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Introduction

The Basic Theme:

Descriptive set theory provides a framework for explaining the

inevitable non-uniformity of many classical constructions in
mathematics.

Three Examples from Combinatorial Group Theory:

@ The Higman-Neumann-Neumann Embedding Theorem.
@ The word problem for finitely generated groups.
@ Cayley graphs of finitely generated groups.
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The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)
Every countable group G can be embedded into a 2-generator group.

Sketch Proof.
@ Let (gn | n € N) be a sequence of generators of G with g = 1.
@ Let IF be the free group on { a,b } and let G« F be the free product.

@ Then {b "ab"” |ne N} and { gha "ba" | n € N} freely generate
free subgroups of G F.

@ Hence we can construct the HNN extension

G— Kg=(GxF,t|t 'b"ab"t = g,a "ba")

@ Since g, € (a, b, t) and t~'at = b, it follows that Kg = (a, t).

Ol
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A natural question

Observation

It is reasonably clear that the isomorphism type of the 2-generator

group Kg usually depends upon both the generating set of G and
the particular enumeration that is used.

Does there exist a more uniform construction with the property

that the isomorphism type of Kg only depends upon the
isomorphism type of G?
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The word problem for finitely generated groups

For each n > 1, fix an computable enumeration
{Wk(x1,-- ,Xn) | k € N} of the words in Xy, -+, Xn, X; ', -+, X5 .

Definition
IfG=(ay,---,an) is a finitely generated group, then

Word(G) = {k € N | wi(aq,--- ,an) =1}

The word problem for G = (a4, --- ,an) is the problem of deciding
whether k € Word(G).
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Turing Reducibility

Convention

Throughout these talks, the powerset P(N) will be identified with 21
by identifying subsets of N with their characteristic functions.

v

If A, B € 2%, then A is Turing reducible to B, written A < 1 B, if there
exists a B-oracle Turing machine which computes A.

In other words, there is an algorithm which computes A modulo an
oracle which correctly answers questions of the form “Is n € B?”
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Turing Reducibility

Definition

If A, B € 2N, then A is Turing equivalent to B, written A = 1 B, if both
A<rBandB<7tA.

Definition
If A € 2N, then the corresponding Turing degree is defined to be

a={Bec2"|B=7A}.

Proposition
IfG={(ay,---,an) = (by,--- ,bm) is a finitely generated group, then

{keN|wk(a, - ,an)=1}=r{LeN|wybi, - ,bm) =1}
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Prescribing the Turing degree of the word problem

Theorem (Folklore)

For each subset A C N, there exists a finitely generated group
Ga such that Word(Gp) =71 A.

@ Notation: [x,y]=x""y Txy

Sketch Proof.

Let Ga be the group generated by the elements a, b subject to the
following defining relations, where ¢, = [b,a~ ("t pa™+'].

@ ac,=cpa forallneN.

@ bch,=cpb forallneN.

@ c2=1 for all n € N.

@ c,=1 for all n € A.

Ol
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Another natural question

Observation

The above construction of Gy is highly dependent on the specific
subset A C N, in the sense that if A # B are subsets such that

A =1 B, then we “usually” have that G4 2 Gg.

Does there exist a more uniform construction A — Gy with the
property that the isomorphism type of G4 only depends upon
the Turing degree of A?
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The answers ...
G and Gy, denotes the spaces of countable groups and f.g. groups.

There does not exist an explicit map G — Kg from G to Gy
such that for all G, H € G,

@ G — Kg;and

@ ifG= H, then Kg = Ky.

There does not exist an explicit map A — G from 2 to Gy,
such that for all A, B € 2N,

@ Word(Gp) =71 A; and

@ ifA=7 Bthen Gy = Gg.
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What is an explicit map?

