

A Descriptive View of Combinatorial Group Theory

Simon Thomas

Rutgers University

May 12th 2014

Introduction

The Basic Theme:

Descriptive set theory provides a framework for explaining the **inevitable non-uniformity** of many classical constructions in mathematics.

Three Examples from Combinatorial Group Theory:

- *The Higman-Neumann-Neumann Embedding Theorem.*
- *The word problem for finitely generated groups.*
- *Cayley graphs of finitely generated groups.*

The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)

Every countable group G can be embedded into a 2-generator group.

Sketch Proof.

- Let $(g_n \mid n \in \mathbb{N})$ be a sequence of generators of G with $g_0 = 1$.
- Let \mathbb{F} be the free group on $\{a, b\}$ and let $G * \mathbb{F}$ be the free product.
- Then $\{b^{-n}ab^n \mid n \in \mathbb{N}\}$ and $\{g_na^{-n}ba^n \mid n \in \mathbb{N}\}$ freely generate free subgroups of $G * \mathbb{F}$.
- Hence we can construct the HNN extension

$$G \hookrightarrow K_G = \langle G * \mathbb{F}, t \mid t^{-1}b^{-n}ab^n t = g_n a^{-n}ba^n \rangle$$

- Since $g_n \in \langle a, b, t \rangle$ and $t^{-1}at = b$, it follows that $K_G = \langle a, t \rangle$.

A natural question

Observation

*It is **reasonably clear** that the isomorphism type of the 2-generator group K_G usually depends upon both the generating set of G and the particular enumeration that is used.*

Question

*Does there exist a **more uniform** construction with the property that the isomorphism type of K_G only depends upon the isomorphism type of G ?*

The word problem for finitely generated groups

For each $n \geq 1$, fix an **computable** enumeration $\{ w_k(x_1, \dots, x_n) \mid k \in \mathbb{N} \}$ of the words in $x_1, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}$.

Definition

If $G = \langle a_1, \dots, a_n \rangle$ is a *finitely generated group*, then

$$\text{Word}(G) = \{ k \in \mathbb{N} \mid w_k(a_1, \dots, a_n) = 1 \}$$

Remark

The **word problem** for $G = \langle a_1, \dots, a_n \rangle$ is the problem of deciding whether $k \in \text{Word}(G)$.

Turing Reducibility

Convention

Throughout these talks, the powerset $\mathcal{P}(\mathbb{N})$ will be identified with $2^{\mathbb{N}}$ by identifying subsets of \mathbb{N} with their characteristic functions.

Definition

If $A, B \in 2^{\mathbb{N}}$, then **A is Turing reducible to B** , written $A \leq_T B$, if there exists a B -oracle Turing machine which computes A .

Remark

In other words, there is an algorithm which computes A modulo an oracle which correctly answers questions of the form “**Is $n \in B$?**”

Turing Reducibility

Definition

If $A, B \in 2^{\mathbb{N}}$, then **A is Turing equivalent to B** , written $A \equiv_T B$, if both $A \leq_T B$ and $B \leq_T A$.

Definition

If $A \in 2^{\mathbb{N}}$, then the corresponding **Turing degree** is defined to be

$$\mathbf{a} = \{ B \in 2^{\mathbb{N}} \mid B \equiv_T A \}.$$

Proposition

If $G = \langle a_1, \dots, a_n \rangle = \langle b_1, \dots, b_m \rangle$ is a finitely generated group, then

$$\{ k \in \mathbb{N} \mid w_k(a_1, \dots, a_n) = 1 \} \equiv_T \{ \ell \in \mathbb{N} \mid w_{\ell}(b_1, \dots, b_m) = 1 \}.$$

Prescribing the Turing degree of the word problem

Theorem (Folklore)

For each subset $A \subseteq \mathbb{N}$, there exists a finitely generated group G_A such that $\text{Word}(G_A) \equiv_T A$.

- Notation: $[x, y] = x^{-1} y^{-1} x y$

Sketch Proof.

Let G_A be the group generated by the elements a, b subject to the following defining relations, where $c_n = [b, a^{-(n+1)} b a^{n+1}]$.

