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The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)
If G is a countable group, then G can be embedded into a
2-generator group KG.

Theorem
If ϕ : 〈 G,∼=G 〉 → 〈Gfg ,∼=Gfg 〉 is any Borel homomorphism, then there
exists a group G ∈ G such that G 6↪→ ϕ(G).

Heuristic Reason
Since ∼=G is much more complex than ∼=Gfg , the Borel homomorphism
must have a “large kernel” and hence “too many” groups G ∈ G will
be mapped to a fixed K ∈ Gfg .
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The obvious follow-up question to the HNN Theorem

Question (Cherlin, Hrushovski, Sabok, ...)
Does there exist a Borel homomorphism ϕ : Gfg → G2 such that
G ↪→ ϕ(G) for all G ∈ Gfg?

Definition
Let G2 be the space of 2-generator groups.

Theorem (Hjorth)
∼=G2 is a universal countable Borel equivalence relation.
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Talking to the wrong people ...

The Friedman Embedding Theorem
There exists a Borel homomorphism ψ : Gfg → G2 such that
G ↪→ ψ(G) for all G ∈ Gfg .

Question
What does Friedman know that the group theorists don’t know ...
and that might conceivably be useful?

Answer
Absolutely nothing!
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The word problem as a group-theoretic invariant

Proposition
If ( G, s̄ ), ( H, t̄ ) ∈ Gfg and G ∼= H, then Words̄(G) ≡T Wordt̄ (H).

Definition
If A ∈ 2N, then RecA(N) = {g ∈ Sym(N) | g ≤T A }.

Proposition

(i) If A ≤T B, then RecA(N) 6 RecB(N).
(iI) If A ≡T B, then RecA(N) = RecB(N).
(iii) If ( G, s̄ ) ∈ Gfg and Words̄(G) ≤T A, then G ↪→ RecA(N).
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The word problem as a group-theoretic invariant

Theorem (Friedman)
There exists a Borel map A 7→ ( gA,hA ) from 2N to Sym(N)× Sym(N)
such that:

RecA(N) ↪→ 〈gA,hA 〉 ∈ G2.
If A ≡T B, then {gA,hA } and {gB,hB } generate the same
subgroup of Sym(N) and so 〈gA,hA 〉 ∼= 〈gB,hB 〉.

Corollary (Friedman)
Let ψ : Gfg → G2 be the Borel homomorphism defined by

( G, s̄ ) 7→Words̄(G) 7→ 〈g Words̄(G),h Words̄(G 〉.

Then G ↪→ ψ(G, s̄) for all ( G, s̄ ) ∈ Gfg .
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Friedman’s Idea

Notation
If A ∈ 2N, then ϕA

i is the i-th partial A-recursive function and

ψA
i =

{
ϕA

i if ϕA
i ∈ Sym(N);

idN otherwise.

Lemma (Friedman après Myhill)
If A ≡T B, then there exists a recursive permutation θ ∈ Sym(N)
such that ψB

i = ψA
θ(i) for all i ∈ N.
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Friedman’s Idea

Definition
Define πA ∈ Sym(N× N) by πA(i , j) = (i , ψA

i (j)).

Lemma (Friedman)
If A ≡T B, then there exists a recursive permutation θ ∈ Sym(N× N)
such that θ−1πAθ = πB.

Definition
Let HA 6 Sym(N× N) be the subgroup generated by

{πA} ∪ { θ ∈ Sym(N× N) | θ is recursive }.

Remark
If A ≡T B, then HA = HB.
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Friedman’s Idea

Notation
For each g ∈ Sym(N), define g̃ ∈ Sym(N× N) by

g̃(i , j) =

{
( 0,g(j) ) if i = 0.
( i , j ) otherwise.

Proposition (Friedman)

RecA(N) ∼= { g̃ ∈ Sym(N× N) | g ∈ RecA } 6 HA.

Corollary (Friedman)

If ( G, s̄ ) ∈ Gfg and Words̄(G) ≤T A, then G ↪→ RecA(N) ↪→ HA.
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Galvin’s Embedding Theorem

Notation
For each π ∈ Sym(Ω), define π̂ ∈ Sym(Z× Z× Ω) by

π̂( m,n, ω ) =

{
( 0,0, π(ω) ) if m = n = 0;
( m,n, ω ) otherwise.

Theorem (Galvin)
If K 6 Sym(Ω) is a countable subgroup, then there exists a 2-generator
subgroup TK 6 Sym(Z× Z× Ω) such that { k̂ | k ∈ K } 6 TK .

Definition
Let Ω = N× N and let K be the group of recursive permutations of
N× N. Then GA is the 3-generator group generated by TK ∪ { π̂A }.

And to get a 2-generator group? Work a little harder!
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An Open Problem

Observation
The standard group-theoretic constructions (e.g. wreath products,
free products with amalgamation, HNN extensions, ...) induce
continuous homomorphisms ϕ : Gfg → Gfg .

Conjecture
There does not exist a continuous homomorphism ϕ : G3 → G2 such
that G ↪→ ϕ(G) for all G ∈ G3.

