \leq k}$ with values in ω_1 .

- $\mathbf{0} \ \mathbf{a}^{\mathbf{p}} \in [\omega_2]^{<\omega},$
- **2** $M^p : [a_p]^2 \to \omega_1$
- $M_{\alpha,\beta}^{p} < m(\alpha,\beta) \text{ for all } \{\alpha,\beta\} \in [a_{p}]^{2}$
 - Find $q \in \mathbb{P}$ deciding $k \in \mathbb{N}$ and $k \times k$ matrix $(a_{i,j})_{i,j \leq k}$ with values in ω_1 .

• For every $\xi < \omega_1$ find $p_{\xi} \leq q$ which decides k-tuple $\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}$

- $\mathbf{0} \ \mathbf{a}^{\mathbf{p}} \in [\omega_2]^{<\omega},$
- **2** $M^p : [a_p]^2 \to \omega_1$
- $M_{\alpha,\beta}^{p} < m(\alpha,\beta) \text{ for all }$ $\{\alpha,\beta\} \in [a_{p}]^{2}$
 - Find $q \in \mathbb{P}$ deciding $k \in \mathbb{N}$ and $k \times k$ matrix $(a_{i,j})_{i,j \leq k}$ with values in ω_1 .

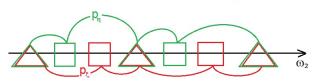
- For every $\xi < \omega_1$ find $p_{\xi} \le q$ which decides k-tuple $\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}$
- May assume that $a^{p_{\xi}}$ s form an isomorphic Δ -system with root Δ and $\{\alpha_{\varepsilon}(1),...,\alpha_{\varepsilon}(k)\}\subseteq a^{p_{\xi}}$

- \bullet $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$
- $M_{\alpha,\beta}^{p} < m(\alpha,\beta) \text{ for all }$ $\{\alpha,\beta\} \in [a_{p}]^{2}$
 - Find $q \in \mathbb{P}$ deciding $k \in \mathbb{N}$ and $k \times k$ matrix $(a_{i,j})_{i,j \leq k}$ with values in ω_1 .

- For every $\xi < \omega_1$ find $p_{\xi} \le q$ which decides k-tuple $\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}$
- May assume that $a^{p_{\xi}}$ s form an isomorphic Δ -system with root Δ and $\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}\subseteq a^{p_{\xi}}$
- Find $\xi < \eta < \omega_1$ such that $m(\alpha, \beta) > \delta = \max(a_{i,j \le k})$ for all $\alpha \in a^{\rho_{\xi}} \setminus a^{\rho_{\eta}}$ and $\alpha \in a^{\rho_{\eta}} \setminus a^{\rho_{\xi}}$

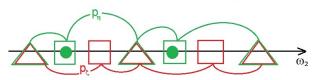
- \bullet $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$
- $M_{\alpha,\beta}^{p} < m(\alpha,\beta) \text{ for all }$ $\{\alpha,\beta\} \in [a_{p}]^{2}$
 - Find $q \in \mathbb{P}$ deciding $k \in \mathbb{N}$ and $k \times k$ matrix $(a_{i,j})_{i,j \leq k}$ with values in ω_1 .

- For every $\xi < \omega_1$ find $p_{\xi} \le q$ which decides k-tuple $\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}$
- May assume that $a^{p_{\xi}}$ s form an isomorphic Δ -system with root Δ and $\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}\subseteq a^{p_{\xi}}$
- Find $\xi < \eta < \omega_1$ such that $m(\alpha, \beta) > \delta = \max(a_{i,j \le k})$ for all $\alpha \in a^{p_{\xi}} \setminus a^{p_{\eta}}$ and $\alpha \in a^{p_{\eta}} \setminus a^{p_{\xi}}$



- \bullet $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$
- $M_{\alpha,\beta}^{p} < m(\alpha,\beta) \text{ for all }$ $\{\alpha,\beta\} \in [a_{p}]^{2}$
 - Find $q \in \mathbb{P}$ deciding $k \in \mathbb{N}$ and $k \times k$ matrix $(a_{i,j})_{i,j \leq k}$ with values in ω_1 .