- $a c_n = c_n a$ for all $n \in \mathbb{N}$.
- $b c_n = c_n b$ for all $n \in \mathbb{N}$.
- $c_n^2 = 1$ for all $n \in \mathbb{N}$.
- $c_n = 1$ for all $n \in A$.

Another natural question

Observation

*The above construction of G_A is **highly dependent** on the specific subset $A \subseteq \mathbb{N}$, in the sense that if $A \neq B$ are subsets such that $A \equiv_T B$, then we “usually” have that $G_A \not\cong G_B$.*

Question

*Does there exist a **more uniform** construction $A \mapsto G_A$ with the property that the isomorphism type of G_A only depends upon the Turing degree of A ?*

The answers ...

Notation

\mathcal{G} and \mathcal{G}_{fg} denotes the **spaces** of countable groups and f.g. groups.

“Theorem”

*There does not exist an **explicit** map $G \mapsto K_G$ from \mathcal{G} to \mathcal{G}_{fg} such that for all $G, H \in \mathcal{G}$,*

- $G \hookrightarrow K_G$; and
- if $G \cong H$, then $K_G \cong K_H$.

“Theorem”

*There does not exist an **explicit** map $A \mapsto G_A$ from $2^{\mathbb{N}}$ to \mathcal{G}_{fg} such that for all $A, B \in 2^{\mathbb{N}}$,*

- $\text{Word}(G_A) \equiv_T A$; and
- if $A \equiv_T B$ then $G_A \cong G_B$.

What is an explicit map?

Question

Which functions $f : \mathbb{R} \rightarrow \mathbb{R}$ are explicit?

Church's Thesis for the Reals

EXPLICIT = BOREL

Definition

- A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is **Borel** if $\text{graph}(f)$ is a Borel subset of $\mathbb{R} \times \mathbb{R}$.
- Equivalently, $f^{-1}(A)$ is Borel for each Borel subset $A \subseteq \mathbb{R}$.

The Cantor Space

- The Cantor space $2^{\mathbb{N}}$ is a **complete separable metric space** with respect to the metric

$$d(x, y) = \sum_{n=0}^{\infty} \frac{|x(n) - y(n)|}{2^{n+1}}.$$

- The corresponding topological space is a **Polish space** with basic open neighborhoods

$$U_s = \{ x \in 2^{\mathbb{N}} \mid x \upharpoonright n = s \}, \quad \text{where } s \in 2^{<\mathbb{N}}.$$

The Polish space of countably infinite groups

- Let \mathcal{G} be the set of groups with underlying set \mathbb{N} .
- We can identify each group

$$G \in \mathcal{G} \longleftrightarrow m_G \in 2^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$$

with the graph of its multiplication operation.

- Then \mathcal{G} is a **G_δ subset** of the Cantor space $2^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$;
i.e. \mathcal{G} is a countable intersection of open subsets.
- It follows that \mathcal{G} is a **Polish subspace** of the Cantor space $2^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$.

The Polish space of f.g. groups

- A **marked group** (G, \bar{s}) consists of a f.g. group with a distinguished sequence $\bar{s} = (s_1, \dots, s_m)$ of generators.
- For each $m \geq 1$, let \mathcal{G}_m be the set of **isomorphism types** of marked groups $(G, (s_1, \dots, s_m))$ with m distinguished generators.
- Then there exists a canonical embedding $\mathcal{G}_m \hookrightarrow \mathcal{G}_{m+1}$ defined by

$$(G, (s_1, \dots, s_m)) \mapsto (G, (s_1, \dots, s_m, 1_G)).$$

- And $\mathcal{G}_{fg} = \bigcup \mathcal{G}_m$ is the **space of f.g. groups**.

