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The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)

If G is a countable group, then G can be embedded into a
2-generator group Kg.

v

Theorem

Ifo:(G,%g) — (G =g, ) is any Borel homomorphism, then there
exists a group G € G such that G + ¢(G).
Since =g is much more complex than =g, , the Borel homomorphism

must have a “large kernel” and hence “too many” groups G € G will
be mapped to a fixed K € Gy,.

¢
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The obvious follow-up question to the HNN Theorem

Question (Cherlin, Hrushovski, Sabok, ...)

Does there exist a Borel homomorphism ¢ : G¢y — G2 such that
G — o(G) for all G € Gg,?

Definition
Let G, be the space of 2-generator groups.

Theorem (Hjorth)
=g, Is a universal countable Borel equivalence relation.

Simon Thomas (Rutgers University) 7th Young Set Theory Workshop May 14th 2014



Talking to the wrong people ...

The Friedman Embedding Theorem

There exists a Borel homomorphism ) : Ggz — Go such that
G — ¢(Q) for all G € Gy.

What does Friedman know that the group theorists don’t know ...
and that might conceivably be useful?

Absolutely nothing!
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The word problem as a group-theoretic invariant

Proposition
If(G,3), (H,t) € Gty and G = H, then Words(G) = r Wordz(H).

Definition
If A c 2V, then Rec(N) = {g e Sym(N) | g <7 A}.

Proposition
(i) If A<t B, then Rec*(N) < RecB(N).
(il)y If A= B, then Rec*(N) = RecB(N).
(iiiy If(G,3) € Gy and Words(G) < r A, then G — Rec*(N).
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The word problem as a group-theoretic invariant

Theorem (Friedman)

There exists a Borel map A (ga, ha) from 2~ to Sym(N) x Sym(N)
such that:

® Rec’(N) = (ga, ha) € Go.

@ IfA=7 B, then{ga,ha} and { gs, hg } generate the same
subgroup of Sym(N) and so (ga, ha) = (gs, hs ).

Corollary (Friedman)

Let) : Gy — Go be the Borel homomorphism defined by

(G, 5) — Words(G) — ( 9words(G)» MwWords(G )-
Then G — (G, 8) forall (G,s) € Gg.
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Friedman’s Idea

If Ac 2N, then gof‘ is the i-th partial A-recursive function and

WA = pft  if o € Sym(N);
! idy otherwise.

Lemma (Friedman aprés Myhill)

If A=t B, then there exists a recursive permutation § € Sym(N)
such that 7 =y, forall i € N.
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Friedman’s Idea

Define 74 € Sym(N x N) by wa(i, /) = (i, v2(j))-

v

Lemma (Friedman)

If A=t B, then there exists a recursive permutation § € Sym(N x N)
such that 0~ 'm0 = mp.

v

Let Hy < Sym(N x N) be the subgroup generated by

{ma} U{0 € Sym(N x N) | 6 is recursive }.

If A=7 B, then Hy = Hp.
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Friedman’s Idea

For each g € Sym(N), define g € Sym(N x N) by

5(i.j) = {(O,g(j)) if i = 0.

(1,)) otherwise.

Proposition (Friedman)

Rec?(N) = {§ € Sym(N x N) | g € Rec”} < H,.

v

Corollary (Friedman)
If(G,3) € Gry and Words(G) <1 A, then G — Rec*(N) < Hy.
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Galvin’s Embedding Theorem

For each = € Sym(Q), define & € Sym(Z x Z x Q) by

(0,0,7(w)) ifm=n=0;
(m,nw) otherwise.

Theorem (Galvin)

If K < Sym(Q) is a countable subgroup, thenAthere exists a 2-generator
subgroup Ty < Sym(Z x Z x Q) suchthat{k | k € K} < Tk.

Let Q = N x N and let K be the group of recursive permutations of
N x N. Then Gy is the 3-generator group generated by Tx U { 74 }.

fr(m,n,w)z{

And to get a 2-generator group? Work a little harder!
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An Open Problem

Observation

The standard group-theoretic constructions (e.g. wreath products,
free products with amalgamation, HNN extensions, ...) induce
continuous homomorphisms ¢ : Ggg — Gyg.

There does not exist a continuous homomorphism ¢ : Gz — G» such
that G — ¢(G) for all G € G3.