- For every $\xi < \omega_1$ find $p_{\xi} \le q$ which decides k-tuple $\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}$
- May assume that $a^{p_{\xi}}$ s form an isomorphic Δ -system with root Δ and $\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}\subseteq a^{p_{\xi}}$
- Find $\xi < \eta < \omega_1$ such that $m(\alpha, \beta) > \delta = \max(a_{i,j \le k})$ for all $\alpha \in a^{p_{\xi}} \setminus a^{p_{\eta}}$ and $\alpha \in a^{p_{\eta}} \setminus a^{p_{\xi}}$



- \bullet $a^p \in [\omega_2]^{<\omega}$,
- **2** $M^p : [a_p]^2 \to \omega_1$
- $M_{\alpha,\beta}^{p} < m(\alpha,\beta) \text{ for all } \{\alpha,\beta\} \in [a_{p}]^{2}$
 - Find $q \in \mathbb{P}$ deciding $k \in \mathbb{N}$ and $k \times k$ matrix $(a_{i,j})_{i,j \leq k}$ with values in ω_1 .

- For every $\xi < \omega_1$ find $p_{\xi} \le q$ which decides k-tuple $\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}$
- May assume that $a^{p_{\xi}}$ s form an isomorphic Δ -system with root Δ and $\{\alpha_{\xi}(1),...,\alpha_{\xi}(k)\}\subseteq a^{p_{\xi}}$
- Find $\xi < \eta < \omega_1$ such that $m(\alpha, \beta) > \delta = \max(a_{i,j \le k})$ for all $\alpha \in a^{p_{\xi}} \setminus a^{p_{\eta}}$ and $\alpha \in a^{p_{\eta}} \setminus a^{p_{\xi}}$

Fix $F: [\omega_2]^2 \to \text{Countable sets (e.g., } \omega_1, [\omega_2]^{\leq \omega})$ like an unbounded function or a function with Δ -property.

Fix $F: [\omega_2]^2 \to \text{Countable sets (e.g., } \omega_1, [\omega_2]^{\leq \omega})$ like an unbounded function or a function with Δ -property.

Fix $F: [\omega_2]^2 \to \text{Countable sets (e.g., } \omega_1, [\omega_2]^{\leq \omega})$ like an unbounded function or a function with Δ -property.

Fix $F: [\omega_2]^2 \to \text{Countable sets (e.g., } \omega_1, \ [\omega_2]^{\leq \omega})$ like an unbounded function or a function with Δ -property.

- $\bullet \quad a_p \in [\omega_2]^{<\omega},$
- **2** S_p is a structure with support a_p ,

Fix $F: [\omega_2]^2 \to \text{Countable sets (e.g., } \omega_1, [\omega_2]^{\leq \omega})$ like an unbounded function or a function with Δ -property.

- $\bullet \quad a_p \in [\omega_2]^{<\omega},$
- ② S_p is a structure with support a_p ,
- **3** *F* restricts the structure S_p .

● *K* compact, Hausdorff topological space.

- **4** *K* is called scattered iff $K^{(\alpha)} = \emptyset$ for some ordinal $\alpha = ht(K)$

- K compact, Hausdorff topological space.
- ② $K' = K \setminus \{\text{isolated points of } K\}$ (Cantor-Bendixson derivative),
- K is called scattered iff $K^{(\alpha)} = \emptyset$ for some ordinal $\alpha = ht(K)$

- *K* compact, Hausdorff topological space.
- ② $K' = K \setminus \{\text{isolated points of } K\}$ (Cantor-Bendixson derivative),
- K is called scattered iff $K^{(\alpha)} = \emptyset$ for some ordinal $\alpha = ht(K)$
- 6 iff every nonempty subset of K has an isolated point