The Polish space of f.g. groups

- Let $(G, \bar{s}) \in \mathcal{G}_m$ and let d_S be the corresponding word metric. For each $\ell \geq 1$, let

$$B_\ell(G, \bar{s}) = \{g \in G \mid d_S(g, 1_G) \leq \ell\}.$$

- The basic open neighborhoods of (G, \bar{s}) in \mathcal{G}_m are given by

$$U_{(G, \bar{s}), \ell} = \{ (H, \bar{t}) \in \mathcal{G}_m \mid B_\ell(H, \bar{t}) \cong B_\ell(G, \bar{s}) \}, \quad \ell \geq 1.$$

Example

For each $n \geq 1$, let $C_n = \langle g_n \rangle$ be cyclic of order n . Then:

$$\lim_{n \rightarrow \infty} (C_n, g_n) = (\mathbb{Z}, 1).$$

A slight digression ...

Some Isolated Points

- Finite groups
- Finitely presented simple groups

The Next Stage

- $SL_3(\mathbb{Z})$

Question (Grigorchuk)

What is the Cantor-Bendixson rank of \mathcal{G} ?

A basic question on Cayley graphs of f.g. groups

Definition

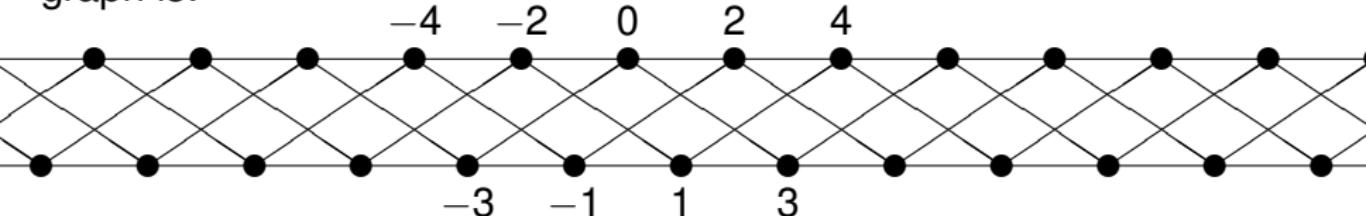
Let G be a f.g. group and let $S \subseteq G \setminus \{1\}$ be a finite generating set. Then the **Cayley graph** $\text{Cay}(G, S)$ is the graph with vertex set G and edge set

$$E = \{ \{x, y\} \mid y = xs \text{ for some } s \in S \cup S^{-1} \}.$$

For example, when $G = \mathbb{Z}$ and $S = \{1\}$, then the corresponding Cayley graph is:

But which Cayley graph?

However, when $G = \mathbb{Z}$ and $S = \{ 2, 3 \}$, then the corresponding Cayley graph is:



Question

*Does there exist an **explicit** choice of generators for each f.g. group such that isomorphic groups are assigned isomorphic Cayley graphs?*

Theorem

*There does not exist a **Borel** choice of generators for each f.g. group such that isomorphic groups are assigned isomorphic Cayley graphs.*

The answers revisited ...

Theorem

*There does not exist a **Borel** map $G \mapsto K_G$ from \mathcal{G} to \mathcal{G}_{fg} such that for all $G, H \in \mathcal{G}$,*

- $G \hookrightarrow K_G$; and
- if $G \cong H$, then $K_G \cong K_H$.

Theorem

*There does not exist a **Borel** map $A \mapsto G_A$ from $2^{\mathbb{N}}$ to \mathcal{G}_{fg} such that for all $A, B \in 2^{\mathbb{N}}$,*

- $\text{Word}(G_A) \equiv_T A$; and
- if $A \equiv_T B$ then $G_A \cong G_B$.

But Greg Cherlin wasn't satisfied ...

Theorem

- Suppose that $A \mapsto G_A$ is *any* Borel map from $2^{\mathbb{N}}$ to \mathcal{G}_{fg} such that $\text{Word}(G_A) \equiv_T A$ for all $A \in 2^{\mathbb{N}}$.
- Then there exists a Turing degree \mathbf{d}_0 such that for all $\mathbf{d} \geq_T \mathbf{d}_0$, there exists an infinite subset $\{ A_n \mid n \in \mathbb{N} \} \subseteq \mathbf{d}$ such that the groups $\{ G_{A_n} \mid n \in \mathbb{N} \}$ are pairwise *incomparable with respect to embeddability*.

But Greg Cherlin wasn't satisfied ...

