

Borel Determinacy and the Word Problem for Finitely Generated Groups

Simon Thomas

Rutgers University

May 14th 2014

The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)

If G is a countable group, then G can be embedded into a 2-generator group K_G .

Theorem

If $\varphi : \langle \mathcal{G}, \cong_{\mathcal{G}} \rangle \rightarrow \langle \mathcal{G}_{fg}, \cong_{\mathcal{G}_{fg}} \rangle$ is any Borel homomorphism, then there exists a group $G \in \mathcal{G}$ such that $G \not\rightarrow \varphi(G)$.

Heuristic Reason

Since $\cong_{\mathcal{G}}$ is much more complex than $\cong_{\mathcal{G}_{fg}}$, the Borel homomorphism must have a “large kernel” and hence “too many” groups $G \in \mathcal{G}$ will be mapped to a fixed $K \in \mathcal{G}_{fg}$.

The obvious follow-up question to the HNN Theorem

Question (Cherlin, Hrushovski, Sabok, ...)

Does there exist a Borel homomorphism $\varphi : \mathcal{G}_{fg} \rightarrow \mathcal{G}_2$ such that $G \hookrightarrow \varphi(G)$ for all $G \in \mathcal{G}_{fg}$?

Definition

Let \mathcal{G}_2 be the space of 2-generator groups.

Theorem (Hjorth)

$\cong_{\mathcal{G}_2}$ is a universal countable Borel equivalence relation.

Talking to the wrong people ...

The Friedman Embedding Theorem

There exists a Borel homomorphism $\psi : \mathcal{G}_{fg} \rightarrow \mathcal{G}_2$ such that $G \hookrightarrow \psi(G)$ for all $G \in \mathcal{G}_{fg}$.

Question

What does Friedman know that the group theorists don't know ...
and that might conceivably be useful?

Answer

Absolutely nothing!

The word problem as a group-theoretic invariant

Proposition

If $(G, \bar{s}), (H, \bar{t}) \in \mathcal{G}_{fg}$ and $G \cong H$, then $\text{Word}_{\bar{s}}(G) \equiv_T \text{Word}_{\bar{t}}(H)$.

Definition

If $A \in 2^{\mathbb{N}}$, then $\text{Rec}^A(\mathbb{N}) = \{g \in \text{Sym}(\mathbb{N}) \mid g \leq_T A\}$.

Proposition

- (i) If $A \leq_T B$, then $\text{Rec}^A(\mathbb{N}) \leq \text{Rec}^B(\mathbb{N})$.
- (ii) If $A \equiv_T B$, then $\text{Rec}^A(\mathbb{N}) = \text{Rec}^B(\mathbb{N})$.
- (iii) If $(G, \bar{s}) \in \mathcal{G}_{fg}$ and $\text{Word}_{\bar{s}}(G) \leq_T A$, then $G \hookrightarrow \text{Rec}^A(\mathbb{N})$.

The word problem as a group-theoretic invariant

Theorem (Friedman)

There exists a Borel map $A \mapsto (g_A, h_A)$ from $2^{\mathbb{N}}$ to $\text{Sym}(\mathbb{N}) \times \text{Sym}(\mathbb{N})$ such that:

- $\text{Rec}^A(\mathbb{N}) \hookrightarrow \langle g_A, h_A \rangle \in \mathcal{G}_2$.
- *If $A \equiv_T B$, then $\{g_A, h_A\}$ and $\{g_B, h_B\}$ generate the same subgroup of $\text{Sym}(\mathbb{N})$ and so $\langle g_A, h_A \rangle \cong \langle g_B, h_B \rangle$.*

Corollary (Friedman)

Let $\psi : \mathcal{G}_{fg} \rightarrow \mathcal{G}_2$ be the Borel homomorphism defined by

$$(G, \bar{s}) \mapsto \text{Word}_{\bar{s}}(G) \mapsto \langle g_{\text{Word}_{\bar{s}}(G)}, h_{\text{Word}_{\bar{s}}(G)} \rangle.$$

Then $G \hookrightarrow \psi(G, \bar{s})$ for all $(G, \bar{s}) \in \mathcal{G}_{fg}$.