- *K* compact, Hausdorff topological space.
- ② $K' = K \setminus \{\text{isolated points of } K\}$ (Cantor-Bendixson derivative),
- K is called scattered iff $K^{(\alpha)} = \emptyset$ for some ordinal $\alpha = ht(K)$
- 6 iff every nonempty subset of K has an isolated point
- iff the Boolean algebra of clopen subsets of K is superatomic (every subalgebra has an atom)

- ② $K' = K \setminus \{\text{isolated points of } K\}$ (Cantor-Bendixson derivative),
- K is called scattered iff $K^{(\alpha)} = \emptyset$ for some ordinal $\alpha = ht(K)$
- iff every nonempty subset of K has an isolated point
- iff the Boolean algebra of clopen subsets of K is superatomic (every subalgebra has an atom)
- iff every Radon measure on K (signed, Borel, ctbly additive, regular) is atomic i.e., of the form $\Sigma_{n\in\mathbb{N}}a_n\delta_{x_n}$ for $x_n\in K$ and $\Sigma_{n\in\mathbb{N}}|a_n|<\infty$,

- K compact, Hausdorff topological space.

- K is called scattered iff $K^{(\alpha)} = \emptyset$ for some ordinal $\alpha = ht(K)$
- 6 iff every nonempty subset of K has an isolated point
- iff the Boolean algebra of clopen subsets of K is superatomic (every subalgebra has an atom)
- **3** iff every Radon measure on K (signed, Borel, ctbly additive, regular) is atomic i.e., of the form $\Sigma_{n\in\mathbb{N}}a_n\delta_{x_n}$ for $x_n\in K$ and $\Sigma_{n\in\mathbb{N}}|a_n|<\infty$,

- K compact, Hausdorff topological space.
- ② $K' = K \setminus \{\text{isolated points of } K\}$ (Cantor-Bendixson derivative),
- K is called scattered iff $K^{(\alpha)} = \emptyset$ for some ordinal $\alpha = ht(K)$
- 6 iff every nonempty subset of K has an isolated point
- iff the Boolean algebra of clopen subsets of K is superatomic (every subalgebra has an atom)
- **3** iff every Radon measure on K (signed, Borel, ctbly additive, regular) is atomic i.e., of the form $\Sigma_{n\in\mathbb{N}}a_n\delta_{x_n}$ for $x_n\in K$ and $\Sigma_{n\in\mathbb{N}}|a_n|<\infty$,
- lacktriangledown iff vector measures with values in the dual $C(K)^*$ satisfy the Radon-Nikodym theorem

- **1** K is called scattered iff $K^{(\alpha)} = \emptyset$ for some ordinal $\alpha = ht(K)$
- **5** $wd(K) = \sup\{|K^{(\alpha)} \setminus K^{(\alpha+1)}| : \alpha < ht(K)\}\$,
- iff every nonempty subset of K has an isolated point
- iff the Boolean algebra of clopen subsets of K is superatomic (every subalgebra has an atom)
- § iff every Radon measure on K (signed, Borel, ctbly additive, regular) is atomic i.e., of the form $\Sigma_{n\in\mathbb{N}}a_n\delta_{x_n}$ for $x_n\in K$ and $\Sigma_{n\in\mathbb{N}}|a_n|<\infty$,
- lacktriangledown iff vector measures with values in the dual $C(K)^*$ satisfy the Radon-Nikodym theorem
- **1** iff every continuous convex function on any open convex subset U of C(K) is differentiable on a dense G_{δ} set

There is a scattered compact space of countable width and height $\omega_1 + 1$.

There is a scattered compact space of countable width and height $\omega_1 + 1$.

Theorem (Just, 85)

It is consistent with $\neg CH$ that there is no scattered compact space of countable width and height $\omega_2 + 1$.

There is a scattered compact space of countable width and height $\omega_1 + 1$.

Theorem (Just, 85)

It is consistent with $\neg CH$ that there is no scattered compact space of countable width and height $\omega_2 + 1$.

Theorem (Baumgartner, Shelah, 87)

It is consistent that there is a scattered compact space of countable width and height $\omega_2 + 1$.

There is a scattered compact space of countable width and height $\omega_1 + 1$.