Theorem (LC)

- Suppose that $G \mapsto K_G$ is *any* Borel map from \mathcal{G} to \mathcal{G}_{fg} such that $G \hookrightarrow K_G$ for all $G \in \mathcal{G}$.
- Then there exists an uncountable Borel family $\mathcal{F} \subseteq \mathcal{G}$ of pairwise isomorphic groups such that the groups $\{ K_G \mid G \in \mathcal{F} \}$ are pairwise *incomparable with respect to relative constructibility*; i.e., if $G \neq H \in \mathcal{F}$, then $K_G \notin L[K_H]$ and $K_H \notin L[K_G]$.

Remarks

- (LC): There exists a Ramsey cardinal κ .
- In ZFC, we can find an uncountable Borel family $\mathcal{F} \subseteq \mathcal{G}$ such that the groups $\{ K_G \mid G \in \mathcal{F} \}$ are pairwise incomparable with respect to embeddability.

Why are the Theorems “obviously true”?

Definition

Let E, F be equivalence relations on the Polish spaces X, Y . Then the Borel map $\varphi : X \rightarrow Y$ is a **homomorphism** if

$$x E y \implies \varphi(x) F \varphi(y).$$

Theorem

If $\varphi : \langle \mathcal{G}, \cong_{\mathcal{G}} \rangle \rightarrow \langle \mathcal{G}_{fg}, \cong_{\mathcal{G}_{fg}} \rangle$ is **any** Borel homomorphism, then there exists a group $G \in \mathcal{G}$ such that $G \not\rightarrow \varphi(G)$.

Heuristic Reason

Since $\cong_{\mathcal{G}}$ is **much more complex** than $\cong_{\mathcal{G}_{fg}}$, the Borel homomorphism must have a “large kernel” and hence “too many” groups $G \in \mathcal{G}$ will be mapped to a fixed $K \in \mathcal{G}_{fg}$.

Definition

Let E, F be equivalence relations on the Polish spaces X, Y .

- $E \leq_B F$ if there exists a Borel map $\varphi : X \rightarrow Y$ such that

$$x E y \iff \varphi(x) F \varphi(y).$$

In this case, φ is called a **Borel reduction** from E to F .

- $E \sim_B F$ if both $E \leq_B F$ and $F \leq_B E$.
- $E <_B F$ if both $E \leq_B F$ and $E \not\sim_B F$.

The isomorphism relations on \mathcal{G} and \mathcal{G}_{fg}

Definition

Let E be an equivalence relation on the Polish space X .

- E is **Borel** if E is a Borel subset of $X \times X$.
- E is **analytic** if E is an analytic subset of $X \times X$.

Example

If $G, H \in \mathcal{G}$, then

$$G \cong H \quad \text{iff} \quad \exists \pi \in \text{Sym}(\mathbb{N}) \quad \pi[m_G] = m_H.$$

Hence $\cong_{\mathcal{G}}$ is an analytic equivalence relation.

Theorem (Folklore)

The isomorphism relation on \mathcal{G} is analytic but **not** Borel.

The isomorphism relations on \mathcal{G} and \mathcal{G}_{fg}

Theorem

The isomorphism relation on \mathcal{G}_{fg} is a countable Borel equivalence relation.

Definition

*The Borel equivalence relation E is **countable** if every E -class is countable.*