Friedman's Idea

Notation

If $A \in 2^{\mathbb{N}}$, then φ_i^A is the i -th partial A -recursive function and

$$\psi_i^A = \begin{cases} \varphi_i^A & \text{if } \varphi_i^A \in \text{Sym}(\mathbb{N}); \\ \text{id}_{\mathbb{N}} & \text{otherwise.} \end{cases}$$

Lemma (Friedman après Myhill)

If $A \equiv_T B$, then there exists a *recursive permutation* $\theta \in \text{Sym}(\mathbb{N})$ such that $\psi_i^B = \psi_{\theta(i)}^A$ for all $i \in \mathbb{N}$.

Friedman's Idea

Definition

Define $\pi_A \in \text{Sym}(\mathbb{N} \times \mathbb{N})$ by $\pi_A(i, j) = (i, \psi_i^A(j))$.

Lemma (Friedman)

*If $A \equiv_T B$, then there exists a **recursive permutation** $\theta \in \text{Sym}(\mathbb{N} \times \mathbb{N})$ such that $\theta^{-1}\pi_A\theta = \pi_B$.*

Definition

Let $H_A \leq \text{Sym}(\mathbb{N} \times \mathbb{N})$ be the subgroup generated by

$$\{ \pi_A \} \cup \{ \theta \in \text{Sym}(\mathbb{N} \times \mathbb{N}) \mid \theta \text{ is recursive} \}.$$

Remark

If $A \equiv_T B$, then $H_A = H_B$.

Friedman's Idea

Notation

For each $g \in \text{Sym}(\mathbb{N})$, define $\tilde{g} \in \text{Sym}(\mathbb{N} \times \mathbb{N})$ by

$$\tilde{g}(i, j) = \begin{cases} (0, g(j)) & \text{if } i = 0. \\ (i, j) & \text{otherwise.} \end{cases}$$

Proposition (Friedman)

$$\text{Rec}^A(\mathbb{N}) \cong \{ \tilde{g} \in \text{Sym}(\mathbb{N} \times \mathbb{N}) \mid g \in \text{Rec}^A \} \leq H_A.$$

Corollary (Friedman)

If $(G, \bar{s}) \in \mathcal{G}_{fg}$ and $\text{Word}_{\bar{s}}(G) \leq_T A$, then $G \hookrightarrow \text{Rec}^A(\mathbb{N}) \hookrightarrow H_A$.

Galvin's Embedding Theorem

Notation

For each $\pi \in \text{Sym}(\Omega)$, define $\hat{\pi} \in \text{Sym}(\mathbb{Z} \times \mathbb{Z} \times \Omega)$ by

$$\hat{\pi}(m, n, \omega) = \begin{cases} (0, 0, \pi(\omega)) & \text{if } m = n = 0; \\ (m, n, \omega) & \text{otherwise.} \end{cases}$$

Theorem (Galvin)

If $K \leq \text{Sym}(\Omega)$ is a countable subgroup, then there exists a 2-generator subgroup $T_K \leq \text{Sym}(\mathbb{Z} \times \mathbb{Z} \times \Omega)$ such that $\{\hat{k} \mid k \in K\} \leq T_K$.

Definition

Let $\Omega = \mathbb{N} \times \mathbb{N}$ and let K be the group of recursive permutations of $\mathbb{N} \times \mathbb{N}$. Then G_A is the 3-generator group generated by $T_K \cup \{\hat{\pi}_A\}$.

And to get a 2-generator group? **Work a little harder!**

An Open Problem

Observation

The standard group-theoretic constructions (e.g. wreath products, free products with amalgamation, HNN extensions, ...) induce **continuous** homomorphisms $\varphi : \mathcal{G}_{fg} \rightarrow \mathcal{G}_{fg}$.

Conjecture

*There does not exist a **continuous** homomorphism $\varphi : \mathcal{G}_3 \rightarrow \mathcal{G}_2$ such that $G \hookrightarrow \varphi(G)$ for all $G \in \mathcal{G}_3$.*

Question (Kanovei)

Find **nontrivial natural** examples of Borel equivalence relations E, F such that $E \leq_B F$ but there is **no** continuous reduction from E to F .

Why are such examples hard to find?

Theorem (Folklore)

If X, Y are Polish spaces and $\varphi : X \rightarrow Y$ is a Borel map, then there exists a comeager subset $C \subseteq X$ such that $\varphi \upharpoonright C$ is continuous.

Theorem (Lusin)

Let X, Y be Polish spaces and let μ be any Borel probability measure on X . If $\varphi : X \rightarrow Y$ is a Borel map, then for every $\varepsilon > 0$, there exists a compact set $K \subseteq X$ with $\mu(K) > 1 - \varepsilon$ such that $\varphi \upharpoonright K$ is continuous.