Theorem (Just, 85)

It is consistent with $\neg CH$ that there is no scattered compact space of countable width and height $\omega_2 + 1$.

Theorem (Baumgartner, Shelah, 87)

It is consistent that there is a scattered compact space of countable width and height $\omega_2 + 1$.

Problems

Is it consistent that there is a scattered compact space of countable width and height $\omega_3 + 1$. Does Chang's conjecture implies that there is no scattered compact space of countable width and height $\omega_2 + 1$?.

Let $f^*: [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ be fixed. Define P as the set of all $p = (x_p, \leq_p, i_p)$ satisfying the following conditions:

- $(1) x_p \in [T]^{<\omega}.$
- (2) \leq_p is a partial ordering of x_p with the property that if $s \in T_\alpha$, $t \in T_\beta$ and $s <_p t$, then $\alpha < \beta$.
- (3) $i_p:[x_p]^2 \rightarrow [x_p]^{<\omega}$ is such that
 - (3.1) if $s \in T_{\alpha}$, $t \in T_{\beta}$, $s \neq t$ and $\alpha \leq \beta$, then (3.1.1) if $\alpha = \beta$, then $i_p\{s, t\} = 0$,
 - (3.1.2) if $s <_p t$, then $i_p \{s, t\} = \{s\}$,
 - (3.1.3) if $\alpha < \beta$ and $s \not<_p t$, then

$$i_p\{s,t\}\subseteq x_p\cap\bigcup\{T_\tau\colon\tau\in f^*\{\alpha,\beta\},\,\tau<\alpha\};$$

(3.2) if $\{s, t\} \in [x_p]^2$, then $\forall u \in i_p \{s, t\} \ u \leq_p s, t$, and if $v \leq_p s, t$, then $\exists u \in i_p \{s, t\} \ v \leq_p u$.

Set $p \le q$ iff $x_p \supseteq x_q$, $\le_p \upharpoonright x_q = \le_q$ and $i_p \upharpoonright [x_q]^2 = i_q$.

 (\diamondsuit) There is a Banach space of density ω_1 where there are few operators in the sense that every operator is of the form T = cI + S, where S has separable range.

 (\diamondsuit) There is a Banach space of density ω_1 where there are few operators in the sense that every operator is of the form T = cI + S, where S has separable range.

Theorem (Shelah-Steprans, 88)

There is in ZFC a Banach space of density ω_1 where there are few operators in the above sense.

 (\diamondsuit) There is a Banach space of density ω_1 where there are few operators in the sense that every operator is of the form T=cI+S, where S has separable range.

Theorem (Shelah-Steprans, 88)

There is in ZFC a Banach space of density ω_1 where there are few operators in the above sense.

Theorem (Wark, 01)

There is a reflexive Banach space of density ω_1 where there are few operators in the above sense.

 (\diamondsuit) There is a Banach space of density ω_1 where there are few operators in the sense that every operator is of the form T=cI+S, where S has separable range.

Theorem (Shelah-Steprans, 88)

There is in ZFC a Banach space of density ω_1 where there are few operators in the above sense.

Theorem (Wark, 01)

There is a reflexive Banach space of density ω_1 where there are few operators in the above sense.

Theorem (Argyros-(Lopez-Abad)-Todorcevic, 05)

There is a reflexive Banach space of density ω_1 where there are few operators in the sense that every operator is of the form T = Diag + S where S is strictly singular.

• WCG Banach space: $X = \overline{span(K)}$, K weakly compact (Amir-Lindenstrauss)

- WCG Banach space: $X = \overline{span(K)}$, K weakly compact (Amir-Lindenstrauss)
- Nice generalization of separable Banach spaces and reflexive Banach spaces

- WCG Banach space: $X = \overline{span(K)}$, K weakly compact (Amir-Lindenstrauss)
- Nice generalization of separable Banach spaces and reflexive Banach spaces
- (AL) Every WCG Banach space has a projectional resolution of identity: a decomposition into a continuous chain of 1-complemented subspaces of smaller densities

- **1** WCG Banach space: $X = \overline{span(K)}$, K weakly compact (Amir-Lindenstrauss)
- Nice generalization of separable Banach spaces and reflexive Banach spaces
- (AL) Every WCG Banach space has a projectional resolution of identity: a decomposition into a continuous chain of 1-complemented subspaces of smaller densities
- A subspace is 1-complemented iff there is norm one projection onto it.