Question (Kanovei)
Find nontrivial natural examples of Borel equivalence relations E , F
such that E ≤B F but there is no continuous reduction from E to F .
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Why are such examples hard to find?

Theorem (Folklore)
If X , Y are Polish spaces and ϕ : X → Y is a Borel map, then
there exists a comeager subset C ⊆ X such that ϕ � C is continuous.

Theorem (Lusin)
Let X, Y be Polish spaces and let µ be any Borel probability measure
on X. If ϕ : X → Y is a Borel map, then for every ε > 0, there exists
a compact set K ⊆ X with µ(K ) > 1− ε such that ϕ � K is continuous.
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Another notion of largeness ...

Definition
For each z ∈ 2N, the corresponding cone is Cz = { x ∈ 2N | z ≤T x }.

Suppose zn = {an,` | ` ∈ N } ∈ 2N for each n ∈ N and define

⊕zn = {pan,`
n | n, ` ∈ N } ∈ 2N,

where pn is the nth prime.

Then zm ≤T ⊕zn for each m ∈ N and so C⊕zn ⊆
⋂

n Czn .

Remark
It is well-known that if C  2N is a proper cone, then C is both
null and meager.

Simon Thomas (Rutgers University) 7th Young Set Theory Workshop May 14th 2014



Continuous maps on the Cantor space

Theorem (Folklore)
If θ : 2N → 2N, then the following are equivalent:
(a) θ is continuous.
(b) There exists C ∈ 2N and e ∈ N such that θ(A) = ϕC⊕A

e .

Corollary
If θ : 2N → 2N is continuous, then there exists a cone C such that
θ(A) ≤T A for all A ∈ C.
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Continuous maps on Gfg

Theorem
If G 7→ KG is a continuous map from Gfg to Gfg , then there exists
a cone C such that if Word(G) ∈ C, then Word(KG) ≤T Word(G).

Observation
If ψ : Gfg → G2 is the map given by the current proof of the Friedman
Embedding Theorem, then Word(G)′′ ≤T Word(ψ(G)) for all G ∈ Gfg .

Proof.
{ i ∈ N | ϕA

i ∈ Sym(N)r { IdN } } ≡T A′′.
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The “obvious” vs “nonobvious” Turing reductions ...

Definition
If A, B ∈ 2N, then A is one-one reducible to B, written A ≤1 B,
if there exists an injective recursive function f : N→ N such that
for all n ∈ N,

n ∈ A ⇐⇒ f (n) ∈ B.

Example
If G, H ∈ Gfg and G ↪→ H, then Word(G) ≤1 Word(H).

Proof.
Suppose that G = 〈a1, · · · ,an 〉 and H = 〈b1, · · · ,bm 〉. Let ϕ : G→ H
be an embedding and let ϕ(ai) = ti(b̄). Then

wk (a1, · · · ,an) = 1 ⇐⇒ wk (t1(b̄), · · · , tn(b̄)) = 1.
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Turing Equivalence vs. Recursive Isomorphism

Definition
The sets A, B ∈ 2N are recursively isomorphic, written A ≡1 B,
if both A ≤1 B and B ≤1 A.

Theorem (Myhill)
If A, B ∈ 2N, then A ≡1 B if and only if there exists a recursive
permutation π ∈ Sym(N) such that π[A] = B.

Theorem (Folklore)
The map A 7→ A′ is a Borel reduction from ≡T to ≡1.

Observation
The Borel reduction A 7→ A ′ from ≡T to ≡1 is certainly not continuous.
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Turing Equivalence vs. Recursive Isomorphism

Definition
Let E , F be Borel equivalence relations on the Polish spaces X , Y .
Then the Borel map ϕ : X → Y is a homomorphism from E to F if

x E y =⇒ ϕ(x) F ϕ(y).

The Cone Theorem
If θ : 2N → 2N is a continuous homomorphism from ≡T to ≡1, then
there exists a cone C such that θ maps C into a single ≡1-class.

Corollary
There does not exist a continuous reduction from ≡T to ≡1.
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Turing Equivalence vs. Isomorphism on Gfg

Theorem
There does not exist a continuous reduction from ≡T to ∼=Gfg .

Proof.
Suppose A 7→ HA is a continuous reduction from ≡T to ∼=Gfg .
Note that H 7→Word(H) is an countable-to-one continuous
homomorphism from ∼=Gfg to ≡1.
Thus A 7→Word(HA) is a countable-to-one continuous
homomorphism from ≡T to ≡1, which is a contradiction.
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Determinacy

Definition
For each X ⊆ 2N, let G(X ) be the two player game

I s(0) s(2) s(4) s(6) · · ·
II s(1) s(3) s(5) s(7) · · ·

where I wins if and only if s = ( s(0) s(1) s(2) s(3) · · · ) ∈ X .

Definition
A strategy is a map 2<N → 2 which tells the relevant player
which move to make in a given position.
The game G(X ) is determined if one of the players has a
winning strategy.
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Determinacy

Observation
If X is countable, then player II has a winning strategy in G(X ).