Another notion of largeness ...

Definition

For each $z \in 2^{\mathbb{N}}$, the corresponding **cone** is $\mathcal{C}_z = \{ x \in 2^{\mathbb{N}} \mid z \leq_T x \}$.

- Suppose $z_n = \{ a_{n,\ell} \mid \ell \in \mathbb{N} \} \in 2^{\mathbb{N}}$ for each $n \in \mathbb{N}$ and define

$$\oplus z_n = \{ p_n^{a_{n,\ell}} \mid n, \ell \in \mathbb{N} \} \in 2^{\mathbb{N}},$$

where p_n is the n th prime.

- Then $z_m \leq_T \oplus z_n$ for each $m \in \mathbb{N}$ and so $\mathcal{C}_{\oplus z_n} \subseteq \bigcap_n \mathcal{C}_{z_n}$.

Remark

It is well-known that if $\mathcal{C} \subsetneq 2^{\mathbb{N}}$ is a **proper** cone, then \mathcal{C} is both null and meager.

Continuous maps on the Cantor space

Theorem (Folklore)

If $\theta : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$, then the following are equivalent:

- (a) θ is continuous.
- (b) There exists $C \in 2^{\mathbb{N}}$ and $e \in \mathbb{N}$ such that $\theta(A) = \varphi_e^{C \oplus A}$.

Corollary

If $\theta : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is continuous, then there exists a cone \mathcal{C} such that $\theta(A) \leq_T A$ for all $A \in \mathcal{C}$.

Continuous maps on \mathcal{G}_{fg}

Theorem

If $G \mapsto K_G$ is a continuous map from \mathcal{G}_{fg} to \mathcal{G}_{fg} , then there exists a cone \mathcal{C} such that if $\text{Word}(G) \in \mathcal{C}$, then $\text{Word}(K_G) \leq_T \text{Word}(G)$.

Observation

If $\psi : \mathcal{G}_{fg} \rightarrow \mathcal{G}_2$ is the map given by the current proof of the Friedman Embedding Theorem, then $\text{Word}(G)'' \leq_T \text{Word}(\psi(G))$ for all $G \in \mathcal{G}_{fg}$.

Proof.

$$\{ i \in \mathbb{N} \mid \varphi_i^A \in \text{Sym}(\mathbb{N}) \setminus \{ \text{Id}_{\mathbb{N}} \} \} \equiv_T A''.$$

□

The “obvious” vs “nonobvious” Turing reductions ...

Definition

If $A, B \in 2^{\mathbb{N}}$, then **A is one-one reducible to B** , written $A \leq_1 B$, if there exists an injective recursive function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that for all $n \in \mathbb{N}$,

$$n \in A \iff f(n) \in B.$$

Example

If $G, H \in \mathcal{G}_{fg}$ and $G \hookrightarrow H$, then $\text{Word}(G) \leq_1 \text{Word}(H)$.

Proof.

Suppose that $G = \langle a_1, \dots, a_n \rangle$ and $H = \langle b_1, \dots, b_m \rangle$. Let $\varphi : G \rightarrow H$ be an embedding and let $\varphi(a_i) = t_i(\bar{b})$. Then

$$w_k(a_1, \dots, a_n) = 1 \iff w_k(t_1(\bar{b}), \dots, t_n(\bar{b})) = 1.$$

Turing Equivalence vs. Recursive Isomorphism

Definition

The sets $A, B \in 2^{\mathbb{N}}$ are **recursively isomorphic**, written $A \equiv_1 B$, if both $A \leq_1 B$ and $B \leq_1 A$.

Theorem (Myhill)

If $A, B \in 2^{\mathbb{N}}$, then $A \equiv_1 B$ if and only if there exists a recursive permutation $\pi \in \text{Sym}(\mathbb{N})$ such that $\pi[A] = B$.

Theorem (Folklore)

The map $A \mapsto A'$ is a Borel reduction from \equiv_T to \equiv_1 .

Observation

The Borel reduction $A \mapsto A'$ from \equiv_T to \equiv_1 is certainly **not** continuous.

Turing Equivalence vs. Recursive Isomorphism

Definition

Let E, F be Borel equivalence relations on the Polish spaces X, Y . Then the Borel map $\varphi : X \rightarrow Y$ is a **homomorphism** from E to F if

$$x E y \implies \varphi(x) F \varphi(y).$$

The Cone Theorem

If $\theta : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is a continuous homomorphism from \equiv_T to \equiv_1 , then there exists a cone \mathcal{C} such that θ maps \mathcal{C} into a single \equiv_1 -class.