Theorem

$$\cong_{\mathcal{G}_{fg}} <_B \cong_{\mathcal{G}}.$$

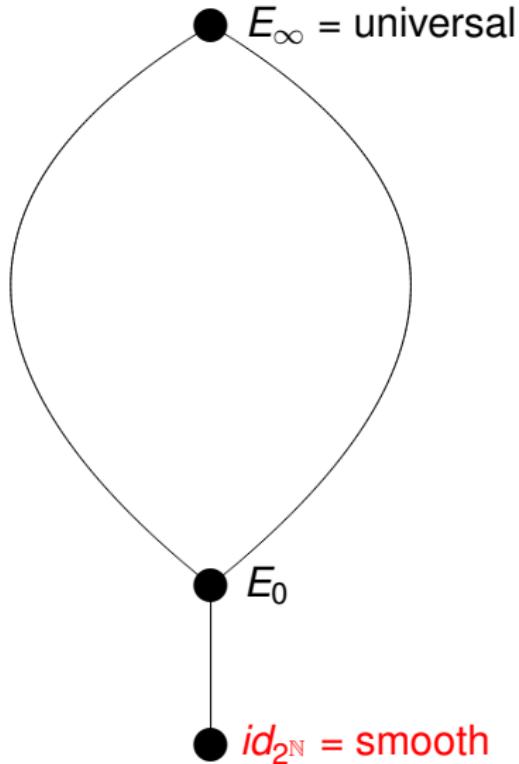
Proof.

Suppose that $f : \mathcal{G} \rightarrow \mathcal{G}_{fg}$ is a Borel reduction. Then $\cong_{\mathcal{G}} = f^{-1}(\cong_{\mathcal{G}_{fg}})$ is Borel, which is a contradiction. □

Countable Borel equivalence relations



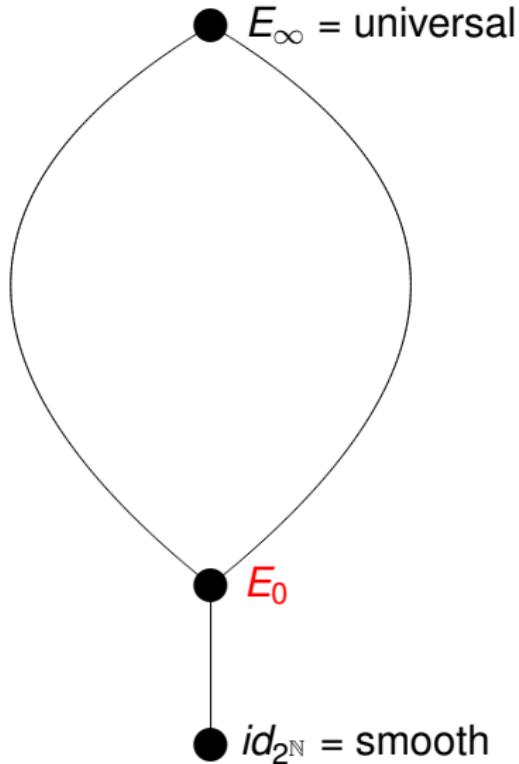
Countable Borel equivalence relations



Theorem (Folklore)

The isomorphism relation for Cayley graphs is smooth.

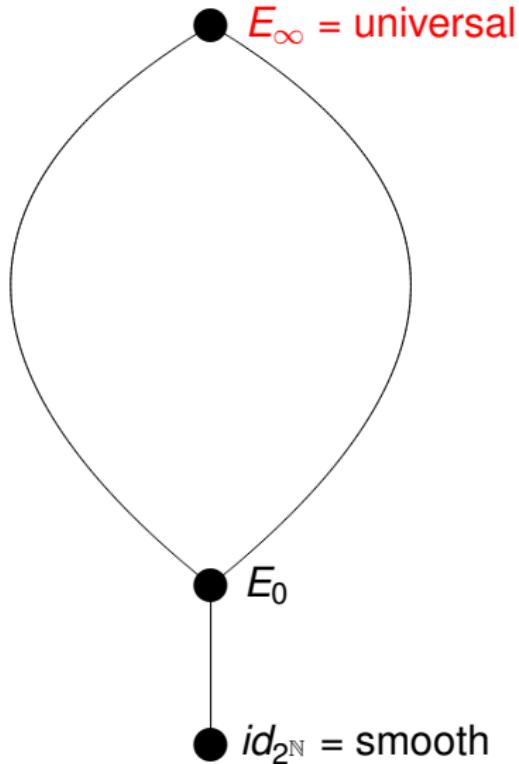
Countable Borel equivalence relations



Definition (HKL)

E_0 is the equivalence relation of **eventual equality** on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Countable Borel equivalence relations