Definition

We say that a weakly compactly generated Banach space X has few operators if and only if there is a projectional resolution of identity $(P_{\alpha} \colon \omega \leq \alpha \leq \lambda)$ such that any operator $T \colon X \to X$ is of the form P + S where P is in the closure of the linear span of countably many P_{α} 's (in the strong operator topology) and S has a separable range.

We say that a weakly compactly generated Banach space X has few operators if and only if there is a projectional resolution of identity $(P_{\alpha} \colon \omega \leq \alpha \leq \lambda)$ such that any operator $T \colon X \to X$ is of the form P + S where P is in the closure of the linear span of countably many P_{α} 's (in the strong operator topology) and S has a separable range.

Theorem

It is consistent that there exists a WCG Banach space of density ω_2 which has few operators. For every cardinal λ it is consistent with ZFC that there exists a WCG Banach space of density λ where all operators are sums of a separable range operator and a diagonal operator with respect to a certain Marcuševič's basis.

We say that a weakly compactly generated Banach space X has few operators if and only if there is a projectional resolution of identity $(P_{\alpha} \colon \omega \leq \alpha \leq \lambda)$ such that any operator $T \colon X \to X$ is of the form P + S where P is in the closure of the linear span of countably many P_{α} 's (in the strong operator topology) and S has a separable range.

Theorem

It is consistent that there exists a WCG Banach space of density ω_2 which has few operators. For every cardinal λ it is consistent with ZFC that there exists a WCG Banach space of density λ where all operators are sums of a separable range operator and a diagonal operator with respect to a certain Marcuševič's basis.

Theorem

Chang's Conjecture implies that there is no WCG Banach space of density ω_2 which has few operators.

We say that a weakly compactly generated Banach space X has few operators if and only if there is a projectional resolution of identity $(P_{\alpha} \colon \omega \leq \alpha \leq \lambda)$ such that any operator $T \colon X \to X$ is of the form P + S where P is in the closure of the linear span of countably many P_{α} 's (in the strong operator topology) and S has a separable range.

Theorem

It is consistent that there exists a WCG Banach space of density ω_2 which has few operators. For every cardinal λ it is consistent with ZFC that there exists a WCG Banach space of density λ where all operators are sums of a separable range operator and a diagonal operator with respect to a certain Marcuševič's basis.

Theorem

Chang's Conjecture implies that there is no WCG Banach space of density ω_2 which has few operators. In ZFC there is no WCG Banach space of density $> \omega_3$ which has few operators.

We say that a weakly compactly generated Banach space X has few operators if and only if there is a projectional resolution of identity $(P_{\alpha} \colon \omega \leq \alpha \leq \lambda)$ such that any operator $T \colon X \to X$ is of the form P + S where P is in the closure of the linear span of countably many P_{α} 's (in the strong operator topology) and S has a separable range.

Theorem

It is consistent that there exists a WCG Banach space of density ω_2 which has few operators. For every cardinal λ it is consistent with ZFC that there exists a WCG Banach space of density λ where all operators are sums of a separable range operator and a diagonal operator with respect to a certain Marcuševič's basis.

Theorem

Chang's Conjecture implies that there is no WCG Banach space of density ω_2 which has few operators. In ZFC there is no WCG Banach space of density $> \omega_3$ which has few operators.