Theorem (AC)
There exists a subset X ⊆ 2N such that G(X ) is not determined.

Borel Determinacy (Martin)
If X ⊆ 2N is a Borel subset, then G(X ) is determined.
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An easy application of Borel Determinacy

Definition
A subset X ⊆ 2N is ≡T -invariant if it is a union of ≡T -classes.

Theorem (Martin)
If X ⊆ 2N is a ≡T -invariant Borel subset, then either X or 2N r X
contains a cone.

Cf. Ergodicity ...
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Proof of Martin’s Theorem

Suppose that X ⊆ 2N is a ≡T -invariant Borel subset.

Consider the two player game G(X )

s(0) s(1) s(2) s(3) · · ·

where I wins if and only if s = ( s(0) s(1) s(2) · · · ) ∈ X .

Then the Borel game G(X ) is determined. Suppose,
for example, that σ : 2<N → 2 is a winning strategy for I.

Let σ ≤T t ∈ 2N and consider the run of G(X ) where
II plays t = ( s(1) s(3) s(5) · · · )
I uses the strategy σ and plays ( s(0) s(2) s(4) · · · ).

Then s ∈ X and s ≡T t . Hence t ∈ X and so Cσ ⊆ X .
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Some easy consequences of Martin’s Theorem

Theorem (Martin)
If X ⊆ 2N is a ≡T -invariant Borel subset, then either X or 2N r X
contains a cone.

Corollary
If X ⊆ 2N is a ≡T -invariant ≤T -cofinal Borel subset, then
X contains a cone.

Corollary
If X ⊆ 2N is an arbitrary ≤T -cofinal Borel subset, then
X contains representatives of a cone.
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Pointed Trees

Definition
A subset S ⊆ 2<N is a tree if it is closed under taking initial
segments.
If S is a tree, then [ S ] ⊆ 2N denotes the set of infinite branches
through T .
The tree S is perfect if for each s ∈ S, there exist incomparable
a, b ∈ S with s l a, b.
The perfect tree S is pointed if S ≤T y for all y ∈ [ S ].

Theorem (Martin)
If X ⊆ 2N is a ≤T -cofinal Borel subset, then there exists a
pointed tree S ⊆ 2<N such that [ S ] ⊆ X.
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Proof of the Cone Theorem

The Cone Theorem
If θ : 2N → 2N is a continuous homomorphism from ≡T to ≡1, then
there exists a cone C such that θ maps C into a single ≡1-class.

Let A be a cone such that θ(A) ≤T A for all A ∈ A.

Then there exists a cone C ⊆ A such that either
(a) θ(A) < T A for all A ∈ C; or
(b) θ(A) ≡ T A for all A ∈ C.
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Case (a): suppose that θ(A) <T A for all A ∈ C.

Theorem (Slaman-Steel)
If C is a cone and θ : C → 2N is a Borel homomorphism from
≡T � C to ≡T such that θ(A) <T A for all A ∈ C, then there exists
a cone D ⊆ C such that θ maps D into a single ≡T -class.

Thus θ maps a cone D into a single ≡T -class a.

Let a =
⊔

n∈N bn be the decomposition of a into ≡1-classes.

For each n ∈ N, let Bn = θ−1(bn).

Then there exists n ∈ N such that Bn contains a cone, as required.
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Case (b): suppose that θ(A) ≡T A for all A ∈ C.

The Non-Selector Theorem
If C is a cone, then there does not exist a Borel homomorphism
θ : C → C from ≡T � C to ≡1� C such that θ(A) ≡T A for all A ∈ C.
In other words, if C is a cone, then there does not exist a Borel
map which selects an ≡1-class within each ≡T -class.
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Proof of the Non-Selector Theorem

Suppose θ : C → C selects a ≡1-class within each ≡T -class.
Then θ[C] is a ≤T -cofinal Borel subset of 2N.
By Martin’s Theorem, there exists a pointed tree S ⊆ 2<N

such that [ S ] ⊆ θ[C].
Note that if x , y ∈ [ S ], then x ≡T y iff x ≡1 y .
We can suppose that (πn | n ∈ N ) ≤T S, where {πn | n ∈ N }
is the group of recursive permutations.
Let x ∈ [ S ] be the left-most branch, so that x ≡T S.
Then we can construct a branch y ≤T S such that πn(y) 6= x
for all n ∈ N.
But then y ≡T x and y 6≡1 x , which is a contradiction!
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Proof of the Main Theorem

Main Theorem
There does not exist a Borel homomorphism A 7→ GA from ≡T to ∼=
such that Word(GA) ≡T A for all A ∈ 2N.

Suppose that A 7→ GA is a Borel homomorphism from ≡T to ∼=
such that Word(GA) ≡T A for all A ∈ 2N.

Consider the Borel map θ : 2N → 2N defined by A 7→Word(GA).

If A ≡T B, then GA
∼= GB and so Word(GA) ≡1 Word(GB).

Thus θ : 2N → 2N is a Borel map which selects an ≡1-class
within each ≡T -class, which is a contradiction!

The End
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