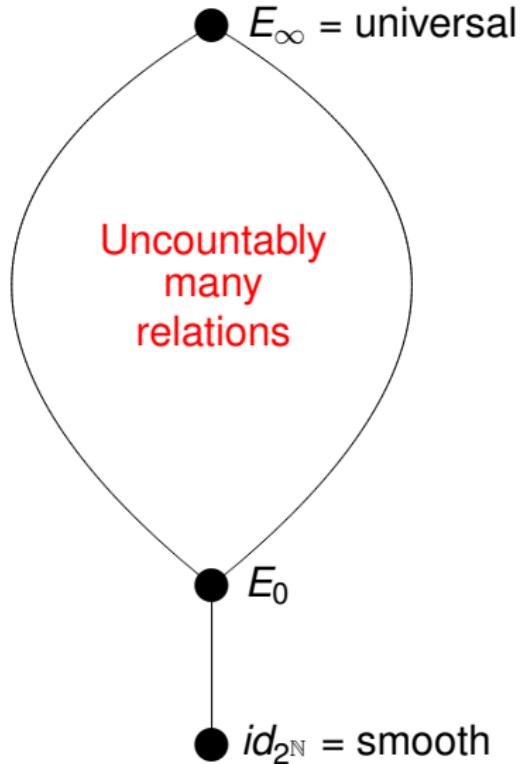
Definition (HKL)

E_0 is the equivalence relation of **eventual equality** on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Definition (DJK)

A countable Borel equivalence relation E is **universal** if $F \leq_B E$ for every countable Borel equivalence relation F .

Countable Borel equivalence relations



Definition (HKL)

E_0 is the equivalence relation of **eventual equality** on the space $2^\mathbb{N}$ of infinite binary sequences.

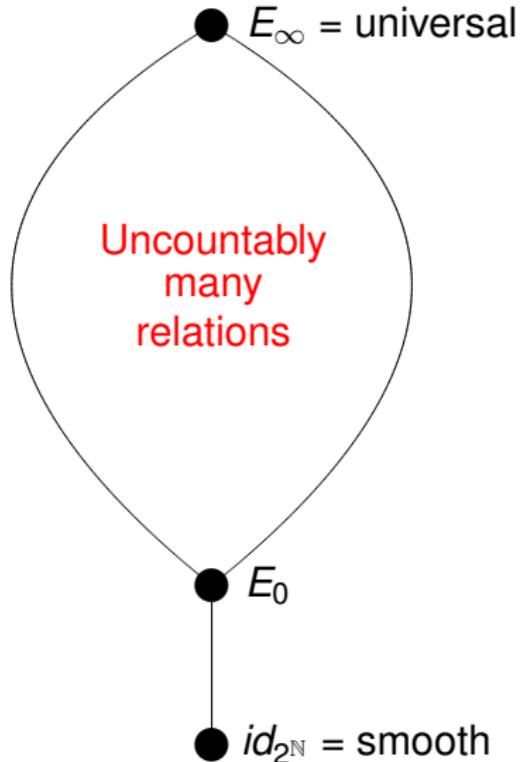
Definition (DJK)

A countable Borel equivalence relation E is **universal** if $F \leq_B E$ for every countable Borel equivalence relation F .

Question

Where do $\cong_{\mathcal{G}_{fg}}$ and \equiv_T fit in?

Countable Borel equivalence relations



Confirming a conjecture of Hjorth-Kechris ...

Theorem (S.T.-Velickovic)

$\cong_{\mathcal{G}_{fg}}$ is a universal countable Borel equivalence relation.

Corollary

$\equiv_T \leq_B \cong_{\mathcal{G}_{fg}}$.

Remark

Unfortunately the Word Problem Theorem isn't so "obviously true" ...

How to prove such theorems?

The Cayley Graph Theorem

- *Use ideas from geometric group theory and ergodic theory.*
- *To be explained in the second talk ...*

The Word Problem Theorem

- *Apply Martin's Theorem on the determinacy of Borel games.*
- *To be explained in the third talk ...*

The HNN Embedding Theorem

- *Collapse the continuum \mathbb{R} to a countable set and then apply a suitable Absoluteness Theorem.*
- *To be explained in the final talk ...*

The End