- A1) $A \subseteq [\lambda]^{<\omega}$.
- A2) $\bigcup A = \lambda$.
- A3) A is closed under subsets.
- B1) $\mathcal{B} \subseteq [\lambda]^{<\omega}$.
- B2) \mathcal{B} is closed under subsets.
- AB1) $\mathcal{A} \cap \mathcal{B} \subseteq [\lambda]^1$.
- AB2) For every family $\{a_{\xi} \colon \xi < \omega_1\} \subseteq [\lambda]^2$ of disjoint pairs and $k \in \omega$ there are $\xi_1 < \xi_2 < \ldots < \xi_k < \omega_1$ such that

$$\{a_{\xi_1}(1), \dots, a_{\xi_k}(1)\} \in \mathcal{A},$$

 $\{a_{\xi_1}(0), \dots, a_{\xi_k}(0)\} \in \mathcal{B}$

where $a_{\xi} = \{a_{\xi}(0), a_{\xi}(1)\}\$ for $\xi \in \omega_1$.

- D1) $\mathcal{D} \subseteq [[\lambda]^2]^{<\omega}$ and for every $a, b \in D \in \mathcal{D}$ we have either $\max(a) < \min(b)$ (a < b) or $\max(b) < \min(a)$ (b < a); we express this property by saying that elements of \mathcal{D} consist of consecutive pairs.
- D2) If $D, D' \in \mathcal{D}$ are distinct, then there may be at most five pairs in D which intersect other than itself pair from D' i.e.,

$$|\{a \in D : a \cap (\bigcup (D' - \{a\})) \neq \emptyset\}| \le 5.$$

- D3) Whenever $\{d_{\xi}: \xi < \omega_1\} \subseteq [\lambda]^2$ is a collection of consecutive pairs and $k \in \omega$, then there are $\xi_1 < \xi_2, \ldots, < \xi_k < \omega_1$ such that $\{d_{\xi_i}: 1 \le i \le k\} \in \mathcal{D}$.
- D4) Whenever $D\in\mathcal{D}$ and $\alpha<\lambda,$ and $X\subseteq\lambda-\alpha$ is countable, there is $D'\in\mathcal{D}$ such that

$$(\bigcup D') \cap X = \emptyset, \quad D \cap [\alpha]^2 = D' \cap [\alpha]^2, \quad (\bigcup D) \cap \alpha = (\bigcup D') \cap \alpha.$$

AD1) Whenever $a \in \mathcal{A}$ and $D \in \mathcal{D}$, then $|a \cap (\bigcup D)| \leq 2$.

- BD1) Whenever $a \in \mathcal{B}$ and $D \in \mathcal{D}$, then $|a \cap (\bigcup D)| \leq 2$.
- F1) $\mathcal{F} \subseteq [\lambda]^{\omega}$ is cofinal in $[\lambda]^{\omega}$.
- DF1) Suppose that $D \in \mathcal{D}$, $d, d', d'' \in D$ and d < d' < d'' and moreover that $X \in \mathcal{F}$ is such that $d' \cap X$ and $d'' \cap X$ are both nonempty. Then $d \subseteq X$.

This completes the list of properties of the families. The reader might have noted that if not for D3), the families $\mathcal{D} = \emptyset$ and $\mathcal{F} = [\lambda]^{\omega}$ work. This is exploited in the proof of Theorem 1.9.

Now, let us define our Banach space B. We start with the set ${}^{\lambda}\mathbb{R}$, that is, all functions from λ into the reals. Following [17] and [21], we define

$$||f||_{\mathcal{A}} = \sup\{\sqrt{\Sigma\{f(\alpha)^2 \colon \alpha \in a\}} \colon a \in \mathcal{A}\}$$

and

$$\nu_{\mathcal{D}}(f) = \sup\{\sqrt{\Sigma\{[f(\alpha) - f(\beta)]^2} : \{\alpha, \beta\} \in D\} : D \in \mathcal{D}\}.$$

We put $B_*(\mathcal{A}, \mathcal{D}) = \{f \in {}^{\lambda}\mathbb{R} \colon \nu_D(f) + ||f||_{\mathcal{A}} \text{ is finite}\}$. Using A1), A2) and D1) one can calculate that $(B_*(\mathcal{A}, \mathcal{D}), \nu_D + ||\ ||_{\mathcal{A}})$ are Banach spaces. Namely they are clearly linear spaces and the usual triangle inequality for $l_2(\lambda)$ implies that they are normed spaces. Given a Cauchy sequence, one gets its uniform coordinate-wise limit by the completness of $l_{\infty}(\lambda)$, it has to belong to the spaces since $\nu_D + ||\ ||_{\mathcal{A}}$ can be approximated on finite sets using terms of the sequence which must be norm-bounded.