Question (Kanovei)

Find nontrivial natural examples of Borel equivalence relations E, F
such that E <g F but there is no continuous reduction from E to F.
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Why are such examples hard to find?

Theorem (Folklore)

If X, Y are Polish spaces and ¢ : X — Y is a Borel map, then
there exists a comeager subset C C X such that o | C is continuous.

Theorem (Lusin)

Let X, Y be Polish spaces and let . be any Borel probability measure
onX. Ifo: X — Y is a Borel map, then for every e > 0, there exists
a compact set K C X with u(K) > 1 — e such that ¢ | K is continuous.
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Another notion of largeness ...

Definition

For each z € 2N, the corresponding coneis C; = {x € 2V | z <7 x }.

@ Suppose z, = {ap, | £ € N} € 2" for each n € N and define
Gz ={ps"*|nteN}e2
where p,, is the nth prime.

@ Then z, <1 @z, foreach me N and so Cgz, € (),Cz,.

It is well-known that if C ¢ 2" is a proper cone, then C is both
null and meager.
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Continuous maps on the Cantor space

Theorem (Folklore)

Ifo : 2N — 2N then the following are equivalent:

(a) @ is continuous.

(b) There exists C € 2" and e € N such that 0(A) = 5.

If6 : 2N — 2N js continuous, then there exists a cone C such that
0(A) <t AforallAcC.
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Continuous maps on Gy,

If G — Kg is a continuous map from Gy, to G, then there exists
a cone C such that if Word(G) € C, then Word(Kg) < 7 Word(G).

If 4 : Gy — Go is the map given by the current proof of the Friedman
Embedding Theorem, then Word(G)” <+ Word(y(G)) for all G € G,.

{ieN|pfeSym(N)\ {ldy}} =1 A" O

v
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The “obvious” vs “nonobvious” Turing reductions ...

Definition
If A, B € 2N, then A is one-one reducible to B, written A <4 B,
if there exists an injective recursive function f : N — N such that
for all n € N,
neA << f(n)eB.

If G, H € Gty and G — H, then Word(G) <1 Word(H).

Suppose that G= (ay,--- ,ap)and H=(by,--- ,bm). Letp: G— H
be an embedding and let ¢(a;) = t;(b). Then

Wk(a1,--~ ,a,,) =1 < Wk(t~| (5), o ,tn(B)) =1.

O

v
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Turing Equivalence vs. Recursive Isomorphism

Definition
The sets A, B € 2" are recursively isomorphic, written A =4 B,
if both A <; Band B <; A.

Theorem (Myhill)

IfA, B c 2N, then A=, B if and only if there exists a recursive
permutation = € Sym(N) such that n[A] = B.

Theorem (Folklore)
The map A — A’ is a Borel reduction from = 1 to =1.

Observation

The Borel reduction A+— A’ from = 7 to = is certainly not continuous.
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Turing Equivalence vs. Recursive Isomorphism

Let E, F be Borel equivalence relations on the Polish spaces X, Y.
Then the Borel map ¢ : X — Y is a homomorphism from E to F if

XEy = ¢(x) Fo(y).

| \

The Cone Theorem

Ifo . 2N — 2N js g continuous homomorphism from = 7 to =1, then
there exists a cone C such that § maps C into a single =1 -class.

There does not exist a continuous reduction from = r to =;.
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Turing Equivalence vs. Isomorphism on Gy,
There does not exist a continuous reduction from = 1 to =

@ Suppose A — Hp is a continuous reduction from = 7 to =

@ Note that H — Word(H) is an countable-to-one continuous
homomorphism from =g, to =4.

@ Thus A — Word(Hp) is a countable-to-one continuous
homomorphism from = 1 to =4, which is a contradiction.
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Determinacy

For each X C 2N, let G(X) be the two player game

I s(0) 5(2) s(4) s(6) ---
I s(1) s(3) s(5) s(7)

where [ wins if and only if s = (s(0) s(1) s(2) s(3) ---) € X.

Definition

@ A strategy is a map 2< — 2 which tells the relevant player
which move to make in a given position.

@ The game G(X) is determined if one of the players has a
winning strategy.
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Observation
If X is countable, then player Il has a winning strategy in G(X).

Theorem (AC)

There exists a subset X C 2~ such that G(X) is not determined.

Borel Determinacy (Martin)
If X C 2N s a Borel subset, then G(X) is determined.
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An easy application of Borel Determinacy

Definition

A subset X C 2N is = r-invariant if it is a union of = r-classes.