Church’s Thesis for the Reals
EXPLICIT = BOREL

Which functions f : R — R are explicit? \

Definition
@ A function f : R — R is Borel if graph(f) is a Borel subset of R x R.
@ Equivalently, f~1(A) is Borel for each Borel subset A C R.
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The Cantor Space

@ The Cantor space 2" is a complete separable metric space
with respect to the metric

dxy) = 3 KO0
n=0

@ The corresponding topological space is a Polish space with
basic open neighborhoods

Us={xec2¥| x| n=s}, where s € 2<N.
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The Polish space of countably infinite groups

@ Let G be the set of groups with underlying set N.
@ We can identify each group
G e G +— mg e 2NN
with the graph of its multiplication operation.

@ Then G is a G; subset of the Cantor space 2NV<NxN;
i.e. G is a countable intersection of open subsets.

@ It follows that G is a Polish subspace of the Cantor space 2VNxN,
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The Polish space of f.g. groups

@ A marked group (G, 8) consists of a f.g. group with a distinguished
sequence § = (sq,--- , Sm) of generators.

@ For each m > 1, let G, be the set of isomorphism types of marked
groups (G, (s1,- -, Sm)) with m distinguished generators.

@ Then there exists a canonical embedding G, < Gy 1 defined by

(G,(S1,-+-,8m)) — (G, (51, ,Sm, 13))-

@ And Gy = [JGnm is the space of f.g. groups.

Simon Thomas (Rutgers University) 7th Young Set Theory Workshop May 12th 2014



The Polish space of f.g. groups

@ Let (G, s) € Gy and let ds be the corresponding word metric. For
each /> 1, let

Bi(G,5) = {g € G| ds(g,1a) < {}.

@ The basic open neighborhoods of (G, s) in G, are given by

U(Qg)’g = {(H, ?) €G0m | Be(H, ?) = Bz(G, 3) }, £>1.

Foreach n> 1, let C, = (gn) be cyclic of order n. Then:

n|Lmoo(Cn, gn) = (Z, 1)
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A slight digression ...

Some Isolated Points
@ Finite groups
@ Finitely presented simple groups

The Next Stage
o Sl3(Z)

Question (Grigorchuk)
What is the Cantor-Bendixson rank of G ?
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A basic question on Cayley graphs of f.g. groups

Definition

Let G be afg. group andlet S C G~ {1} be a finite generating set.
Then the Cayley graph Cay(G, S) is the graph with vertex set G and
edge set

E={{x,y}|y=xsforsomesec SUS'}.

For example, when G=Z and S = {1}, then the corresponding
Cayley graph is:

-2 -1 0 1 2
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But which Cayley graph?

However, when G = Z and S = { 2,3 }, then the corresponding Cayley

raph is:
grap -4 -2 0 2 4

-3 -1 1 3

Does there exist an explicit choice of generators for each f.g. group
such that isomorphic groups are assigned isomorphic Cayley graphs?

There does not exist a Borel choice of generators for each f.g. group
such that isomorphic groups are assigned isomorphic Cayley graphs.
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The answers revisited ...

There does not exist a Borel map G — Kg from G to Gy
such that for all G, H € G,

@ G— Kg;and
@ ifG= H, then Kg = Ky.

There does not exist a Borel map A — Ga from 2N to Gy,
such that for all A, B € 2N,

@ Word(Gp) =71 A; and
@ ifA=1 Bthen Gs = Gg.
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But Greg Cherlin wasn'’t satisfied ...

@ Suppose that A — Gg is any Borel map from 2" to Grg such that
Word(Gp) =7 Aforall A c 2N,

@ Then there exists a Turing degree d, such that for alld > 1 dg,
there exists an infinite subset { A, | n € N} C d such that the
groups { Ga, | n € N} are pairwise incomparable with respect
to embeddability.
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But Greg Cherlin wasn'’t satisfied ...

@ Suppose that G — Kg is any Borel map from G to Gy, such that
G— Kg forall G € G.

@ Then there exists an uncountable Borel family F C G of pairwise
isomorphic groups such that the groups { Kg | G € F } are
pairwise incomparable with respect to relative constructibility;
ie,ifG#He F,thenKg ¢ L[Ky] and Ky ¢ L[| Kg].

REINES

@ (LC): There exists a Ramsey cardinal .