For every $X \subseteq \lambda$, by 1_X we denote the characteristic function of X. By $\phi_{\{\alpha\}}$ we define the functional satisfying $\phi(f) = f(\alpha)$ for $\alpha \in \lambda$. For every $X \subseteq \lambda$ we define $B_X(\mathcal{A}, \mathcal{D})$ to be the closure of the linear span $\{1_{\{\alpha\}}: \alpha \in X\}$ in $B_*(\mathcal{A}, \mathcal{D})$ with respect to the norm $\nu_{\mathcal{D}} + || \cdot ||_{\mathcal{A}}$. The main result will concern the space $(B_{\lambda}(\mathcal{A}, \mathcal{D}), \nu_{\mathcal{D}} + || \cdot ||_{\mathcal{A}})$, however we will consider the space $B_X(\mathcal{A}, \mathcal{D})$ for $X \in \mathcal{F}$ as in F1) and for X an ordinal less than λ , in the latter case we will call this subspace an initial block. The projection on the initial block α means the restriction of a function to α .

16 / 21

choose \mathcal{D} to be empty and $\mathcal{F} = [\lambda]^{\omega}$, that is we just need to add families \mathcal{A} and \mathcal{B} which satisfy the properties A1)–AB2). The c.c.c. forcing P required by the theorem consists of the conditions p of the form $(a_p, \mathcal{A}_p, \mathcal{B}_p)$ where

- 1) $a_p \in [\lambda]^{<\omega}$.
- 2) $\mathcal{A}_p \subseteq \mathcal{P}(a_p), \, \mathcal{B}_p \subseteq \mathcal{P}(a_p).$
- 3) \mathcal{A}_p , \mathcal{B}_p are closed under subsets.
- 4) $\mathcal{A}_p \cap \mathcal{B}_p \subseteq [a_p]^1$.

The order is defined by $p \leq q$ if and only if $a_p \supseteq a_q$, $\mathcal{A}_p \supseteq \mathcal{A}_q$, $\mathcal{B}_p \supseteq \mathcal{B}_q$.

The conditions p of the forcing Q are of the form $p=(a_p, \mathcal{A}_p, \mathcal{B}_p, \mathcal{D}_p)$ where $(a_p, \mathcal{A}_p, \mathcal{B}_p) \in P$ from the beginning of the proof for $\lambda = \omega_2$ and additionally we have:

- 5) Elements of \mathcal{D}_p are sets of consecutive pairs of a_p .
- 6) AD1) and BD1) of Section 2 are satisfied.
- 7) Whenever $D^1, D^2 \in \mathcal{D}_p; d^i_1, d^i_2 \in D^i, d^i_1 < d^i_2, \, \alpha \in d^1_1 \cap d^2_1, \, \beta \in d^1_2 \cap d^2_2,$ then
 - (a) $\{d \in D^1 \colon d < d_1^1\} = \{d \in D^2 \colon d < d_1^2\},$
 - (b) $\bigcup\{d\in D^1\colon d< d_1^1\}=\bigcup\{d\in D^2\colon d< d_1^2\}\subseteq F(\alpha,\beta).$ (Note that D^1 may be equal to D^2 above.)