Theorem (Martin)

If X C 2N js a = r-invariant Borel subset, then either X or 2N < X
contains a cone.

Cf. Ergodicity ...
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Proof of Martin’s Theorem

@ Suppose that X C 2" is a = r-invariant Borel subset.
@ Consider the two player game G(X)
s(0) s(1) s(2) s(3)
where [ wins if and only if s = (s(0) s(1) s(2) ---) € X.

@ Then the Borel game G(X) is determined. Suppose,
for example, that o : 2<N — 2 is a winning strategy for /.

@ Let o <t t € 2" and consider the run of G(X) where
o /lplayst=(s(1)s(3)s(5) ---)
o [/ uses the strategy o and plays (s(0) s(2) s(4) ---).
@ Thense Xands=7t. Hencetec Xandso(C, C X.
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Some easy consequences of Martin’s Theorem

Theorem (Martin)

If X C 2N js a = r-invariant Borel subset, then either X or 2N <. X
contains a cone.

Corollary

If X C 2N s a = r-invariant < r-cofinal Borel subset, then
X contains a cone.

Corollary

If X C 2N js an arbitrary < r-cofinal Borel subset, then
X contains representatives of a cone.
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Pointed Trees

@ Asubset S C 2<Nis a tree if it is closed under taking initial
segments.

e If Sis atree, then [ S] C 2 denotes the set of infinite branches
through T.

@ The tree S is perfect if for each s € S, there exist incomparable
a,be Swiths<a, b.

@ The perfect tree S'is pointed if S <t y for all y € [S].

Theorem (Martin)

If X C 2N js a < 7-cofinal Borel subset, then there exists a
pointed tree S C 2<N such that [ S] C X.
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Proof of the Cone Theorem

The Cone Theorem

Ifo . 2N — 2N js a continuous homomorphism from = 7 to =1, then
there exists a cone C such that 6 maps C into a single =1-class.

@ Let A be acone such that 6(A) <7 Aforall Ac A.
@ Then there exists a cone C C A such that either

(a) 6(A) <t Aforall AcC;or
(b) O(A) =1 Aforall AcC.
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Case (a): suppose that §(A) <1 Aforall A € C.

Theorem (Slaman-Steel)

IfC is a cone and 6 : C — 2 is a Borel homomorphism from
=71] C to=17 such that 9(A) <t A for all A € C, then there exists
a cone D C C such that # maps D into a single = r-class.

@ Thus # maps a cone D into a single = r-class a.
@ Leta = | |,y bn be the decomposition of a into =¢-classes.
@ Foreach ne N, let B, = 6~"(bp).

@ Then there exists n € N such that B, contains a cone, as required.
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Case (b): suppose that 9(A) =1 Aforall A € C.

The Non-Selector Theorem

@ IfC is a cone, then there does not exist a Borel homomorphism
0:C—Cfrom=7|Cto=¢]C suchthatd(A)=r1 Aforall AcC.

@ In other words, if C is a cone, then there does not exist a Borel
map which selects an =1-class within each = r-class.
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Proof of the Non-Selector Theorem

@ Suppose 6 : C — C selects a =4-class within each = r-class.

@ Then #[C] is a < r-cofinal Borel subset of 2.

@ By Martin’s Theorem, there exists a pointed tree S C 2<N
such that [ S] C 0[C].

@ Notethatifx,y € [S],thenx =7 yiff x =1 y.

@ We can suppose that (7, |ne N) <t S,where {m, | n€ N}
is the group of recursive permutations.

@ Let x € [ S] be the left-most branch, so that x =1 S.

@ Then we can construct a branch y <t S such that m,(y) # x
for all n € N.

@ Butthen y =71 x and y #4 x, which is a contradiction!
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Proof of the Main Theorem

Main Theorem

There does not exist a Borel homomorphism A — Gp from =1 to =
such that Word(Gy) =1 A for all A € 2N,

@ Suppose that A — Gp is a Borel homomorphism from = 1 to =
such that Word(G,) =1 Afor all A € 2N,

@ Consider the Borel map ¢ : 2N — 2N defined by A — Word(Ga).
@ If A=t B, then G4 = Gp and so Word(Ga) =1 Word(Gg).

@ Thus 6 : 2V — 2N is a Borel map which selects an =¢-class
within each = r-class, which is a contradiction!

The End
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