Corollary

There does **not** exist a continuous reduction from \equiv_T to \equiv_1 .

Turing Equivalence vs. Isomorphism on \mathcal{G}_{fg}

Theorem

*There does **not** exist a continuous reduction from \equiv_T to $\cong_{\mathcal{G}_{fg}}$.*

Proof.

- Suppose $A \mapsto H_A$ is a continuous reduction from \equiv_T to $\cong_{\mathcal{G}_{fg}}$.
- Note that $H \mapsto \text{Word}(H)$ is an countable-to-one continuous homomorphism from $\cong_{\mathcal{G}_{fg}}$ to \equiv_1 .
- Thus $A \mapsto \text{Word}(H_A)$ is a countable-to-one continuous homomorphism from \equiv_T to \equiv_1 , which is a contradiction.

Determinacy

Definition

For each $X \subseteq 2^{\mathbb{N}}$, let $G(X)$ be the two player game

I	$s(0)$	$s(2)$	$s(4)$	$s(6)$	\dots
II	$s(1)$	$s(3)$	$s(5)$	$s(7)$	\dots

where I wins if and only if $s = (s(0) s(1) s(2) s(3) \dots) \in X$.

Definition

- A **strategy** is a map $2^{<\mathbb{N}} \rightarrow 2$ which tells the relevant player which move to make in a given position.
- The game $G(X)$ is **determined** if one of the players has a winning strategy.

Determinacy

Observation

If X is countable, then player II has a winning strategy in $G(X)$.

Theorem (AC)

*There exists a subset $X \subseteq 2^{\mathbb{N}}$ such that $G(X)$ is **not** determined.*

Borel Determinacy (Martin)

If $X \subseteq 2^{\mathbb{N}}$ is a Borel subset, then $G(X)$ is determined.

An easy application of Borel Determinacy

Definition

A subset $X \subseteq 2^{\mathbb{N}}$ is \equiv_T -invariant if it is a union of \equiv_T -classes.

Theorem (Martin)

If $X \subseteq 2^{\mathbb{N}}$ is a \equiv_T -invariant Borel subset, then either X or $2^{\mathbb{N}} \setminus X$ contains a cone.

Cf. Ergodicity ...

Proof of Martin's Theorem

- Suppose that $X \subseteq 2^{\mathbb{N}}$ is a \equiv_T -invariant Borel subset.
- Consider the two player game $G(X)$

$$s(0) \quad s(1) \quad s(2) \quad s(3) \quad \dots$$

where I wins if and only if $s = (s(0) s(1) s(2) \dots) \in X$.

- Then the Borel game $G(X)$ is determined. Suppose, for example, that $\sigma : 2^{<\mathbb{N}} \rightarrow 2$ is a winning strategy for I .
- Let $\sigma \leq_T t \in 2^{\mathbb{N}}$ and consider the run of $G(X)$ where
 - II plays $t = (s(1) s(3) s(5) \dots)$
 - I uses the strategy σ and plays $(s(0) s(2) s(4) \dots)$.
- Then $s \in X$ and $s \equiv_T t$. Hence $t \in X$ and so $\mathcal{C}_\sigma \subseteq X$.

Some easy consequences of Martin's Theorem

Theorem (Martin)

If $X \subseteq 2^{\mathbb{N}}$ is a \equiv_T -invariant Borel subset, then either X or $2^{\mathbb{N}} \setminus X$ contains a cone.

Corollary

If $X \subseteq 2^{\mathbb{N}}$ is a \equiv_T -invariant \leq_T -cofinal Borel subset, then X contains a cone.

Corollary

*If $X \subseteq 2^{\mathbb{N}}$ is an **arbitrary** \leq_T -cofinal Borel subset, then X contains representatives of a cone.*

Pointed Trees

Definition

- A subset $S \subseteq 2^{<\mathbb{N}}$ is a **tree** if it is closed under taking initial segments.
- If S is a tree, then $[S] \subseteq 2^{\mathbb{N}}$ denotes the set of **infinite branches** through T .
- The tree S is **perfect** if for each $s \in S$, there exist incomparable $a, b \in S$ with $s < a, b$.
- The perfect tree S is **pointed** if $S \leq_T y$ for all $y \in [S]$.

Theorem (Martin)

If $X \subseteq 2^{\mathbb{N}}$ is a \leq_T -cofinal Borel subset, then there exists a pointed tree $S \subseteq 2^{<\mathbb{N}}$ such that $[S] \subseteq X$.