@ In ZFC, we can find an uncountable Borel family 7 C G such that
the groups { Kg | G € F } are pairwise incomparable with respect
to embeddability.
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Why are the Theorems “obviously true”?

Definition

Let E, F be equivalence relations on the Polish spaces X, Y. Then
the Borel map ¢ : X — Y is a homomorphism if

XEy = ¢(x) Fo(y).

Ifo:(G,=g) — (G, =g, ) is any Borel homomorphism, then there
exists a group G € G such that G + ¢(G).

Heuristic Reason

Since =¢ is much more complex than =g, , the Borel homomorphism
must have a “large kernel” and hence “too many” groups G € G will
be mapped to a fixed K € Ggg.
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Borel reductions

Let E, F be equivalence relations on the Polish spaces X, Y.
@ E <g F ifthere exists a Borel map ¢ : X — Y such that

XEy < ¢(x) Fo(y).

In this case, ¢ is called a Borel reduction from E to F.
@ E~gFifbothE <g FandF <gE.
@ E<gFifbothE <g F and E ~g F.
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The isomorphism relations on G and Gy

Let E be an equivalence relation on the Polish space X.
@ E is Borel if E is a Borel subset of X x X.
@ E is analytic if E is an analytic subset of X x X.

If G, H € G, then

G=H iff JreSym(N) n[mg] =mp.

Hence =¢ is an analytic equivalence relation.

.

Theorem (Folklore)
The isomorphism relation on G is analytic but not Borel.
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The isomorphism relations on G and Gy

Theorem

The isomorphism relation on Gy, is a countable Borel equivalence
relation.

Definition
The Borel equivalence relation E is countable if every E-class is
countable.

| \

ggfg <B gg

Suppose that f : G — Gy, is a Borel reduction. Then =g = (=g, )

is Borel, which is a contradiction. O
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Countable Borel equivalence relations

@®_E_ = universal
N

idon = smooth
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Countable Borel equivalence relations

@®_E_ = universal
N

Theorem (Folklore)

% N The isomorphism relation for
/ \ Cayley graphs is smooth.

idon = smooth
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Countable Borel equivalence relations

SRR Definition (HKL)
e N
) yd \\ E, is the equivalence relation of
/ eventual equality on the space 2N
\ of infinite binary sequences.

idon = smooth
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Countable Borel equivalence relations

P U EC N D cfinition (HKL)
yd N
/ AN E, is the equivalence relation of

eventual equality on the space 2N
of infinite binary sequences.

Definition (DJK)

A countable Borel equivalence

relation E is universal if F <g E for
every countable Borel equivalence
N S relation F.

—_
. /
\\-‘MM‘ /

idon = smooth

Simon Thomas (Rutgers University) 7th Young Set Theory Workshop May 12th 2014



Countable Borel equivalence relations

SRR Definition (HKL)

4 N

Vs N E, is the equivalence relation of
\ eventual equality on the space 2N

of infinite binary sequences.
Uncountably \

, many | —r
relations
\ / A countable Borel equivalence
/ relation E is universal if F <g E for
N\ every countable Borel equivalence
relation F.

Question

Where do =¢,, and = fit in?
idon = smooth /
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Countable Borel equivalence relations

@_E. = universal Confirming a conjecture of
// O Hjorth-Kechris ...
/ N\
\ Theorem (S.T.-Velickovic)
Uncncz:?];ably | =g, IS a universal countable Borel
‘\ relations /’ equivalence relation.
\\\ //
Eo

Unfortunately the Word Problem
Theorem isn’t so “obviously true” ...

idon = smooth
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How to prove such theorems?

The Cayley Graph Theorem
@ Use ideas from geometric group theory and ergodic theory.
@ To be explained in the second talk ...

v

The Word Problem Theorem
@ Apply Martin’s Theorem on the determinacy of Borel games.

@ To be explained in the third talk ...

v

The HNN Embedding Theorem

@ Collapse the continuum R to a countable set and then apply
a suitable Absoluteness Theorem.

@ To be explained in the final talk ...

v

The End
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