Claim 3. It is consistent that there is a function $F: [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ with the following two properties:

P1) Whenever $(a_{\xi}: \xi < \omega_1)$ is a Δ -system of finite subsets of ω_2 with root $\Delta \subseteq \omega_2$ and $k \in \omega$, then there are $\xi_1 < \ldots < \xi_k < \omega_1$ such that

$$\forall i, j \le k, \ i \ne j \ \forall \alpha \in a_{\xi_i} - \Delta \ \forall \beta \in a_{\xi_j} - \Delta$$
$$F(\alpha, \beta) \supseteq \bigcup \{a_{\xi_m} \cap \min(\alpha, \beta) \colon m < i, j\}.$$

P2) For every $\alpha < \omega_2$, for every finite $E \subseteq \omega_2$ and every countable $Z \subseteq \omega_2 - \alpha$ there is a finite $E' \subseteq \omega_2 - Z$ such that there is an order preserving bijection $\pi \colon E \to E'$ which is the identity on $E \cap E'$ and satisfies for every $\alpha, \beta \in E$:

$$\pi[F(\alpha,\beta) \cap E] = F(\pi(\alpha), \pi(\beta)) \cap E'. \tag{**}$$

 μ is *stationary coding set* iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in \mu$.

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in \mu$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in \mu$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in \mu$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in \mu$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 1. $rank(X) = rank(M \cap \omega_2)$.

Coherence lemma gives $X \cap M = M \cap \beta$.

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $rank(X) > rank(M \cap \omega_2)$. Let $X' \in \mu$, rank(X') = rank(X), $M \cap \omega_2 \subseteq X'$.

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $rank(X) > rank(M \cap \omega_2)$. Let $X' \in \mu$, rank(X') = rank(X), $M \cap \omega_2 \subseteq X'$. $X \cap M =$

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $rank(X) > rank(M \cap \omega_2)$. Let $X' \in \mu$, rank(X') = rank(X), $M \cap \omega_2 \subseteq X'$. $X \cap M = X \cap (M \cap \omega_2) =$

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $rank(X) > rank(M \cap \omega_2)$. Let $X' \in \mu$, rank(X') = rank(X), $M \cap \omega_2 \subseteq X'$. $X \cap M = X \cap (M \cap \omega_2) = X \cap X' \cap (M \cap \omega_2) =$

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $rank(X) > rank(M \cap \omega_2)$. Let $X' \in \mu$, rank(X') = rank(X), $M \cap \omega_2 \subseteq X'$. $X \cap M = X \cap (M \cap \omega_2) = X \cap X' \cap (M \cap \omega_2) = (X' \cap \beta) \cap (M \cap \omega_2) = (X' \cap \alpha) \cap (M \cap \omega) \cap (M \cap \omega) = (X' \cap \alpha) \cap (M \cap \omega) = (X' \cap$

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

Case 2. $rank(X) > rank(M \cap \omega_2)$.

Let $X' \in \mu$, rank(X') = rank(X), $M \cap \omega_2 \subseteq X'$.

$$X\cap M=X\cap (M\cap \omega_2)=X\cap X'\cap (M\cap \omega_2)=(X'\cap \beta)\cap (M\cap \omega_2)=M\cap \beta.$$

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

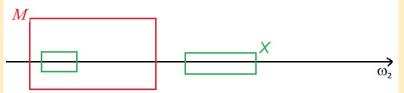
Proof.

 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

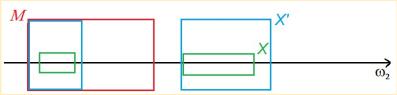


 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

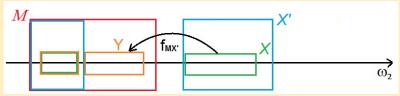


 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.



 μ is stationary coding set iff μ is stationary subset of $[\omega_2]^{\omega}$ and that there is a one-to-one function $c: \mu \to \omega_2$ such that $\forall X, Y \in \mu \ X \subset Y \Rightarrow c(X) \in Y$.

Lemma

Suppose that an (ω_1, ω_2) -cardinal, $\mu \subseteq [\omega_2]^{\omega_1}$ is a stationary coding set and $\mu \in M \prec H(\omega_3)$, $|M| = \omega$, $M \cap \omega_2 \in \mu$ and $X \in M$. Then either $X \cap M = M \cap \beta$ for some $\beta \in \omega_2$ or $X \cap M \in M$.

Proof.