Proof of the Cone Theorem

The Cone Theorem

If $\theta : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is a continuous homomorphism from \equiv_T to \equiv_1 , then there exists a cone \mathcal{C} such that θ maps \mathcal{C} into a single \equiv_1 -class.

- Let \mathcal{A} be a cone such that $\theta(A) \leq_T A$ for all $A \in \mathcal{A}$.
- Then there exists a cone $\mathcal{C} \subseteq \mathcal{A}$ such that either
 - (a) $\theta(A) <_T A$ for all $A \in \mathcal{C}$; or
 - (b) $\theta(A) \equiv_T A$ for all $A \in \mathcal{C}$.

Case (a): suppose that $\theta(A) <_T A$ for all $A \in \mathcal{C}$.

Theorem (Slaman-Steel)

If \mathcal{C} is a cone and $\theta : \mathcal{C} \rightarrow 2^{\mathbb{N}}$ is a Borel homomorphism from $\equiv_T \upharpoonright \mathcal{C}$ to \equiv_T such that $\theta(A) <_T A$ for all $A \in \mathcal{C}$, then there exists a cone $\mathcal{D} \subseteq \mathcal{C}$ such that θ maps \mathcal{D} into a single \equiv_T -class.

- Thus θ maps a cone \mathcal{D} into a single \equiv_T -class \mathbf{a} .
- Let $\mathbf{a} = \bigsqcup_{n \in \mathbb{N}} \mathbf{b}_n$ be the decomposition of \mathbf{a} into \equiv_1 -classes.
- For each $n \in \mathbb{N}$, let $\mathcal{B}_n = \theta^{-1}(\mathbf{b}_n)$.
- Then there exists $n \in \mathbb{N}$ such that \mathcal{B}_n contains a cone, as required.

Case (b): suppose that $\theta(A) \equiv_T A$ for all $A \in \mathcal{C}$.

The Non-Selector Theorem

- If \mathcal{C} is a cone, then there does **not** exist a Borel homomorphism $\theta : \mathcal{C} \rightarrow \mathcal{C}$ from $\equiv_T \upharpoonright \mathcal{C}$ to $\equiv_1 \upharpoonright \mathcal{C}$ such that $\theta(A) \equiv_T A$ for all $A \in \mathcal{C}$.
- In other words, if \mathcal{C} is a cone, then there does not exist a Borel map which **selects** an \equiv_1 -class within each \equiv_T -class.

Proof of the Non-Selector Theorem

- Suppose $\theta : \mathcal{C} \rightarrow \mathcal{C}$ selects a \equiv_1 -class within each \equiv_T -class.
- Then $\theta[\mathcal{C}]$ is a \leq_T -cofinal Borel subset of $2^{\mathbb{N}}$.
- By Martin's Theorem, there exists a pointed tree $S \subseteq 2^{<\mathbb{N}}$ such that $[S] \subseteq \theta[\mathcal{C}]$.
- Note that if $x, y \in [S]$, then $x \equiv_T y$ iff $x \equiv_1 y$.
- We can suppose that $(\pi_n \mid n \in \mathbb{N}) \leq_T S$, where $\{\pi_n \mid n \in \mathbb{N}\}$ is the group of recursive permutations.
- Let $x \in [S]$ be the left-most branch, so that $x \equiv_T S$.
- Then we can construct a branch $y \leq_T S$ such that $\pi_n(y) \neq x$ for all $n \in \mathbb{N}$.
- But then $y \equiv_T x$ and $y \not\equiv_1 x$, which is a contradiction!

Proof of the Main Theorem

Main Theorem

*There does **not** exist a Borel homomorphism $A \mapsto G_A$ from \equiv_T to \cong such that $\text{Word}(G_A) \equiv_T A$ for all $A \in 2^{\mathbb{N}}$.*

- Suppose that $A \mapsto G_A$ is a Borel homomorphism from \equiv_T to \cong such that $\text{Word}(G_A) \equiv_T A$ for all $A \in 2^{\mathbb{N}}$.
- Consider the Borel map $\theta : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ defined by $A \mapsto \text{Word}(G_A)$.
- If $A \equiv_T B$, then $G_A \cong G_B$ and so $\text{Word}(G_A) \equiv_1 \text{Word}(G_B)$.
- Thus $\theta : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is a Borel map which selects an \equiv_1 -class within each \equiv_T -class, which is a contradiction!

The End